Neural Computing and Applications (2023) 35:17987-18002
https://doi.org/10.1007/500521-023-08644-4

ORIGINAL ARTICLE

=

Check for
updates

A new hybrid model of convolutional neural networks and hidden
Markov chains for image classification

Soumia Goumiri'? - Dalila Benboudjema® - Wojciech Pieczynski®

Received: 10 November 2022/ Accepted: 2 May 2023/ Published online: 31 May 2023
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023

Abstract

Convolutional neural networks (CNNs) have lately proven to be extremely effective in image recognition. Besides CNN,
hidden Markov chains (HMCs) are probabilistic models widely used in image processing. This paper presents a new hybrid
model composed of both CNNs and HMCs. The CNN model is used for feature extraction and dimensionality reduction
and the HMC model for classification. In the new model, named CNN-HMC, convolutional and pooling layers of the CNN
model are applied to extract features maps. Also a Peano scan is applied to obtain several HMCs. Expectation—-Maxi-
mization (EM) algorithm is used to estimate HMC’s parameters and to make the Bayesian Maximum Posterior Mode
(MPM) classification method used unsupervised. The objective is to enhance the performances of the CNN models for the
image classification task. To evaluate the performance of our proposal, it is compared to six models in two series of
experiments. In the first series, we consider two CNN-HMC and compare them to two CNNs, 4Conv and Mini AlexNet,
respectively. The results show that CNN-HMC model outperforms the classical CNN model, and significantly improves the
accuracy of the Mini AlexNet. In the second series, it is compared to four models CNN-SVMs, CNN-LSTMs, CNN-RFs,
and CNN-gcForests, which only differ from CNN-HMC by the second classification step. Based on five datasets and four
metrics recall, precision, F1l-score, and accuracy, results of these comparisons show again the interest of the proposed
CNN-HMC. In particular, with a CNN model of 71% of accuracy, the CNN-HMC gives an accuracy ranging between
81.63% and 92.5%.

Keywords Convolutional neural networks (CNNs) - Hidden Markov chains (HMCs) - Deep learning - Image classification

1 Introduction

A Deep Neural Network is composed of a set of neurons
grouped in layers connected to each other. There are three
types of layers based on their functions: input layer, hidden
layers, and output layer. The input layer is connected to the
first hidden layer, and the last hidden layer is connected to
the output layer. Each neuron applies the following equa-
tion when receiving an input x to produce an output y:
y =f(xW + b), where W is called the weights matrix and
b is called the bias. The objective is to tune some of the
parameters to minimize the error between the produced
output and the expected value.

In neural networks there is a category called “deep

P< Wojciech Pieczynski
Wojciech.Pieczynski @telecom-sudparis.eu

Soumia Goumiri
s_goumiri @esi.dz

Dalila Benboudjema

d_benboudjema@esi.dz

Laboratoire des Méthodes de Conception de Systemes
(LMCS), Ecole nationale Supérieure d’Informatique (ESI),

BP, 68M Oued-Smar, 16270 Alger, Algeria

CERIST, Centre de Recherche sur I’'Information Scientifique
et Technique, Ben Aknoun 16030, Algeria

SAMOVAR, Telecom SudParis, Institut Polytechnique de
Paris, 91120 Palaiseau, France

learning model” in which the network is combined by
more than three layers, i.e., it contains more than one
hidden layer. Convolutional Neural Network (CNN) is a
deep learning model used for image classification. In this

@ Springer

https://orcid.org/0000-0002-1371-2627
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-023-08644-4&domain=pdf
https://doi.org/10.1007/s00521-023-08644-4

17988

Neural Computing and Applications (2023) 35:17987-18002

model we apply filters to extract the features of the images
then classify those features. CNN is widely used for image
and video classification in several fields such as medical
applications, transportation systems, agriculture, manufac-
turing, etc. Some examples are the diagnosis of breast
cancer using mammogram images [1], the annotation of
breast cancer images [2], brain tumor segmentation [3],
COVID-19 diagnosis using X-Ray images [4], Alzheimer’s
disease detection [5], patterns of cystic fibrosis [6],
pedestrians’ detection [7], moving object detection [8],
deep fakes in videos [9], face recognition [10], parking
occupancy detection [11-13], and recognition of fire base
on video [14]. CNN is also used for scene classification
using a deep attention CNN [15], semantic correspondence
[16, 17], and select of interest [18]. A fundamental stage in
such algorithms is feature extraction. Feature extraction
from pictures entails extracting a small number of features
from low-level image pixel values that include many items
or scene information therefore, capturing the differences
between the object categories [19].

Markov chains are probabilistic models that proved their
interest in image processing. Various models based on
Markov chains have been proposed, among them is the
hidden Markov chains (HMCs) known be to very efficient
in signal processing, examples are speech recognition
([20-23]) or image processing ([24-28], among others).
Other applications, such as genome analysis, prediction in
economics and finance, environment, and meteorology, are
also commonly used. Their success is due to their ability of
processing “large” amounts of data. We assume we have
access to a noisy version of a signal modeled by a Markov
chain, and the challenge is to estimate the chain’s unob-
servable realization.

CNN models are the preferred models for image clas-
sification tasks. But they need a large amount of data to be
trained and provide height accuracy. In addition to the huge
number of parameters generated by these models, the
training of this amount of data needs a powerful GPU and
RAM. A commonly used solution is transfer learning,
where models are trained and weights are saved for later
use; however, the problem still persists. Hybrid models
using pre-trained CNN for feature extraction can reduce
training time and provide more accurate results than a
single model. CNNs have been combined with several
machine learning models such as Long short-term memory
(LSTM), Recurrent Neural Network (RNN), Gated
Recurrent Unit (GRU), Random Forest (RF), and multi-
Grained Cascade Forest (gcForest). Such combinations
have improved the accuracy of the prediction but have
increased the number of parameters. To overcome this, the
idea is to use pre-trained CNN models for feature extrac-
tion and another model for classification with a reduced
number of parameters.

@ Springer

We propose a new model based on the hybridization of
the CNN model and the HMC one. We call this model
CNN-HMC. It uses CNN for feature extraction and HMC
for classification. The objective is to enhance the perfor-
mances of the CNN models for the image classification
task, while reducing considerably the number of model
parameters. To assess the performance of the proposed
model we apply it to a classification problem of cats/dogs,
and show its interest with respect to two classic CNN
models. The first one is composed of four convolutions
(4Conv) and the second one is mAlexNet [29]. To evaluate
the performance of our proposal, we have carried out two
series of experiments on five datasets [30-34].

The remainder of this paper is organized as follows.
In Sect. 2, we present related work. In Sect. 3, we recall
some definitions related to the CNNs, the Hilbert-Peano
curve, and the HMCs. Section 4 describes our approach.
We provide two study cases in Sect. 5 and 6, respectively.
In Sect. 7, we report the experiments and discuss the
results. Finally, we conclude our paper in Sect. 8.

2 Related work

Features are parameters or characteristics that enable
recognition of different items of an image or a video.
Feature extraction is an important task for image classifi-
cation. Traditional feature extraction methods are
exhausting and time consuming. Convolutional neural
networks (CNNSs) can replace traditional feature extractors
since they are significantly more effective and have a great
ability to retrieve complicated characteristics that express
the image in a deeper level. The use of CNN for feature
extraction has been coupled with other machine learning
models such as SVM, and RNN.

The authors in [35] and [36] have proposed the use of
CNN for feature extraction and Support Vector Machine
(SVM) for classification. The hybrid model was named
CNN-SVM. The SVM classifier is applied to the last layer
of the fully connected layers of the CNN model instead of
the activation function. The SVM model was used with the
“rbf” kernel. The CNN-SVM was tested on the MNIST
dataset for handwritten digits recognition.

The CNN-SVM model was also used in different
applications such as: recognizing patterns in knee move-
ment using mechanomyography data [37], Brain tumors
and MRI image classification [38], grapevine leaves clas-
sification [39], detection of cervical cancer cells [40],
classification for Remote Sensing Data [41], human
Activity Recognition [42] and classification for weed
recognition in winter rape field [43].

CNN was hybridized with RNN models such as LSTM
and GRU. Karimi et al. [44] propose the use of CNN-

Neural Computing and Applications (2023) 35:17987-18002

17989

LSTM model to classify nuclear atypia in breast cancer
images. In this work, the results of the fully connected
layer by the CNN is feed to the two-layer LSTM model.
Precision, specificity, recall and F-score were used to
evaluate the performance of the proposed model. The
overall accuracy of the system is computed by varying the
patch size of the input images between 64, 128, 227, and
344. The CNN accuracy was 84.72% against 86.67% of the
CNN-LSTM model.

CNN-LSTM was also applied in different fields such as
sentiment Analysis [45], predicting residential energy con-
sumption [46], gold price time-series forecasting [47], speech
emotion recognition using deep 1D & 2D CNN LSTM [48],
human Activity Recognition [49], detection of diabetes using
CNN and CNN-LSTM network and heart rate signals [50],
and forecasting monthly gas field production [51].

CNN-GRU, and CNN-RNN work the same way as the
CNN-LSTM model. CNN-GRU was applied to forecast
short-term electricity consumption in [52], water level [53],
activity recognition [54] and [55], soil moisture [56],
PM2.5 concentration in urban environment [57], traffic
speed prediction [58], ship motion [59], etc. CNN-RNN
was used to classify fruit in [60], diagnosis of COVID-19
[61], medical recommendation system [62], sentiment
analysis [63], emotion recognition [64], Fake news detec-
tion [65], multiple people tracking [66], crop yield pre-
diction [67], etc.

Hamidi et al. [68] proposed a multi-stage architecture
that uses CNN, Beta-Elliptic Model (BEM) for features
extraction, and Deep Bidirectional Long Short Term
Memory (DBLSTM) and SVM networks for classification.
CNN works on offline data, while BEM extracts visual
characteristics of online data. Since the features extracted
by CNN are inexpressive, the K-means algorithm clustered
them into k groups. The k groups are classified using fuzzy
classification. The previous step results are fed to two
DBLSTMs networks for training. The final output was
obtained by applying the SVM classifier to the results of
the two DBLSTMs. The proposed multi-stage architecture
is applied to multilingual online handwriting recognition.

In [69], the authors proposed a multi-level fusion clas-
sifier framework. It involves five steps: data collection,
features preparation, training of multiple classifiers, pri-
mary fusion, and final fusion. In the features preparation
stage, the LeNet-5 CNN model is used for feature extrac-
tion and a collection-based algorithm to reduce feature
size. The two feature sets are trained using KNN and
multiple decision trees. The results of the decision trees are
gathered in a random forest, and the outputs are fused with
KNN results to get a secondary ensemble. The outcome is
obtained by combining the secondary ensemble of the two
sets of features. The proposed ensemble learning approach
was tested on the MNIST dataset.

Xu et al. combined CNN and RF in [70]. The CNN
architecture is composed of two convolutional layers, two
pooling layers and a fully connected layer. Three different
RF are applied after both of the pooling layers and the fully
connected layer. The final output is obtained by combining
the outcomes of the three RF using ensemble learning. In
[71], the authors use a pre-trained CNN model for feature
extraction. For each feature map they applied four classifiers:
random forest, gcforest, SVM, and LSTM. The comparison
of the four hybrid models reveal that CNN-SVM and CNN-
RF give higher accuracy for bearing fault classification.

All the works mentioned above have improved the
prediction accuracy. However, the hybridization models
need to be trained sequentially to tune the parameters of the
combined models to get the best performance. In addition,
combining two or more models increases the number of
parameters, hence the need for compute resources to
manage them.

3 Background
3.1 The convolutional neural networks (CNNs)

Convolutional neural networks are among the most used
models for image classification. In numerous situations,
they predict the image class with a great precision. CNN is
an operational class of models for better comprehension of
the information contained in an image, leading in improved
image identification, segmentation, detection, and retrieval
[19]. A CNN model is composed of an input layer, con-
volution layers, pooling layers, and fully connected layer.

e Input layer: It represents the first layer of a CNN model.
Images in this layer must have the same size. They are
passed to a convolutional layer of feature extraction.

e Convolution layer: The following layers are “Convo-
lution layers” which function as image filters, allowing
to extract features from pictures and calculate match
feature points during testing.

e Pooling layer: After that, the extracted feature sets are
sent to the “pooling layer.” This layer reduces the size
of large images while keeping the most critical
information. It maximizes the value of each window
by preserving the optimum fit of each feature within the
window.

e Fully connected layer: This is the last layer in the CNN
model. It takes the high-level filtered pictures and
transforms them into categories with labels.

CNN models are also composed of an activation function
and a loss function. The former is applied to convolution
layers and to the fully connected layer. While the latter is
applied to the output to measure how much the predicted

@ Springer

17990

Neural Computing and Applications (2023) 35:17987-18002

value match with the real one. Rectified Linear Units
(ReLU) is the most used activation function. It replaces
every negative value in the pooling layer with 0. This keeps
learned values from becoming stuck at O or ballooning out
toward infinity, allowing the CNN to remain mathemati-
cally stable.

3.2 The Hilbert-Peano Curve

A space-filling scan allows converting a 2D or 3D matrix to
a one-dimensional vector, which is needed to use Markov
chain models. Among the space-filling scans, we pick the
Hilbert-Peano scan. This scan is constructed using four
patterns as shown in Fig. 1. The interest of Markov chain
methods for image segmentation with respect to 2D Mar-
kov field models is that, being based on 1D modeling, they
lead to significantly lower computational cost. However,
consideration of contextual information is less satisfactory:
two neighbors in the chain are neighbors in the grid, but
two neighbors in the grid can be distant in the chain. In
fact, the Hilbert-Peano path preserves the neighborhood in
the 1D vector, as well as possible [26]. This characteristic
makes it useful in multidimensional signal processing. In
particular, with the rapid development of digital image
processing, the Hilbert curve, as a scanning technique, is
widely applied in digital image processing [72].

The Hilbert-Peano curve is adapted to images of size 27
whereas in our case the volumes on which we apply the
Peano path are of arbitrary size. To overcome this problem
we use the solution proposed in [72]. Given a rectangular
matrix of size n x m. This solution aims at finding the
curve that corresponds to a matrix of size 2°"%" such as:

20rder g the smallest value > max(n,m).

Then we eliminate the 2°" — (n x m) extra cells. In
Fig. 2, we illustrate the Peano scan applied to matrices of
size 2 x 2,4 x 4, and 8 x 8§, respectively. In Fig. 3, we
show the adopted scan used for matrices of arbitrary size.

Fig. 1 The four patterns for the construction of the Peano curve, the
first on the left is the base pattern and the others are obtained by
rotation (m%and 37”) respectively, of the latter

@ Springer

Fig. 2 The Peano scan for matrices of size two, four, and eight,
respectively

Fig. 3 The Peano scan used when the size of the matrix is not a power
of two, the first example on the left is for matrix of size three, and the
second example on the right is for matrix of size five

In the figure, we give two examples for matrices of size 3
x 3,and 5 x 5. We note that this scan is also applied for
non-squared images. In our case, all the manipulated
images are square, in other words, they are of size n x n.

3.3 The hidden Markov chains (HMCs)

We consider that we have access to a noisy version of the
signal modeled by a Markov chain, and the general prob-
lem is that of estimating the unobservable realization of the
chain.

We consider stochastic processes X =X,y and Y = Y.y.
Y is observed and X is not. Each X,, takes its values in the
finite set of K classes Q = {wy,...,wg} and each Y, takes
its values in the set of real numbers R. Dependence ori-
ented graph of HMC with N = 3 is given in Fig. 4.

In classic HMC (X, Y), we consider X as Markov with
the distribution

Y1 Yo Y3

X1 — 9 —— T3

Fig. 4 Dependence oriented graph of Hidden Markov Chain

Neural Computing and Applications (2023) 35:17987-18002 17991
N-1 N ¢q
+1 Zn:l én(k)yn
p(x) =p(x1) | | PGnsalxa), () W = ©)
n=1 Zn:l éZ(k)
and the distribution p(ylx) is defined with a1 _ et EAR)n — ™)’ (10)
4 =

POl = [T p0ulx). (2)

where p(y,|x,) are assumed Gaussian. The Bayesian Mar-
ginal Posterior Mode (MPM) we use for estimation X =
(X1,...,%y) of X from Y is defined with

Foreachn=1,...,N,

X, = argmaxp(x, = wily) = argmax o, (k) S, (k), (3)
Wi Wi
where the forward probabilities o,(k) = p(x, =
Wik, Y1,--,Yn) and the backward ones f3,(k) =
POnt1s ey YN |Xn = wy) are computed recursively with fol-
lowing forward and backward recursions:
oy (k) = p(x1 = wi, y1);
4
1 (6) = 37 Pt)P Ot 1) ())
k
Bu(k) =1;
5
Bu(R) = S Pt olp s s o () o

k

In the homogeneous case that we will consider in this
paper, the distributions p(x,i1]x,) and p(ys|x,) don’t
depend on n. Then the parameters defining p(x,y) =
p(x)p(y|x) are the parameters defining p(x;), p(xz|x;) and
p(yi|x1). For k=1,..,K, they will be denoted with
T = p(x1 = wi), a;j = p(x2 = wj|x; = w;). Gaussian
p(yi]x1 = wy) are of means , and variances o;. To make
MPM (3) unsupervised, we estimate all parameters from
Y = y using the classic “Expectation-Maximization” (EM)
method. EM produces a sequence of parameters in the
following way. For k,i,j=1,...,K, let nz,ag-,,uz,ai"q be
the current parameters. Setting

Vi) =
o ()afp? (Yur1 a1 = wi) Bl (7) (6)
E,K:l O‘Z(i) [EJI(:l aZP"(ynH |xn+l = Wj)ﬁZH (/)]
K
&i(i) =) Wi, (7)
=1
parameters are updated with
e Y0 (i)
nt =5 k) el = S (8)
Cen SR MR-

N 2
Zn:l Cg(k)
Initialization and criterion for stopping iterations depend
on the particular case studied.

4 New hybrid CNN-HMC approach

We place ourselves in a classification task where the
problem is to find the class of the input image. We consider
the case of two possible classes Q = {w, w2} = {0, 1}.

The new model we propose, called CNN-HMC, uses
CNN for feature extraction, and HMC for classification. It
extends any CNN. The input of CNN-HMC is an RGB
image of the same size as the input of the CNN model. We
first apply a combination of convolution layers, pooling
layers, and possibly dropout layers to extract the features of
the image. The output of this operation is a volume of size
(x, y, h), where x and y are the dimensions of each feature
and 4 is the number of features. Then we apply the Peano
scan to obtain 4 hidden Markov chains. We consider that
the features are independent of each other, so that the
h HMCs obtained are considered independently. After
having h HMCs, we use the MPM to estimate each value of
the / hidden chains. We choose the dominant class in each
of the & chains, then we take the dominant class in the
h classes obtained. We estimated the parameters of each of
the & chains with EM described in the previous section. In
Fig. 5, we illustrate the architecture of the CNN-HMC
model.

The classification algorithm based on CNN-HMC is
given in Algorithm 1 below.

Algorithm 1 The algorithm of the CNN-HMC
model
Ensure: Classification of the input image
1. Extracting features with CNN
2: while number of features do
3 Apply the Peano scan
4 Estimate parameters with EM
5 Find feature classification with MPM
6: Find the dominant class of each feature
7
8
9

. end while
: Find the dominant class of the input
. Return the result.

@ Springer

17992

Neural Computing and Applications (2023) 35:17987-18002

CNN layers:
Convolutions, Pooling, I
and Dropout gc,’bo
.) &

-
Features extraction

Fig. 5 The architecture of the CNN-HMC model
5 Models description
5.1 4Conv description

We consider the following CNN model, which we will
refer to as 4Conv. This model takes as input, RGB images
of size 64x64. It is composed of four blocks of convolu-
tions, max-pooling, and dropout layers. Each convolution
uses a kernel of size 3x 3 and filters of size 16, 32, 32, and
64, respectively. We apply to each convolution layer the
function ReLU as an activation function. The Max-pooling
layer uses windows of size 2x2. The dropout takes as a
parameter the value 0.5 which means that 50% of neurons
will be eliminated from this layer and only the 50% of the
neurons that remain will send their values to the next layer.
The result of the four blocks is a volume of size 2x2x64
representing the features map where each sub-matrix of
size 2x 2 is a characteristic of the input image. The features
map is flattened using a sequential scan to have a column
vector. The latter squeezed the entrance to a classical
neural network for classification. This network takes 256
neurons as input, has two hidden layers, and produces two
outputs. The first hidden layer has 128 neurons and the
second hidden layer has 64 neurons. The hidden layers use
the activation function ReL U, while the output layer uses
the softmax function.

We illustrate in Fig. 6 the convolutional neural network
architecture, 4Conv, which we have proposed with its two

CONV Dropout
=0.5

Flattening

64x64

4 blocks
8 J L J
- ~

Features extraction Classification

Fig. 6 The architecture of the considered CNN model, 4Conv

@ Springer

QQ .

class

L -
=
o
=

MPM + dominant

class

class
Dominant

L

t

MPM + dominant

inan

class

MPM + dom

Classification

ing2D

|

Dropout

\ 4

None,6*6*32
None,6*6*32

Maxpooling2D None,31*31*16

|

Dropout

None,4*4*64

+

None,31*31*16 Maxpooling2D

}

Dropout

None,2*2*64
None,2*2*64

Maxpooling2D None,14*14*32 None,256

|

Dropout

Fig. 7 Summary of the considered CNN model, 4Conv, with input
and output size of each layer

None,14*14*32 Dense None,128

None,64

Dense None,2

i

parts: feature extraction and classification. In Fig. 7, we
show summary of the 4Conv model.

5.2 CNN-HMC for 4Conv

The CNN-HMC we propose takes the feature extraction
part of CNN networks then applies the Peano path to obtain
a hidden Markov chain and at the end finishes the classi-
fication with the MPM.

We use the 4Conv model described in the previous
section for feature extraction. After that, we take the output
just before applying the flattening that is the matrix of
characteristics and which is a volume of size (2, 2, 64).
This means that we have 64 characteristics where each is a
square matrix of size 2. For each matrix of size (2, 2), we
apply the Peano path to obtain a hidden Markov chain of 4

Neural Computing and Applications (2023) 35:17987-18002

17993

elements. To each chain, we apply the MPM to have a
vector composed of values “0” and “1%. We used the EM
algorithm to estimate the parameters of the MPM that are:
the probability of appearance of each class p(0) and p(1),
the transition matrix A, the mean of the first class y;, the
variance of the first class a%, the mean of the second class
I4,, and the variance of the second class 3. We run the EM
algorithm for three iterations. To choose the number of
iterations we have tested different values from one to ten.
We observed that after three iterations the value of the
variance became zero which results in an error in the
computation of the Gaussian function. This problem arises
because the inputs of the EM algorithm are small, in the
order of 10~°. We initialized the parameters as follows: for
04 0.6
04 0.6} ’

my =1,0,>=1, my =0.9 and ¢,%> = 2. For the dog class:
p(0) = 0.2,p(1) = 0.8, 4 = [0'2 0‘8} =3, 0% =2

’ ’ 0.2 0.8] ’ ’
my; =0.8, and ¢,> = 1. We note that we have done
extensive experiments to find the appropriate initialization
for parameters that maximized the accuracy of the CNN-

the cat class: p(0) = 0.25,p(1) =0.75, A = [

0.4

0.4

Fig. 8 Initial transition graph for the cat class

0.2

0.2

Fig. 9 Initial transition graph for the dog class

CONV. Dropout

- =05

64x64

4 blocks

~
Features extraction

Fig. 10 The architecture of CNN-HMC for 4Conv

HMC model. In Fig. 8 and 9, we illustrate the initial
transition graphs of the two classes, respectively.

We repeat the same process for all the 64 matrices of size
(2x2). At the end, all the vectors of size 4 obtained in the
previous step are concatenated and the dominant class is
computed. This class represents the class of the input image.
In this architecture, we suppose that the characteristics are
independent and that is why we transform each character-
istic of size (2, 2) into a Markov chain, which gives us 64
Markov chains. If we assume the opposite then all the
feature matrices which are of size (2, 2, 64) will be trans-
formed into a single Markov chain of size 256. We have
tested this possibility but the results were not satisfactory.

We illustrate the architecture of the CNN-HMC for the
4Conv model in Fig. 10.

5.3 mAlexNet description

We will now compare our proposal to a model called
mAlexNet [29] for mini AlexNet. This model takes RGB
images of size (224,224) as input. It is composed of three
convolutional layers and each of them is followed by a
Max-pooling layer. The first convolutional layer takes the
parameters: 16 for filters, (11, 11) for kernel size, and 4 for
the value of stride. The second convolutional layer takes
the parameters: 20 for filters, (5, 5) for kernel size, and 1
for the value of stride. And finally, the last convolutional
layer takes the parameters: 30 for filters, (3, 3) for kernel
size, and 1 for the value of stride. All those layers use the
ReLU activation function. The Max-Pooling layers use a
pool size of (3, 3) and stride of size 2. The features map
extracted by the convolutional and the pooling layers is of
size 3x3x30. This means that we have 30 features with
each of them having a size of 3x3. Afterward, the classi-
fication is done by a regular neuronal network with one
layer having 48 neurons and an activation function, ReLU.
We obtain the output of the model by applying the “soft-
max*“ function which is used to normalize the output,
transforming it from weighted sum values to single-sum
probabilities. Each value in the softmax function is

O’bo Markov chaing,

MPM + dominant
class

Markov chain;

|

Dominant
class

MPM + dominant
class

Markov chaing

class

MPM +
-

Classification

@ Springer

17994

Neural Computing and Applications (2023) 35:17987-18002

:

4

Input None, 224*224*3 Conv2D None, 8830

A\ 4

Conv2D None, 54*54*16 Maxpooling2D None, 3*3*30

Maxpooling2D None, 26*26*16 Flatten None, 270

i

None, 22*22*20 Dense None, 48

N
B

.Eﬁ

:

Maxpooling2D

Fig. 11 mAlexNet model summary with input and output size of each
layer

None, 10*10*20 Dense None, 2

interpreted as the probability of belonging to each cate-
gory. In Fig. 11, we show a summary of the mAlexNet
model with input and the output size of each layer.

5.4 CNN-HMC for mAlexNet

During this stage we apply the same process applied to
4Conv to mAlexNet. We take the output of the model
before applying the flattening that is a volume of size
3x3x30, representing the features map of the model. This
means that mAlexNet has extracted 30 features, each of
size 3 by 3. To each feature or matrix of size 3x3 we apply
the Peano scan to obtain a hidden Markov chain of size 9.
After that, we estimate the parameters for the MPM
method using the EM algorithm. We run the EM algorithm
for three iterations. We initialized its parameters as follow:

for the cat class: p(0) =0.25,p(1) = 0.75,
|04 06 B , B
A= |:0.4 0.6]’ m =1, 0¢°=09, m =09 and
02> =2. For the dog class: p(0)=0.2,p(1)=0.8,
02 038
A= {0.2 O.8]’m1 =3,01°=2,m =08, and 0,* = 1.

In Fig. 12, we show the architecture of the CNN-HMC
applied to the mAlexNet model.

=4
=1

M",s
5 s

16,k
=20,k

CONVf=30,k=3,s=1

CONV f
CONV f

224x224

3 blocks

-
Features extraction

Fig. 12 The architecture of CNN-HMC for mAlexNet

@ Springer

6 Models training

We trained all the models with “Adam” optimizer [73]. The
parameters used for this algorithm are by default as follows:
learning rate alpha = 0.001, betal = 0.9, beta2 = 0.999,
and epsilon = lexp~7. This parameters have shown a sig-
nificant performance for models learning and are rarely
modified. We have tested other parameters such as learning
rate = 0.01, and 0.0001, betal = 0.1, and 0.01, and beta, =
0.1, and 0.01, but the best results were achieved by the
default parameters mentioned above. For the loss function,
we used Categorical CrossEntropy (CCE) [74]. This func-
tion is utilized in multi-classification problems, which is our
case with the two classes: cat and dog. It is defined as:

N
Loss = —Zy,-*log(y}), (11)
i=1

12

where:

y;: is the target output corresponding to the i’ class it is
equal to 1 or O;

y: is the output predicted by the model for the i’ class,
Ye[0,1];

N: is the output size, or the number of output classes in
the model.

This loss function is a useful indicator of how easily two
discrete probability distributions can be distinguished from
one another. In this case, y; represents the likelihood that
event I will occur, and the total of all y; equals 1, implying
that only one event will occur. When the distributions
become closer to one another, the negative sign ensures
that the loss gets lower.

To evaluated the performances of our models we used
recall, precision, F1-score, and accuracy metrics defined as
follows:

T,
Recall = —F 12
T, + Fy (12)
T,
Precision = —2— (13)
T, + Fp

MPM + dominant
class

MPM + dominant
class
Dominant class

HMC,

Classification

Neural Computing and Applications (2023) 35:17987-18002

17995

Precision x Recall
F1 — =2 14
score % Precision + Recall’ (14)

T, + Ta
Ty+Ty+F,+F,’

(15)

Accuracy =

where, T, and T, are true positives, and true negatives, F),
and F, are false positives and false negatives. The objec-
tive of the training is to minimize the loss and maximize
the accuracy.

6.1 4Conv training

We have run our models 15 times. In Fig. 13, we illustrate
the graph of the accuracy and the loss of the proposed
4Conv model. The training accuracy of this model is
68.21%, and the loss is 59.05%. As we can see from the
figure, the model does not suffer from the overfitting
problem [75], since the gap between the training and the
testing accuracy is small.

6.2 mAlexNet training

We have run mAlexNet 15 times. In Fig. 14, we illustrate
the graphs of the accuracy and the loss of the mAlexNet
model. The training accuracy of this model is 71.77%,
while the loss is 56.66%. Again this model also does not
overfit the data.

6.3 Datasets

To evaluate the performance of our model, we opted for a
classification of an image as a cat or a dog. For this
problem we used a dataset made up of 10,028 images of
cats and dogs [30]. We divided this data into two subsets:
the first for training and the second for testing. The training

Accuracy and Loss Curves

0701 ~

o
(=)
o

o
o
=]

Loss and Accuracy

—— Training loss
Validation Loss

—— Training Accuracy

—— Validation Accuracy

o
w
o

050

0 2) 6 8 10 12 13
Epochs

Fig. 13 Training and validation accuracy and loss of the 4Conv model

Accuracy and Loss Curves

0.725

0.700

0.675

o o
o o
N [
] o

Loss and Accuracy
o
N
8

e
—— Training loss \
0575 Validation Loss
—— Training Accuracy
—— Validation Accuracy

\—

0.550

0 2 4 8 10 2 1

6
Epochs

Fig. 14 Training and validation accuracy of the mAlexNet model

set represents 80% of the data and the test set represents the
remaining 20%. We refer to the test dataset as “Testl”
Fig. 15 illustrates two images belonging to the two classes
of cat and dog, respectively. Usually, models perform well
in the training and test datasets because most of the data are
from the same source, and they have almost the same
backgrounds and the same light degradation. That’s why
we used two other datasets for the test, the first is down-
loaded from [31], we refer to it by “Test2”, and the second
was created by us, and we refer to it as “Test3” [32]. Test2
contains 4747 images of cats and 4724 images of dogs. For
Test3, we downloaded 20 random images of each class
from the internet. In Table 1, we show the details of the
datasets used for the training and the test of the model with
the number of images of each class.

In addition, in order to evaluate the performance of our
model with literature work, we used two other datasets.
The first is a Car-Bike dataset [33], and the second is an
Elephant dataset [34]. The Car-Bike dataset contains 2000
images in each class, while the elephant dataset has 840
images divided equally between the African and the Asian
elephant. Table 2 illustrates the details of the two datasets.

Fig. 15 Illustration of two dataset images, on the left an image of a
cat and on the right an image of a dog

@ Springer

17996

Neural Computing and Applications (2023) 35:17987-18002

Table 1 The datasets used for

models training and testing Cat Dog Total
Training 4000 4005 8005
Testl 1011 1012 2023
Test2 4747 4724 9471

Test3 20 20 40

7 Evaluation experiments
7.1 Implementation details

To evaluate the performances of our models we used Keras
[76] which is a framework based on TensorFlow [77].
Keras is a high-level neural network library that provides a
lot of predefined algorithms, methods, and functions. We
run our solution on Google Colaboratory or Colab which is
a free online service based on Jupyter Notebook and
designed for deploying Machine Learning solutions. It can
be used without any hardware requirement and installation.
It offers a RAM of 13GB and a disk of size 78.19GB.

7.2 Results and discussion

In Table 3, we illustrate the results obtained from the tests
of 4Conv against CNN-HMC. We executed tests on three
datasets: Testl, Test2, and Test3. They are made up of
2023, 9471, and 40 images, respectively, divided equally
among the two classes. The table shows the number of cats
and dogs predicted by two classic CNN models, 4Conv,
against its corresponding CNN-HMC model. The models
are compared using the recall, the precision, the F1-score
and accuracy of the prediction. Testl belongs to the same
dataset as the training dataset, which is the traditional
method used to evaluate any deep learning model. We
notice that the images of Testl are unseen images by the
model. The recall of our model is 73.91% against only
45.55% of the 4Conv model. The CNN-HMC reached a
precision equal to 99.86% while the CNN model gives
83.36%. The values of the Fl-score are 84.95% and
58.91% for the CNN-HMC and the 4Conv, respectively.
With this dataset, CNN-HMC reached an accuracy of
86.90% against only 68.21% for 4Conv. We also notice
that CNN-HMC has miss-classified only one image of a cat
while 1010 images were well classified. As mentioned

Table 2 The datasets used for comparison with related work

Class 1 Class 2
Car-Bike Bike: 2000 Car: 2000
Elephant African: 420 Asian: 420

@ Springer

above, some deep learning models such as CNN works
well when testing them in the same dataset used for the
training as we did with Testl, but do not work well with
other datasets. This problem is due to the resolution of the
images. To prove the robustness of our model we test it
with two other datasets, Test2, and Test3.

The value of the recall is equal to 71.72% of the CNN-
HMC model compared to only 47.44% of the 4Conv model
in the Test2 dataset. 99.88% is the precision of our model
against 84.06% of the 4Conv model. The CNN-HMC
model gives an Fl-score equal to 83.49% compared to
60.65% for its corresponding CNN with an improvement of
13%.

In Test2 CNN-HMC reached an accuracy of 85.85%
against only 69.29% for 4Conv, with an improvement of
16%. We notice that CNN-HMC was able to predict cor-
rectly 4743 images of cats from a total of 4747 images of
cats, which means that it has missed only four images.
Each one of the recall, the precision, and the Fl-score are
equal to 100% for the Test3 dataset. While these metrics
are equal to 50%, 66.67%, and 57.14%, respectively, for
the 4Conv model.

In Test3 the CNN-HMC model was able to predict all
cats and dogs correctly unlike the 4Conv model, which
makes the accuracy of the CNN-HMC 100%, while the
accuracy of 4Conv is only 62.5%.

In Fig. 16, we plot the accuracies results of 4Conv and
its CNN-HMC version using the three datasets: Testl,
Test2, and Test3. We will refer to CNN-HMC in this fig-
ure as CNN-HMCI1. The accuracy of CNN-HMCI is
shown in purple striped color while that of 4Conv is shown
in yellow. As we can see in the graph, the accuracy of
CNN-HMC is always higher than that of 4Conv within the
three datasets.

In Table 4, we illustrate the comparison results of
mAlexNet and its CNN-HMC version using the same
datasets: Testl, Test2, and Test3. In the Testl dataset, the
recall is 98.81% for our model against 75.39% of the CNN
model. The CNN-HMC gives a precision equal to 74.40%
while the mAlexNet model gives 70.32%. The Fl-score is
84.88% for the CNN-HMC and 72.77% for the mAlexNet.

The mAlexNet gives an accuracy of 71.77%, while
CNN-HMC’s accuracy is 82.40% which shows an increase
of 10%. We notice here that the CNN-HMC has well
classified 1000 images of dogs from a total of 1012.

The CNN-HMC model reached a recall value equal to
98.92% compared to only 77.90% of the mAlexNet model
in the Test2 dataset. The CNN-HMC improved the recall
metric by 21% compared to mAlexNet. The precision is
73.46% for our model against 71.61% of the mAlexNet
model. Using the above values of the recall and the pre-
cision, we computed the F1-score metric. The CNN-HMC
model gives an Fl-score equal to 84.31% compared to

Neural Computing and Applications (2023) 35:17987-18002

17997

Table 3 Comparison of test

TP Recall (%) Precision (%) Fl-score (%) Accuracy (%)

results of 4Conv model with the Datasets Models ™
CNN-HMC model using three Test1 CNN-HMC 1010
lats vs dogs datasets
4Conv 919
Test2 CNN-HMC 4743
4Conv 4322
Test3 CNN-HMC 20
4Conv 15

748 73.91 99.86 84.95 86.90
461 45.55 83.36 5891 68.21
3388 71.72 99.88 83.49 85.85
2241 47.44 84.06 60.65 69.29
20 100 100 100 100

10 50.00 66.67 57.14 62.50

100 - A CNN-HMC1
I 4Conv

80
>
8 60
-
5
S
& 40 A

20

Testl

Test2

Test3

Fig. 16 Comparison of CNN-HMC and 4Conv accuracy’s for
prediction using the three datasets

74.62% for its corresponding CNN with an improvement of
about 10%.

mAlexNet gives an accuracy of 73.57% compared to
81.63% for CNN-HMC, which means there was an
improvement of 8%. The last dataset used for the test is
Test3, that we collected ourselves.

In the Test3 dataset, 100%, 86.96%, and 93.02% are the
values of the recall, the precision, and the Fl-score,
respectively, given by the CNN-HMC model. The recall of
the mAlexNet model is 85%, and the precision is 60.71%,
they are lower than those obtained using our model by
about 15%. 70.83% is the value of the Fl-score given by
the mAlexNet model in the same dataset. For this last
metric, our model has shown an improvement of almost
23%.

The CNN-HMC model was able to predict correctly all
dogs’ images unlike the mAlexNet model, which has miss-
classified three dogs images. For the cat class, the number

predicted by mAlexNet is lower than the number predicted
by the CNN-HMC model. This last model was able to
predict correctly almost double of the images classified by
mAlexNet. These results have led to an accuracy of
92.50% for the CNN-HMC model and 65% for the mAl-
exNet model with the same datasets.

In Fig. 17, we plot the accuracies of mAlexNet and its
corresponding CNN-HMC model according to the three
used datasets. To make difference between CNN-HMC for
4Conv and the other for mAlexNet, we will refer to CNN-
HMC in this figure as CNN-HMC2. The accuracies of the
CNN-HMC?2 are shown in purple striped color and those of
mAlexNet in yellow color. As we can see from the bar
chart, in the three datasets, the accuracy of mAlexNet is
always lower than that of CNN-HMC2.

From Figs. 16 and 17 we conclude that our proposed
model using convolutional neural networks for feature
extraction and hidden Markov chains for classification
gives significant results compared to a classic CNN model
in terms of accuracy.

We will use mAlexNet as a feature extractor since it has
the highest training accuracy compared to the 4Conv
model. We employ transfer learning to a far comparison
with similar related work; this means that we use the same
features map extracted by mAlexNet, and we vary the
classification algorithm between HMC, SVM, LSTM, REF,
and gcForest. All the models are tested on five datasets,
Testl, Test2, Test3, Car-Bike, and Elephant. Table 5 rep-
resents the results of comparing CNN-HMC, CNN-SVM
[35], CNN-LSTM [44], CNN-RF [71], and gcForest [71]
models using the recall, the precision, the F1-score, and the
accuracy for a classification task. The recall of the CNN-
HMC range from 98.81% to 100%. The CNN-SVM recall

Table 4 Comparison of test

TP Recall (%) Precision (%) Fl-score (%) Accuracy (%)

results of mAlexNet model with Datasets Models ™
the CNN-HMC model using Test1 CNN-HMC 667
three cats vs dogs datasets
mAlexNet 689
Test2 CNN-HMC 3059
mAlexNet 3288
Test3 CNN-HMC 20

mAlexNet 17

1000 98.81 74.40 84.88 82.40
763 75.39 70.32 72.77 71.77
4673 98.92 73.46 84.31 81.63
3680 77.90 71.61 74.62 73.57
17 100 86.96 93.02 92.5

9 85.00 60.71 70.83 65.00

@ Springer

17998

Neural Computing and Applications (2023) 35:17987-18002

is equal to 87.45%, 91.26%, 95.0%, 92.90%, and 89.76%
in the Testl, the Test2, the Test3, the Car-Bike, and the
Elephant datasets, respectively. The recall of the CNN-
LSTM was less than the CNN-HMC and the CNN-SVM,
with a value ranging between 68.97% and 84.15%. The
worst value of the CNN-RF recall is 65.0% obtained in the
Test3 dataset, while the better value is 80.82% in the Test2
dataset. In the Testl dataset, the recall of the gcForest is
62.35%, while its highest value is 76.52% obtained in the
Test2 dataset. In the remaining three datasets, the recall of
the gcForest is near 55.0%.

The precision of the CNN-HMC model is 74.40%
compared to 57.80%, 71.96%, 72.67%, and 64.65% for the
CNN-SVM, the CNN-LSTM, the CNN-RF, CNN-gcFor-
est, respectively, in the Testl dataset. In the Test2 dataset,
the five models’ precisions were equal to 73.46%, 68.24%,
74.79%, 81.23%, and 76.30%, respectively. In the Test3
dataset, the precision of our model is 86.96%, while the
other models give a value ranging between 51.35% and
55.55%. In the Car-Bike dataset, of the CNN-HMC model

precision is 83.23%, while the rest of the models have a
value less than 50.0%. In the Elephant dataset, our model
has the highest precision value with 73.46% against an
average of 50.0% for the compared models.

The F1-score of our model, in the Test1 dataset, is equal
to 84.88% against almost 70.0% of the CNN-SVM, the
CNN-LSTM, and the CNN-RF, while the low value is
63.48% given by the CNN-gcForest model. In the Test2
dataset, the CNN-HMC gives the highest Fl-score value
equal to 84.31%, followed by the CNN-RF with 81.02%,
then the CNN-SVM and the CNN-gcForest with 78.09%
and 76.41%, respectively, and finally CNN-LSTM with
73.40%. In the Test3 dataset, the F1-score of our model is
93.02% against 66.0% and 63.83% of the CNN-SVM, and
the CNN-LSTM, respectively, while the two based forest
models give a value of 57.7% and 53.66%. In the Car-Bike
dataset, the CNN-HMC, the CNN-SVM, the CNN-LSTM,
the CNN-RF, and the CNN-gcForest models give an F1-
score values equal to 90.76%, 63.82%, 62.73%, 58.27%,
and 49.96%, respectively. In the Elephant dataset, the

Table 5 Comparison of test results of CNN-HMC model against CNN-SVM, CNN-LSTM, CNN-RF, and CNN-gcForest using the same features

map extracted by mAlexNet

Datasets Models TP TN Recall(%) Precision (%) F1-score (%) Accuracy (%)
Testl CNN-HMC 1000 667 98.81 74.40 84.88 82.40
CNN-SVM [35] 885 365 87.45 57.80 69.60 61.789
CNN-LSTM [44] 698 739 68.97 71.96 70.43 71.03
CNN-RF [71] 718 741 70.95 72.67 71.80 72.12
CNN-gcForest [71] 631 666 62.35 64.65 63.48 64.11
Test2 CNN-HMC 4673 3059 98.92 73.46 84.31 81.63
CNN-SVM [35] 4311 2741 91.26 68.24 78.09 74.46
CNN-LSTM [44] 3404 3600 72.06 74.79 73.40 73.95
CNN-RF [71] 3818 3865 80.82 81.23 81.02 81.12
CNN-gcForest [71] 3615 3624 76.52 76.30 76.41 76.43
Test3 CNN-HMC 17 20 86.96 93.02 92.50
CNN-SVM [35] 19 2 95.0 51.35 66.0 52.50
CNN-LSTM [44] 15 8 70.5 55.55 63.83 57.50
CNN-RF [71] 13 8 65.0 52.0 57.7 52.50
CNN-gcForest [71] 11 10 55.0 52.38 53.66 52.50
Car-Bike CNN-HMC 1996 1598 99.80 83.23 90.76 89.85
CNN-SVM [35] 1858 36 92.90 48.61 63.82 47.35
CNN-LSTM [44] 1683 317 84.15 50.0 62.73 50.0
CNN-RF [71] 1532 274 76.60 47.02 58.27 45.15
CNN-gcForest [71] 1088 733 54.40 46.20 49.96 45.52
Elephant CNN-HMC 418 269 99.52 73.46 85.0 81.79
CNN-SVM [35] 377 45 89.76 50.13 64.33 50.24
CNN-LSTM [44] 319 98 75.95 49.76 60.13 49.64
CNN-RF [71] 319 109 75.95 50.63 60.76 50.95
CNN-gcForest [71] 229 195 54.52 50.44 52.40 50.47

@ Springer

Neural Computing and Applications (2023) 35:17987-18002

17999

worst F1-score value is equal to 52.40% given by the CNN-
gcForest followed by the CNN-LSTM, and the CNN-RF
with a value near 60.0%, the CNN-SVM with an F1-score
equal to 64.33%, and finally the CNN-HMC with a value of
85.0%.

The accuracy of our model is 82.40% in the Testl test
dataset, while the accuracy of the CNN-LSTM and the
CNN-RF is around 70% and the accuracy of the CNN-
SVM and the CNN-gcForest is around 60%. In the Test2
test set, the accuracy of the CNN-HMC and the CNN-RF
are almost equal, while the accuracy of the other models
ranged from 73% to 76%. The CNN-HMC model reached
an accuracy of 92.5%, while the CNN-LSTM accuracy is
the highest among all the tested models with a 57.5%,
against 52.5% of the CNN-SVM, the CNN-RF, and the
gcForest models in the Test3 dataset. In the Car-Bike
dataset, the accuracy of our model is 89.85% against a
value less than 50% of the other compared to models. The
Elephant dataset yields the same outcomes as above with
an accuracy of up to 81.79% of our model compared to a
value near 50% of the other models.

From Table 5, we observe that the recall of the CNN-
HMC is the highest compared to CNN-SVM, the CNN-
LSTM, the CNN-RF, and the CNN-gcForest in the five
tested datasets. The precision of our model is better than all
the compared models in the five datasets except in the
Test2 dataset. The Fl-score of the CNN-HMC is ranged
from 84% to 93% in the five datasets, while the other
models give fewer values. Finally, the accuracy of our
model is highest in the five test dataset, while the CNN-
SVM, the CNN-LSTM, the CNN-RF, and the CNN-
gcForest accuracies’ are near 50% in the Test3, the Car-
Bike, and the Elephant dataset.

These results are explained as follows. The Test1 dataset
is used for both the training and the testing of HMC, SVM,
LSTM, RF, and gcForest, and that is why the accuracy is
high while this dataset contains 2003 images. The Test2
dataset has more than 9000 images which exp