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Abstract
The mechanism design theory can be applied not only in the economy but also in many fields, such as politics and military

affairs, which has important practical and strategic significance for countries in the period of system innovation and

transformation. As Nobel Laureate Paul said, the complexity of the real economy makes it difficult for ‘‘Unorganized

Markets’’ to ensure supply-demand balance and the efficient allocation of resources. When traditional economic theory

cannot explain and calculate the complex scenes of reality, we require a high-performance computing solution based on

traditional theory to evaluate the mechanisms, meanwhile, get better social welfare. The mechanism design theory is

undoubtedly the best option. Different from other existing works, which are based on the theoretical exploration of optimal

solutions or single perspective analysis of scenarios, this paper focuses on the more real and complex markets. It explores

to discover the common difficulties and feasible solutions for the applications. Firstly, we review the history of traditional

mechanism design and algorithm mechanism design. Subsequently, we present the main challenges in designing the actual

data-driven market mechanisms, including the inherent challenges in the mechanism design theory, the challenges brought

by new markets and the common challenges faced by both. In addition, we also comb and discuss theoretical support and

computer-aided methods in detail. This paper guides cross-disciplinary researchers who wish to explore the resource

allocation problem in real markets for the first time and offers a different perspective for researchers struggling to solve

complex social problems. Finally, we discuss and propose new ideas and look to the future.
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1 Introduction

Mechanism design is one of the research areas in eco-

nomics and game theory that uses the engineering methods

to design economic mechanisms or incentives to achieve

desired goals. It is also called ‘‘Reverse Game Theory’’

because it starts at the end of the game and then goes

backwards. Mechanism design explains the problem that

the objective function is given when the mechanism is

unknown. Therefore, the design problem is contrary to

traditional economic theory, which usually focuses on

analyzing the performance of the given mechanism. It has a

wide range of applications, from market, auctions, voting

to inter-domain routing, sponsored search auctions and

other resource allocation scenarios.

Algorithmic game theory studies the interaction between

rational and selfish agents. It is an emerging field com-

bining algorithms and game theory, and its achievements

are related to other fields, including networks and artificial

intelligence. Nisan et al. [111] published the representative

book of algorithmic game theory in 2017, which summa-

rized two essential branches of this field: game strategy and

algorithmic mechanism design. Algorithm game theory

studies the calculation model in the real market from the

game theory perspective and uses economics and calcula-

tion theory. It offers the possibility to break through the

traditional mechanism design theory and various unrealis-

tic assumptions, such as infinite computational power and

ex-ante constrained assumption conditions. Figure 1 shows

the branches and relationship of algorithmic game theory,

and we will use mechanism design without annotation to

denote algorithmic mechanism design in the following.
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Both efficient game strategy solving and rational game

mechanism design are essential and are two different

aspects of the same thing. Obtaining the Nash equilibrium

in the game strategy solution is optimal from the player’s

perspective. Moreover, the design of a rational game

mechanism is to create systems or rules that satisfy con-

sensual goals, that guide agents in the system to make

strategic actions, and retain private information relevant to

the decision. The research on mechanism design is not

descriptive or evaluative but the process of opening the

black box of the research object to the public.

The algorithmic game theory of strategy solving is more

familiar to researchers in computing, which searches for

the optimal strategy under a fixed mechanism. The methods

of finding equilibrium are constantly being improved, from

the DeepBlue victory over chess master Kasparov, the

AlphaGo [139], AlphaGo Zero [140] defeat of Go world

champion Li Shishi and Ke Jie, to the Cepheus [18],

DeepStack [104], Libratus [16] and Pluribus [19] succes-

sive conquests of the challenges in two-player limit and no-

limit, multiplayer no-limit Texas Hold’em games. The

state-of-the-art researches also include the Awareness that

defeated a team of professional players from the Glory of

Kings and exploring correlated equilibrium [23, 48,

176, 177], Stackelberg equilibrium [10, 81, 89, 182] and

other different kinds of equilibrium solutions. As ‘‘reverse

game theory,’’ the mechanism design explores the mech-

anism, while agents use rational strategy to maximize

global social welfare. In chess, for example, by modifying

the appropriate rules, it is possible to improve the global

goal and the optimal equilibrium that agents can achieve.

The most common applications of algorithmic mecha-

nism design explored in this paper include auctions,

advertising, and other economics scenarios. How to break

through the limitation of this traditional concept, or whe-

ther mechanism design can be applied in other complex

environments, is what this paper is going to study and

looking for.

As the Royal Swedish Science Council said in the award

ceremony, mechanism design theory provides a coherent

framework for analyzing this great variety of institutions,

or ‘‘allocation mechanisms,’’ with a focus on the problems

associated with incentives and private information. Mech-

anism design theory allows researchers to systematically

analyze and compare a broad variety of institutions under

less stringent assumptions. It allows economists and other

social scientists to analyze the performance of institutions

relative to the theoretical optimum. The Nobel Prize in

Economics has been awarded four times for research in the

area of mechanism design: Vickery and Morris for their

work [98, 154] on asymmetric information in 1996, Her-

witz, Maskin and Myerson for their pioneering work

[65, 90, 105] on mechanism design in 2007, Roth and

Shapley for their essential contributions [55, 128] to

matching markets in 2012. Paul Milgrom and Robert

Wilson for their refinement and invention [116, 160] of

auction theory in 2020. In short, mechanism design, like

game strategy solving, has provided important insights into

economic, social and even political-military issues, espe-

cially regarding its significant impact on policies and

institutions.

The modern form of game theory existed as early as the

1940s and 1950s, and outstanding researchers such as John

von Neumann and Morgenstein (Theory of Games and

Economic Behavior, 1944 [156]), Nash (Non-cooperative

Games, 1950 [107]; Two-person cooperative games,1953

[108]), and even has earlier explorations such as Zermelo’s

theorem, where Zermelo’s thesis was published in German

in 1913 and translated into English by Ulrich Schwalbe and

Paul Walker in 1997. Although game theory occasionally

overlapped with computer science for many years, most of

the early research in game theory was carried out by

economists. Indeed, game theory is now the primary ana-

lytical framework for microeconomic theory, as evidenced

by its presence in economics textbooks (e.g., Microeco-

nomic Theory, 1995 [91]) and many Nobel Prizes in the

economic sciences. In recent years, scholars have made

some progress in discussing the single-item restriction of

the famous Myerson theorem in game theory, studying one

additive buyer with two items [61, 62, 88] and one-unit

demand buyer with two items [117, 118, 148]. The latest is

Yao’s theoretical proof for two items with multiple bidders

[169]. The multi-item mechanism has encountered a bot-

tleneck in theory, but this has not stopped researchers from

moving forward to combine neural networks, reinforce-

ment learning and other computer-aided algorithms with

exploring [31, 39, 120, 123], even adaptive mechanisms

are gradually becoming possible. This is undoubtedly an

essential breakthrough in the design of traditional mecha-

nisms, but there are still many challenges ahead that we

need to explore.

There are at least two main reasons why game theory

became a major research topic for computer scientists.

Fig. 1 Branches of algorithmic game theory

16194 Neural Computing and Applications (2023) 35:16193–16222

123



First, economists became interested in problems that seri-

ously impede practical applications because of their com-

putational properties. Thus, they started to approach

computer science early on in the study of combinatorial [5]

auction problems. Secondly, with the rise of distributed

computing, especially the continuous development of big

data and artificial intelligence, the traditional economic

scene is no longer static. Internet-based advertising auc-

tions have also become dynamic and variable at any time.

The evidence based on the assumption of traditional

mechanism design theory is no longer strong enough. In

recent years, with the rapid development of machine

learning technologies such as deep learning, for example,

in 2012, Jeffrey Hinton uses the AlexNet model [74] to win

the championship and become an iconic node. Subsequent

improved and representative models have grown expo-

nentially, including ELMo, GPT, BERT, XLM [30] and

other models applied to different fields.

Corresponding to the above two waves, Figs. 2, 3, 4 and

5 show the number and trend of research projects1 and

academic papers2 with ‘‘mechanism design‘‘ or ‘‘incentive

mechanism.’’ In addition to the development of traditional

mechanism design in around 2012, due to the emergence of

new opportunities, the research projects of mechanism

design have substantially increased. The USA, Canada and

China, as the countries with the most significant investment

in mechanism design, are far ahead of other countries. For

example, the National Science Foundation of the USA

funded the university with $499.972.00 [54] to explore new

directions of social choice and mechanism design.

The numbers of academic papers that shown in Fig. 4

are based on the database of web of science, which are

calculated by excluding the research directions with low

correlation (such as biology and chemistry). We can see

that around 2015, there was a new increase in the number

of academic papers, which proves the emergence of new

opportunities. In addition to the traditional essential con-

ferences and journals in the field of artificial intelligence,

three major important conferences are developed in the

direction of game theory methods and applications in

computing. There are the International Symposium on

Algorithmic Game Theory (SAGT), the ACM Conference

on Economics and Computation (ACM EC) and The

Conference on Web and Internet Economics (WINE). It

provides a good platform for the development of this field.

Game strategy solving and mechanism design are all

interdisciplinary, which pose considerable challenges to

computer science and economics researchers, and have

their own perspectives and emphases. Compared with tra-

ditional game theory, algorithmic game theory faces more

challenges but has achieved remarkable results.

For static game strategy solution scenario with complete

information, it is usually modeled as game trees, which is

used for searching to obtain the best strategy. We often

reduce the space of the gaming tree by the techniques such

as pruning. For large-scale game trees, supervised learning

[139] or self-game [140] methods are needed to evaluate

the state, so as to conduct accurate and efficient heuristic

search.

As for the incomplete information game, solving the

Nash equilibrium becomes more difficult because of the

larger scale of the game tree, so it is necessary first to

perform game abstraction [130] and then execute the iter-

ative algorithm based on CFR, residual solution and so on.

The current state-of-the-artwork has been able to beat the

world’s top humans at two-player no-limit Texas game.

Typical applications of the mechanism design include

how sellers design prices to sell under asymmetric infor-

mation between buyers and sellers in a buy-sell transaction

scenario (e. g. online advertising). Auction theory has

undergone significant changes since the early studies of

mechanism design theory. Although the early ‘‘impracti-

cal’’ models proved their worth in guiding the actual auc-

tion design, some of these were not entirely correct. As

Paul Milgrom, the winner of Nobel Prize in Economics in

2020, summed up in his paper [95], simulation and cal-

culation methods may become increasingly important in

the future. However, understanding this problem and the

proposed solutions still need theoretical support. It is time

for the old and new methods to work together. Artificial

intelligence-based mechanism design methods are a hot

topic in current research at the intersection of artificial

intelligence and economics. The research mainly includes

optimizing mechanism design through reinforcement

learning, modeling players through machine learning and

behavioral economics, modeling players through experi-

mental economics and verifying and evaluating with

mechanism design.

Fig. 2 Number of research projects in different fields of mechanism

design

1 China Knowledge Centre for Engineering Sciences and

Technology.
2 Web of Science.
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Based on the algorithm game theory, the researchers in

their respective disciplines have conducted in-depth

research on game strategy and mechanism design, but they

lack systematic summaries and comments. Our team has

summarized a review of Nash Equilibrium Strategy Solv-

ing [78] in 2020. However, there is a lack of comprehen-

sive papers that can describe the challenges in this

interdisciplinary field of algorithm mechanism design. This

paper attempts to summarize this field, try to give new

research points and give new inspiration to researchers. On

the one hand, static mechanism design theory needs to be

optimized in the context of dynamically variable data in

more complex scenarios. On the other hand, with the

widespread use of artificial intelligence for game strategy

solving, combining computer-aided modeling approaches

is necessary to counter the enhanced game strategy.

In addition, apart from the outstanding performance in

economic policy and market systems, whether mechanism

design is suitable for other more complicated social inter-

action problems, such as data sharing and privacy-pre-

serving, and classification of scarce resources. Moreover,

how it can be broken through the traditional theory of

mechanism design and traditional research areas is also the

problem we want to discuss.

The main difference between this paper and other work

is that we stand at the intersection of multiple disciplines,

hoping to help researchers quickly understand the hot

spots, feasible solutions and challenges in this intersec-

tion. This is the author’s original goal. We hope beginners

do not need to spend too much time looking for fragmented

information and finding the point of convergence between

the two disciplines. It is also hoped that experts can quickly

determine the complex problems that can be solved in the

next stage.

The rest of the paper is as follows. We introduce the

history and comparison of mechanism design in Sect. 2. In

Sect. 3, the main problems and challenges faced by the

mechanism design at this stage are shown. And then at

Sects. 4 and 5, we systematically introduce and explore

the traditional mechanism design theory and computer-

aided incentive mechanism methods. Finally, we discuss

the application and prospect of algorithmic mechanism

design in the economic and complex environment from

three aspects, the optimal mechanism of internet online

advertising (traditional economics scenarios), the incentive

mechanism for data sharing and privacy preserving (com-

plex environment) and the allocation of other scarce

resources (abstraction of mechanism design issues) in

Sect. 6. And we make a conclusion of the paper in Sect. 7.

2 Related work

2.1 History of game theory and mechanism
design

John von Neumann’s theory of games and economic

behavior [156], co-authored with Oskar Morgenstern in

1944, is the pioneering work in game theory. The authors

think that game theory is the only mathematical method

suitable for studying economic problems. They proved the

existence of zero-sum game solutions for two or more

agents and gave the solutions of cooperative games.

Fig. 3 Undertaking and funding about mechanism design research

projects

Fig. 5 Word cloud statistics

Fig. 4 Number of academic papers on mechanism design
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Schelling’s ‘‘The Strategy of Conflict’’ [131] made an in-

depth analysis of the mutually distrustful relationship and

the critical role of credible commitment in conflict or

negotiation, although it was non-technical, while the basis

of axiomatic cooperation theory is ‘‘Value’’ put forward by

Shapley [134] in 1953 and the ‘‘Bargaining Solution’’ put

forward by Nash in 1950. Among them, Shapley Value

distributes the interests of alliance agents, which reflects

the contribution of each alliance member to the overall

goal of the alliance, avoids egalitarianism in distribution,

and is more reasonable and fair than any other distribution

methods based only on the value of input, the efficiency of

resource allocation and the combination of both, and also

reflects the process of the competing among the agents.

Nash’s bargaining solution is based on the insight that the

value of personal utility can be assigned to distinguish

incremental linear transformations.

Mechanism design theory not only points out the

dilemmas but, more importantly, it provides a way out of

the dilemmas under specific circumstances: how to design

mechanisms or rules so that micro-actors can genuinely

show their personal preferences and the behaviors deter-

mined by personal preferences and economic mechanisms

can finally ensure the realization of social goals. At present,

mechanism design theory has entered the core of main-

stream economics. It is widely used in monopoly pricing,

optimal taxation, contract theory, principal-agent theory,

auction theory and other fields. Many practical and theo-

retical problems, such as the formulation of laws and

regulations, optimal tax design, administrative manage-

ment, democratic election and social system design, can all

be attributed to the design of the mechanism.

The pioneering work on mechanism design theory

originated from Hurwitz’s studies in 1960 and 1972. It

solves the general problem of whether and how to design

an economic mechanism under decentralized decision-

making conditions such as free choice, voluntary exchange

and incomplete information so that the interests of the

participants in economic activities are consistent with the

goals announced by the designer for any given economic or

social purpose. That is, by designing the specific form of

the game mechanism, the interaction of the strategies

chosen by the participants under the self-interested

behavior can satisfy their respective constraints

[68, 126, 147, 159] and make the configuration results

consistent with the expected goal.

According to Adam Smith’s assumption, the invisible

hand of the market can efficiently allocate resources under

ideal conditions. However, the real world is not so perfect,

and there will always be various constraints that hinder the

market from giving full play. In other words, the market is

always prone to failures. Under the circumstances of

incomplete competition, incomplete information, public

goods and increasing returns to scale, the market mecha-

nism cannot automatically realize the effective allocation

of resources. Take incomplete information as an example

[4, 6, 144]. We are facing a society with incomplete

information. No one can fully grasp the personal infor-

mation of others. Since all personal information cannot be

fully available to one person, people will always want to

decentralize their decisions. However, information about

personal preferences and existing production technologies

is distributed among many participants, such as federated

learning [170, 175], who may hide their accurate infor-

mation and use private information to maximize their

benefits. From the point of view of the whole society, this

will lead to a loss of resource allocation efficiency.

As mentioned in Sect. 1, mechanism design is a branch

of game theory. Both for game strategy solving and

mechanism design, we usually classify them into ‘‘coop-

erative games’’ and ‘‘non-cooperative games,’’ depending

on whether the players are allied or not. Therefore, they

correspond to different game models and are suitable for all

environments. However, the environment in real life is

much more complex. Sometimes, the information on both

sides of the game is not entirely observable and need for

data privacy preserving and other security issues. The last

three sections of this paper, three aspects are studied in

detail with examples from the traditional economic fields,

more complex social environments and resource allocation

for the abstract of mechanism design, respectively.

2.2 Comparison of traditional and algorithmic
mechanism design

There is a complete theoretical system in traditional

mechanism design. Compared with algorithmic mechanism

design, it has a longer history and commonly uses auction,

contract and bargaining theories, while the difference

between auction theory with the latter theories is that it is

widely used in non-cooperative games. Traditional theory

of mechanism design is the cornerstone of mechanism

design system. Whether it is the application of theoretical

proofs to complex environments or, conversely, the

enrichment of mechanism design theory through artificial

intelligence, there is no doubt about its importance.

The typical application of mechanism design includes

valuable items, reverse bidding of easily corroded items,

spectrum auctions and other economic fields. The mecha-

nism design method based on artificial intelligence is a hot

topic of interdisciplinary research in computer and eco-

nomics, which broadens the practical application scenarios

for mechanism design. Almost all resource allocation

problems [47, 50, 113, 122, 135] can be solved by mech-

anism design. The primary research includes optimizing

the mechanism design through reinforcement learning,
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modeling agents through machine learning and behavioral

economics, and verifying and evaluating the mechanism

through experimental economics.

Moreover, algorithmic mechanism design, as a new field

of theoretical computer science, focuses on and solves the

fundamental problem of real-time high-frequency behavior

in networks and resource allocation under realistic

complexity.

The difference between traditional mechanism design

and game theory lies in the following aspects. First, it has

different application fields, including more complex social

environments such as big data and non-traditional auction

scenarios. Secondly, from the point of view of specific

optimization problems to the application of modeling, the

search for optimal solutions and the study of upper and

lower limits of solvable optimization, they are different in

application and quantitative methods. Third, computability

differs because the traditional mechanism design approach

is ideal and cannot be solved by a computer in polynomial

time (NP-hard problem). In contrast, the algorithmic

mechanism design takes computability as a constraint that

must be considered for algorithm implementation.

3 Challenges in mechanism design

As Victor and Myerson applied the theory of economic

mechanism design to auction theory, they solved many

complex resource allocation problems. Scholars in various

fields have summarized and extended them from different

perspectives, including auction mechanism, pricing mech-

anism, contract mechanism, monopoly pricing mechanism,

principal-agent mechanism, and optimal tax mechanism.

Starting from the basic connotation of the traditional

auction mechanism, some scholars have made in-depth

discussions on the theoretical models of the single-stage

VCG mechanism, the first-price and price-increase com-

bined auction mechanism, auction processes and other

mechanical issues. Some scholars also analyzed and com-

pared the optimal mechanism design of homogeneous

multi-item auctions [1, 3] under the conditions of unit

demand or linear demand. Analyze the selection of auction

methods in the process of state-owned assets [3, 87] sep-

aration, for example.

With the reform of market mechanisms, many scholars

have gradually begun to pay attention to and extend the

design theory of economic mechanisms. For example,

considering the characteristics of the electricity system and

the strategic behavior of electricity providers triggered by

incomplete information problems [158, 184], which affects

the security and economy of the electricity market. Some

scholars applied mechanism design theory, supply func-

tion, Cuomo model, Stackelberg model to explore the

strategic behavior of electricity suppliers and incentive

bidding mechanism and other issues.

This seems to be very successful, but there are many

hidden problems with the traditional mechanism design.

When putting theoretical models into practice, there are

enormous challenges. For example, the classic Victor

auction could not be used in the spectrum auction orga-

nized by the FCC in 2012. For example, the classic Victor

auction could not be applied in the spectrum auction

organized by the FCC in 2012 and faced with the dilemma

that the optimization method could not be calculated on

modern computers [94]. Spectrum auctions contain tens of

millions of variables and 2.7 million constraints, which

makes their calculations very complicated and beyond the

scope of computer solutions.

Described in terms of computational disciplines, it is a

typical graph coloring problem with huge constraints and is

an NP-hard problem that cannot be solved optimally.

However, there is no need to be discouraged. In the real

world, many problems are NP-hard, but suboptimal solu-

tions are also good options. Many scholars have explored

clock auctions [96], simulation studies [110], the FUEL bid

language [14] and other methods to tame this auction

challenge.

There are still many difficulties to be solved in exploring

the design of algorithmic mechanisms in complex envi-

ronments such as big data and the Internet. For example,

we need to consider the mechanism’s computational

complexity, time complexity and information security to

design an efficient pricing mechanism and maximize the

social welfare.

In this paper, starting from the main difficulties faced by

traditional mechanism design, algorithm mechanism design

and their combination, the current problems are divided

into three categories, as shown in Fig. 6. In addition,

Sect. 4 introduces the basic theory of traditional mecha-

nism design in detail. Section 5 introduces the algorithm of

computer-aided incentive mechanism in detail. And,

Sect. 6 introduces the application of the combination in the

economic and complex social environment. Furthermore,

other application scenarios are given under the abstract

goal of mechanism design to address resource allocation.

Through the exploration and research of the above

problems, it is helpful to promote the optimization and

application of algorithm mechanism design for more

complicated and changeable application scenarios, to

maximize the expected goals, such as social welfare, to

achieve consistency between social goals and goals of

game strategy.
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3.1 Strategic behavior of rational users

With the development of machine learning and deep

learning technology, the algorithm of game strategy solv-

ing is also improving. Moreover, for dynamic application

scenarios, the game strategy solving ability of real-time

processing of new scenes and data has been significantly

improved.

Accordingly, the design of the game mechanism also

needs to be improved at the algorithm level to keep up with

the continuous improvement of the performance of the

game strategy solving algorithm. The studies to explore

this problem have recently been published in Nature and

Science journals. Deepmind has developed a human-cen-

tered democratic AI mechanism design algorithm [73]

based on reinforcement learning to validate AI that satisfies

human values based on an online investment game.

Salesforce has developed a system called The AI Econo-

mist [183], which introduces reinforcement learning to tax

policy design for the first time through the two-level RL

model. In addition, the framework was used to design

policies to deal with the COVID-19 epidemic based on

historical data and achieved good results.

Nevertheless, this is still in its infancy and needs to be

explored in depth by researchers, such as how to address

the robustness of two-layer reinforcement learning better

and how to explain the mechanisms designed by deep

learning.

3.2 Diversity of user requirements

The demand of users will become more complex because

of the limited budget, incomplete information and bounded

rationality of the markets. Traditional approaches of

mechanism design, such as the VCG mechanism, cannot

deal well with problems such as the allocation of remu-

neration with budget constraints. Therefore, new methods

are needed to design mechanisms to meet budget

constraints. Similarly, in the case of incomplete informa-

tion, the complexity of calculating the maximum benefit is

also an inevitable difficulty in designing the mechanism. In

addition, for the participants with bounded rationality, the

assumptions in the traditional theory will fail, and new

situations need to be explored.

Earlier, Che [25] studied the performance of the first-

price and second-price auctions when the participants had

economic constraints and proved that the existence of

constraints makes the final results of the mechanism

inconsistent. Its constraints include marginal expenditure

costs increase, opportunity costs increase and agent’s moral

hazard. It follows that budget constraints have a significant

influence on mechanism design.

Recent years, new budget constraint problems have been

studied, including multi-unit actions [36], multi-objective

[12], incomplete information [121] and approximate solu-

tion [141]. Paul [41] demonstrated incentive compatibility,

individual rationality and Pareto optimality of heteroge-

neous goods and budget constraints auction, which are

essential contributions. He also applied statistical machine

learning techniques to design payment rules for the first

time by replacing incentive compatibility with the mini-

mization of expected ex-post regret [40]. Based on the

proposed of RegretNet, follow-up explorations [42, 52] are

constantly emerging.

In the emerging data market [37], data are an informa-

tion commodity with a fixed initial investment cost, while

the marginal cost can be neglected. This new cost feature

makes it no longer impossible for traditional strategies to

be used in pricing [79]. The price of data depends on the

requirements and valuation of consumers. However, in the

data market, service providers do not know the consumer’s

requirements precisely, nor do they know the correspond-

ing valuation. For new data products, the service provider

does not even know the approximate market demand dis-

tribution function, forcing him to make real-time data

pricing decisions in an incomplete information

environment.

In the process of the maximum profit from data trans-

actions, service providers need to consider the cost struc-

tures of specific data and online pricing decisions under

incomplete information, which undoubtedly increases the

complexity of pricing mechanisms in emerging markets.

Due to the late emergence of algorithmic game theory,

there is less research on diverse user requirements in

emerging complex markets, including limited budget,

incomplete information and bounded rationality. In par-

ticular, it is lesser in the research of incomplete information

mechanisms since it is commonly used for strategy solving,

communications or network security. Therefore, it is urgent

to explore mechanism design problems arising from users’

requirements in more realistic scenes.Fig. 6 Challenges in mechanism design
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3.3 Dynamic change of data

Auction theory and mechanism design provide a brand-new

way of thinking to solve various application problems.

Unfortunately, solutions to static problems usually cannot

directly translate to dynamic scenarios. For example, con-

sider a standard second-price auction for a single item with

private value. Buyers must bid for the goods and then

distribute them to the bidder with the highest bid. The

winning bidder pays the next highest bid. As Vickrey [154]

first demonstrated, buyers bidding on actual value is a

(weakly) dominant strategy, and, as a result, items are

efficiently allocated. However, the second-price auction

does not need to maintain its characteristics [13] in a

dynamic environment.

Consider a more general situation when the buyers are

uncertain about the arrival times and willingness to pay

competitors. The second-price sealed bidding auction

usually cannot produce effective results, even if bidders are

forward-looking and entirely rational. He proved that the

second price sealed bidding auctions usually cannot pro-

duce effective results, even if the bidders are forward-

looking and completely rational. Therefore, to get the

desired results in a dynamic environment [58], we must go

beyond the most suitable tools for static environments.

In recent years the learning-based approaches have had

better results in the field, such as no-regret learning [23],

reinforcement learning [136], and the AI Economist [183].

Many new explorations of dynamic data have emerged

from the classic multi-armed bandit (MAB) problem,

including data privacy [149], auction-based mechanisms

with strategic arms [56] and truthful mechanisms [9].

Significantly, the methods based on deep learning and

machine learning developed late in this field. How to

ensure the theoretical and increase their robustness and

stability in the presence of dynamic data needs to be

explored in the future. It is also a new track for computer-

aided multi-item or multi-agents-based gaming methods.

3.4 Limitation of computing resources

In computational complexity theory, polynomial time

means that the computational time of a problem is not

greater than a polynomial multiple of the problem size

n. Previous work only considered the benefit maximization

problem in some specific scenarios to find the optimal

solution, for example, choosing a specific benefit function

or considering a simple network topology.

However, solving optimal social welfare is usually an

NP-Hard problem, and it is challenging to get in polyno-

mial time. From the point of view of algorithm mechanism

design, to make the model better describe practical

application problems, we need to consider the computa-

tional complexity and limited computational resources in

solving social welfare problems.

The research on how prices can be used to guide the

allocation of resources when optimization is practically

impossible is a new frontier. The backpack and graph

coloring problems are typical NP-hard problems. However,

from the point of view of mechanism design, there are still

feasible schemes to reduce the time complexity. The

spectrum auction theory introduced at the beginning of this

section is a complex application of the graph coloring

problem, which was solved by Paul Milgrom using the idea

of clock auctions, for which he won the 2020 Nobel Prize

in Economics. This is a challenging problem, but it is not

insurmountable. Researchers [66, 82] are still exploring

heuristic methods to solve the complicated situation of

dynamic spectrum mechanisms.

3.5 Variability over time

In the changing scenes, the value of many tasks will be

discounted over time, making the traditional pricing

mechanisms impossible. Therefore, unlike traditional per-

formance indicators (such as delay and throughput), AoI is

usually used to consider the freshness of information.

There are, however, two challenges in designing such

mechanisms. The priorities of real-time computing tasks

are crucial to effective resource allocation but usually are

private information to the users. Second, as time passes, the

value of tasks can be discounted, making traditional pricing

mechanisms unfeasible. Asnat [60] predicted the impact of

product price elasticity based on the log–log demand model

with the GBM regression algorithm without historical price

elasticity information. Yang [167] explored the dynamic

pricing scheme of perishable fresh agricultural products

based on reinforcement learning, which provided a new

direction for studying the design of value mechanisms of

goods that changed with time.

There may be many variables in the mechanism that will

change over time, not only the price of the item itself but

also the change of equilibrium point, marginal costs and

the difficulty of obtaining data. The features involved in the

design of multi-attribute auctions are becoming increas-

ingly numerous, and the changes in the mechanisms caused

by this are a subject worthy of in-depth study.

3.6 Conflict between flexibility and variability

This challenge mainly comes from designing data pricing

mechanisms, balancing flexibility and economic stability.

The existing data pricing strategies are relatively rigid. The

service providers set fixed prices for the whole dataset or

several data subsets. This simple data pricing mechanism
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not only forces service providers to guess the interest

points of consumers to provide a subset of data that meets

the market needs, but also forces consumers to buy things

beyond their actual requirements. In the data market, we

should adopt more sophisticated data-selling methods.

Although the flexible data pricing strategy can provide

convenience for both parties to data transactions, it can also

bring some traps [53], such as possible arbitrage. Specifi-

cally, data consumers can infer the results of expensive

queries from a combination of low-priced queries. In par-

ticular, in perceptual data markets, the complex correlation

of data provides a breeding ground for arbitrage.

A robust and reasonable data pricing mechanism should

provide flexible data interfaces and satisfy the robustness,

such as anti-arbitrage. Considering the complex data mar-

kets, it is a challenging research problem to design the data

pricing strategy that considers flexibility and economic

robustness.

Schneider [132] performed many computational exper-

iments to analyze different mechanisms and explore

robustness regarding revenue, efficiency and convergence

rate. The fundamental theoretical framework of combining

flexibility and robustness is not only the subject to be

explored in the field of AI [49] but also the challenge to be

explored in the field of mechanism design.

3.7 Combine privacy preserving and incentive
in data sharing

In all kinds of complicated social scenes, data are a nec-

essary part of game strategy solving and mechanism

design. Designing incentive mechanisms to motivate par-

ticipants to balance data sharing and privacy-preserving,

and to provide more data for designing better mechanisms,

is a problem that conflicts with and promotes each other.

The interaction between mechanism and cryptography is

worthy of mention. Although both consider the problem of

controlled information, they are mainly different. On the

one hand, they are divergent in that mechanism design tries

to enforce the disclosure of information, while cryptogra-

phy tries to private the data. Besides, they have tradition-

ally represented different models of paranoia. Although

game theory assumes that all agents’ expected utility is

balanced, but the idea of cryptography is more straight-

forward. It considers the harsh environment as much as

possible.

However, recent work has begun to bridge these gaps

[45]. Multi-party computation (MPC) as a security model is

gradually becoming possible by applying its decentralized

ideas [138] to the field of mechanism design, where

elliptic-curve cryptography [93] can also be applied as an

aid to security mechanisms.

However, the traditional encryption methods need to be

verified by the security of the mechanism design scheme,

whether the decentralization of MPC is consistent with the

decentralization of the correlated equilibrium in the game,

and whether the fully homomorphic of quantum-resistant

encryption can satisfy the high security and acceptable time

complexity of the mechanism. All these can be explored in

depth. The application of federated learning combines

privacy-preserving and dynamic data. As one of the com-

plex scenarios for mechanism design, it is worth studying

in detail in Sect. 6.

3.8 Combine strategy solving with mechanism
design

Poker is a crucial application platform for researching

various strategy algorithms and is often used as a testing

ground for the research of mathematics, economy, and

game theory. Texas Hold’em is a game with incomplete

information, while the modeling for this game can generate

almost unlimited computational complexity. The latest

advances in poker research for solving gaming strategies

can already beat most human players.

On the other hand, auctions, as the originated field of

mechanism design, can hardly leave the support of dis-

tributive rules, such as money, to maximize social welfare.

Meanwhile, the rules of board games such as poker also

seem difficult to change. It is a complicated and never-

before-researched area to combine the fundamental theo-

rems of mechanism design with scenarios of game strategy

solving to optimize their inherently established

mechanisms.

Perhaps we can start with Bang! or Legend of the Three

Kingdoms, these multi-participant award-winning card

games, and re-optimize their game mechanics. As a simple

abstraction of military warfare, this type of card game has

its special strategic significance. It may be a novel idea to

design a dynamic mechanism to achieve the highest degree

of game experience resulting from the voting of each

participant. In addition to the democratic AI recently dis-

cussed by the Deepmind [73] team, we may be able to

develop a more peaceful AI by exploring the mechanics of

the Three Kingdoms game.

4 Theoretical support for mechanism design

4.1 Measurement indicators for mechanism
design

That there are three basic measurement indicators for

evaluating an economic mechanism, the efficient allocation

of resources, effective utilization of information and
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incentive compatibility. The verification of effective allo-

cation usually uses the Pareto optimal standard, the effec-

tive utilization of information requires the mechanism to

operate at the lowest information cost as possible, and

incentive compatibility requires the consistency of indi-

vidual and collective rationality. Therefore, the problem

convert to what kind of economic system can satisfy these

three requirements at the same time. How to design the

mechanism to satisfy or approach these three requirements

infinitely. The incentive is the core of economics, because

it ultimately determines the efficiency of resource alloca-

tion. In addition, the central issue of incentive design is that

the seller must consider two constraints (the incentive

compatibility and the participation) when designing the

mechanisms to maximize the social welfare.

We depict the main equilibria in game theory and its

intensity relationships in Fig. 7. Nash equilibrium is the

equilibrium state with the relatively weakest strength in

game theory. No participant can improve their benefits by

only adjusting their strategy in Nash equilibrium. Pareto

optimal equilibrium is slightly better than Nash equilib-

rium. No combination of strategies can individually

increase a participant’s benefits without harming others in

Pareto optimal equilibrium. The dominant strategy equi-

librium is the most powerful concept among all equilibri-

ums. In dominant strategy equilibrium, any participant can

maximize their benefits by using their dominant strategy

regardless of the combination strategy of other participants.

4.1.1 Nash equilibrium

Nash equilibrium is the fundamental concept in non-co-

operative game. The agent/player will choose the solid

strategy no matter the opponents is called the dominant

strategy. If both agents’ strategies are dominant, then the

combination is defined as the Nash equilibrium.

Definition 1 Pure Strategy Nash Equilibrium

A strategy profile s 2 S is in Nash equilibrium if si is the

best action for player i given that other players are playing

s�i.

ui si; s�ið Þ� ui si0 ;s�i

� �

Furthermore, Nash proved that the Nash equilibrium

game has a limited number of players and strategies when

they independently choose the strategy using a probability

distribution.

4.1.2 Pareto optimal equilibrium

Definition 1 Pareto Optimal Equilibrium

In a strategy game, a strategy si is a Pareto optimal

equilibrium for player i when and only when for that player

i satisfies uiðsiÞ� uiðsi0 Þ, there is no other player j whose

strategy satisfies ujðsiÞ� ujðsi0 Þ.

Pareto optimal resource allocation not always be the

Nash equilibrium of the complete information static game.

The difference with Nash equilibrium is that the latter

considers individual interests, while Pareto optimal equi-

librium is usually considered to maximizing the general

welfare. Pareto optimality is used to measure the effective

allocation of resources. It is called Pareto improvement or

Pareto optimization when the change from one state to

another makes at least one player better without making

anyone worse.

4.1.3 Dominant strategy equilibrium

An important concept in game theory is dominant strategy

equilibrium, which is defined as follows.

Definition 1 Dominant Strategy Equilibrium

In a strategy game, a strategy si is the dominant strategy

of player i if and only if for that player any other strategy

si0 6¼ si and the set Si of possible strategies of other players,

the following equation holds.

ui si; Sið Þ� ui si0 ; Si
� �

Intuitively, the dominant strategy enables the player

always to maximize its revenue, regardless of which of the

set of strategies the other players choose. Thus, a rational

and selfish player will choose the dominant strategy if it

exists. Putting the above definition another way, a strategy

si is a dominant strategy for player i when and only if that

strategy can dominate any other strategy of player i.

4.1.4 Informational efficiency

Informational efficiency is the question of how much

information is required for an incentive mechanism to

achieve a given social goal, i.e., the cost of operating theFig. 7 Equilibrium intensity in game theory
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mechanism. The excellent ed mechanism requires less

knowledge about consumers, producers, and other partici-

pants, i.e., a lower information cost. The information is

obviously expensive, so the designer must keep the

dimensionality of information space lower.

4.1.5 Individual rationality (IR) and incentive compatibility
(IC)

The other two basic concepts in mechanism design are

individual rationality and incentive compatibility. They are

defined as follows.

Definition 1 Individual Rationality (IR)

The payoff of player i who participates in the game is

not less than zero. Here, we assume the payoff is zero for

the player who does not participate.

uiðsiÞ� 0

The individual rationality constraint, also known as the

participation constraint, means that if a rational agent is

interested in the mechanism designed by the designer

(principal), the expected utility that the agent receives

under that mechanism must be no less than the maximum

expected utility he did not participate the game. The

maximum expected utility an agent can obtain outside the

game is called the agent’s reservation utility.

It is also called opportunity cost due to the agent losing

the other opportunities when they participate. However, the

participation constraint sometimes does not need to con-

sider the opportunity cost. For example, suppose a resident

does not have the freedom to immigrate. In this case, the

government does not need to consider participation con-

straints when formulating tax policy. That is, all country

residents must unconditionally abide by the tax law.

Definition 2 Incentive Compatibility (IC)

When the strategies chosen by the participants are their

real preferences, they can obtain the most favorable

revenue. Then this mechanism is called incentive compat-

ibility (IC).

The concept of dominant strategy in the previous sub-

section is the basis for the incentive compatibility property.

A mechanism that achieves a dominant strategy equilib-

rium is also referred to as having incentive compatibility.

The relevant direct-revelation mechanism here refers to

a particular class of mechanisms in which the participants’

strategies are restricted to those that decide to reveal

information based on their personal preferences. In a

direct-revelation auction, the incentive-compatible nature

means that no player has the incentive to manipulate his

private information strategically when truthful disclosure

of personal information is the dominant strategy for each

player and maximizes player gain. A direct-revelation

mechanism satisfies incentive compatibility when it guar-

antees that each participant maximizes their payoff when

revealing their real preferences directly.

4.1.6 Strategy-proofness

When a direct revealing mechanism satisfies both indi-

vidual rationality (IR) and incentive compatibility (IC), it is

called the strategy-proof mechanism.

The advantage of strategy-proof mechanism is that it

enables each participant to the advantage of strategy-proof

mechanism is that it enables each participant to make an

optimal global decision quickly based only on individual

local information without considering others’ strategies.

And it allows the distributed network to converge to the

optimal state in one step. Based on incentive compatibility

and individual rationality, the strategy-proof mechanism is

introduced.

4.2 Traditional mechanism design theory

4.2.1 Auction theory

Game models of auctions started in the 1960s with the

seminal papers in by William Vickrey [154, 155] and

Reichert [114]. Robert Wilson is also a significant con-

tributor to the research of auction theory and has written

some fundamental studies on predatory pricing, price wars

and the role of reputation in other competitions. With his

student Paul Milgrom, he designed the spectrum license

auction for Pacific Bell, which was adopted by the Federal

Communications Commission (FCC), which is an actual

application of auction theory. The two scholars were

recently awarded the 2020 Nobel Prize in Economics for

improving auction theory and new forms of auctions.

The wave of auction theory and market design [5, 7] is

from the FCC spectrum auction and the combinatorial

auction problem. The problem studies how to sell and

allocate items to maximize the overall benefits when sellers

have several items (e.g., spectrum) for sale and when

buyers do not simply equal the valuation of multiple items

to the sum of their valuations of individual items.

Market design, which focuses on the application of

mechanism design, has existed in microeconomics for

decades. However, it was not until recent years that the

tremendous success of the automatic kidney transplant

system [2, 8, 33, 46] in the USA aroused widespread

concern in the computing field. From the point of view of

calculation, the algorithm implementation of this mecha-

nism is a non-deterministic polynomial completeness
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(NPC) problem. Designing the practical mechanism is an

exciting problem in computer science. The wave is still

developing, and much research work is expected to emerge

in the coming years.

The classic approach to solving the auction mechanism

design problem is the Vickrey–Clerke–Grove (VCG)

mechanism, a generic term for a class of direct display

mechanisms in environments where actors have linear-like

preferences, which is the only class of mechanisms that

simultaneously satisfy validity, individual rationality, and

incentive compatibility. However, it has been proved that

this mechanism does not have polynomial time realization

[14], so the algorithm needs to be improved. Representa-

tive works to design fast search algorithms to realize VCG

mechanism and an effective approximate VCG that is close

to the optimal global benefit. Shen [137] made new pro-

gress in coupon research by optimizing the VCG auction

theory and applying it to online advertising. The develop-

ment of the industrial internet accompanies the combina-

tion of auction theory and computer technology. Many

e-commerce companies based on combined auctions have

appeared, such as trading dynamics, combined and so on.

Before defining the VCG mechanism, we need to define

auction theory’s allocation and payment rules and the

important Myerson lemma.

By using easy-to-understand and straightforward auction

examples, researchers can better understand the ideas and

theories of mechanism design and further explore and

improve the mechanism design theory. As shown in Fig. 8,

the typical auction mechanism can be divided into three

stage.

First of all, the principal needs to design a mechanism.

Here, the mechanism is the game rule, according to which

each agent sends a signal (e.g., buyer’s offer), and the

signal decides the configuration result (e.g., who gets the

auction item and what price to pay); second, the agent

chooses to accept or not simultaneously. If the agent does

not select the accept, he will get the exogenous appoint-

ment effect. Finally, the accepted agent will participate in

this mechanism. It can be seen that the game decision and

mechanism design are complementary and antagonistic.

(1) Allocation and Payment Rules

Usually, the seller decides the auction rules during the

auction process, and he must make the rules only when he

has limited knowledge of the bidder’s willingness to pay.

The main auction types can be divided into open outcry and

sealed bids.

In open outcry auctions, bidders bid openly, and all

bidders can observe the bidding price. This auction may be

the most suitable for people’s understanding of auctions.

There are two open auctions, only one of which may have a

‘‘crazy’’ bid. The ascending auction (English auction) is the

type that best accords with the popular image of open

bidding. It is also the alternative name for the standard

auction held by British auction houses (such as Christie or

Sotheby).

Another type of open outcry auction is the reduced-price

auction (Dutch auction). Contrary to an English auction,

the auctioneer starts with a very high price and then calls

for lower and lower prices until a bidder accepts the price

and bids, thus winning the auction. For speed reasons,

Dutch-style flower auctions, as with other auctions of

produce or perishable goods, use a ‘‘clock’’ to count down

each bid until someone ‘‘stops the clock’’ and takes the

item. In many cases, the auction clock reveals a lot of

information about the current items for sale and the price

reductions.

The second-price auction is the sealed bid, where bids

are made in secret, bidders cannot observe the information

of others, and in many cases, only the winner’s bid is

announced. In this type of sealed-bid auction, as in Dutch

auctions, bidders have only one chance to bid (only the

highest price is relevant to the bid outcome). A sealed

auction does not need an auctioneer, only a supervisor to

announce the bid and decide the winner.

In a sealed auction, the price paid by the winning bidder

is determined in one of two ways. (1) Under the first-price

sealed bid auction, the highest bidder wins the item and

pays the price it bids. (2) Under the auction with the second

price, the highest bidder wins the item but only pays the

second highest bid.

For example, in the sealed-bid auction, the mechanism

designer needs to make two decisions: one is who gets the

auction item, and the other is to set how much each person

needs to pay. These two decisions are called the allocation

and payment rules, respectively. The specific steps are

shown below.

Definition 3 Allocation and Payment RulesFig. 8 Typical auction mechanism and game strategy solving process
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1. Collect the bids b ¼ ðb1; . . .; bnÞ for all the agents. We

refer to the vector b as the bid vector.

2. Allocation Rule: Choose a feasible allocation

xðbÞ 2 X � Rn, which is a function of the bid vector.

3. Payment Rule: Choose a payment pðbÞ, which is also

a function of the bid vector.

Finally, bidders can evaluate the value of auction items

in many ways. The most crucial distinction in this auction

environment is between the values of the items. In the

common or objective value auction, the value of the auc-

tion item is the same for all bidders, but everyone only

knows the inaccurate estimation of their value. Bidders

have some knowledge of its possible distribution, but each

bidder must evaluate it before bidding. In the common

value auction, every bidder should know that the other

bidders have a rough understanding of the value of the

auction. He should try to infer this information from the

bidding behavior of competitors. In the private or subjec-

tive value auction, each bidder decides the value of the

auction item to them. In this case, each bidder will evaluate

the same auction item differently.

(2) Myerson lemma

In this subsection, we introduce a crucial sufficient

necessary condition for designing a unidimensional auction

mechanism (i.e., the auction participants have only unidi-

mensional private information) to satisfy the strategy-

proofness.

According to Myerson’s theorem, the auction mecha-

nism satisfies strategy-proofness, when and only when the

winner selection rule (or resource allocation rule) is

monotonic. Before introducing Myerson’s theorem, let us

introduce enforceable allocation rules and monotone allo-

cation rules.

Definition 4 Enforceable Allocation Rules

For an allocation rule x in a univariate setting, have a

payment rule p such that the direct display mechanism

(x, p) is dominant strategy incentive compatible (DISC).

Then, this allocation rule x is said to be enforceable. That

is, those allocation rules that can be extended into DISC

mechanisms are enforceable.

Definition 5 Monotone Allocation Rules

An allocation rule x is monotonic if, for each agent i and

the bid vector b�i of all other agents, the allocation

function xiðz; b�iÞ for agent i is a monotonic non-decreas-

ing of i’s bid function z. That is, under a monotonic

allocation rule, higher bids will win more items.

Definition 6 Myerson’s Lemma

For a univariate environment:

1. An assignment rule x is enforceable when and only

when it is monotonic.

2. If x is monotonic, then there is a unique payment rule

such that the direct display mechanism (x, p) of the sealed

auction mechanism is dominant strategy incentive com-

patible (DSIC).

3. The payment rules of (x, p) have exact expressions.

(3) VCG Mechanism

The full name of the VCG mechanism is the Vickery–

Clarke–Groves mechanism [154, 155], which comes from

the names of three scholars, so VCG is used as its abbre-

viation. It provides the conclusion that ‘‘a DSIC mecha-

nism that maximizes welfare is enforceable’’ for multiple

private parameter scenarios.

Designing such a mechanism is very difficult, and we

take a two-step approach. First, assuming that the mecha-

nism is DSIC, and everyone bids according to the facts, and

design an allocation rule to maximize the welfarePn
i¼1 xivi. Second, design a payment rule after obtaining

the allocation rule, and the guarantee the mechanism is

DSIC. Myerson’s Lemma proves that for a monotonic

allocation rule, there is a unique and computable payment

rule that satisfies DSIC. But that is for univariate and may

not apply to multivariate, even if we cannot define what

monotonic means in a multivariate setting. Therefore, we

have to find a different way of thinking.

The VCG mechanism takes advantage of the externality

induced by agent i to set prices. An externality is the

welfare loss to others caused by the presence of i, i.e., the

sum of the social welfare of others when i is not present

minus the sum of the social welfare of others after i is

present (excluding himself).

Definition 7 VCG Mechanism

The allocation and payment rules of the VCG mecha-

nism satisfy the following two equations, respectively.

xðbÞ ¼ argmax
x2X

Xn

i¼1

biðxÞ

piðbÞ ¼ max
x2X

X

j 6¼i

bj xð Þ
 !

�
X

j 6¼i

bjðx�Þ

An alternative formula representation of the payment rules

in the VCG mechanism is given below.

piðbÞ ¼ biðx�Þ �
Xn

j¼1

bjðx�Þ �max
x2X

X

j 6¼i

bjðxÞ
" #

4.2.2 Contract theory

The contract theory in economics is critical. It started with

the classic paper ‘‘The Nature of the firm’’ by Coase [28],
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winner of the 1991 Nobel Prize in Economics in 1937.

Coase points out that the longer the contract duration

regarding the supply of goods or services, the more

impossible and inappropriate it is for the buyer to specify

what the other agents should do.

Contract theory is one of the applications of game the-

ory, mainly used to study the economic behavior of

transactions between different contractors. Contract theory

is one of the branches of economics that has developed

rapidly in recent 30 years. It can solve the problem of

information asymmetry in transactions between different

contractors, such as incentive theory, complete contract

theory and incomplete contract theory [179]. The assumed

constraints and models designed in contract theory can

simplify the tedious transactions between different con-

tractors and get relevant theoretical opinions. Contract

theory [28, 119] is also a promising and widely adopted

theoretical tool for dealing with private information prob-

lems. In 2016, economists Oliver Hart and Bengt Holm-

ström were awarded the Nobel Prize in Economics for their

contributions to contract theory.

Contract theory is widely used in economics to solve the

problem of information asymmetry between employers and

employees, sellers and buyers by entering into contracts

[15]. The asymmetric information problem includes the

hidden information problem and the hidden action prob-

lem. In the field of communication, contract theory has also

been applied to set incentives and solve maximization

problems. For example, in the literature [178], it is con-

sidered that transmitting the data to other users will bring

different fees. The authors propose a contract-theoretic

method to design the pricing mechanism and create an

appropriate match between users who need and are willing

to relay data.

The typical process of contract mechanism and game

strategy solution is shown in Fig. 9. Unlike auction theory,

contract theory needs part of agent information, widely

used in cooperative games. Through some theorems and

examples, this paper deepens the understanding of the

contract theory. The motivation for considering coopera-

tive games lies in the following example: In many games,

the Nash equilibrium income is not optimal compared to

other unbalanced results. In the following, we refer to a

modified version of the Prisoner’s dilemma problem, which

has the following payoff matrix.

In the game above, the only equilibrium is ðy1; y2Þ, and
the payoff from this equilibrium is (1, 1). However, the

table shows that the non-equilibrium outcome ðx1; x2Þ
produces a higher payoff (2, 2). At this point, the partici-

pants may wish to transform the game so that its equilib-

rium set includes better outcomes, and there are several

ways to achieve this transform. The participants express

their agreement in the form of a contract. The participants

commit to coordinating their behavior. The participants

play a repeated game.

We build this transformation on the basis of the first

method, in which the participants who sign the contract

must act according to the established strategy, which is

called correlated strategy.

Participant i is willing to sign a contract and thus choose

the correlated strategy a only if uiðaÞ� vi. This is called the

individual rationality or participation constraint of partici-

pant i. This leads to the following definition.

Definition 8 Individual Rational Correlated Strategy

Given a correlated strategy a 2 DðS1 � � � � � SnÞ for all
participants in N, if the following equation is satisfied.

uiðaÞ� vi; 8i 2 N

Then the correlated strategy is individually rational.

Contract theory converts a game with fewer consensual

equilibria into more consensual equilibria. In the game

shown in Table 1, let two participants sign the following

contract in Table 2.

1. If both agents sign the contract, then agent 1 chooses

strategy x1 and agent 2 chooses x2.

2. If only agent 1 signs the contract, then agent 1 will

choose y1.

3. If only agent 2 signs the contract, then agent 2 will

choose y2.

The act of signing a contract by participant i is called ai.

Now we can expand the set of strategies of each of the two

agents as Si ¼ fxi; yi; aig. The payoff matrix for the

transformed game is shown below.

At this point, the transformed game has a new equilib-

rium ða1; a2Þ, which has a payoff of (2, 2). Although the

strategy ðy1; y2Þ also constitutes an equilibrium, it is not a

Fig. 9 Typical contract mechanism design and game strategy solving

process
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dominant strategy equilibrium. From this, we give the

following definition.

Definition 9 Contract Theory

Consider the vector s¼ ðsCÞC�N , note here that

s 2 �C�NðDð�i2CSiÞÞ.
The vector s of correlated equilibria of all possible

coalitions is a contract.

The correlated strategy sC for alliance C � N is that the

correlated strategy sC will be implemented by the members

in alliance C if it is composed of those participants who

signed the contract.

4.2.3 Bargaining problems

Apart from auction and contract theories, many market

transactions and coordination can also be modeled by

bargaining theory. Bargaining theory, as a branch of game

theory [103, 108, 109], is a nonzero-sum game theory

developed with the continuous improvement of game the-

ory. Agents can solve the problem of profit distribution

through consultation.

Nash proposed the Nash bargaining solution to the bar-

gaining problem [109] as early as 1950. The general model

for problem-solving is established in this paper and given an

axiomatic solution method, which paves the way for the

future study of axiomatic solutions to bargaining problems.

The two-player bargaining problem has been applied to

many important situations, including management of labor

contract and trade union negotiation in labor arbitration.

Negotiation is between two countries or groups of countries

in international relations, such as reduction of nuclear

weapons, military cooperation, and counter-terrorism

strategies; in the duopoly market game, two competing

enterprises negotiate the output to maximize the total

income; bargaining between buyers and sellers in bilateral

trade; moreover, in the supply chain cooperation, buyers

and sellers negotiate mutually beneficial contracts to pro-

mote long-term relationships between the two parties. The

solve dispute between companies and individuals in prop-

erty rights disputes. The following abstraction of various

problems defines the two-person bargaining problem and

its Nash bargaining solution.

Definition 10 Two-Person Bargaining Problem

The question consists of three elements:

1. Agent 1 and Agent 2;

2. Feasible distribution set S (containing the case of

negotiations failed d);

The allocation of two bargains is generally denoted by

s ¼ ðs1; s2Þ; s 2 S, where s1 and s2 represent the distribu-

tion of two agents, respectively.

3. Utility allocation set U.

The allocation of utility is generally denoted by

u ¼ ðu1; u2Þ; u 2 U, where u1 and u2 represent the expected

utility of agents, where ui : S ! R is the is the real-valued

function from the feasible distribution set S to the set of

real numbers R.

For a bargaining model to be meaningful, the following

equation must be satisfied.

8s 2 S; u1ðsÞ� u1ðdÞ; u2ðsÞ� u2ðdÞ
9s 2 S; u1ðsÞu1ðdÞ; u2ðsÞu2ðdÞ

All s 2 S is assignable and there exists at least one s 2 S

such that the expected utility of the agents is greater than

the negotiations failed point. Denote the problem as

B¼ ðS; d;u1; u2Þ. For 8s 2 S, participants can obtain a pair

of utility values ðu1ðsÞ; u2ðsÞÞ, which is called the utility

configuration of problem B. The set is

UðBÞ¼ fðu1ðsÞ; u2ðsÞÞ : s 2 Sg.

There are many solutions for the bargaining problem

[71], such as Nash solution, Kalai-Smorodinsky solution

[70, 71], Egalitarian solution [69] and so on. In recent

years, many researchers have made corresponding exten-

sions and applications of the Nash bargaining problem,

including the distribution of returns [150] in investment

which is an alternative to the game associated with solving

the Nash bargaining problem. Bargaining theory has been

used to improve the traditional K-means algorithm [124] in

machine learning and energy efficiency optimization for

networks [99]. Since the Nash solution is the most repre-

sentative, we show here a simple form of it.

Definition 11 Nash Bargaining Solution

For any two-person bargaining problem

B¼ ðS; d;u1; u2Þ, the following solution set needs to be

determined:

Table 1 Payoff matrix
Agent 2

x2 y2

Agent 1 x1 2, 2 0, 6

y1 6, 0 1, 1

Bold represents their equilib-

rium solutions

Table 2 Payoff matrix for the

transformed game
Agent 2

x2 y2 a2

Agent 1 x1 2, 2 0, 6 0, 6

y1 6, 0 1, 1 1, 1

a1 6, 0 1, 1 2, 2

Bold represents their equilib-

rium solutions
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rNðBÞ¼ fs 2 argmax½u1ðsÞ � u1ðdÞ� � ½u2ðsÞ � u2ðdÞ�Þ

Without considering the specific bargaining process,

now assume that there is a referee whose utility preferences

are represented as undifferentiated curves in Fig. 10:

lðsÞ ¼ l1ðsÞ � l2ðsÞ. The tangent point N of its curve to the

set of utility configurations U(B) is the Nash solution of the

bargaining problem. A formulaic definition of the Nash

solution is given above.

5 Computer-aided approach to incentive
mechanism

Although the mechanism design theoretical is very

important, in the face of increasingly complicated big data

Internet scenarios, computing is needed to assist the

mechanism design. Internet advertising and search auc-

tions, as the most widely used scenes in mechanism design,

are naturally common research fields in algorithmic game

theory. We take this as the entry point for research, and

some representative papers of Internet advertising based on

reinforcement learning are listed in Table 3.

Research based on the combination of mechanism

design theory and machine learning algorithms is becom-

ing hotter and hotter. As the earliest application of the

latest technology, the Internet advertising field has given us

cutting-edge technology. For example, the latest paper

[180] combines the Actor-Critic model with the traditional

Generalized Second-Price auction. It proposes a new Deep

GSP Auctions model for Internet advertising.

This section explores several algorithms with a high

degree of integration. Specific application scenarios,

including Internet online advertising, data sharing and

privacy preservation in complex environments, will be

discussed in Sect. 6.

Machine learning is applied to game strategy solving,

and computer-aided algorithms are essential in optimizing

algorithm mechanism design. The idea of reinforcement

learning was developed at the beginning of the twenty-first

century, and its core concept was perfected by Richard S.

Sutton of the university of alberta. This view stems from

behaviorism in psychology. That is, in the process of long-

term interaction with the environment, agents can optimize

their behavior by trial and error or searching for a memory.

In the reinforcement learning process, the algorithm

needs the best response strategy to ensure that an agent can

get the maximum expected return in the constantly

changing dynamic environment [139]. One of the strategies

consists of a series of continuous actions, which correspond

to the agent’s response to the environment in the corre-

sponding environment state. Figure 11 represents the

environment exchange process of a single agent.

Many tasks can correspond to reinforcement learning

ideas. For example, an information search task can be

regarded as a sequential interaction between an RL agent

(the system) and a user (environments), in which the agent

can constantly update the policy based on real-time feed-

back from the environment during the interactions until the

system converges to the optimal policy that generates an

object that best matches the user’s dynamic preferences.

Second, the RL framework’s goal is to maximize users’

cumulative long-term return. Therefore, the agent can

identify objects with small immediate returns but essential

to long-term returns. Because of the advantages of rein-

forcement learning, people are very interested in develop-

ing a technology based on reinforcement learning.

Mainstream reinforcement learning algorithms do not

require state prediction. They do not consider how actions

affect the environment, so they need little prior knowledge.

Theoretically, it is an effective way to solve the problem of

autonomous learning in complex and changeable environ-

ments. However, the complexity of the reinforcement

learning algorithm increases exponentially with the

increases of state action space, so it is difficult to break

through the limitation of high-dimensional action space.

The following are the representative structural modeling,

value function-based and policy gradient-based reinforce-

ment learning methods.

Theoretically, it is an effective method to solve the

problem of autonomous learning in a complex and

changeable environment. However, the complexity of

reinforcement learning algorithms grows exponentially

with the growth of state-action space, so it is difficult to

break the limits of high-dimensional action space. The

representative structural modeling schemes based on the

value function and the policy gradient reinforcement

learning are below.

Fig. 10 Nash solution of bargaining problems
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5.1 Markov decision process

While Markov decision processes are fundamental to

understanding reinforcement learning, they are necessary

for understanding problem abstraction. Parkes [115]

designed an online VCG mechanism design based on the

MDP method, which implements optimal strategies in a

truth-revealing Bayes-Nash equilibrium to maximize the

total long-term value of the system. It can be seen that the

MDP method is also one of the critical methods of com-

puter-aided incentive mechanisms.

The Markov decision process can be represented as a

quintuple ðS;A; T ; c;RÞ. Among them, S is the state space;

A is the behavior space, T : S� A� S ! ½0; 1� is the

transfer function; c 2 ½0; 1� is the discount factor; R :

S� A� S ! R is the reward function. The transfer

function represents the probability distribution of transfer

to the next state, given the current state and behavior. For

8a 2 A, 8s 2 S:
X

s
0 2S

Tðs; a; s0 Þ ¼ 1

In the above equation, s
0
denotes the possible states at the

next moment. The payoff function represents the payoff

obtained in the next state, given the current behavior and

state. The MDP has the following Markov property: the

agent’s next state and payoff depend only on the agent’s

current state and behavior. The agent strategy p : S ! A is

defined as the probability distribution of the agent’s

behavior in a given state. Agent strategy pðs; aÞ should

satisfy the following equation.

Table 3 Internet advertising research based on reinforcement learning

Year Academic paper Methods Main contribution

[181] 2021 DEAR: Deep Reinforcement Learning for

Online Advertising Impression in

Recommender Systems

DQN, Rec/Ads

Trade-Off

Consider the negative impact of advertising on the

recommended user experience to maximize returns in

the long run

[180] 2021 Optimizing Multiple Performance Metrics with

Deep GSP Auctions for E-commerce

Advertising

Actor-Critic,

Generalized

Second-Price

New rating functions are designed using deep learning

within the well-known GSP auction framework and

applied in e-commerce advertising

[17] 2021 Reinforcement Learning of Sequential Price

Mechanisms

Partially

Observable,

MDP

Combining RL with sequential price mechanisms, the

method can learn optimal or near-optimal mechanisms

[26] 2019 Pricing Average Price Advertising Options

When Underlying Spot Market Prices Are

Discontinuous

Jump-Diffusion

Stochastic

Process, Monte

Carlo

The new Advertising options pricing framework is

proposed, and a display pricing formula is derived

[162] 2018 A Multi-Agent Reinforcement Learning Method

for Impression Allocation in Online Display

Advertising

Multi-Agent RL,

MDP, Policy

Optimization

Formulate the impression allocation problem as an

auction problem in which each contract can submit

virtual bids for individual impressions

[161] 2018 Budget-Constrained Bidding by Model-free

Reinforcement Learning in Display

Advertising

Model-Free RL,

MDP

Solving the optimization problem with an innovative

reward function design method

[38] 2019 Infer Your Enemies and Know Yourself,

Learning in Real-Time Bidding with Partially

Observable Opponents

Actor-Critic, Deep

Attentive

Survival

Analysis

Generalized multi-agents framework for inferring

missing data, developed mean field equilibrium

analysis for second price auctions

[97] 2021 Real-time bidding campaigns optimization using

user profile settings

Dynamic

Programming

Complementary strategies to increase profitability were

considered

[129] 2021 A Unified Optimization Framework for Auction

and Guaranteed Delivery in Online

Advertising

Column

Generation

Strategy

Combining pay-per-click auctions and guaranteed

delivery with the different marketing objectives of

advertisers results

[112] 2016 A Combinatorial-Bandit Algorithm for the

Online Joint Bid/Budget Optimization of Pay-

per-Click Advertising Campaigns

Gaussian

Processes,

Bayesian Bandit

Modeling Display Advertisement as a MAB problem, a

novel dynamic contextual MAB approach is proposed

[163] 2018 Budget-Constrained Bidding by Model-free

Reinforcement Learning in Display

Advertising

Model-Free RL,

MDP

An algorithm for online joint bid/budget optimization of

multi-channel campaigns was investigated in paid

point-of-sale advertising

[106] 2018 Data efficient hierarchical reinforcement

learning

Layered RL,

Model-Free RL

Be used with a moderate number of interaction samples
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X

a2A
pðs; aÞ ¼ 1; 8s 2 S

In any MDP model, there exists a deterministic optimal

strategy for the agent, where p�ðs; aÞ 2 f0; 1g. The goal of
an agent in an MDP is to maximize the expected long-term

payoff. To evaluate an agent strategy, the following state-

value function is required. When an agent starts in state s

and subsequently executes strategy p, the value of state s

under that strategy is defined as the expected payoff. As a

result, the state-value function is:

VpðsÞ ¼ Ep

XT

k¼0

ckrkþtþ1ksk ¼ s

( )

In the above equation, T is the final moment; t is the current

moment; rkþtþ1 is the direct return obtained at the moment

k þ t þ 1; and c 2 ½0; 1� is the discount factor.

Based on MDP, many optimization improvement algo-

rithms exist, such as the optimal strategy-solving problem

for non-complete information games that can be modeled

using the Partially Observable Markov Decision Process

(POMDP). POMDP is an extension of the Markov Deci-

sion Process. It can be transformed into an MDP model and

solved using reinforcement learning-related algorithms

[139].

5.2 Deep Q network

Early research on deep reinforcement learning algorithms

focused on value function-based. Moreover, Q-learning is

the milestone of the value function algorithm. Mnih et al.

[100] proposed Deep Q-Network (DQN) algorithm by

combining a convolutional neural network with a

Q-learning algorithm in traditional reinforcement learning.

Furthermore, Double DQN [151] and DRQN [63] are the

improved algorithms based on it which as shown

in Fig. 12.

The DQN algorithm [64] uses a deep neural network to

approximate the Q(s, a) function. Because the goal of

reinforcement learning Q-value is dynamic, and deep

learning usually needs a fixed training goal, directly using

Q-value as the training goal will lead to excessive oscil-

lation in the training process. It is difficult for training to

converge. DQN, therefore, proposes an isomorphic Q-value

network for fitting the agent’s state action-value function

and a target network for representing the optimization goal

at the current stage. DQN updates the Q-value network in

real-time according to the agent’s action state and updates

the parameters of the target network every fixed time based

on the current Q-value network, whose model architecture

is shown in Fig. 13 below.

The loss function of the DQN algorithm is shown in the

following equation, where r þ cmaxa0 Q s0; a0; h0ð Þ is the

target Q value and Qðs; a; hÞ is the predicted actual Q

value.

LðhÞ ¼ E ðr þ cmax
a0

Qðs0; a0; h0Þ � Qðs; a; hÞÞ2
� �

5.3 Actor-critic model

Policy gradients-based deep reinforcement learning meth-

ods can directly fit the agent’s policy space and use neural

networks to predict the optimal action of the agent in the

current state. This section focuses on the Actor-Critic

algorithm, the reinforcement learning framework that

combines the value function and the strategy gradient

method and combines the advantages of estimating the

state value function and directly optimizing the strategy

space.

Fig. 11 Environment exchange process of single agent

Fig. 12 Example of MDP

Fig. 13 DQN model structure

16210 Neural Computing and Applications (2023) 35:16193–16222

123



The Actor [145] determines the action strategy of the

agent in the environment. Critics judge the current strategy

by estimating the function of the state value of the action

strategy. After combining with deep learning, which can

represent actors and critics, respectively, the actor module

is updated by using a gradient rising method. The evalua-

tion module estimates the state value function by calcu-

lating the time differential error. Figure 14 shows the

structure of the model.

In addition, the A2C and A3C [101] algorithms are

improvements of the AC algorithm that optimize the

algorithm’s performance by introducing the concept of

dominance function and multiple agents learning asyn-

chronously, respectively.

6 Economic and complex environment
applications

There is a solid theoretical foundation for studying eco-

nomic problems in the design of the algorithm. It is a good

starting point to discuss and optimize the game theory and

mechanism design of data-driven algorithms from the

perspective of economic problems. As a typical internet

application of economics, the optimal mechanism design of

advertising provides a testing ground for researching cut-

ting-edge theories and algorithms. Figure 17 shows the

significant contributions made by researchers in the Inter-

net advertising environment. It lists the representative lit-

erature, including their methods and significant

contributions, which are realized by combining reinforce-

ment learning and other algorithms.

We list the research points in online advertising appli-

cations on the Internet from a global perspective and dis-

cuss the current state of research in several of these

branches in detail in Sect. 6.1. In addition, we explore the

research on incentives in complex environments concern-

ing data sharing and privacy-preserving in Sect. 6.2. In

addition, in Sect. 6.3 we give the current state of research

on other scarce resource fee allocation scenarios.

6.1 Optimal mechanism design of internet
online advertising

Pricewaterhouse Coopers (Pw) made a financial report on

internet advertising in 2021. It shows that since 2010, the

compound annual growth rate (CAGR) of total Internet

advertising revenue has been 18% (due to the impact of the

epidemic, which is slightly lower than the 19% in

2010–2019 but compared with other industries Internet

advertising is an undoubted hot spot. industry). Mobile

CAGR was 66.5% over the same period (down from 73.8%

in 2010–2019), while desktop growth remained modest at

4.6%. Figures 15 and 16 are from the IAB/PwC Internet

Ad Revenue Report, FY 2020. In the figure, in addition to

the growing revenue of Internet advertising, we also found

three main popular areas of Internet advertising: search,

display and digital video, which account for about 92.4%.

Below we, respectively, research these three popular areas

of Internet advertising.

6.1.1 Real-time bidding

Internet advertising is an essential economic environment

in the current stage of the big data scenario. It is a typical

application scenario of scarce resource allocation, i.e., how

to allocate the resources of advertising space to the right

users. However, it needs to be calculated in real-time by

extensive data calculations to maximize social welfare,

including but not limited to maximizing revenue, increas-

ing click-through rate (CTR) and return on investment

(ROI). A recent study on this aspect by ByteDive [168]

also considered another point that cannot be ignored, i.e.,

the possible negative impact of advertising on user expe-

rience, through an improved DQR model that considers

maximizing revenue in the long run.

Therefore, online display advertisements, search adver-

tisements and digital videos cannot be separated from real-

time bidding. RTB is one of the most important develop-

ments of advertising distribution mechanisms in the past

decade [21, 35, 57, 68, 68, 112, 126, 133, 146, 147,

159, 161, 166, 171], because it is widely used by major

online advertising platforms, including but not limited to

Google, Baidu [147], Facebook and Amazon. In RTB for

display advertising, a user visiting a web page immediately

triggers an auction held by an ad exchange. The auction’s

winner is given advertising space and pays the price to the

publisher.

Fig. 14 Actor-critic structure
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6.1.2 Online display advertising

Considering the importance of online display advertising,

this subsection summarizes the existing literature research

methods from the perspective of every participant in the

display advertising ecosystem. Figure 17 presents a com-

prehensive view of the online display advertising ecosys-

tem, including advertisers’ real-time bidding decisions

regarding selling advertisers, allocating exposure and other

scenarios. Problems faced by intermediaries in matching

advertisers and publishers. Challenges such as the pricing

of publishers (publishers of the system suppliers) and the

design of auction mechanisms based on different perspec-

tives, the researcher can clearly understand and explore

display advertising research in the Internet scenario.

6.1.3 Online search advertising

Among all search advertising auctions, generalized second-

price auctions have been widely studied

[20, 27, 44, 75, 127, 152]. A significant part of this work

focuses on the nature of social welfare in equilibrium to

measure the price of anarchy [22, 59, 77, 85]. Another

important part focuses on income guarantees [43, 86, 153],

aiming at explaining the income guarantees of generalized

second price auctions under different equilibrium concepts.

The mechanism design requires computer-aided algo-

rithms to approximate the best incentive mechanism in

data-driven real-world scenes. The literature [81] focuses

on the revenue maximization problem in the search

advertising market. They assume that the historical data

satisfy the Markov model to understand the buyers’

behavior in the search advertising market. The literature

[102] investigates the revenue maximization problem in an

online pricing auction scenario from an experimental per-

spective. The literature [180] combined generalized

second-price auction with the Actor-Critic algorithm to

propose a new scoring function, and the experiments

achieved better results.

The literature [147] presents a representative framework

for designing an online advertising search mechanism,

which includes Markov Bidder Model, which determines

how bidders adjust their bids based on KPI feedback. In

this mechanism, the bidders interact with the seller’s

behavior and receive KPI as feedback. The literature

translates the revenue-maximizing household problem in

designing the sponsored search auction mechanism into a

Markov decision process in reinforcement learning

ðN; S;R;G;REVðs; rÞ; cÞ. The number of daily queries per

keyword in the search engine is assumed to be constant.

Therefore, KPI is entirely determined by the bid distribu-

tion s and reserved price curve r.

6.2 Incentives for data sharing and privacy
preserving

In complex social scenes, data are a vital link. Designing

incentive mechanisms to motivate participants to balance

data sharing and privacy-preserving and to provide more

data for designing better mechanisms is a hot topic. The

profit of data transactions can be defined as the difference

between the revenue of data transactions and the expen-

diture during data collection.

Data are an emerging electronic product with unique

cost characteristics: fixed initial and negligible marginal

costs. Therefore, the revenue that data can generate in the

market is determined by consumers’ demand, not the cost

of data collection. Based on the prior knowledge of market

demand, data service providers can express the expected

revenue from data as a function of market demand. How-

ever, as the market demand is usually complex and diverse,

it is challenging to conduct an in-depth mathematical

analysis of the income and profit of data transactions. Even

if we can accurately calculate the optimal expected return,

the profit maximization problem can be transformed into

the cost minimization problem, which is an NP-hard

problem. The optimal solution cannot be obtained in
Fig. 15 Desktop versus mobile full-year internet AD revenues

(2010–2020)

Fig. 16 2020 advertising format by share
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Fig. 17 A comprehensive view of online display advertising research
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polynomial time. Therefore, to realize the optimal profit of

data transactions, we must consider the complicated market

demand and simultaneously reduce the computational

complexity of solving the optimal solution.

Besides, the interaction between mechanism design and

cryptography is worth mentioning. Traditional mechanism

design assumes that the set of participants is fixed and the

mechanism (market owner) knows it in advance. However,

market owners can only have direct contact with a few

participants. Therefore, owners usually need expensive

promotions to recruit more participants to get the expected

results, such as social welfare or income maximization. On

the other hand, various countries and organizations are

strengthening data privacy protection. The EU General

Data Protection Regulations (GDPR), enacted in 2018,

opened a new era of privacy-preservation. In December

2019, Twitter announced a new privacy center to update its

privacy policy. Mozilla has announced plans to allow users

to delete their data from Mozilla’s servers starting January

1, 2020.

The incentive mechanism of design game theory has

been widely studied in other fields, such as crowdsourcing

sensing and edge computing [97, 162]. Furthermore, as a

feasible data privacy solution, federated learning has

recently been applied in more and more fields, and the

framework of federated learning is shown in Fig. 18.

However, quantifying the value of each client’s training

data is a challenge in federated learning. In addition,

because of the complexity of federated learning algorithms,

it is not easy to model the final learning performance of the

federated learning system. Therefore, it is challenging to

model the utility function of each participant (parameter

server and client) in federal learning, which makes existing

incentive design work unable to be directly applied. This

subsection focuses on federal learning and discusses the

application of incentive mechanisms in data sharing and

privacy-preserving.

By applying encryption algorithms with different secu-

rity levels, such as semi-homomorphic encryption, secure

multiparty computing and other technologies, the federated

learning framework can be secure. However, participating

in federated learning will lead to computing resources of

client. Designing an appropriate incentive mechanism to

make students actively participate in the online training of

federated learning is another problem that needs to be

solved urgently. The Shapley value is the main criterion to

measure the contribution and profit distribution [142, 157].

The Stackelberg game is also another [51, 157, 174]. The

Stackelberg game is also another better solution. In addi-

tion, blockchain and other technologies, the Stackelberg

game is also another [83], are occasionally used as auxil-

iary technologies in mechanical design. The following

section explores applying the two most important theories

in microeconomics, namely, auction theory and contract

theory, to federal learning.

6.2.1 Auction theory-based federated learning incentive
mechanism

Auction theory is applied to many fields, and its underlying

theory is described in Sect. 4. This subsection explores in

depth the current work and future research points in the

popular area of auction theory-based federal learning

incentive mechanism design as an example.

The literature [29, 32, 67, 76, 84, 172, 173] represents

the incentive mechanism of federal learning based on

auction theory. The literature [173] is based on the classic

literature [24] in microeconomics, which is a classic liter-

ature in the field of multi-dimensional auctions in 1993. In

the procurement of weapons by the Ministry of National

Defense, in addition to the bidding price, it is also neces-

sary to consider various performance indexes of weapons.

Similarly, model training for federal learning considers

multi-dimensional input variables, such as customer data,

calculation and communication, and bid price. The litera-

ture [173] elaborated on multi-dimensional motivation and

completes the theoretical proof. Both proposed a light-

weight server counting and scoring method, achieving

better results than traditional FL, including higher accuracy

and faster loss convergence. The literature [173] is a rep-

resentative paper of auction theory in federal learning. It

perfectly combines auction rationality in economics with

the user’s demand in federal learning, expands and applies

it, and achieves good experimental results. The mobile

edge computing (MEC) problem has also been developedFig. 18 Structure diagram of federal learning
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in the literature [84]. In this method, cluster federated

learning is used to offset the influence of non-independent

identical distribution (non-IID) and local data size imbal-

ance, and the energy heterogeneity of the system is con-

sidered. It is proved that this method can converge to the

approximate optimal solution in Table 4.

Table 5 compares the existing literature in proving four

typical mechanism design judgment criteria. In the litera-

ture [29], Cong proposed a VCG-based incentive mecha-

nism for supply side FL: Fair-VCG (FVCG). Vickrey-

Clerke-Groves (VCG), a classical mechanism in auction

theory, can incentivize participants to report their training

costs truthfully. The model maximizes social surplus and

minimizes federal inequity. The literature uses neural net-

works to solve function optimization problems and, under

some reasonable assumptions, provides theoretical proofs

for FVCG with Dominant Incentive Compatibility, Social

Surplus Maximization, Individual Rationality and Weak

Budget, the theoretical proof of Budget Balance. Moreover,

this is the first theoretical proof of Budget Balance.

The literature [67] studies federal learning in wireless

communication scenarios, and two auction mechanisms are

designed to maximize the total utility of the federal

learning market, i.e., a formulaic representation of social

welfare. In addition, the earth mover’s distance (EMD) is

used as a metric for metric data. GNN networks are also

combined with deep reinforcement learning methods to

implement automatic auction mechanisms and are

theoretically shown to achieve strategy-proof, individually

rational and truthful. The literature [76] studies federal

learning for Cellular Wireless Networks using a stochastic

auction framework for incentive design, guaranteeing

truthfulness, individual rationality and efficiency.

The literature [32] is notable for adding contribution

measurement to the auction theory, the proposed Learning

Quality Maximization (LQM) problem and the proposed

FAIR system that integrates quality estimation, quality

perception and federated learning. The proposed FAIR

system integrates quality estimation, quality perception and

federated learning aggregation. It is also proved theoreti-

cally that the mechanism proposed in the paper is truthful,

individually rational and computationally efficient.

Although not utilizing auction theory, the literature

[172] also involves the concept of contribution-aware and

considers the heterogeneity of the distribution data. It

designs a new loss function and proves that it is convex and

has optimization preferences. The table shows that Indi-

vidual Rationality is what most of the literature can

achieve, followed by Incentive Compatibility. The eco-

nomics theorem tells us that to satisfy the above two

conditions. The incentive mechanism is Strategy-Proof.

Furthermore, Pareto Efficiency as an intuitive measure of

efficient resource allocation, few papers can make theo-

retical proofs, except for the literature [173].

The Budget Balance is rarely mentioned in the current

literature as an essential part to be considered in realizing

Table 4 The comparison of

representative auction theory of

federal learning incentives

Individual rationality Incentive compatibility Pareto efficiency Budget balance

[173] U U U �
[29] U U � U

[67] U U � �
[76] U � � �
[32] U � � �
[84] � � � �

Table 5 The comparison of

representative auction theory of

federal learning incentives

Individual rationality Incentive compatibility Pareto efficiency Budget balance

[34] U U � �
[80] U U � �
[72] U U � �
[165] U U � �
[143] U U � U
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the federal learning scenarios. Although the mechanism

design problem can achieve approximate optimal or locally

optimal solutions under certain conditions, it would be

more relevant to realistic scenarios if Budget Balance,

optimality under conditionally constrained or limited

budget situations, is considered. This will also be the focus

of research in the future.

6.2.2 Contract theory-based federated learning incentive
mechanism

Contract theory is different from auction theory. It needs

the distribution information of some participants as the

basis for contract-making and is a representative economic

concept in cooperative games. The design of contracts

enables application scenarios to achieve a better balance of

benefits, and its basic theory is described in Sect. 4. This

section discusses the current work and future research

points in the hot field of federal learning incentives design

based on contract theory.

There are similarities in the research scenario between

literature [34] and literature [173] in the previous subsec-

tion, both considering multi-dimensional information for

federal learning problems. Unlike [173], which is based on

the auction theory of reverse auctions without knowing any

information about each participant; literature [34] is based

on the cooperative contract theory. Due to the essential

difference between the two underlying theories, the liter-

ature [34] makes different decisions concerning the degree

of knowledge of the client’s private information, classified

into four cases (i.e., complete information, weakly

incomplete information, strongly incomplete information

and non-independent identically distributed data), respec-

tively. The complexity of contract design increases with

the incompleteness of information. In addition to the proof

of optimal contract design for the solid incomplete infor-

mation scenario in non-IID data, the literature completes

the complete theoretical proof of the other works. It verifies

the correctness of the theory with experiments.

The literature [143, 165] considers the role of contract

theory from another perspective, which explores how to

reduce the information leakage of participants in federated

learning. The literature [143] makes the participants’ pri-

vate information private through differentially private

encryption techniques and proposes the DPFL framework

(DESIGN MULTIDIMENSIONAL CONTRACT) in the

context of this information asymmetry. Simulation results

verify the effectiveness of this incentive mechanism. The

literature [143] proposes a Pain-FL framework based on

contract-theoretic customization of privacy levels, which

can be analyzed for optimal contracts under the full-in-

formation and non-full-information models, respectively.

Compared with the theoretical improvements, how to

apply the existing basic mechanism design theory to the

Internet scene reasonably is also an urgent problem to be

solved. At present, the design of incentive mechanism for

federal learning is still in the initial stage. How to design a

better incentive mechanism, meet different security levels

and make the mechanism more in line with the actual

application needs, etc., all need to be explored constantly.

6.3 Other scarce resources allocation

In addition to optimal mechanism design in economic-

oriented environments such as online advertising on the

Internet and research in data sharing and privacy protection

in complex environments, algorithmic mechanism design

has been applied to a broader range of fields and more

complex scenarios and analysis in the allocation of com-

plex scarce resources are discussed below.

In allocating resources, we often use utility monetary

payments to achieve design goals. Matching is another

widely studied field, including the transaction cycle algo-

rithm in housing allocation [125]. The gale-Shapley algo-

rithm in stable marriage is an effective solution [55]. Barter

has become an essential aspect of e-commerce and multi-

intelligence systems. Among various forms of barter, the

exchange of living organs is the primary form. In kidney

transplantation [2, 8], the donor cannot charge the patient

by monetary payment. Without utility transfer tools,

researchers focus on achieving the best or most

stable match. In the last decade, organ exchange has

become an in-depth research topic for the AI and EC

communities, with several researchers starting in-depth

studies with kidney exchange scenarios [2, 8, 33, 46]. In

the USA, kidney exchange transplantation accounts for

about 10% of all living donor kidney transplantation.

Recently, this idea has been investigated in several organs,

including the kidneys and the liver.

Social choice is a large area of research, and many

scenarios can be explored as applications, such as voting,

equity policy, tax policy, and so on. It also has the social

choice theory worthy of further study. Voting is an

essential application in the mechanism design of social

choice [11], which does not transfer money. With the

development of the Internet, electronic voting mechanisms

[92] have emerged, providing us with new research direc-

tions. With the development of social networks, more and

16216 Neural Computing and Applications (2023) 35:16193–16222

123



more voting is conducted online by inviting participants on

social media, which brings many security [164] and fair-

ness problems. Therefore, it is another research direction to

study and improve the mechanism design of data-driven

voting algorithms.

Big data and the internet bring convenience to people’s

lives. However, the applications that need to be solved are

becoming more and more complex, such as common car-

pooling, bike sharing, and optimized parking spots that

need mechanism design. It can also be delegated to more

profound and broader social fields, including auditing,

government, military, and many other fields. The purpose

of carpooling is to reduce traffic congestion, vehicle trips,

vehicle emissions, and other environmental advantages.

This concept has been widely accepted all over the world,

which not only provides convenient and economical ser-

vice for drivers and passengers.

We can see that the rational allocation of limited

resources is a complex issue covering all aspects of daily

life. There are different problems to be solved in different

application fields. Designing the best mechanism is a

problem we must discuss from a new height and angle.

7 Conclusion

The algorithmic mechanism design method is based on the

traditional mechanism design, supplemented by machine

learning or other algorithms. Able to cope with complex

environmental problems and abstract resource allocation

problems, the traditional mechanism design theory and

computer-aided mechanism design approaches are com-

pared and combined, and the main problems and challenges

in the current mechanism design are proposed in this paper.

In the face of these challenges, we discuss three applica-

tions representing the economy and complex environment:

optimal mechanism design for online internet advertising,

incentive mechanism for data sharing, privacy-preserving

and other scarce resource allocation. At the same time, we

have pointed out possible future research directions in

different fields and from which point to start overcoming

new challenges.
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