
REVIEW

Normal vibration distribution search-based differential evolution
algorithm for multimodal biomedical image registration

Peng Gui1,3,4 • Fazhi He1 • Bingo Wing-Kuen Ling2 • Dengyi Zhang1 • Zongyuan Ge3,4

Received: 13 November 2022 / Accepted: 2 May 2023 / Published online: 30 May 2023
� The Author(s) 2023

Abstract
In linear registration, a floating image is spatially aligned with a reference image after performing a series of linear metric

transformations. Additionally, linear registration is mainly considered a preprocessing version of nonrigid registration. To

better accomplish the task of finding the optimal transformation in pairwise intensity-based medical image registration, in

this work, we present an optimization algorithm called the normal vibration distribution search-based differential evolution

algorithm (NVSA), which is modified from the Bernstein search-based differential evolution (BSD) algorithm. We

redesign the search pattern of the BSD algorithm and import several control parameters as part of the fine-tuning process to

reduce the difficulty of the algorithm. In this study, 23 classic optimization functions and 16 real-world patients (resulting

in 41 multimodal registration scenarios) are used in experiments performed to statistically investigate the problem solving

ability of the NVSA. Nine metaheuristic algorithms are used in the conducted experiments. When compared to the

commonly utilized registration methods, such as ANTS, Elastix, and FSL, our method achieves better registration per-

formance on the RIRE dataset. Moreover, we prove that our method can perform well with or without its initial spatial

transformation in terms of different evaluation indicators, demonstrating its versatility and robustness for various clinical

needs and applications. This study establishes the idea that metaheuristic-based methods can better accomplish linear

registration tasks than the frequently used approaches; the proposed method demonstrates promise that it can solve real-

world clinical and service problems encountered during nonrigid registration as a preprocessing approach.The source code

of the NVSA is publicly available at https://github.com/PengGui-N/NVSA.
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1 Introduction

Image registration [1, 2] is the basis of medical image

analysis; this task can establish consistency among the

corresponding anatomical structures in different medical

images in space and is also a key technology for realizing

precision medicine [3]. These attributes cause medical

image registration to play an important role in clinical

applications such as precise disease diagnosis [4], atlas

analysis [5], image-guided radiotherapy [6] and surgical

navigation [7]. Until recently, image registration was

mostly performed manually by clinicians. However, many

registration tasks can be quite challenging, and the quality

of manual alignments is highly dependent upon the

expertise of the user, which can be clinically disadvanta-

geous [8]. These issues make automated registration

methods urgently needed for clinical use.
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During the preprocessing work of multimodal image

fusion [9], multimodal image registration aligns multi-

modal information into the same image, making it easier

for doctors to more accurately observe lesions and struc-

tures as detailed diagnostic information. The registrations

of dynamic images collected at different times and the

changes in lesions and organs can be quantitatively ana-

lyzed, making medical diagnosis, surgical planning, and

radiation therapy planning more accurate and reliable.

Since different modalities exhibit different characteristics,

finding fast and accurate correspondences between images

with different modalities is still a challenge.

In multimodal registration, the greatest difficulty comes

from the great variability exhibited by organ and tissue

appearances when imaged with different physical princi-

ples, which results in the lack of a general rule for estab-

lishing structure correspondence [10]. In this case, finding a

proper similarity measure can be regarded as the central

part of the objective function, making it the most important

and challenging step. Particularly, the similarity measure

between the images to be registered consists of numerous

local extrema, making multimodal image registration an

optimization problem. These aspects consequentially make

optimization algorithms crucial parts of image registration.

Many optimization algorithms have been applied to

multimodal registration. Compared to the traditional local

search methods such as Powell’s method or the Levenberg-

Marquardt (LM) method, metaheuristics-based methods

[11–15] are excellent in that they rarely fall into local

extrema, stably obtain global optima, are robust, and

exhibit insensitivity to noise disturbances. Many meta-

heuristic algorithms have been applied in the past decade as

optimization methods for medical image registration [16].

Regardless, metaheuristic algorithms are usually employed

in situations where suboptimal solutions can be easily

found but optimal solutions cannot be obtained in a

stable manner [17–19]. One of the reasons for this phe-

nomenon is that metaheuristic algorithms are usually lim-

ited to the initial values of the transformation parameters,

which often lead the entire optimization process to fall into

local extrema. Another reason is that in the latter stage of

the registration process, the optimization procedure

requires the algorithm to have good local search capabili-

ties to obtain the optimal transformation matrix. These

inner characteristics of intensity-based methods result in

high requirements for the utilized optimization algorithm.

The algorithm must have good global and local search

capabilities, and it requires a good balance between

exploration and exploitation [20].

As some of the most common metaheuristic algorithms,

differential evolution (DE) and its variants have been

applied to solve various optimization problems [21].

However, the directly application of DE to medical image

registration still encounters many problems. For example,

the medical image registration task is very demanding in

terms of exploitation, which is often used to measure the

pros and cons of the employed image registration opti-

mization algorithm. Based on that, the most important

shortcomings faced when applying DE to medical image

registration are as follows. (1) DE occasionally falls into

local minima, making DE unable to stably converge to the

optimal region. (2) DE is capable of finding suboptima but

incapable of attaining optimum values. In this case, it is

necessary to replace DE with other modified algorithms to

better complete the registration task.

Civicioglu et al. [22] proposed a modified DE method,

named the Bernstein search-based DE (BSD) algorithm, by

adopting 2nd-degree Bernstein polynomials that cooperate

with a random crossover process. It has been proven that

BSD is outperformed by approaches such as the artificial

bee colony (ABC) algorithm [23], adaptive differential

evolution (JADE) algorithm [24], cuckoo search algo-

rithms (CUCKOO) [25], and weighted differential evolu-

tion (WDE) algorithm [26] in numerical function

optimization and image evolution problems. However,

BSD takes 2nd Bernstein polynomials as the crossover

ratio, so this search strategy possesses some shortcomings.

(1) The 2nd Bernstein polynomial curve is constant, which

is not conducive to the variability of the algorithm. (2) The

search pattern of BSD is not suitable for medical image

registration, especially in the later exploitation stage of the

registration process. Hence, we propose a modified BSD

algorithm, a highly efficient metaheuristic named the nor-

mal vibration distribution search-based differential evolu-

tion algorithm (NVSA), to fix this problem.

The NVSA utilizes a new crossover method and search

strategy. These improvements help the proposed method

improve both its exploitation and exploration abilities and

further form a balance between them in medical image

registration scenarios. The original intention of the design

of this method is to solve the problems that metaheuristic

algorithms consume too many computation resources and

achieve low precision. In addition, two-dimensional linear

registration needs to optimize three to six parameters,

which enables the NVSA to complete the registration of

rigid and similar transformations without preregistration.

In the last decade, researchers have tended to use some

classic approaches such as ANTS [27], Elastix [28] and

FSL [29] to complete simple registration tasks. The

advantage of these classic applications is that they do not

require pretraining to quickly obtain results. Many deep

learning methods also tend to use the above software to

perform the registration task as a preprocessing step (lin-

ear) for deep learning (nonlinear) [30–32]. Convenient as

these classic tools are, their accuracy still leaves much to

be desired. Conversely, the proposed method can better
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complete the registration task with acceptable time con-

sumption. Therefore, the NVSA has the potential to replace

the commonly used linear registration method as a state-of-

the-art (SOTA) approach.

We experimentally compare the proposed method,

referred to as the NVSA, with nine benchmark meta-

heuristic algorithms and three frequently used applications

on computed tomography (CT) and magnetic resonance

imaging (MRI) brain images. The results show that the

NVSA can achieve optimal accuracy at a reasonable

computational cost, and more importantly, it outperforms

the benchmark algorithms and classic registration methods.

We further utilize Friedman’s mean rank test [33] and

Bonferroni correction-adjusted significance to statistically

prove that the results are not obtained by chance. The

experimental results further suggest that different problem

instances require different proportions of exploitation and

exploration. Both conducted experiments confirm the

importance of our new adaptive approach underpinned by

the proposed mutation methods in the NVSA algorithm.

The main contributions of our work are summarized as

follows.

• We propose a new metaheuristic algorithm called the

NVSA, which is modified from BSD by replacing the

2n Bernstein polynomials with a novel normal vibration

distribution and coordinating the approach with a

variable search pattern.

• We test the NVSA with five other metaheuristic

algorithms on 23 classic optimization functions and

summarize them with their accuracy, robustness and

significance level.

• We test the NVSA with five other metaheuristic

algorithms on 16 brain images derived from real-world

patients with 41 different type of multimodal registra-

tion and summarize them with their accuracy, time

consumption, robustness and statistics. Moreover, we

present supplementary figures including histograms for

the test images, visualizations of the registration

process, and population quality figures based on the

number of iterations.

• We test the proposed algorithm with the three other

classic medical image registration methods that are

frequently used in various medical image registration

scenarios. The experimental results prove that the

proposed method has the potential to surpass and

replace the existing classic registration tools in linear

registration tasks.

• The present study demonstrates that the application of

metaheuristic-based methods can effectively improve

the accuracy and efficacy of linear registration tasks

over that achieved with classic methods. These findings

indicate that our work holds great promise for

addressing the practical clinical needs of nonrigid

registration as a preprocessing procedure.

The remainder of this paper is organized as follows. In

Sect. 2, related works are presented. The basic BSD algo-

rithm and the innovations and working principles of the

NVSA are described in Sect. 3. Then, Sect. 4 demonstrates

experiments involving numerical function-based opti-

mization problems. Section 5 indicates the experimental

results obtained with images derived from real-world

patients with tables and figures. Finally, we conclude the

paper and briefly discuss future work.

2 Related works

2.1 Medical image registration techniques

Classic medical image registration methods can be roughly

categorized as either feature-based or intensity-based

approaches [34]. Feature-based methods represent features

with the famous scale-invariant feature transform algo-

rithm (SIFT) [35], which obtains a geometric transforma-

tion by extracting corresponding features such as points,

lines, vectors, surfaces, and volumes. To a certain extent,

these features can reduce the complexity of the registration

problem. However, the performance of this type of algo-

rithm mainly depends on its feature design, and the

effectiveness of the selected features directly affects the

subsequent registration results. Usually, features with

conspicuous characteristics are required, and the design of

image features with strong expressive abilities remains a

problem in registration tasks. On the other hand, for

specific image data, finely designed artificial features may

provide satisfactory registration results, but there is no

guarantee that these features will be well-suited for other

data registration tasks.

Regarding intensity-based methods, their process con-

sisting of similarity measurement and optimization has

become the major approach for medical image registration

due to its high registration accuracy and lack of prepro-

cessing requirements [36]. Generally, pairwise intensity-

based medical image registration methods focus on opti-

mizing image similarity, which is a metric that indicates

how well images intensities correspond. The goal of pair-

wise registration is to find transformation parameters that

bring two images into correspondence based on their

contents. Typically, this process is solved by iteratively

optimizing a predefined handcrafted intensity-based dis-

similarity metric over the transformation parameters.

Recently, deep learning-based methods have been

widely used in medical image registration [37, 38]. These

approaches can be simply divided into three categories
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including deep similarity metrics and supervised and

unsupervised transformation estimation methods [39].

Data-driven methods can effectively complete the regis-

tration process in a very short time after training them

through a suitable framework. However, this idea is often

based on large amounts of data labeling and preprocessing,

which imposes high requirements on the training data and

causes the training process to take a long time. In addition,

each trained model usually cannot be effectively trans-

planted to other datasets. For deep iterative frameworks, an

application-specific similarity metric that is learned from

architecture neural networks like convolutional neural

networks (CNNs) is needed [40], which indicates that an

optimization algorithm is also necessary during that pro-

cess. Other nonparametric approaches tend to be roughly

preregistered, while some utilize a multistep process by

refining the affine transformation parameters to predict

large, global displacements and rotations [41]. It is worth

noting that most deep learning-based methods focus on

deformable registration rather than linear registration.

Compared to commercial software, researchers tend to use

some open-source tools such as ANTS [27], Elastix [28]

and FSL [29] to accomplish linear as well as coarse reg-

istration. In this work, the three commonly used preregis-

tered methods mentioned above are also included in the

comparison.

2.2 Intensity-based medical image registration
algorithms

Intensity-based image registration is a crucial process that

involves aligning two or more images by analyzing the

intensity values of their pixels. The process is iterative and

consists of four key components, including a similarity

metric, a parameterizable transformation, an interpolation

approach, and an optimization strategy, as illustrated in

Fig. 1.

As medical image registration is an optimization prob-

lem, an appropriate optimization algorithm is essential for

obtaining superior transformation parameters. However,

many metaheuristic algorithms that perform well in

unconstrained optimization problems may not be suit-

able for real problems due to the complexity of such

problems. For example, the similarity measure employed

for unregistered images is usually nonlinear and has

numerous local extrema, making it difficult to find the

globally best solution. Therefore, an appropriate opti-

mization algorithm can benefit the registration process by

finding the best-fitting transformation parameters between

the unregistered images in a fast and reliable manner. To

address this issue, high-performance algorithms are needed

to satisfy the high requirements of intensity-based image

registration.

Recently, with the development of multimodal medical

image registration, various methods that use metaheuristic

algorithms for optimization purposes have been proposed.

As shown in Table 1, optimization algorithms including

the coral reef optimization algorithm with substrate layers

(CRO-SL) [42], the dragonfly algorithm (DA) [43], the

gray wolf optimizer (GWO) [44], biography-based opti-

mization with elite learning (BBOEL), the hybrid differ-

ential search algorithm (HDSA) [46] and the united

equilibrium optimizer (UEO) [47] are applied to intensity-

based medical image registration. These algorithms have

demonstrated their superiority over many of the other

algorithms listed above. However, these methods have

certain limitations that restrict their applicability to general

multimodal brain tasks. For example, some of these algo-

rithms are based on rigid transformations [44–47] and do

not consider affine transformations, which are indispens-

able in practical applications. In addition, some algorithms

are time-consuming [43, 45] and have not been compared

with classic registration tools [43–45, 45–47], which limits

their practicality.

As seen in Table 1, the normalized mutual information

(NMI) [48] is a commonly used measure for calculating

Fig. 1 The flowchart of the registration process. The main registration

process involves finding a transformation that maximizes or mini-

mizes the similarity metrics between the warped moving image and

the corresponding fixed image
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global information intensities; other similarity measures

such as the cross-cumulative residual entropy (CCRE) [49]

have also been proposed. In general, similarity measures

such as the NMI and CCRE provide global evaluations of

registration quality, while other measures such as normal-

ized cross-correlation (NCC) and the root mean square

error (RMSE) [50] may be more localized. Choosing a

similarity measure such as the NMI that tends to be global

can improve the stability of the utilized algorithm during

its iterative process; however, this comes at the cost of

ignoring the relevance of some detail areas. On the con-

trary, if a similarity measure that tends to be local is used as

the optimization function, the resulting registration per-

formance may be overestimated despite poor actual

alignment results. For example, a high NCC value may not

necessarily indicate superior registration performance.

To evaluate the algorithm proposed in this paper more

fairly, we use the NMI as the input objective function as

well as the global maximum similarity measure as the

output function. In addition, the RMSE is chosen as an

Table 1 Comparison of multimodal registration methods adopting metaheuristic algorithms

Method Algorithm Modality Transformation

model

Similarity

measure

Applied

images

Registration

tools

competition

Outperformed

algorithms

Major limitations

[42] CRO-SL CT/MRI Rigid/affine NMI Brain Yes 1. Genetic

Algorithm(GA)

2. Scatter Search(SS)

3. Coral Reef

Optimization(CRO)

Outdated comparisons

algorithms

[43] DA CT/MRI Rigid/

Similarity

NMI Brain No 1. Particle Swarm

Optimization (PSO)

2. Artificial Bee

Colony (ABC)

Tme-

consuming,insufficient

comparison experiment

[44] GWO CT/MRI Rigid NMI Brain No 1. Particle Swarm

Optimization (PSO)

2.Sine Cosine

Algorithm (SCA)

Experimental sample

size is quite small

[45] BBO-EL CT/MRI Rigid NMI Brain No 1. Biogeography-

Based 2.

Optimization(BBO)

3. Scatter Search(SS)

4.Coral Reef

Optimization(CRO)

5. CRO-SL

Tme-consuming

[46] HDSA MRI/

MRI

Rigid CCRE Brain No 1. Differential

Evolution With

Optional External

Archive(JADE)

2. Differential Search

Algorithm (DSA)

Artificial registration

scenarios

[47] UEO CT/MRI Rigid CCRE Brain No 1. Biogeography-

Based

Optimization(BBO)

2. Gaussian Quantum

Behaved Particle

Swarm Optimization

(GQPSO)

3. Equilibrium

Optimizer (EO)

4. HDSA

Lack of comparison to

classical registration

tools

Ours NVSA CT/MRI Similarity /

affine

NMI Brain Yes BSD,BBO-

EL,DA,GWO,UEO
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auxiliary similarity measure for more comprehensive

evaluating the registration results. This approach ensures a

better overall registration effect and proves the quality of

the obtained registration results from the side. The NMI

and RMSE of a moving image M and a fixed image F are

defined as Eqs. (1) and (2), respectively:

NMIðM; FÞ ¼ HðMÞ þ HðFÞ
2HðM;FÞ ð1Þ

Here H indicates Shannon entropy.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1

ðMi � FiÞ2
s

ð2Þ

Here n indicates the number of image pixels.

3 Proposed method

3.1 BSD

BSD [22] was inspired by Bernstein polynomials; it is

considered a new universal differential evolution (uDE)

algorithm due to its lack of internal control parameters.

BSD is described as an easily controllable, simple-struc-

tured, nonrecursive, highly efficient, fast, and practically

parameter-free uDE algorithm. In addition, the BSD

proved its superiority over other algorithms such as the

ABC algorithm [23], the JADE algorithm [24], CUCKOO

[25], and the WDE algorithm [26] in a comparison con-

cerning numerical function optimization and image evo-

lution problems. The essential parts of the BSD algorithm

are summarized as follows, and the relevant nomenclature

is summarized in Table 2:

3.1.1 Initialization and function evaluation

Similar to other uDE algorithms, in BSD, N individuals are

randomly generated in a D-dimensional search space

within the certain boundary range (up and low) using

Eq. (3):

PInitial
i;j ¼ lowj þ a � ðupj � lowjÞ j a�Uð0; 1Þ

i 2 ½1 : N�; j 2 ½1 : D�
ð3Þ

Then, the function evaluation values fitP are calculated

based on the objective function f using Eq. (4):

fitPi ¼ f ðPiÞ i 2 ½1 : N�; ð4Þ

3.1.2 Setting the best pattern vector

The best pattern vectors obtained thus far bestPV are

defined as Eq. (5), and the objective function value

calculated with this set of vectors bestsol is regarded as the

global best vector and produces the best fitness value.

½bestsol; bestPV � ¼ ½fitPðcÞ;PðcÞ� j fitPðcÞ ¼ minðfitPÞ c 2 ½1 : N�

ð5Þ

3.1.3 Crossover ratio

BSD manipulates the crossover [51, 52] ratio with an

activation matrix M. The initial matrix M is a zero matrix.

For every individual i, M is determined by using Eq. (6):

Mi;uð1:½q:D�Þ ¼ 1 j u ¼ Permuteð½1 : D�Þ ð6Þ

where permuteð�Þ is a sorter that rearranges the order of the
elementsð�Þ. q is defined using Eq. (7);

q ¼
ð1� bÞ2 k ¼ 1

2b � ð1� bÞ k ¼ 2

b2 k ¼ 3

8

>

<

>

:

ð7Þ

where b�Uð0; 1Þ, and k 2 ½1 : 3�. The value of q can be

calculated with 2nd-degree Bernstein polynomials. Specif-

ically, b is given to one of three cases that obey 2nd-degree

Bernstein polynomials. As shown in Fig. 2, a b generated

in the range of [0,1] is given to one of three cases that obey

2nd-degree Bernstein polynomials.

3.1.4 Search range of the population

The BSD algorithm computes the search range of the

population using Eq. (8). Here, the parameters g�Uð0; 1Þ

Table 2 Nomenclature

Symbol Meaning/Definition

f ð�Þ Objective function

fitP Function evaluation values

low,up Lower and upper limits of search-space

N Size of pattern matrix

D Dimension of problem

Epoch Maximum number of iterations

bestsol Global minimum value

bestPV The global minimizer pattern vector

kð�Þ�Uð0; 1Þ k is a uniform random number

kð�Þ �Nð0; 1Þ k is a normal random number

gð�Þ �Nð0; 1Þ g is a normal random number

bð�Þ �Uð0; 1Þ b is a uniform random number

Pi;jjPi;j �Uðlowj; upjÞ Pattern vectors of pattern matrix

Permute() Permuting function

M Activation matrix
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and k�Nð0; 1Þ represent uniform and normal distributions,

respectively. u and v are dynamic selectors whose default

settings are u�Uð0; 1Þ and v�Uð0; 1Þ, respectively. Fur-
thermore, a ð�; �Þ sized all-ones matrix is defined as Qð�; �Þ =
1.

F ¼
ð½g3ð1;1:DÞ � jk3ð1;1:DÞj�

0 � Qð1;1:NÞÞ0 u\v

k3ðN;1Þ �Qð1;DÞ u� v

(

ð8Þ

3.1.5 Pattern vectors

For the i� th individual among the best pattern vectors

obtained thus far bestPV and the current pattern vectors P,

the trial pattern vector T is executed to evaluate the new

objective function value.

T ¼Pþ F �M � E � ðW�Þ3 þ ð1� ðW�Þ3Þ � bestPV
� P j W�

ð1:N;1Þ �Uð0; 1Þ
ð9Þ

Where E ¼ W � PL1 þ ð1�WÞ � PL2 j W1:N;1:D �Uð0; 1Þ,
and L1, L2 are defined in Eq. (10)

L1 ¼ Permute 1 : Nð Þ;
L2 ¼ Permute 1 : Nð Þ j L1 6¼ 1 : N½ �; L1 6¼ L2

ð10Þ

3.1.6 Boundary control

Once the candidate of a trial pattern vector exceeds the

preset search space, it is randomly generated in the search

space based on the boundary control strategy defined in

Eq. (11).

Ti;j ¼ lowj þ a � ðupj � lowjÞ
j Ti;j\lowj or Ti;j [ upj j a�Uð0; 1Þ

ð11Þ

3.2 NVSA

In this section, the motivation and working principles of

the NVSA are introduced; then, the efficiency of the NVSA

is discussed. We improve the NVSA by replacing the 2nd-

degree Bernstein polynomials with the normal vibration

distribution. This vibration can be run by default or fine-

tuned by some control parameters. Correspondingly, we

redesign the update method for the trial pattern vector and

adjusting it with the search strategy.

3.2.1 Normal vibration distribution

The BSD algorithm computes the crossover ratio with 2nd-

degree Bernstein polynomials. To be specific, every indi-

vidual randomly chooses a value from zero to one, which is

computed by one of three Bernstein polynomials functions

using Eq. (7). As Fig. 2 illustrates, most of the B(t) values

tend to be located in a small area. For example, given a

random t value, there is a 77.8% probability that the

number of population activations B(t) is less than or equal

to 0.5. which represents the fact that most of the best-so-far

candidates still remain in each iteration. Notably, this

working principle favors exploitation over exploration.

To better balance the exploration and exploitation abil-

ities of the developed algorithm, we initially try to replace

the Bernstein polynomial functions with the normal dis-

tribution. However, a simple normal distribution does not

successfully meet our verification standards due to the fact

that a single normal distribution is unable to satisfy the

crossover property as well as the mutation needs of the

algorithm. Thus, a vibration function is added to the normal

distribution to increase its population diversity. Finally, to

strengthen the robustness of the proposed method when

facing various real-world problems, we also set some

control parameters to control the vibration process. Here,

the NVSA proposes a new method to obtain the activation

matrix M using Eq. (12) and applies Eq. (13) to replace

Eq. (7) in the BSD algorithm.

q ¼ ffiffiffiffiffiffiffi

expG
p þ 2k1ð1� k1Þ � H ð12Þ

H ¼ exp
ð 1

Gðk4�k5Þ2þP
Þ j G ¼ aþ ðb� aÞk3;P ¼ cþ ðd � cÞk2

ð13Þ

where exp indicates natural constant e and k1�5 �Uð0; 1Þ
denotes the uniform distribution. a, b, c, and d are

parameters for controlling the vibration, and their default

values are set as 1000, 10,000, 3, and 5, respectively. As a

result, the values of G and P are decided by the above four

parameters, where G and P are randomly generated

between [1000, 10,000] and [3,5], respectively. It is worth

Fig. 2 2nd degree Bernstein polynomials
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noting that the four parameters mentioned above can be

manually set when facing various optimization problems.

For ease of understanding, Table 3 and Fig. 3 illustrate

different kinds of vibration with normal distributions. To

be specific, we give each parameter G, P, and k5 three

different values in Table 3, along with the corresponding

graph shown in Fig. 3, to help the reader better understand

how the vibration function works. For example, V0(t),

V1(t), and V2(t) in Fig. 3a utilizes three different G values

(1000, 5000, 10,000), while P ¼ 4 and k5 ¼ 0:5 remain

unchanged.

It can be seen that G controls the vibration width. The

larger the value of G is, the narrower the width of the

vibration (see Fig. 3a). P controls the maximum value of

the entire normal distribution. The smaller the value of

Table 3 Different value indicates to Fig. 3

Parameter Figure Fig. 3a Fig. 3b Fig. 3c Fig. 3d

G V0(t) 1000 5000 5000 1000

V1(t) 5000 5000

V2(t) 10,000 10,000

P V0(t) 4 3 4 3

V1(t) 4 4

V2(t) 5 5

k5 V0(t) 0.5 0.5 0.25 0.25

V1(t) 0.5 0.5

V2(t) 0.75 0.75

Fig. 3 Four kinds of random parameters setting illustration, the specific parameter settings are referred to Table 1
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P is, the larger height of the entire distribution (see

Fig. 3b). Additionally, k5 decides where the vibration

appears. The locations of vibrations tend to be generated

from left to right as the value of k5 increases from zero to

one (see Fig. 3c). In short, a vibration can be generated at

any point of the unique normal distribution with a random

vibration width (see Fig. 3d).

Compared to the q obtained using 2nd-degree Bernstein

polynomials in Eq. (7), this novel normal vibration distri-

bution (1) increases the probability of the overall crossover

ratio, which is helpful for exploration in the early stage; (2)

replaces the constant 2nd-degree Bernstein polynomials

with a dynamic normal distribution that changes over time,

which helps promote high algorithmic diversity; and (3)

makes the algorithm more variable than the ordinary nor-

mal distribution with the addition of vibration.

3.2.2 Search strategy

In this section, we propose a new search pattern to coop-

erate with the normal vibration distribution. This is because

the search strategy of the original BSD algorithm may not

suit the proposed method.

That is, the NVSA uses a smaller search step size to

match the high-frequency crossover probability. Another

reason for this is that the NVSA is presented to solve

medical image registration problems, and this requires us to

make corresponding improvements to fit the task needs. To

be specific, two places are modified. First, we adjust the

search range of the population using Eq. (14).

F ¼
g3ð1:N;1:DÞ u3\v

kð1:N;1:DÞ u3 � v

(

ð14Þ

As in Eq. (8), the parameters g�Uð0; 1Þ, v�Uð0; 1Þ, and
u�Uð0; 1Þ here are for the uniform distribution, while

k�Nð0; 1Þ is used for the normal distribution.

Compared to Eq. (8), these modifications simplify the

generation of F and increase the search step size of the

population to enhance the exploitation ability of the algo-

rithm. This improvement makes the NVSA tend toward

active iteration with smaller search steps, and the algorithm

can be steadily updated during the early stage of the iter-

ative process. It is easier to find the global optimal result in

the later stage of iteration. By combining this improvement

with the normal vibration distribution, the NVSA can better

enhance the exploration capabilities of the algorithm in the

early stage and its exploitation ability in the later stage.

Second, we enhance the variability of Eq. (9) by

replacing the associated matrixes with independent ver-

sions using Eq. (15).

T ¼ PþM � F � ðs � ðw1 � PL1Þ þ w2 � PL2Þ þ w3 � bestPV � PÞ
ð15Þ

where L1 and L2 remain unchanged compared to Eq. (10).

sð1:N;1:DÞ �Nð0; 1Þ signifies the normal distribution, while

w1, w2 and w3 represents three different kinds of uniform

distributions; w1�3;ð1:N;1:DÞ �Uð0; 1Þ.
Two aspects motivate this modification. First, we notice

that W� and ð1�W�Þ interfere with each other in Eq. (9),

which may decrease the diversity of the population. Sec-

ond, W�
ð1:NÞ �Uð0; 1Þ only provides a single function for

restricting the search range. Hence, we make two changes:

first, we replace W, ð1�WÞ, W�, and ð1�W�Þ in Eq. (9)

with four independent parameters s, w1, w2 and w3,

respectively. These unrelated parameters can enhance the

diversity of the population.

The second change is to replace W�
ð1:NÞ �Uð0; 1Þ with

new parameters sð1:N;1:DÞ �Nð0; 1Þ. In this s, D stands for

the number of optimization problems under consideration,

which makes s a matrix rather than a vector. As s obeys a

normal distribution, not only can s reduce the step size but

it also provides the ability to enlarge the step size. In

addition, s also effects the search direction of the algo-

rithm, which supplements the search orientation in the first

case of Eq. (9).

Finally, compared to F and T in Eqs. (8) and (9), this

modified search strategy (1) adjusts the search range of the

population so that the search strategy can be more effi-

ciently matched with the normal vibration distribution; (2)

changes the interrelated random parameters into unrelated

parameters, which improves the diversity of the algorithm;

and (3) uses the normal distribution to expand the selec-

tivity of the search direction of the algorithm so that the

algorithm does not easily fall into local optima.

In the end, we propose a brand-new adjustable mutation

strategy with a corresponding search structure named the

NVSA. These modifiers (1) improve the early-stage global

convergence ability of the algorithm; (2) increase the

diversity of the algorithm by inventing a new mutation

strategy; (3) provide more direction for the search process

during the optimization procedure by redesigning the

search strategy; and (4) improve the adaptability of the

algorithm when facing different optimization problems by

adding adjustable control parameters. The pseudocode of

the NVSA for medical image registration is shown in

Algorithm 1.
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4 Results obtained on benchmark functions

In this section, the NVSA is compared to two categories of

existing optimization methods in optimization test prob-

lems: (1) Bernstein search-based algorithms, including

BSD [22] and the Bezier search-based DE algorithm

(BeSD) [53]. (2) In recent years, high-performance opti-

mizers, including the Coronavirus herd immunity optimizer

(CHIO) [54], Archimedes optimization algorithm (archOA)

[55], and Bernstein-Levy DE algorithm (BDE) [56], have

also been developed.

Reference [22] demonstrated that BSD can outperform

the ABC [23], JADE [24], CUCKOO [57] and WDE [26]

algorithms. Furthermore, the BeSD [53] and BDE [56]

algorithms are both modified versions of BSD, sharing

similar structures. These methods have proven their supe-

riority over the covariance matrix learning and searching

preference (CRMLSP) method, the mean-variance opti-

mization algorithm (MVO), without approximation opti-

mization (WA), SHADE and LSHADE in solving

numerical problems. The most relevant provisions are as

follows.

• PlatEMO [58] is adopted as the optimization platform,

and the default parameters of each algorithm are used.

• The algorithms use 50 particles along with 1000

iterations with 30 independent runs (the total numbers

of cost function evaluations is 1,50,000).

• We use 23 well-known classic benchmark functions

[58].

• The mean value and mean standard deviation (STD) are

used as performance indicators.

• A two-tailed Wilcoxon signed rank test was used for the

statistical comparison of the results obtained from the

experiments. In statistical comparisons, the level of

significance is set to 0.05.

• Testing is performed using MATLAB R2022a on a

Windows 10 operating system with an Intel (R) Core

(TM) i7-8550U CPU @ 1.80 GHz�2.00 GHz and 16.00

GB of DDR4 RAM.

In Table 4, we calculated the mean and standard devi-

ation values (in brackets) for the SOPF1 � SOPF23 prob-

lems obtained by NVSA and the test methods. In Table 5,

we present the results of a statistical comparison based on

the Wilcoxon signed rank test (p = 0.05) of the numerical
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problem-solving success of NVSA and the tested methods

for SOPF1 � SOPF23.

In the last rows of Table 5, the results obtained from the

NVSA and the other tested methods are compared in terms

of (?, -, =). (?) represents that the tested method obtains

a statistically better result than that of the NVSA. (-)

signifies that the NVSA obtains a statistically better result

than the tested method. (=) denotes that the performances

of the NVSA and the related tested method are statistically

equal. 50 particles along with 1000 iterations and 30

Table 4 Comparative results by using 50 particles on classic benchmark functions,The bests are highlighted in bold

Problem archOA BDE BeSD BSD CHIO NVSA

SOP_F1 4.7517e?1

(3.59e?1) -

1.7614e�1

(1.79e�1) -

3.2540e?3

(1.71e?3) -

3.2639e�10

(1.13e�9) -

5.1774e?4

(6.07e?3) -

9.2834e �103
(3.27e �102)

SOP_F2 1.9112e?0

(6.90e�1) -

2.3345e?0

(6.15e�1) -

1.7307e?5

(8.95e?5) -

3.1545e�3

(1.26e�3) -

8.7532e?8

(2.28e?9) -

3.8418e �26 (1.09e
�25)

SOP_F3 2.1997e?3

(5.29e?3) -

9.1530e?7

(1.53e?7) -

8.3843e?7

(1.96e?7) -

9.4550e?7

(0.00e?0) -

7.2445e?4

(1.31e?4) -

4.2525e �3 (2.13e
�2)

SOP_F4 4.3698e?0

(4.38e?0) -

1.7478e?0

(4.79e�1) -

8.1946e�1

(1.28e?0) -

6.1314e�1

(2.14e�1) -

8.2489e?1

(4.52e?0) -

2.2896e �17 (2.60e
�17)

SOP_F5 1.0581e13
(1.51e13) 1

2.1270e?9

(2.15e?8) -

2.1950e?9

(0.00e?0) -

1.8896e?9

(3.71e?8) -

1.6370e?8

(3.28e?7) ?

1.4282e?9

(2.45e?7)

SOP_F6 4.9400e?1

(3.88e?1) -

0.0000e?0

(0.00e?0) =

7.3720e?3

(3.80e?3) -

0.0000e?0

(0.00e?0) =

5.1971e?4

(5.91e?3) -

0.0000e10
(0.00e10)

SOP_F7 4.4811e �2 (2.05e
�2) 1

4.8096e�1

(2.70e�1) =

4.9415e�1

(2.92e�1) =

4.8717e�1

(2.84e�1) =

7.8901e?1

(1.88e?1) -

5.5817e�1

(2.55e�1)

SOP_F8 - 3.0187e?3

(5.41e?2) -

- 5.4177e?3

(1.85e�12) =

- 5.4177e?3

(1.85e�12) =

- 5.4177e?3

(1.85e�12) =

- 3.6861e?3

(3.62e?2) -

2 5.4177e13
(1.85e �12)

SOP_F9 8.9311e?1

(7.96e?1) -

8.6774e?2

(3.47e�13) -

8.6774e?2

(3.47e�13) -

8.6774e?2

(3.47e�13) -

3.7252e?2

(1.66e?1) -

0.0000e10
(0.00e10)

SOP_F10 1.8775e?1

(4.54e?0) -

6.6365e�1

(3.26e�1) -

7.7177e?0

(1.11e?0) -

1.1810e�3

(4.19e�4) -

2.0151e?1

(2.71e�1) -

1.8208e �14 (7.23e
�15)

SOP_F11 1.2765e?0

(1.61e�1) -

9.4997e�2

(1.05e�1) -

9.3617e�1

(1.21e�2) -

4.3634e�5

(2.38e�4) -

4.6765e?2

(4.36e?1) -

0.0000e10
(0.00e10)

SOP_F12 2.7324e?1

(2.61e?1) -

3.3763e?0

(6.29e�1) ?

2.6675e?2

(2.55e?2) -

3.1415e10 (1.51e
�4) 1

3.2963e?8

(1.07e?8) -

9.4772e?0

(2.72e?0)

SOP_F13 5.7860e?0

(2.89e?0) -

2.9769e?0

(9.43e�3) -

6.3792e �1 (5.91e
�1) 1

3.0000e?0

(5.57e�6) -

6.7573e?8

(1.49e?8) -

1.6303e?0

(6.09e�1)

SOP_F14 4.2352e10
(3.93e10) 1

1.4541e?1

(1.81e�15) ?

1.4541e?1

(2.32e�9) -

1.4541e?1

(1.89e�15) ?

1.7402e?1

(1.84e?1) =

1.4541e?1

(1.08e�11)

SOP_F15 4.8295e�1

(1.68e?0) -

1.4778e�1

(1.07e�8) -

1.4763e�1

(1.08e�4) ?

1.4762e�1

(1.37e�4) ?

6.4129e �2 (5.42e
�2) 1

1.4775e�1

(5.26e�5)

SOP_F16 2 1.0307e10
(2.03e �3) 1

3.6181e?0

(1.30e�15) -

3.6181e?0

(1.45e�7) ?

3.6181e?0

(1.48e�15) -

- 3.3934e�1

(7.05e�1) ?

3.6181e?0

(3.54e�9)

SOP_F17 4.1032e �1 (1.67e
�2) 1

4.3745e?1

(7.23e�15) -

4.3745e?1

(2.84e�8) -

4.3745e?1

(3.00e�14) -

1.0656e?0

(4.53e�1) ?

4.3745e?1

(2.54e�7)

SOP_F18 4.0566e10
(4.91e10) 1

7.6728e?4

(0.00e?0) =

7.6728e?4

(0.00e?0) =

7.6728e?4

(0.00e?0) =

2.1050e?1

(1.65e?1) ?

7.6728e?4

(0.00e?0)

SOP_F19 2 3.8020e10
(5.59e �2) 1

- 6.7974e�2

(4.23e�17) =

- 6.7974e�2

(4.23e�17) =

- 6.7974e�2

(4.23e�17) =

- 3.6098e?0

(2.18e�1) ?

- 6.7974e�2

(4.23e�17)

SOP_F20 2 2.7873e10
(3.06e �1) 1

- 5.1072e�3

(0.00e?0) =

- 5.1072e�3

(0.00e?0) =

- 5.1072e�3

(0.00e?0) =

- 2.1979e?0

(4.14e�1) ?

- 5.1072e�3

(0.00e?0)

SOP_F21 2 3.4327e10
(2.21e10) 1

- 2.7312e�1

(1.13e�16) =

- 2.7312e�1

(1.13e�16) =

- 2.7312e�1

(1.13e�16) =

- 8.8021e�1

(4.33e�1) ?

- 2.7312e�1

(1.13e�16)

SOP_F22 2 3.6981e10
(2.23e10) 1

- 2.9362e�1

(5.65e�17) =

- 2.9362e�1

(5.65e�17) =

- 2.9362e�1

(5.65e�17) =

- 1.2488e?0

(5.67e�1) ?

- 2.9362e�1

(5.65e�17)

SOP_F23 2 2.7243e10
(1.14e10) 1

- 3.2173e�1

(0.00e?0) =

- 3.2173e�1

(0.00e?0) =

- 3.2173e�1

(0.00e?0) =

- 1.3275e?0

(4.90e�1) ?

- 3.2173e�1

(0.00e?0)
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independent runs: archOA (12,11,0), BDE (2, 12, 9), BeSD

(3, 12, 8), BSD (3, 11, 9), and CHIO (10, 12, 1).

In summary, the results verify the superior performance

of the NVSA over the other 5 metaheuristic algorithms in

terms of solving various benchmark functions. These two

tables demonstrate that the NVSA is significantly better

than all Bernstein search-based algorithms: the BSD, BeSD

and BDE algorithms. Moreover, the NVSA is slightly

superior to CHIO and is competitive with archOA.

5 Multimodal medical image registration
results

5.1 Materials

In the following experiments, the Retrospective Image

Registration Evaluation (RIRE) database [59] is chosen as

the dataset because it is one of the most frequently used

datasets for benchmarking the performance achieved by

metaheuristic algorithms in multimodal image registration

tasks [60]. We take CT images (512 � 512 �28–34 voxels)

as moving images and MR images, including T1, T2, PD

images (256 � 256 � 20–26 voxels) as fixed images.

Furthermore, the pixels of these images are normalized to

[0,256] to better measure and accomplish the image reg-

istration task. Figure 4 illustrates the original and normal-

ized CT and MR images of patient-001.

5.2 Comparisons with SOTA algorithms

In this section, six metaheuristic algorithms, including the

proposed NVSA and the original BSD algorithm [22], the

high-performance DA [43] and GWO [44] algorithms, and

the SOTA BBOEL [45] and UEO [47] algorithms, are

considered as the optimization methods for finding the best

similarity metric between the moving and fixed images. To

match the previous work, we refer to the parameter settings

in [42, 45], which include a population size of 30, a

maximum number of generations of 100, a rotation angle in

the range of [0, 360] and a translation in the range of

[-30,30]. The middle slices of the CT and MR images are

taken as the moving and fixed images, respectively.

In addition, we choose a similarity transformation as the

experimental model, where four parameters in the matrix

must be optimized, and a total of 41 different multimodal

registration scenarios are taken to determine experimental

results. For each registration scenario, we perform 20

independent runs of each algorithm. In particular, we select

the mean NMI and RMSE values as evaluation indices.

Notably, higher NMI values and lower RMSE values rep-

resent better results in the experiments. Figure 5 illustrates

the final multimodal medical image registration results

obtained using six different metaheuristic algorithms.

Table 6 demonstrates the average NMI and RMSE

results obtained for ‘‘patient-001’’ to ‘‘patient-109’’ when

optimized by the six algorithms.

Concerning the NMI, the NVSA rank first (as high-

lighted in bold) among all presented benchmarks and in

terms of the average value, which is taken over 41 sce-

narios in total. In addition, the proposed algorithm also

successively ranks first in the Friedman’s mean rank test

[33]. Regarding the RMSE, the NVSA also obtains the

lowest average value compared to those of the other five

algorithms. The results suggest that the NVSA is the most

effective algorithm since it produces the lowest ranks in the

Friedman test.

Furthermore, the boxplots statistically generated by

these six algorithms are shown in Fig. 6. Five-number

summaries show that the maximum, first-quartile, median,

third-quartile, and minimum NMI values calculated by the

NVSA are statistically higher than those of other five

algorithms. These boxplots also indicate that our method

significantly outperforms the other five metaheuristic

algorithms.

Table 8 shows the results of pairwise comparison tests

of significance, and the p-values of both the asymptotic

significance (Sig) and Bonferroni correction-adjusted sig-

nificance (Adj. Sig.a) metrics are less than 0.05, indicating

that the results support the alternative hypothesis over the

null hypothesis. The NVSA is found to be statistically

significantly different from and more effective than the

other five algorithms in terms of multimodal medical image

registration based on the RIRE dataset. It is worth men-

tioning that UEO is statistically significantly different than

the other algorithms except for the NVSA. This proves that

UEO is also an effective algorithm, but not as effective as

the NVSA.

We also demonstrate the time consumption levels of

these six algorithms in six scenarios to support our analysis

(Table 9). As expected, our method is competitive with the

BSD, GWO, and UEO algorithms. Undisputedly, the

NVSA is faster than DA and BBOEL.

To more clearly present the optimization process, we

also show some iterative diagrams produced during the

registration process, as illustrated in Fig. 7. The two SOTA

methods, UEO and BBOEL, rank second and third,

respectively, in the mean NMI values obtained over a total

of 41 scenarios. Additionally, including GWO, these three

algorithms can converge quickly in the early stages of the

iterative process compared to NVSA, but they are still

slightly inferior during the later local optimization stage,

whereas the NVSA can continue searching for the globally

best result. This proves that the NVSA has a stronger

exploitation ability than the aforementioned algorithms.
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Another point worth mentioning is that the iterative

NMI value of the NVSA is superior to those of DA and

BSD from the beginning to the end, as shown in all six

iteration graphs. It can be claimed that the NVSA attains

strong exploration and exploitation abilities by modifying

its search strategy and utilizing the mutation pattern

derived from BSD.

5.3 Comparisons with classic methods

We notice a lack of comparisons between classic methods

and metaheuristic algorithm-based methods. In this part,

three classic methods including ANTS [27, 30], FSL

[29, 32], and Elastix [28, 31] are benchmarked with the

proposed method with and without its initial spatial trans-

formation (the NVSA (IST) and the NVSA, respectively)

to compare their two-dimensional affine image registration

performance. Notably, the metaheuristic algorithms with-

out the initial transformation matrix easily fall into local

extrema when using the affine transformation, so we take

the final similarity transformation parameters in the NVSA

as the initial affine transformation parameters as well as the

initial spatial transformation parameters in the NVSA (IST)

to estimate the rough geometric transformation. The rough

registration results computed by the NVSA are also

summarized.

Several changes are implemented in comparison with

Section 4.2. 1) All CT images are downsampled to half

their original size (256 � 256 pixels) by applying bicubic

interpolation. This is because images with different sizes

may not match well across these three classic methods. 2)

The warped and fixed images are cut to 208 � 208 pixels

because the warped images computed by these three

methods contain a few blank pixels. 3) Experiments are be

conducted on patients 001–007 because patients 101–109

demonstrate different blank areas than those of the former

group. Taking the above factors into consideration, we

remove those blank margins to make the comparison fair.

Finally, we still use the NMI and RMSE values to evaluate

the performance of the tested algorithm. The comparison

Fig. 4 Histograms of Patient001 original images (up) and normalized images (down)
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can be seen in Table 10, and Fig. 8 illustrates the regis-

tration results obtained using different approaches from a

visual perspective.

The registration results yielded by different methods are

reported in Table 10. Overall, it is can be seen that com-

pared to the commonly used methods such as ANTS, FSL,

and Elastix, the NVSA (IST) rank first in terms of the

Friedman’s mean rank test results and the average NMI

values, and the NVSA without the initial spatial transfor-

mation ranks first in terms of the Friedman’s mean rank test

results and the average RMSE values.

To be specific, the NVSA outperforms the other meth-

ods with respect to the NMI for most multimodal regis-

tration scenarios expect CT vs. T2 (P003). Regarding the

RMSE, the NVSA and the NVSA (IST) rank first in 15 out

of 20 scenarios. They are followed by FSL, which ranks

first in 5 out of 20 scenarios. The above findings indicate

that the proposed method generalizes better than the classic

methods, and thus represents that the NVSA is more suc-

cessful than the NVSA (IST) in comparing multimodal

errors and measuring the distances between corresponding

features for the RIRE dataset. Another advantage of the

metaheuristic algorithm-based approach is that different

transformation metrics can be obtained in each independent

operation without specifically setting different initial

parameters.

When examining Fig. 9, it can be said that the NVSA

(IST) performs best among all five methods. In general, the

proposed method is superior to the other methods accord-

ing to their five-number summaries, which include the

maximum, first-quartile, median, third-quartile, and mini-

mum NMI values.

Interestingly, the NVSA and FSL do not perform well in

terms of NMI (rand 4th and 5th), but they are ranked in the

top three with respect to the RMSE. The reason for this

may be that FSL chooses the rigid body transformation

while the NVSA chooses the similarity transformation

rather than the affine transformation employed by other

methods. Considering the different properties of the rigid

and affine transformations, specifically, the affine trans-

formation distorts the moving image. This makes it more

suitable for the NMI, which uses information entropy, than

for the RMSE, which uses the distance between the cor-

responding features as the evaluation index.

Fig. 5 Visualizations of the registration process between multimodal P002 CT-T1 image by using six different metaheuristic algorithms
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Table 6 Comparison of the average NMI and RMSE results of six different algorithms. The bests are highlighted in bold

Scenario NMI

BSD BBOEL DA GWO UEO NVSA

CT vs. PD (P001) 0.2379 0.2539 0.2482 0.1840 0.2537 0.2705

CT vs. T1 (P001) 0.2357 0.2516 0.2330 0.2317 0.2531 0.2714

CT vs. T2 (P001) 0.1889 0.1990 0.1875 0.1840 0.1974 0.2027

CT vs. PD (P002) 0.2447 0.2627 0.2463 0.2373 0.2561 0.2662

CT vs. T1 (P002) 0.2403 0.2298 0.2411 0.2332 0.2511 0.2576

CT vs. T2 (P002) 0.1985 0.2093 0.2041 0.1943 0.2083 0.2137

CT vs. T1 (P003) 0.2689 0.2833 0.2695 0.2399 0.2814 0.2936

CT vs. T2 (P003) 0.2081 0.2050 0.2128 0.2054 0.2249 0.2332

CT vs. PD (P004) 0.2703 0.2790 0.2681 0.2574 0.2820 0.2863

CT vs. T1 (P004) 0.2491 0.2626 0.2528 0.2389 0.2615 0.2672

CT vs. T2 (P004) 0.2065 0.2198 0.2136 0.2115 0.2224 0.2239

CT vs. PD (P005) 0.2273 0.2467 0.2387 0.2198 0.2386 0.2639

CT vs. T1 (P005) 0.2260 0.2441 0.2241 0.2188 0.2326 0.2566

CT vs. T2 (P005) 0.2065 0.2198 0.2001 0.1951 0.2133 0.2239

CT vs. PD (P006) 0.2333 0.2554 0.2349 0.2338 0.2507 0.2606

CT vs. T1 (P006) 0.2322 0.2513 0.2387 0.2232 0.2441 0.2556

CT vs. T2 (P006) 0.2000 0.1950 0.1989 0.1957 0.2075 0.2123

CT vs. PD (P007) 0.2602 0.2677 0.2498 0.2449 0.2684 0.2848

CT vs. T1 (P007) 0.2355 0.2583 0.2458 0.2390 0.2597 0.2735

CT vs. T2 (P007) 0.2095 0.2119 0.2136 0.2120 0.2257 0.2333

CT vs. PD (P101) 0.2084 0.2000 0.2033 0.2013 0.2173 0.2222

CT vs. T1 (P101) 0.1961 0.1862 0.1990 0.1977 0.2121 0.2166

CT vs. T2 (P101) 0.1755 0.1800 0.1704 0.1631 0.1796 0.1857

CT vs. PD (P102) 0.2127 0.1953 0.2101 0.2079 0.2177 0.2232

CT vs. T1 (P102) 0.2176 0.1580 0.2207 0.2169 0.2266 0.2334

CT vs. T2 (P102) 0.1829 0.1435 0.1739 0.1761 0.1850 0.1902

CT vs. PD (P103) 0.2282 0.1538 0.2203 0.2370 0.2423 0.2427

CT vs. T1 (P103) 0.2167 0.1499 0.2135 0.2246 0.2346 0.2369

CT vs. PD (P104) 0.2341 0.2544 0.2208 0.2398 0.2557 0.2591

CT vs. T1 (P104) 0.2367 0.2548 0.2335 0.2360 0.2567 0.2610

CT vs. T2 (P104) 0.2061 0.2176 0.2018 0.1981 0.2201 0.2233

CT vs. T1 (P105) 0.1991 0.2060 0.1968 0.1981 0.2053 0.2082

CT vs. T2 (P105) 0.1706 0.1749 0.1680 0.1681 0.1798 0.1818

CT vs. T1 (P106) 0.2132 0.1581 0.2166 0.2338 0.2360 0.2368

CT vs. T2 (P106) 0.1853 0.1832 0.1883 0.1940 0.2047 0.2062

CT vs. T1 (P107) 0.1956 0.1568 0.1974 0.1975 0.1989 0.2001

CT vs. T2 (P107) 0.1742 0.1772 0.1753 0.1716 0.1776 0.1800

CT vs. T1 (P108) 0.2092 0.1912 0.2064 0.2115 0.2168 0.2193

CT vs. T2 (P108) 0.1813 0.1677 0.1787 0.1833 0.1895 0.1925

CT vs. T1 (P109) 0.2132 0.1846 0.2103 0.1970 0.2252 0.2303

CT vs. T2 (P109) 0.1775 0.1740 0.1753 0.1642 0.1848 0.1960

Average 0.2150 0.2115 0.2147 0.2102 0.2268 0.2341

Friedman’s mean rank 2.63 3.05 2.63 2.02 4.66 6

Rank 4 3 4 6 2 1
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Table 6 continued

Scenario RMSE

BSD BBOEL DA GWO UEO NVSA

CT vs. PD (P001) 30.983 30.928 31.046 33.930 30.342 29.865

CT vs. T1 (P001) 32.150 31.392 32.108 32.415 31.319 30.647

CT vs. T2 (P001) 33.139 33.554 34.376 33.930 33.706 34.221

CT vs. PD (P002) 34.544 34.736 34.135 33.910 34.356 35.075

CT vs. T1 (P002) 33.907 35.141 33.607 33.775 33.516 34.021

CT vs. T2 (P002) 32.373 34.105 32.761 35.361 34.140 35.927

CT vs. T1 (P003) 27.480 27.055 27.239 28.038 27.336 26.974

CT vs. T2 (P003) 26.286 28.020 26.452 26.429 25.864 26.155

CT vs. PD (P004) 26.313 26.109 26.496 27.411 25.596 25.439

CT vs. T1 (P004) 29.977 29.405 29.784 31.764 29.289 28.494

CT vs. T2 (P004) 30.996 30.879 30.470 31.249 30.748 31.006

CT vs. PD (P005) 35.831 35.703 35.814 35.485 35.488 34.870

CT vs. T1 (P005) 37.034 36.611 36.538 36.204 36.603 36.381

CT vs. T2 (P005) 30.996 30.879 31.596 32.792 33.186 31.006

CT vs. PD (P006) 27.771 26.903 27.086 27.274 26.627 26.356

CT vs. T1 (P006) 30.771 29.755 29.881 30.345 29.801 29.029

CT vs. T2 (P006) 36.231 37.747 35.695 35.873 36.331 37.080

CT vs. PD (P007) 29.371 29.866 29.801 29.245 29.421 30.115

CT vs. T1 (P007) 30.188 30.186 30.243 30.030 30.044 29.809

CT vs. T2 (P007) 30.308 31.189 30.037 30.595 31.270 33.133

CT vs. PD (P101) 59.960 64.670 62.386 61.076 60.300 60.137

CT vs. T1 (P101) 53.532 54.813 55.161 53.528 52.369 52.361

CT vs. T2 (P101) 60.317 63.726 64.632 65.427 62.433 61.956

CT vs. PD (P102) 49.270 53.669 51.798 48.811 49.055 49.677

CT vs. T1 (P102) 52.005 57.916 52.811 50.681 50.493 51.358

CT vs. T2 (P102) 63.452 57.181 67.361 66.000 64.874 64.423

CT vs. PD (P103) 36.034 57.019 37.617 34.821 35.250 35.211

CT vs. T1 (P103) 40.342 50.678 41.175 41.321 39.941 38.891

CT vs. PD (P104) 43.984 44.878 48.248 42.938 45.058 45.882

CT vs. T1 (P104) 49.713 48.358 50.353 46.894 48.776 49.548

CT vs. T2 (P104) 53.832 54.370 55.708 55.994 53.918 54.434

CT vs. T1 (P105) 47.850 46.734 48.626 47.088 47.584 47.291

CT vs. T2 (P105) 51.845 53.674 55.673 54.409 52.756 52.053

CT vs. T1 (P106) 53.165 61.415 53.742 51.176 51.369 51.181

CT vs. T2 (P106) 60.899 61.679 64.310 64.673 62.950 62.300

CT vs. T1 (P107) 49.387 54.494 49.628 50.285 49.977 50.188

CT vs. T2 (P107) 51.916 54.696 55.058 58.583 53.218 47.755

CT vs. T1 (P108) 47.089 50.464 48.054 46.269 45.817 45.895

CT vs. T2 (P108) 53.965 55.935 55.958 56.407 55.367 55.332

CT vs. T1 (P109) 49.716 55.211 52.836 51.730 49.663 48.678

CT vs. T2 (P109) 59.365 59.065 61.643 59.027 59.838 58.017

Average 41.812 43.678 42.877 42.517 41.853 41.663

Friedman’s mean rank 3.27 3.98 4.37 3.76 2.9 2.73

Rank 3 5 6 4 2 1
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6 Conclusion

This paper presents a modified version of the BSD algo-

rithm, called the NVSA, which incorporates an innovative

normal vibration distribution, a novel mutation pattern and

a new search strategy to enhance its performance. The

study evaluates the proposed method on 23 classic opti-

mization problems and 41 multimodal image registration

scenarios. The results show that the NVSA outperforms the

SOTA metaheuristic methods (BBOEL and UEO) and

achieves better results than its predecessor (BSD) and other

high-performance algorithms (such as DA and GWO). The

paper presents figures, boxplots, tables and significance

tests to support its conclusions, demonstrating the NVSA’s

excellent exploration and exploitation abilities and its

Fig. 6 The NMI value of total

41 different multimodal

registration scenarios optimized

by six different algorithms

Table 7 Pairwise comparison of

significance test
Algorithm 1- Algorithm 2 Test statistic Std. test statistic Sig Adj. Sig.a

GWO-BSD 0.61 1.476 0.14 1

GWO-DA 0.61 1.476 0.14 1

BSD-DA 0 0 1 1

BSD-BBOEL �0.415 �1.003 0.316 1

DA-BBOEL 0.415 1.003 0.316 1

GWO-BBOEL 1.024 2.479 0.013 0.198

UEO-NVSA �1.341 �3.247 0.001 0.018

BBOEL-UEO �1.61 �3.896 0 0.001

BSD-UEO �2.024 �4.899 0 0

DA-UEO �2.024 �4.899 0 0

GWO-UEO �2.634 �6.375 0 0

BBOEL-NVSA �2.951 �7.142 0 0

BSD-NVSA �3.366 �8.146 0 0

DA-NVSA �3.366 �8.146 0 0

GWO-NVSA �3.976 �9.622 0 0

Table 8 Quantitative time of six different algorithms

Algorithm P001/Seconds P101/Seconds

CT-PD CT-T1 CT-T2 CT-PD CT-T1 CT-T2

BSD 12.607 14.387 14.378 11.613 10.413 12.524

BBOEL 36.706 39.935 38.778 30.101 27.037 32.654

DA 17.906 13.012 18.293 16.473 16.664 15.972

GWO 14.134 14.080 14.137 11.163 10.492 11.512

UEO 14.137 14.113 14.094 11.672 10.540 11.415

NVSA 14.181 15.205 15.131 12.627 11.173 13.159
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competitive convergence speed. Comparisons with three

classic methods further validate the potential of the pro-

posed algorithm for addressing real-world medical imaging

needs. Future research can focus on applying the proposed

metaheuristic algorithm to a 3D rigid transformation model

and exploring multiobjective algorithms to find a balance

between various similarity measures. The combination of

metaheuristic algorithms and deep learning for coarse-to-

fine registration is another interesting point worth studying.

Fig. 7 Convergence rate comparison and performance comparison with BSD, BBO-EL, DA,GWO and NVSA. Two patients with three different

multimodal categories, counting in total six situations are exhibited
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