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Abstract
Raman spectroscopy provides a vibrational profile of the molecules and thus can be used to uniquely identify different

kinds of materials. This sort of molecule fingerprinting has thus led to the widespread application of Raman spectrum in

various fields like medical diagnosis, forensics, mineralogy, bacteriology, virology, etc. Despite the recent rise in Raman

spectra data volume, there has not been any significant effort in developing generalized machine learning methods targeted

toward Raman spectra analysis. We examine, experiment, and evaluate existing methods and conjecture that neither

current sequential models nor traditional machine learning models are satisfactorily sufficient to analyze Raman spectra.

Both have their perks and pitfalls; therefore, we attempt to mix the best of both worlds and propose a novel network

architecture RamanNet. RamanNet is immune to the invariance property in convolutional neural networks (CNNs) and at

the same time better than traditional machine learning models for the inclusion of sparse connectivity. This has been

achieved by incorporating shifted multi-layer perceptrons (MLP) at the earlier levels of the network to extract significant

features across the entire spectrum, which are further refined by the inclusion of triplet loss in the hidden layers. Our

experiments on 4 public datasets demonstrate superior performance over the much more complex state-of-the-art methods,

and thus, RamanNet has the potential to become the de facto standard in Raman spectra data analysis.

Keywords Raman spectrum analysis � Convolutional Neural Networks � Multilayer perceptron � Deep learning �
Neural network

1 Introduction

Raman scattering is one of the various light-matter inter-

actions, comprising absorption and subsequent emission of

light by matter [1]. Spectroscopy, being the study of the

interaction of light or broader electromagnetic radiation

with matter, thus has also focused on Raman scattering,

ever since its discovery in 1928 by Raman and Krishnan

[2]. Unlike elastic scattering, e.g., Raleigh scattering, the

wavelength of incident light changes in Raman scattering

[3]. Following the typical norm of inelastic light scattering,

when a photon excites the sample, the electrons are raised

to a higher virtual energy state [4]. This excitation event is

usually short-lived and the molecule soon reaches a new

stable energy state, either lower (Stokes shift) or higher

(anti-Stokes) [5]. Based on the difference in energy, the

sample achieves a different vibrational and rotational state.

Therefore, Raman spectroscopy can be used to analyze the

vibrational modes of various molecules, extracting the

structural fingerprint of such materials in the process [1].

Being capable of uniquely fingerprinting materials,

Raman spectra have been used in a wide variety of appli-

cations [6], covering medical diagnosis [7], forensics [8],

mineralogy [9], bacteriology [10], virology [11], etc.

Conventionally, Raman spectra are analyzed in terms of

wavenumber ~v ðcm�1Þ. The standard practice is to present

them with the wavenumber shift, linearly increasing along

the horizontal axis. On the contrary, the vertical axis

ordinate is proportional to intensity [5]. Therefore, this

setting does not appear too different from traditional

spectrograms. However, the issue in treating Raman

spectra as typical spectrograms is that for Raman spectrum,

the horizontal axis does not represent time. Thus, it is not

logically sound to apply models that are used for spectrum
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analysis, e.g., convolutional neural networks (CNN), as

they discard the (time-domain) locality of the spectrum,

which is crucial for Raman spectra. On the contrary,

although the traditional machine learning methods, such as

support vector machine or logistic regression are more

suitable to deal with Raman spectra, they suffer from the

curse of dimensionality as Raman spectra data is usually

long. Principal Component Analysis (PCA) has been

widely used for feature reduction, as 34 out of recent 52

papers used that [6]. Still, it may not always be able to

compress Raman spectra properly, as PCA is more suit-

able for tabular data sources, where the features are ideally

uncorrelated, but in Raman spectra, the intensities at

nearby Raman shifts are expected to demonstrate some sort

of correlation.

With the reduction of cost and complexity related to the

Raman data extraction pipeline, there has been an

unprecedented expansion in Raman datasets in recent

years. This sudden growth of available Raman data

requires suitable methods to analyze them properly. Deep

learning is achieving state-of-the-art results in multiple

domains including natural language processing [38],

computer vision [34], healthcare [39], education [37],

psychology [36] etc. However, to the best of our knowl-

edge, there has not been any deep learning methodology,

devised solely focusing on Raman spectra data, considering

the pattern and properties of this unique data source. To

this end, we carefully contemplate the properties of Raman

spectra data and corresponding attributes of contemporary

machine learning methods. We argue why the application

of convolutional neural networks (CNN) may not be

appropriate for the invariance properties, but at the same

time acknowledge that CNN is more capable than tradi-

tional machine learning methods due to the sparse con-

nection and weight-sharing properties. We make an attempt

to fuse the best of both worlds and propose RamanNet, a

deep learning model that also follows the paradigm of

sparse connectivity without the limitation of temporal or

spatial invariance. We achieve this by using shifted densely

connected layers [35] and emulate sparse connectivity

found in CNN, without the concern of invariance. Fur-

thermore, dimensionality reduction has been involved in

most Raman spectra applications, and thus we employ

triplet loss in our hidden layers and make more separable

and informative embeddings in lower-dimensional space.

Our experiments on 4 public datasets demonstrate superior

performance over the much more complex state-of-the-art

methods, and thus, RamanNet has the potential to become

the de facto standard in Raman spectra data analysis.

In summary, we have attempted to generalize the task of

Raman spectrum analysis using a novel neural network

architecture, RamanNet. The primary contributions of this

work include:

• We leveraged densely connected layers for feature

extraction instead of CNN layers, as the Raman

spectrum is different from typical temporal spectra.

• We further made the computations efficient by incor-

porating sparse connectivity similar to CNNs, at the

same time preventing temporal invariance.

• Raman spectra being substantially long, dimensionality

reduction is an important application. To this end, we

incorporated triplet loss in the hidden layers so that the

reduced feature maps become more meaningful.

• We performed a thorough evaluation of the proposed

RamanNet architecture with current state-of-the-art

methods on 4 different and unrelated datasets.

• Additionally, we inspected the learned feature maps and

attempted to interpret them.

2 Motivations and high-level considerations

From a visual perception, the Raman spectrum resembles a

signal-like waveform, which has led to the application of

one-dimensional (1D) convolutional neural networks to

analyze Raman spectra [9, 12, 13]. However, the Raman

spectrum is not a typical signal rather it is an energy dis-

tribution plot, which may not be suitable for the appro-

priate utilization of CNNs as the subsequent discussion

unfolds. In what follows, we briefly discuss the properties

of CNNs and present our motivations and rationale.

Convolutional neural networks are one of the most

successful and widely used neural network architectures,

particularly in computer vision [14] and signal processing

[15] domains. The success of CNNs can be largely attrib-

uted to three primary properties of CNNs, namely sparse

interaction, parameter sharing, and equivariant represen-

tations [16]. The nature of image or signal data, i.e., spatial

or temporal properties, works in perfect harmony with the

properties of CNN. Unlike traditional feed-forward neural

networks, where all the input features are connected with

all the hidden or output layers, CNNs employ sparse con-

nectivity by leveraging kernels. Only a small portion of the

input is analyzed at a specific step using kernels, and thus

this prevents the computation from being overwhelmed

with analyzing the entire input at once. Although the focus

is put on local information, global information is also

Table 1 Hyperparameters of RamanNet

Hyperparameter w dw n1 n2 nf dp1 dp2 dp3

Value 50 25 25 512 256 0.5 0.4 0.25
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considered by appropriate use of pooling operations along

with the broader field of vision in deeper networks. Fur-

thermore, the use of kernel-based computation also facili-

tates parameter sharing, reducing the number of parameters

and the risk of overfitting simultaneously. Another vital

property of CNN is the equivariance in representation.

Mathematically for a convolutional operation f on an image

I, f ðIðx; yÞÞ ¼ f ðIðx� h; y� kÞÞ, i.e., a point of interest

whether it resides at position (x, y) or at a shifted position

ðx� h; y� kÞ, the output of the convolution operation

remains the same.

This equivariance to translation plays a pivotal role in

working with image or signal data. When processing signal

data, this property implies that CNN generates a timeline of

the emergence of different key points in the signal. As a

result, regardless of the time of occurrence, all the features

in a signal are captured, unlike traditional neural networks

which would have only sought the features at the exactly

fixed timestamps. Furthermore, the application of global

pooling operations makes sure that all the feature signa-

tures are preserved in the final representation.

In Fig. 1, a simplified example of how CNN works with

a signal as input has been presented. In Fig. 1a, there are

three shifted ECG signals; since the time of occurrence of a

particular feature in a signal is uncertain, it is imperative

that the model can identify the feature, irrespective of the

timestamp. In Fig. 1b, it can be observed that the feature

maps from a convolutional layer and apparent that the

equivalent features are detected, albeit shifted in accor-

dance with the shifted nature of the signals, complying

with the property f ðIðx; yÞÞ ¼ f ðIðx� h; y� kÞÞ. Finally, a

global pooling operation summarizes the feature maps and

provides identical representations of all the three signals in

Fig. 1c.

The example clearly shows the suitability of applying

CNNs for the time-series signal data. Since the pattern of

Raman spectrum closely resembles the pattern of signal

data, it is trivial to use CNNs to analyze Raman spectra.

The sparse connectivity and parameter sharing truly help in

this regard, as it makes the computation simpler and less

prone to overfitting. However, the equivariance to trans-

lation property which proved vital for analyzing signals is

not useful when working with the Raman spectra as fol-

lows. The Raman spectrum is plotted as intensity vs Raman

shifts. Thus the concept of equivariant translation is not

applicable in this case, because similar intensity at different

Raman shifts implies a completely different meaning. For

example, in Fig. 2, we present a similar scenario (as in

Fig. 1) but with the Raman spectrum as input. It can be

seen that we have three completely different Raman

spectrums, having similar patterns in different Raman

shifts. But the CNN model, due to the translational

equivariance, treats them as shifted inputs and generates

the same output for all of them (Fig. 2c).

The above examples resurface the question of the suit-

ability and efficacy of CNN in Raman spectrum analysis.

Attempts have been made to address this question in prior

works by using deeper networks (broadening the field of

vision thereby) along with discarding pooling layers (with

a goal to preserve the locations of spectral peaks) [12]. On

the contrary, we can use traditional neural networks or

machine learning models which are capable of keeping

track of the exact locations. However, they succumb to the

curse of dimensionality [17], due to the long length of the

Raman spectrum. Although PCA has been mostly used to

reduce that [6], still it feels less intuitive to model spectrum

inputs using hyperplane optimization, which is more suit-

able for tabular data. As the spectra are apparently corre-

lated in neighboring Raman shifts, this rather motivates us

to use sparse connectivity through kernel-like operations in

CNN instead, which is also supported by the reduced

accuracy in classical models [9, 12].

This brings us to the dilemma of whether to use CNN or

classical machine learning pipelines. On one hand, CNNs

Fig. 1 Analysis of CNN for a 1-D time-series signal input
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help in analyzing Raman spectra for the benefits of sparse

connectivity (considering the correlation in neighboring

Raman shifts) and parameter sharing (reducing the number

of parameters and overfitting), but lose their applicability

due to translational equivariance. On the other hand, tra-

ditional models are free from translational equivariance,

but they cannot comprehend the correlation in the neigh-

boring Raman shifts and suffers from the curse of dimen-

sionality as trying to optimize too many parameters at

once. In the sequel, we overcome this dilemma by

proposing a middle ground between the two approaches,

fusing the best of the both worlds. We propose to use

shifted multi-layer perceptrons (MLPs) [35] to analyze

shifted windows of Raman spectra. This facilitates sparse

connectivity as the shifted MLP layers mimic kernels and

only analyze a part of the input. Moreover, parameter

sharing is redundant in this regard, as the kernel-like

operations of a particular kernel are only performed in one

part and not elsewhere. Finally, this also eliminates the

issues with translation equivarience, as for different loca-

tions or different shifted windows we have different MLP

layers. Thus,

Mathematically, a typical 1D CNN operation can be

simplified as,

yðiÞ ¼ r
X

h

xðiþ hÞkðhÞ þ b

 !
ð1Þ

Here, x is the 1D input, y is the output, k is a learned kernel,

b is the bias term and r is a nonlinear operation. The same

kernel k is applied everywhere, and thus the translational

equivarience is achieved.

On the contrary, our proposed modification from using

an MLP,

yðiÞ ¼ rðWT
f ðiÞxþ bÞ � r

X

h

xðiþ hÞkf ðiÞðhÞ þ b

 !
ð2Þ

Here, the dot product WTx is mathematically equivalent to

a 1D convolutional operation with proper relation between

the weight matrix W and kernel k. In addition, since we are

using sliding windows, the weight matrix Wf ðiÞ and kernel

kf ðiÞ depends on the location, i.e., the value of i, and this

relation is represented by the function f(i).

3 Proposed architecture

On the basis of the above discussion, a novel network

architecture, RamanNet is presented here. As mentioned in

the previous section, the convolution operation is mim-

icked using multi-layer perceptrons or so-called densely

connected neural network layers. The input Raman spec-

trum is broken into overlapping sliding windows of length

w and step size dw, and each of them is passed to a dif-

ferent dense block with n1 neurons each. This ensures

sparse connectivity and reduces the risk of overfitting.

Furthermore, this configuration somewhat resembles a

convolution operation without translation, and thus the

features extracted at the neurons can be considered the

same way as features learned from kernels would be

considered.

The features from all the dense blocks are concatenated

together, and a dropout dp1 is applied. These concatenated

features are again summarized using another dense layer

with n2 neurons. The outputs from the summarization are

regularized with a dropout of dp2.

Finally, nf features are computed from the regularized

outputs using another dense layer with nf neurons. This

layer is named as embedding layer. Raman spectra are

known to be noisy with a low signal-to-noise ratio (SNR)

[12], which often leads to less separation between the

classes. Therefore, in order to improve this, triplet loss [18]

is introduced as an auxiliary loss. Triplet loss is defined

Fig. 2 Analysis of CNN for a Raman spectrum input
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using Euclidian distance, f, between an anchor A, positive

example P and negative example N as,

LðA;P;NÞ ¼ maxðjjf ðAÞ � f ðPÞjj2 � jjf ðAÞ � f ðNÞjj2 þ a; 0Þ
ð3Þ

Here, a is a margin term to ensure that the model learns

non-trivial information.

Using triplet loss, a well-separated embedding space can

be obtained. The embeddings are finally used to predict the

classes of input using the Softmax activation function and a

dropout of dp3. The network is thus updated using a

combination of triplet and cross-entropy loss.

Loss ¼ 0:5 � triplet loss þ 0:5 � cross-entropy loss ð4Þ

Other than the output layer, all the layers use LeakyRELU

activation function [19] and are batch normalized [20]. The

values of the various hyperparameters are as follows:

A simplified diagram of the RamanNet is presented in

Fig. 3.

4 Datasets

One particular limitation when working with deep learning

architectures for Raman spectrum analysis is the lack of

sufficient public benchmark datasets [6]. Although there

have been several recent works utilizing deep learning

models for Raman spectrum analysis, the datasets are

mostly proprietary or private [21, 22]. From an elaborate

review of the recent works on Raman Spectrum analysis

[12, 13, 24, 25], 4 publicly available datasets were selected

for analyzing and benchmarking RamanNet. It would have

been preferable to include more datasets in our evaluation,

but unfortunately at the time of writing this paper, there

were no more additional Raman spectra databases suit-

able for training machine learning methods. Nevertheless,

it should be noted that the majority of the existing methods

were evaluated on only one or two similar datasets.

4.1 COVID dataset

We used the publicly available data [23] from the recent

work [24], which acts as a pilot study of primary screening

of COVID-19 (COronaVIrus Disease 2019) by Raman

spectroscopy. This dataset contains a total of 177 serum

samples collected from 63 COVID-19 patients, 59 sus-

pected ones, and 55 healthy people (i.e., the control group).

The COVID-19 group was recruited at the Chengdu Public

Health Clinical Medical Center, and it includes 58 symp-

tomatic and 5 asymptomatic patients. The suspected group

demonstrated flu-like symptoms but tested negative using

RT-PCR tests. For all the subjects, 1-hour repose of blood

sampling the serum was extracted by centrifuging at 3000

rpm for 10 min and was stored at 4 �C. Later, a single-

mode laser diode with 785 nm wavelength and 100 mW

power was used for Raman excitation. The laser power

applied to the sample was measured at around 70 mW, and

the spectra were recorded in the range of 600–1800 cm�1.

Fig. 3 RamanNet Architecture
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4.2 Melanoma dataset

Erzina et al. [13] used surface enhanced Raman spectroscopy

(SERS) to detect skin melanoma. Healthy residual skin and

skin melanoma metastasis were collected. From cell line and

primary culture, 12 categories of samples were considered,

each having 8–9 samples. The SERS spectra were measured

using a ProRaman-L spectrometer at 785 nm excitation

wavelength and 33 mW power. AuMs, functionalized by

ADT–NH2, ADT–COOH, or ADT-(COOH)2 were used to

measure the SERS spectra, i.e., 3 different spectra were

obtained for each sample. Finally, the background was

removed using smoothing algorithms and the recorded

spectra were normalized to an intensity value of 0 to 1. The

range of the recorded spectra is 100–4278 cm�1.

4.3 Mineral dataset

Mineral substance identification is another popular appli-

cation of Raman spectroscopy. Among the various mineral

databases, we selected the RRUFF database [25]. The

RRUFF project aims at curating the most comprehensive

set of high-quality spectral data from well-characterized

minerals, comprising Raman spectra, X-ray diffraction, and

information from chemistry. The database contains Raman

spectra of various minerals at different configurations, i.e.,

varied wavelengths and orientations, accompanied by

various kinds of processing. Furthermore, the Raman

spectra computed from the different materials are hardly

consistent, e.g., the ranges of Raman shifts are also dif-

ferent. In order to alleviate such irregularities, we have

only considered spectra computed at 432 nm, which is the

majority. Moreover, we have only collected the raw spec-

tra, i.e., which were not processed anyway. Since the

recorded spectra have different ranges of Raman shift, we

have cropped the region that is common in all the spectra

and used cubic spline to interpolate the locations if nec-

essary. The resultant spectra cover the range 280–4237

cm�1, and then, min-max normalization was performed.

Finally, we take the mineral classes with at least 10 sam-

ples, which reduces the database to twenty mineral classes,

and use them to evaluate the proposed model.

4.4 Bacteria dataset

We collected the bacteria-ID dataset from [12], where the

potential of Raman spectroscopy in label-free bacteria

detection was investigated. This dataset consists of 30

bacterial and yeast isolates, including multiple isolates of

Gram-negative and Gram-positive bacteria. The dataset is

organized into a reference training dataset, reference fine-

tuning set, and test set. The fine-tuning dataset is used to

account for the changes in measurement caused by optical

system efficiency degradation. The training dataset con-

tains 2000 spectra for each of the 30 isolates, whereas the

fine-tuning and test set contains 100 spectra for each iso-

late. The isolates were cultured on blood agar plates sealed

with Parafilm and stored at 4 �C. The Raman spectra were

generated using Horiba LabRAM HR Evolution Raman

microscope, with 633 nm illumination at 13.17 mW along

with a 300 l/mm grating. The spectra were computed at 1.2

cm�1 dispersion to simultaneously maximize signal

strength and minimize background signal. The recorded

spectra were normalized to the intensity of 0 � 1, covering

the spectral range between 381.98�1792.4 cm�1.

5 Experimental setup

The experiments have been conducted in a server computer

with Intel Xeon @2.2GHz CPU, 24 GB RAM, and NVI-

DIA TESLA P100 (16 GB) GPU. We implemented the

RamanNet architecture using Tensorflow [26]. The codes

are available in the following GitHub repository.

https://github.com/nibtehaz/RamanNet

In the following subsections, we briefly explain the

experimental protocols and evaluation procedures adopted

for the different tasks. We have tried to mimic the corre-

sponding baseline papers to ensure a fair comparison. As

mentioned earlier, we were only compelled to follow a

different evaluation scheme for the Mineral and Melanoma

dataset, and thus we reproduced that baseline model’s

output following our exact protocol.

5.1 Covid dataset

We followed the same evaluation method as presented in

[24]. In this work, the authors conducted a ‘‘blind’’ vali-

dation. They randomly divided the whole dataset into

training (70%) and hold-out test set (30%). In order to

further assess the independence of the data over model

performance, this process was repeated 50 times and the

average values of the metrics were recorded. We followed

the same protocol to evaluate RamanNet. In order to avoid

overfitting, we used 10% data from the training set as

validation data, but the hold-out test data were left com-

pletely independent from the training process and were

only used for evaluation. The models were trained for 1000

epochs.

5.2 Melanoma dataset

In the original work, Erzina et al. [13] performed a

75%:25% train-validation split. Therefore, we attempted to

18724 Neural Computing and Applications (2023) 35:18719–18735
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follow a similar splitting criterion. Since the splitting

information was not provided, we opted to perform a

fourfold cross-validation instead, as it would also split the

data in the same ratio. Additionally, in order to keep the

comparisons fair, i.e., RamanNet has not benefitted by any

convenient splitting that occurred randomly by chance, we

have presented the results for all 4 folds. The authors

demonstrated 100% accuracy using 3 different spectra

(AuMs functionalized by ADT-NH2, ADT-COOH, or

ADT-(COOH)2, respectively) together. However, to make

the task difficult, we experimented with using only one

type of spectra as input. To ensure a level-playing field, we

reproduced the model as described in [13] and evaluated

the model with one particular spectrum as input at a time.

5.3 Mineral dataset

Jichao et al. [9] used the RRUFF database for the mineral

classification task. However, they employed the leave-one-

out cross-validation scheme, which is computationally too

expensive. In order to reduce the computational require-

ments, we thus opted for fivefold cross-validation instead.

In order to compare RamanNet with the model presented

by Jichao et al. [9], we implemented their proposed model

and used it in our analysis.

5.4 Bacteria dataset

In order to assess RamanNet on the Bacteria-ID dataset, we

followed the same training and evaluation procedure as

presented in [12]. Similar to their approach, we first pre-

trained the model using the reference training dataset,

through a fivefold cross-validation scheme. The five mod-

els obtained in this process were then fine-tuned on the

fine-tuning dataset, which was spilt into 90% training and

10% validation set. The model with the highest accuracy

on this validation set was considered and evaluated on the

independent test dataset. The models were trained for 100

and 250 epochs, respectively, on the reference training and

fine-tuning set.

6 Results

6.1 RamanNet consistently outperforms existing
models

6.1.1 COVID-19 dataset

In [24], a support vector machine (SVM) model was

developed to distinguish the different categories, namely

healthy, suspected, and COVID-19 patients. Instead of

working with the entire spectrum, wave points with

significant differences in the analysis of variance

(ANOVA) test was selected. Thus, a statistically sound

feature reduction was performed and the reduced feature

set was used as the input to the SVM model. On the con-

trary, RamanNet takes the entire spectrum as input and

adaptively finds the significant region therein.

The average performance over 50 random trials for the

different tasks is presented in Table 2, and here we present

the accuracy, sensitivity, and specificity values. Among the

3 tasks, differentiating between suspected and healthy

subjects seems to be the most challenging one, as is evident

from the inferior performance of SVM (all metrics �
70%). RamanNet, on the other hand, performed compara-

tively better in this task. Notably, RamanNet improved

accuracy and specificity by 13% and 21%, respectively.

RamanNet also achieved an improved sensitivity score.

On the other two tasks, the SVM model performed

comparatively (than its own performance in the first task).

However, our proposed RamanNet consistently outper-

formed SVM in all these two tasks as well. Most promis-

ingly, RamanNet improved sensitivity greatly in both of the

tasks. For this problem, sensitivity is crucial as we need to

correctly detect Covid-19 patients. This improvement in

sensitivity did not come at any cost of specificity, rather the

specificity has also been improved compared to the SVM

model.

6.1.2 Melanoma dataset

As described previously, we perform a fourfold cross-val-

idation on the melanoma dataset. Following the original

evaluation as performed by Erzina et al., [13], we consider

all three different types of spectra simultaneously as input.

In addition, we perform a difficult version of the problem

by taking only one type of spectra as input at a time. The

results are presented in Table 3.

Table 2 Results on COVID-19 Dataset

Method Accuracy Sensitivity Specificity

COVID-19 versus Suspected

SVM 87 � 5 89 � 8 86 � 9

RamanNet 93 � 3 97 � 4 90 � 6

COVID-19 versus Healthy

SVM 91 � 4 89 � 7 93 � 6

RamanNet 95 95 � 4 96 � 3

Suspected versus Healthy

SVM 69 � 5 70 � 9 66 � 9

RamanNet 82 � 6 77 � 15 87 � 11
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From the results, it is evident that although the CNN

model manages to achieve perfect 100% accuracy (in 2

folds out of 4) when given 3 spectra as input, the accuracy

falls when a single spectrum is given as input. This drop in

performance can be explained by the loss of information

when working with a single spectrum. For different func-

tionalizations of AuMs, the sample is observed from a

different point of view and different information is

obtained. Thus, when working with a reduced number of

spectra, insightful information is likely to get lost and that

negatively affects performance. Although for the –

(COOH)2 as input the accuracy of the CNN model stays

above 98%, it falls below 97% for the other two input

spectra CNN model.

RamanNet on the other hand seems to consistently

outperform the CNN model for both when all the 3 spectra

are considered together or separately. RamanNet not only

consistently achieved 100% accuracy with all the 3 spectra

as input, but also with –NH2 and –(COOH)2 individual

spectra as input separately. Only when –COOH spectra

were used as input, the performance was not up to the

mark, but still, the performance was superior to the CNN.

All these improvements become more significant when we

compare the number of parameters of the two models. The

CNN model consists of 25.7 M parameters whereas

RamanNet has only 1.3 M parameters (	 5%). Thus,

RamanNet is not only more accurate, but it is also com-

putationally efficient at the same time.

6.1.3 Mineral dataset

As described in the previous sections, the Mineral dataset

consists of 20 mineral classes, and in order to compare with

the model proposed by [9], we implement their model and

perform a fivefold cross-validation. The results are pre-

sented in Table 4.

Here, we have presented the Top 1, Top 3, and Top 5

accuracy metrics, which are popularly used for multiclass

classification problems. In the Top X accuracy score, we

check whether the top X predictions of the model match

with the ground truth. It is evident that RamanNet con-

sistently outperforms the previous state-of-the-art CNN

model. For Top 1 accuracy, the improvement is more

prominent, nevertheless, RamanNet performs better in

regards to the other metrics as well. Another point worth

mentioning is that even in this case the CNN model is

heavier comparatively (6.6 M parameters vs. 1.3 M

parameters for RamanNet).

6.1.4 Bacteria dataset

In the original work [12], the authors used a 25-layer deep

residual convolutional neural network to classify the bac-

teria isolate Raman spectrum to one of the 30 classes. The

proposed model achieved an average accuracy of 82.2%,

and the resulting confusion matrix is presented in Fig. 4a.

The authors also experimented with common and popular

classifiers like logistic regression (LR) and support vector

machine (SVM) as baselines, but those models could only

reach 75.7% and 74.9% accuracy, respectively.

Table 3 Results on Melanoma

Dataset
-NH2 –(COOH)2 –COOH All #Parameters

Fold Ours CNN Ours CNN Ours CNN Ours CNN Ours CNN

1 100 97.42 100 100 99.35 94.19 100 100 1.3 M 25.7 M

2 99.35 96.13 99.35 98.71 98.71 96.12 100 98.71

3 100 95.45 100 98.05 99.35 87.01 100 100

4 100 97.40 100 98.70 96.75 96.10 100 99.35

The bold numbers indicate the best performance achieved in the individual experimental settings

Table 4 Results of Mineral

dataset
Top 1 accuracy Top 3 accuracy Top 5 accuracy #Parameters

Fold RamanNet CNN RamanNet CNN RamanNet CNN RamanNet CNN

1 87.5 81.25 95.83 87.5 100 93.75 1.3 M 6.6 M

2 93.75 85.42 97.92 97.92 100 97.92

3 89.58 79.17 93.75 89.58 93.75 91.67

4 97.92 85.42 100 91.67 100 93.75

5 85.12 63.83 93.62 78.72 95.74 85.10

The bold numbers indicate the best performance achieved in the individual experimental settings
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RamanNet on the other hand manages to achieve an

average accuracy of 85.5% on this dataset, despite only

having 3 hidden layers. As shown in the confusion matrix

(Fig. 4b), the number of misclassifications has reduced.

Although erroneous predictions still exist, most Gram-

positive and Gram-negative bacteria have been misclassi-

fied as Gram-positive and Gram-negative bacteria,

respectively, and the errors are also mostly confined within

the same genus, as analyzed in [12]. Although this 3.3%

improvement may seem minor, this is achieved using a

much shallower network (3 layers vs 25 layers). Further-

more, the improvements become more apparent when we

compare the individual classifications next to each other.

As presented in Fig. 4c, RamanNet achieves either equal or

better accuracy for 25 out of 30 bacteria isolate classes. For

the other two isolate classes, ResNet is only better with a

small margin. On the contrary, in the cases where

RamanNet performed better, it surpassed ResNet with a

higher margin (e.g., Methicillin sensitive Staphylococcus

aureus (MSSA 3), Proteus mirabilis, Klebsiella aerogenes

etc.).

6.2 Triplet loss improves dimensionality
reduction

The majority of Raman spectra analysis works have been

based on classical machine learning methods. Therefore, it

has always been crucial to reduce the feature space. In this

regard, principal component analysis (PCA) has been the

most prominent method for feature reduction, to the extent

that 34 out of the recent 52 papers used PCA [6]. There-

fore, in the Raman spectra analysis community, feature

selection and/or reduction is almost equally important as

accurate classification.

Therefore, in order to perform the task of dimensionality

reduction of Raman spectra, we have put focus on

embedding generation capability of RamanNet. In addition

to calibrating the embeddings learned by RamanNet from

the class labels through backpropagated cross-entropy loss,

we also include triplet loss in the embedding layer. This

allows us to simultaneously minimize intraclass distance

while maximizing interclass distance.

In order to assess the quality of the embeddings gener-

ated by RamanNet, we compare the RamanNet embeddings

with PCA and the original raw spectrum. We also train a

version of RamanNet without the triplet loss, to analyze the

contribution of triplet loss. For qualitative analysis of the

class separation obtained from such feature reduction, we

plot 2-dimensional T-distributed Stochastic neighbor

embedding (t-SNE) plots [27]. From Fig. 5, it can be

observed that RamanNet embeddings are significantly

superior to PCA or the original spectrum. Furthermore,

RamanNet trained with triplet loss produces better

embedding than training the model without this loss.

Since t-SNE is an approximate low-dimensional repre-

sentation, we train simple KNN models with 15 neighbors

and perform classification, as a mean of quantitative

evaluation. Even in this case, it is evident that RamanNet

trained with triplet loss is capable of the most desired

feature representation. The results are presented in Table 5.

Fisher discriminant ratio (FDR) [28] is another measure

of class separability. FDR provides a score of the features

based on the centroids and spreads of the classes. For a

dataset with C classes, each class i having ni samples,

suppose the mean and standard deviation values of a fea-

ture xr are li and ri, respectively, for class i. If the global

mean and standard deviation of feature xr are l and r,

respectively, then the FDR value for that feature is defined

as:

Fig. 4 Confusion matrix for Bacteria Dataset using 25-layer ResNet a, RamanNet b and their comparison c
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FDRr ¼
PC

i¼1 niðli � lÞ2

PC
i¼1 nir

2
i

ð5Þ A higher value of FDR indicates better class separability,

whereas a lower value means that there exist overlaps

Fig. 5 t-SNE embeddings of the Raman spectra of different datasets

for different feature representations. Here, 2-dimensional t-SNE

embeddings have been computed from the original raw spectrum,

PCA features, RamanNet embeddings without and with triplet loss,

respectively. In addition, we also report the accuracy of a simple

KNN classifier for the individual feature representations
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between the classes with respect to that particular feature.

In order to assess the learned features quantitatively,

therefore we compute the FDR values of the learned fea-

tures and compare the scores with PCA and raw spectra.

The comparisons are presented in Fig. 6. It is evident that

RamanNet trained with triplet loss generates features with

high FDR scores consistently. In the Mineral and Bacteria

dataset, the improvement may appear less, this is because

when the number of classes increases the notions of inter

and intraclass distances gets a bit relaxed.

6.3 Model interpretation

Interpretability has been one of the focuses of deep learn-

ing research in recent years [29]. Deep learning models are

competent function approximators and given a sufficient

amount of data, they are capable of modeling almost any

complex functions. With this potential, also comes the

concern of what the model is actually learning from the

data. The model can learn actual significant information

and perform prediction accordingly, or it can merely learn

from the noises and get confused by various confounding

factors instead. Therefore, it is imperative to investigate the

model’s interpretability and examine what the model is

learning from.

Compared to applications of deep learning in other

domains, model interpretability is crucial in healthcare

applications [32]. In general fields, model interpretability

contributes to our understanding of how and what the deep

models learn along with discovering potential approaches

to make them more robust, accurate and free from biases.

On the contrary, for medical applications, any machine

learning model should be interpretable for the reasons of

transparency, accountability, and regulatory compliance.

Since such models decide life impacting decisions, the

interpretation of those decisions is imperative.

For convolutional neural networks, we can use various

methods like saliency maps [30] or score-CAM [31]

methods for model interpretation. However, for multilayer

perceptrons, it is non-trivial to do so. The various visual-

ization methods have been designed based on CNNs and

they cannot be directly translated to MLPs.

SHAP (SHapley Additive exPlanations) [44] is a game-

theoretic approach to explain the output of machine

learning models. The biggest advantage of using SHAP is

that it is model agnostic, thus it can be used to analyze any

machine learning model. Therefore, we can use SHAP to

interpret the RamanNet model. In order to do so, we col-

lected the features extracted from different sliding win-

dows of RamanNet and trained the identical top layers

using Scikit-Learn MLP implementation, for compatibility

reasons with the official SHAP release [45].

We then computed the SHAP scores of all the –NH2

samples in the melanoma dataset. We choose the mela-

noma dataset for this experiment because model inter-

pretability is particularly crucial for disease diagnosis and

information on significant biological properties related to

melanoma was available. The results are presented as a

violin plot in Fig. 7.

From the violin plot, it is evident that certain regions of

the spectrum contribute most to the prediction. Moreover,

Table 5 Simple KNN model

accuracy for various feature

representations

Dataset

Covid Melanoma Mineral Bacteria

Feature representation Raw 79% 77% 30% 40%

PCA 85% 76% 30% 82%

Without triplet loss 89% 97% 66% 91%

RamanNet 91% 99% 86% 93%

Fig. 6 Fisher discriminant ratio (FDR) scores for different feature representations
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those regions correspond to the actual significant properties

of the sample. For example, the region in 400-500 cm�1,

corresponding to Fe-containing proteins, contributes the

most to the prediction. After this region the lipids (300–

400 cm�1) contribute the most, and so on. The unlabeled

regions in the figure correspond to less attributed regions,

and it is apparent that the model was also aware enough to

put less focus on them. All these findings are consistent

with the one presented in [13]. Therefore, we can expect

that RamanNet is learning significant information from the

data and ignoring the noises instead of falling into a

conundrum with confounding factors.

6.4 Computational complexity

In order to deploy a deep learning model for practical

applications, computational complexity is an important

concern. This criterion becomes more crucial when dealing

with edge devices, i.e., incorporating a classification or

processing model into Raman spectrum acquisition devices

directly. In previous sections, it has been shown that the

proposed RamanNet model is quite lightweight in terms of

the number of parameters. In this section, the computa-

tional complexity of RamanNet is analyzed.

For deep learning models, the notion of computational

complexity is different from classical algorithms. Notations

such as, ‘Big O’ are less relevant as GPUs are used to

parallelize the computation. In addition, the differences in

GPU architectures and programming frameworks make it

more complicated to compare the computational efficiency

of two deep learning models.

FLOP or FLoating point OPeration is a basic unit of

computation, which may represent an addition or multi-

plication. FLoating point OPerations (FLOPs) correspond

to the total additions and multiplications involved in a

computation, e.g., a single pass of a deep neural network

for our purpose. Since FLOPs depend solely on the model

architecture and are not influenced by the computational

framework, it has become a popular measure of computa-

tional complexity [33]. FLOPs have a direct relationship

with the computational complexity of the deep learning

model. Regardless of hardware architecture or program-

ming framework, the more FLOPs a model has the more

operations it requires, i.e., the more time is consumed

during training and inference.

In this work, RamanNet has been compared against 4

state-of-the-art methods. 3 of these methods are based on

convolutional neural networks and the 4th method is sup-

port vector machine (SVM). It is non-trivial to directly

compare the computational complexity of a deep learning

Fig. 7 SHAP values for RamanNet

Table 6 Comparison of computational complexity in terms of FLOPs

Model ResNet CNN-1 CNN-2 RamanNet

Task / Dataset Bacteria Melanoma Mineral 4 tasks

Ref [12] [13] [9] This work

FLOPs 380 M 27.7 M 44.4 M 1.35 M
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model with SVM for a multitude of reasons involving

differences in programming frameworks and hardware

platforms. Moreover, SVM is only competitive on small

datasets free from outliers [43]. As the amount of data

increases, deep learning models significantly outperform

traditional machine learning models, which has led to their

increased popularity and continuous development. Thus,

we limit our analysis to the deep learning models. We

computed the FLOPs of the state-of-the-art models for an

input Raman spectrum of length 1000, which are presented

in Table 6.

It can be observed that RamanNet only performs a

fraction of computation compared to the other state-of-the-

art models. Whereas the CNN models require 27 � 380

million floating point operations to analyze a Raman

spectrum of length 1000, RamanNet only needs to perform

1.35 million operations. This dramatic reduction in com-

putational complexity makes the RamanNet model highly

suitable for integration in Raman spectra acquisition

devices. Therefore, not only RamanNet has a smaller

number of parameters, but it is also efficient in using those

parameters. The thoughtful use of MLP with sparse con-

nectivity has indeed contributed to this computational

efficiency.

6.5 Ablation study and hyperparameter tuning

In this section, we briefly analyze the effect of the different

choices of various hyperparameters in RamanNet. The

results for this section are computed on the 5th fold of the

Mineral dataset, where the performance was comparatively

worse. Thus, this enables us to understand the contributions

of different hyperparameters better. The results are sum-

marized in Fig. 8.

6.5.1 Selection of window length

The length of the window controls the degree of informa-

tion processed by the network at the input level. Increasing

the window length results in additional context whereas

reducing it may enable the model to focus more on indi-

vidual ranges of the spectrum better. Therefore, an optimal

selection of window length is necessary for processing the

spectra properly. From our experiments (Fig. 8A),

increasing the window length, w from 10 to 50 gradually

increases the accuracy as more contextual information is

received. However, increasing w further worsens the per-

formance with an increase of w the number of model

parameters also increases, which may either lead to over-

fitting or sub-optimal training. Therefore, the value of

w was selected as 50. It should be noted that the window

step size, dw was selected as the half of w, following the

standard in signal processing [42].

6.5.2 Remarks on window overlap

In signal processing, the standard approach is to process

signals using overlapping windows [42], where after ana-

lyzing a window of length w, the next window is computed

after a step size of dw ¼ w
2
. Therefore, this same protocol

Fig. 8 Ablation Study and Hyperparameter Tuning
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was followed in RamanNet. However, overlapping win-

dows result in additional parameters in the model. So an

experiment was conducted to observe the importance of

this overlap at the input stage. From the experimental result

(Fig. 8B), it is evident that removing the overlap in input

significantly worsens the performance. This is likely due to

the fact that the overlapping mode of windowing allows a

portion of the spectra to be analyzed from two different

contexts, i.e., the portion preceding it and the portion

succeeding it.

6.5.3 Selection of number of neurons

In RamanNet, there are different numbers of neurons at

different levels. For example, n1 neurons at the input level

and nf neurons at the feature embedding level. In the initial

stage of the development of RamanNet, different values of

n1 and nf were experimented with. In both cases, it was

observed that as the number of neurons is increased the

performance starts improving, i.e., the expressive power of

the model increases. However, after a certain point, the

performance starts to fall, i.e., the model starts to overfit or

inadequately fit the increasing number of neurons. There-

fore, from experimental results 25 and 256 were selected

from n1 (Fig. 8C) and nf (Fig. 8D), respectively.

6.5.4 Triplet loss weight

In order to overcome the noisy nature of Raman spectra,

which makes them difficult to distinguish, triplet loss was

adopted in the hidden layers. In previous sections, the

efficacy of using triplet loss has been discussed through the

analysis of class separability of generated embeddings. In

this section, the relative weight of triplet loss compared to

cross-entropy loss is investigated. Triplet loss and cross-

entropy loss in our model share a symbiotic relationship,

i.e., the first separates the classes in the feature space which

enables the second one to classify them with ease. There-

fore, removing the triplet loss completely (i.e., weight = 0)

results in subpar performance. On the other extreme,

removing cross-entropy loss (i.e., weight = 1) dramatically

hampers the model performance as the model fails to learn

classification. The weights in between appear to be helpful

for the model. Interestingly, the weight of 0.5 for both

losses resulted in the best accuracy score in our experi-

ments and thus this weight was selected. If the weight is

increased although the class separability improves the

classification ability of the model gets reduced. On the

other hand, reducing the weight generates less separable

embeddings which makes the classification difficult. As a

result, a proper balance between the two apparently per-

formed the best in our experiments.

6.5.5 Dropouts

Dropout has been used in the RamanNet architecture as it is

capable of reducing overfitting, which is prevalent in MLP

networks. Several configurations of dropout were experi-

mented with, which have been presented in Fig. 8f.

Exclusion of dropout leads to overfitting and affects the

performance negatively. On the other hand, integrating

dropout layers improves performance. In our experiments,

it was observed that gradually reducing dropout resulted in

better models. Our rationale behind this is as we move

from the input level to the embedding level, not only input

noises are less prominent but also the feature maps contain

useful information. As a result higher ratios of dropouts at

earlier levels, which were necessary to suppress noises

hamper information propagation at later layers. Thus, a

smaller dropout probability was used in later levels. From

the experiments, slowly reducing the dropout from 0.5 to

0.25 achieved superior performance to uniform dropout

throughout the model.

7 Conclusion

Raman spectroscopy has slowly started to gain more

attention with the advances in SERS technology. The

gradual decrease in cost and complexity in computing the

Raman spectrum is paving the way to large-scale Raman

spectrum data collection for diverse tasks. Therefore,

suitable machine learning methods are needed to analyze

these large-scale Raman spectrum data. However, there has

not yet been any model developed for the sole purpose of

Raman spectroscopy analysis, motivated and designed

based on the unique properties of the Raman spectrum.

Recently, existing methods like CNN or SVM have shown

success in Raman spectrum analysis, but in this work, we

presented reasoning that such methods may not be ade-

quately suitable for Raman spectra analysis.

In this work, we present RamanNet, a generalized neural

network architecture for Raman spectrum analysis. We

take intuitions from the nature of the Raman spectrum and

design our model accordingly. We propose modifications

to the convolutional network behaviors and emulate such

operations using multi-layer perceptrons. This adjustment

brings the best out of both worlds and it is reflected in the

carefully designed experimental evaluation of the model on

4 public datasets. Not only that, the RamanNet outperforms

all the state-of-the-art approaches in Raman spectroscopy

analysis, it achieves it by adopting much less complexity.

Moreover, RamanNet generates embeddings from spec-

trum which is much better than what is obtained from PCA,

the de facto standard in Raman spectrum analysis. Fur-

thermore, an interpretability study of RamanNet
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particularly on a disease dataset and it was revealed that the

model is capable of focusing on (biologically) meaningful

information.

Nevertheless, some weaknesses or limitations of this

work may be postulated. RamanNet uses MLP layers at the

input level to analyze the spectrum which is not too dif-

ferent from CNN layers. The issue with such layers is that

they can only learn a set of fixed filters and cannot account

for variabilities in the input after a certain degree. Using

self-attention in the input should be able to circumvent this

limitation of the existing models, as it enables the model to

learn adaptive weights based on inputs [41]. Additionally,

the different segments of the spectrum are limitedly cou-

pled during the computation of the model. This is true for

both MLP and CNN-based models. Using transformer

architecture has the potential to alleviate this limitation,

since through query-key-value computation, different seg-

ments of the input are compared against the rest of the

input [40]. All these can be incorporated in the successive

developments of future iterations of RamanNet.

The future direction of this research can be manifold.

Firstly, we wish to evaluate RamanNet on more large-scale

datasets, as they become public. Pretraing deep learning

models on a large possibly unlabeled dataset has become a

popular paradigm in recent times, which can also be

adapted for Raman spectrum analysis. Secondly, we have

not performed any preprocessing or background removal of

the spectra, we wish to investigate this further with a more

dedicated study to infer the denoising capabilities of

RamanNet. Last but not least, we also wish to experiment

with multiple particle data to assess if RamanNet is capable

of identifying, segmenting, and extracting the signatures of

the different particles.
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