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Abstract
Convolutional neural networks (CNNs) have lately proven to be extremely effective in image recognition. Besides CNN,

hidden Markov chains (HMCs) are probabilistic models widely used in image processing. This paper presents a new hybrid

model composed of both CNNs and HMCs. The CNN model is used for feature extraction and dimensionality reduction

and the HMC model for classification. In the new model, named CNN-HMC, convolutional and pooling layers of the CNN

model are applied to extract features maps. Also a Peano scan is applied to obtain several HMCs. Expectation–Maxi-

mization (EM) algorithm is used to estimate HMC’s parameters and to make the Bayesian Maximum Posterior Mode

(MPM) classification method used unsupervised. The objective is to enhance the performances of the CNN models for the

image classification task. To evaluate the performance of our proposal, it is compared to six models in two series of

experiments. In the first series, we consider two CNN-HMC and compare them to two CNNs, 4Conv and Mini AlexNet,

respectively. The results show that CNN-HMC model outperforms the classical CNN model, and significantly improves the

accuracy of the Mini AlexNet. In the second series, it is compared to four models CNN-SVMs, CNN-LSTMs, CNN-RFs,

and CNN-gcForests, which only differ from CNN-HMC by the second classification step. Based on five datasets and four

metrics recall, precision, F1-score, and accuracy, results of these comparisons show again the interest of the proposed

CNN-HMC. In particular, with a CNN model of 71% of accuracy, the CNN-HMC gives an accuracy ranging between

81.63% and 92.5%.

Keywords Convolutional neural networks (CNNs) � Hidden Markov chains (HMCs) � Deep learning � Image classification

1 Introduction

A Deep Neural Network is composed of a set of neurons

grouped in layers connected to each other. There are three

types of layers based on their functions: input layer, hidden

layers, and output layer. The input layer is connected to the

first hidden layer, and the last hidden layer is connected to

the output layer. Each neuron applies the following equa-

tion when receiving an input x to produce an output y:

y ¼ f ðxW þ bÞ, where W is called the weights matrix and

b is called the bias. The objective is to tune some of the

parameters to minimize the error between the produced

output and the expected value.

In neural networks there is a category called ‘‘deep

learning model’’ in which the network is combined by

more than three layers, i.e., it contains more than one

hidden layer. Convolutional Neural Network (CNN) is a

deep learning model used for image classification. In this
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model we apply filters to extract the features of the images

then classify those features. CNN is widely used for image

and video classification in several fields such as medical

applications, transportation systems, agriculture, manufac-

turing, etc. Some examples are the diagnosis of breast

cancer using mammogram images [1], the annotation of

breast cancer images [2], brain tumor segmentation [3],

COVID-19 diagnosis using X-Ray images [4], Alzheimer’s

disease detection [5], patterns of cystic fibrosis [6],

pedestrians’ detection [7], moving object detection [8],

deep fakes in videos [9], face recognition [10], parking

occupancy detection [11–13], and recognition of fire base

on video [14]. CNN is also used for scene classification

using a deep attention CNN [15], semantic correspondence

[16, 17], and select of interest [18]. A fundamental stage in

such algorithms is feature extraction. Feature extraction

from pictures entails extracting a small number of features

from low-level image pixel values that include many items

or scene information therefore, capturing the differences

between the object categories [19].

Markov chains are probabilistic models that proved their

interest in image processing. Various models based on

Markov chains have been proposed, among them is the

hidden Markov chains (HMCs) known be to very efficient

in signal processing, examples are speech recognition

([20–23]) or image processing ([24–28], among others).

Other applications, such as genome analysis, prediction in

economics and finance, environment, and meteorology, are

also commonly used. Their success is due to their ability of

processing ‘‘large’’ amounts of data. We assume we have

access to a noisy version of a signal modeled by a Markov

chain, and the challenge is to estimate the chain’s unob-

servable realization.

CNN models are the preferred models for image clas-

sification tasks. But they need a large amount of data to be

trained and provide height accuracy. In addition to the huge

number of parameters generated by these models, the

training of this amount of data needs a powerful GPU and

RAM. A commonly used solution is transfer learning,

where models are trained and weights are saved for later

use; however, the problem still persists. Hybrid models

using pre-trained CNN for feature extraction can reduce

training time and provide more accurate results than a

single model. CNNs have been combined with several

machine learning models such as Long short-term memory

(LSTM), Recurrent Neural Network (RNN), Gated

Recurrent Unit (GRU), Random Forest (RF), and multi-

Grained Cascade Forest (gcForest). Such combinations

have improved the accuracy of the prediction but have

increased the number of parameters. To overcome this, the

idea is to use pre-trained CNN models for feature extrac-

tion and another model for classification with a reduced

number of parameters.

We propose a new model based on the hybridization of

the CNN model and the HMC one. We call this model

CNN-HMC. It uses CNN for feature extraction and HMC

for classification. The objective is to enhance the perfor-

mances of the CNN models for the image classification

task, while reducing considerably the number of model

parameters. To assess the performance of the proposed

model we apply it to a classification problem of cats/dogs,

and show its interest with respect to two classic CNN

models. The first one is composed of four convolutions

(4Conv) and the second one is mAlexNet [29]. To evaluate

the performance of our proposal, we have carried out two

series of experiments on five datasets [30–34].

The remainder of this paper is organized as follows.

In Sect. 2, we present related work. In Sect. 3, we recall

some definitions related to the CNNs, the Hilbert-Peano

curve, and the HMCs. Section 4 describes our approach.

We provide two study cases in Sect. 5 and 6, respectively.

In Sect. 7, we report the experiments and discuss the

results. Finally, we conclude our paper in Sect. 8.

2 Related work

Features are parameters or characteristics that enable

recognition of different items of an image or a video.

Feature extraction is an important task for image classifi-

cation. Traditional feature extraction methods are

exhausting and time consuming. Convolutional neural

networks (CNNs) can replace traditional feature extractors

since they are significantly more effective and have a great

ability to retrieve complicated characteristics that express

the image in a deeper level. The use of CNN for feature

extraction has been coupled with other machine learning

models such as SVM, and RNN.

The authors in [35] and [36] have proposed the use of

CNN for feature extraction and Support Vector Machine

(SVM) for classification. The hybrid model was named

CNN-SVM. The SVM classifier is applied to the last layer

of the fully connected layers of the CNN model instead of

the activation function. The SVM model was used with the

‘‘rbf’’ kernel. The CNN-SVM was tested on the MNIST

dataset for handwritten digits recognition.

The CNN-SVM model was also used in different

applications such as: recognizing patterns in knee move-

ment using mechanomyography data [37], Brain tumors

and MRI image classification [38], grapevine leaves clas-

sification [39], detection of cervical cancer cells [40],

classification for Remote Sensing Data [41], human

Activity Recognition [42] and classification for weed

recognition in winter rape field [43].

CNN was hybridized with RNN models such as LSTM

and GRU. Karimi et al. [44] propose the use of CNN-
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LSTM model to classify nuclear atypia in breast cancer

images. In this work, the results of the fully connected

layer by the CNN is feed to the two-layer LSTM model.

Precision, specificity, recall and F-score were used to

evaluate the performance of the proposed model. The

overall accuracy of the system is computed by varying the

patch size of the input images between 64, 128, 227, and

344. The CNN accuracy was 84.72% against 86.67% of the

CNN-LSTM model.

CNN-LSTM was also applied in different fields such as

sentiment Analysis [45], predicting residential energy con-

sumption [46], gold price time-series forecasting [47], speech

emotion recognition using deep 1D & 2D CNN LSTM [48],

humanActivity Recognition [49], detection of diabetes using

CNN and CNN-LSTM network and heart rate signals [50],

and forecasting monthly gas field production [51].

CNN-GRU, and CNN-RNN work the same way as the

CNN-LSTM model. CNN-GRU was applied to forecast

short-term electricity consumption in [52], water level [53],

activity recognition [54] and [55], soil moisture [56],

PM2.5 concentration in urban environment [57], traffic

speed prediction [58], ship motion [59], etc. CNN-RNN

was used to classify fruit in [60], diagnosis of COVID-19

[61], medical recommendation system [62], sentiment

analysis [63], emotion recognition [64], Fake news detec-

tion [65], multiple people tracking [66], crop yield pre-

diction [67], etc.

Hamidi et al. [68] proposed a multi-stage architecture

that uses CNN, Beta-Elliptic Model (BEM) for features

extraction, and Deep Bidirectional Long Short Term

Memory (DBLSTM) and SVM networks for classification.

CNN works on offline data, while BEM extracts visual

characteristics of online data. Since the features extracted

by CNN are inexpressive, the K-means algorithm clustered

them into k groups. The k groups are classified using fuzzy

classification. The previous step results are fed to two

DBLSTMs networks for training. The final output was

obtained by applying the SVM classifier to the results of

the two DBLSTMs. The proposed multi-stage architecture

is applied to multilingual online handwriting recognition.

In [69], the authors proposed a multi-level fusion clas-

sifier framework. It involves five steps: data collection,

features preparation, training of multiple classifiers, pri-

mary fusion, and final fusion. In the features preparation

stage, the LeNet-5 CNN model is used for feature extrac-

tion and a collection-based algorithm to reduce feature

size. The two feature sets are trained using KNN and

multiple decision trees. The results of the decision trees are

gathered in a random forest, and the outputs are fused with

KNN results to get a secondary ensemble. The outcome is

obtained by combining the secondary ensemble of the two

sets of features. The proposed ensemble learning approach

was tested on the MNIST dataset.

Xu et al. combined CNN and RF in [70]. The CNN

architecture is composed of two convolutional layers, two

pooling layers and a fully connected layer. Three different

RF are applied after both of the pooling layers and the fully

connected layer. The final output is obtained by combining

the outcomes of the three RF using ensemble learning. In

[71], the authors use a pre-trained CNN model for feature

extraction. For each featuremap they applied four classifiers:

random forest, gcforest, SVM, and LSTM. The comparison

of the four hybrid models reveal that CNN-SVM and CNN-

RF give higher accuracy for bearing fault classification.

All the works mentioned above have improved the

prediction accuracy. However, the hybridization models

need to be trained sequentially to tune the parameters of the

combined models to get the best performance. In addition,

combining two or more models increases the number of

parameters, hence the need for compute resources to

manage them.

3 Background

3.1 The convolutional neural networks (CNNs)

Convolutional neural networks are among the most used

models for image classification. In numerous situations,

they predict the image class with a great precision. CNN is

an operational class of models for better comprehension of

the information contained in an image, leading in improved

image identification, segmentation, detection, and retrieval

[19]. A CNN model is composed of an input layer, con-

volution layers, pooling layers, and fully connected layer.

• Input layer: It represents the first layer of a CNN model.

Images in this layer must have the same size. They are

passed to a convolutional layer of feature extraction.

• Convolution layer: The following layers are ‘‘Convo-

lution layers’’ which function as image filters, allowing

to extract features from pictures and calculate match

feature points during testing.

• Pooling layer: After that, the extracted feature sets are

sent to the ‘‘pooling layer.’’ This layer reduces the size

of large images while keeping the most critical

information. It maximizes the value of each window

by preserving the optimum fit of each feature within the

window.

• Fully connected layer: This is the last layer in the CNN

model. It takes the high-level filtered pictures and

transforms them into categories with labels.

CNN models are also composed of an activation function

and a loss function. The former is applied to convolution

layers and to the fully connected layer. While the latter is

applied to the output to measure how much the predicted
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value match with the real one. Rectified Linear Units

(ReLU) is the most used activation function. It replaces

every negative value in the pooling layer with 0. This keeps

learned values from becoming stuck at 0 or ballooning out

toward infinity, allowing the CNN to remain mathemati-

cally stable.

3.2 The Hilbert-Peano Curve

A space-filling scan allows converting a 2D or 3D matrix to

a one-dimensional vector, which is needed to use Markov

chain models. Among the space-filling scans, we pick the

Hilbert-Peano scan. This scan is constructed using four

patterns as shown in Fig. 1. The interest of Markov chain

methods for image segmentation with respect to 2D Mar-

kov field models is that, being based on 1D modeling, they

lead to significantly lower computational cost. However,

consideration of contextual information is less satisfactory:

two neighbors in the chain are neighbors in the grid, but

two neighbors in the grid can be distant in the chain. In

fact, the Hilbert-Peano path preserves the neighborhood in

the 1D vector, as well as possible [26]. This characteristic

makes it useful in multidimensional signal processing. In

particular, with the rapid development of digital image

processing, the Hilbert curve, as a scanning technique, is

widely applied in digital image processing [72].

The Hilbert-Peano curve is adapted to images of size 2p

whereas in our case the volumes on which we apply the

Peano path are of arbitrary size. To overcome this problem

we use the solution proposed in [72]. Given a rectangular

matrix of size n 9 m. This solution aims at finding the

curve that corresponds to a matrix of size 2order such as:

2order is the smallest value [maxðn;mÞ:
Then we eliminate the 2order � ðn x m) extra cells. In

Fig. 2, we illustrate the Peano scan applied to matrices of

size 2 9 2, 4 9 4, and 8 9 8, respectively. In Fig. 3, we

show the adopted scan used for matrices of arbitrary size.

In the figure, we give two examples for matrices of size 3

9 3, and 5 9 5. We note that this scan is also applied for

non-squared images. In our case, all the manipulated

images are square, in other words, they are of size n 9 n.

3.3 The hidden Markov chains (HMCs)

We consider that we have access to a noisy version of the

signal modeled by a Markov chain, and the general prob-

lem is that of estimating the unobservable realization of the

chain.

We consider stochastic processes X = X1:N and Y = Y1:N .

Y is observed and X is not. Each Xn takes its values in the

finite set of K classes X ¼ fw1; :::;wKg and each Yn takes

its values in the set of real numbers R. Dependence ori-

ented graph of HMC with N = 3 is given in Fig. 4.

In classic HMC (X, Y), we consider X as Markov with

the distribution

Fig. 1 The four patterns for the construction of the Peano curve, the

first on the left is the base pattern and the others are obtained by

rotation ðp; p
2
and 3p

2
Þ, respectively, of the latter

Fig. 2 The Peano scan for matrices of size two, four, and eight,

respectively

Fig. 3 The Peano scan used when the size of the matrix is not a power

of two, the first example on the left is for matrix of size three, and the

second example on the right is for matrix of size five

Fig. 4 Dependence oriented graph of Hidden Markov Chain

17990 Neural Computing and Applications (2023) 35:17987–18002

123



pðxÞ ¼ pðx1Þ
YN�1

n¼1

pðxnþ1jxnÞ; ð1Þ

and the distribution p(y|x) is defined with

pðyjxÞ ¼
YN

n¼1

pðynjxnÞ; ð2Þ

where pðynjxnÞ are assumed Gaussian. The Bayesian Mar-

ginal Posterior Mode (MPM) we use for estimation x̂ ¼
ðx̂1; . . .; x̂NÞ of X from Y is defined with

For each n ¼ 1; . . .;N;

x̂n ¼ argmax
wk

pðxn ¼ wkjyÞ ¼ argmax
wk

anðkÞbnðkÞ;
ð3Þ

where the forward probabilities anðkÞ = pðxn ¼
wk; y1; . . .; ynÞ and the backward ones bnðkÞ ¼
pðynþ1; :::; yN jxn ¼ wkÞ are computed recursively with fol-

lowing forward and backward recursions:

a1ðkÞ ¼ pðx1 ¼ wk; y1Þ;

anþ1ðkÞ ¼
X

k

pðxnþ1jxnÞpðynþ1jxnþ1ÞanðkÞ;
ð4Þ

bNðkÞ ¼ 1;

bnðkÞ ¼
X

k

pðxnþ1jxnÞpðynþ1jxnþ1Þbnþ1ðkÞ;
ð5Þ

In the homogeneous case that we will consider in this

paper, the distributions pðxnþ1jxnÞ and pðynjxnÞ don’t

depend on n. Then the parameters defining pðx; yÞ ¼
pðxÞpðyjxÞ are the parameters defining pðx1Þ, pðx2jx1Þ and
pðy1jx1Þ. For k ¼ 1; :::;K, they will be denoted with

pk ¼ pðx1 ¼ wkÞ; aij ¼ pðx2 ¼ wjjx1 ¼ wiÞ. Gaussian

pðy1jx1 ¼ wkÞ are of means lk and variances r2k . To make

MPM (3) unsupervised, we estimate all parameters from

Y ¼ y using the classic ‘‘Expectation-Maximization’’ (EM)

method. EM produces a sequence of parameters in the

following way. For k; i; j ¼ 1; :::;K; let pqk ; a
q
ij; l

q
k ; r

2;q
k be

the current parameters. Setting

Wq
nði; jÞ ¼

aqnðiÞa
q
ijp

qðynþ1jxnþ1 ¼ wjÞbqnþ1ðjÞPK
i¼1 a

q
nðiÞ½

PK
j¼1 a

q
ijp

qðynþ1jxnþ1 ¼ wjÞbqnþ1ðjÞ�
ð6Þ

nqnðiÞ ¼
XK

j¼1

Wq
nði; jÞ; ð7Þ

parameters are updated with

pqþ1
k ¼ 1

N

XN

n¼1

nqnðkÞ; aqþ1
ij ¼

PN�1
n¼1 Wq

nði; jÞPN�1
n¼1 nqnðiÞ

; ð8Þ

lqþ1
k ¼

PN
n¼1 n

q
nðkÞynPN

n¼1 n
q
nðkÞ

; ð9Þ

r2;qþ1
k ¼

PN
n¼1 n

q
nðkÞðyn � lqþ1

k Þ2
PN

n¼1 n
q
nðkÞ

ð10Þ

Initialization and criterion for stopping iterations depend

on the particular case studied.

4 New hybrid CNN-HMC approach

We place ourselves in a classification task where the

problem is to find the class of the input image. We consider

the case of two possible classes X ¼ fw1;w2g ¼ f0; 1g.
The new model we propose, called CNN-HMC, uses

CNN for feature extraction, and HMC for classification. It

extends any CNN. The input of CNN-HMC is an RGB

image of the same size as the input of the CNN model. We

first apply a combination of convolution layers, pooling

layers, and possibly dropout layers to extract the features of

the image. The output of this operation is a volume of size

(x, y, h), where x and y are the dimensions of each feature

and h is the number of features. Then we apply the Peano

scan to obtain h hidden Markov chains. We consider that

the features are independent of each other, so that the

h HMCs obtained are considered independently. After

having h HMCs, we use the MPM to estimate each value of

the h hidden chains. We choose the dominant class in each

of the h chains, then we take the dominant class in the

h classes obtained. We estimated the parameters of each of

the h chains with EM described in the previous section. In

Fig. 5, we illustrate the architecture of the CNN-HMC

model.

The classification algorithm based on CNN-HMC is

given in Algorithm 1 below.
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5 Models description

5.1 4Conv description

We consider the following CNN model, which we will

refer to as 4Conv. This model takes as input, RGB images

of size 64964. It is composed of four blocks of convolu-

tions, max-pooling, and dropout layers. Each convolution

uses a kernel of size 393 and filters of size 16, 32, 32, and

64, respectively. We apply to each convolution layer the

function ReLU as an activation function. The Max-pooling

layer uses windows of size 292. The dropout takes as a

parameter the value 0.5 which means that 50% of neurons

will be eliminated from this layer and only the 50% of the

neurons that remain will send their values to the next layer.

The result of the four blocks is a volume of size 292964

representing the features map where each sub-matrix of

size 292 is a characteristic of the input image. The features

map is flattened using a sequential scan to have a column

vector. The latter squeezed the entrance to a classical

neural network for classification. This network takes 256

neurons as input, has two hidden layers, and produces two

outputs. The first hidden layer has 128 neurons and the

second hidden layer has 64 neurons. The hidden layers use

the activation function ReLU, while the output layer uses

the softmax function.

We illustrate in Fig. 6 the convolutional neural network

architecture, 4Conv, which we have proposed with its two

parts: feature extraction and classification. In Fig. 7, we

show summary of the 4Conv model.

5.2 CNN-HMC for 4Conv

The CNN-HMC we propose takes the feature extraction

part of CNN networks then applies the Peano path to obtain

a hidden Markov chain and at the end finishes the classi-

fication with the MPM.

We use the 4Conv model described in the previous

section for feature extraction. After that, we take the output

just before applying the flattening that is the matrix of

characteristics and which is a volume of size (2, 2, 64).

This means that we have 64 characteristics where each is a

square matrix of size 2. For each matrix of size (2, 2), we

apply the Peano path to obtain a hidden Markov chain of 4

Fig. 5 The architecture of the CNN-HMC model

Fig. 6 The architecture of the considered CNN model, 4Conv

Fig. 7 Summary of the considered CNN model, 4Conv, with input

and output size of each layer
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elements. To each chain, we apply the MPM to have a

vector composed of values ‘‘0’’ and ‘‘1‘‘. We used the EM

algorithm to estimate the parameters of the MPM that are:

the probability of appearance of each class p(0) and p(1),

the transition matrix A, the mean of the first class l1, the
variance of the first class r21, the mean of the second class

l2, and the variance of the second class r22. We run the EM

algorithm for three iterations. To choose the number of

iterations we have tested different values from one to ten.

We observed that after three iterations the value of the

variance became zero which results in an error in the

computation of the Gaussian function. This problem arises

because the inputs of the EM algorithm are small, in the

order of 10�6. We initialized the parameters as follows: for

the cat class: pð0Þ ¼ 0:25; pð1Þ ¼ 0:75, A ¼ 0:4 0:6
0:4 0:6

� �
,

m1 ¼ 1, r12 ¼ 1, m2 ¼ 0:9 and r22 ¼ 2. For the dog class:

pð0Þ ¼ 0:2; pð1Þ ¼ 0:8, A ¼ 0:2 0:8
0:2 0:8

� �
, m1 ¼ 3, r12 ¼ 2,

m2 ¼ 0:8, and r22 ¼ 1. We note that we have done

extensive experiments to find the appropriate initialization

for parameters that maximized the accuracy of the CNN-

HMC model. In Fig. 8 and 9, we illustrate the initial

transition graphs of the two classes, respectively.

We repeat the same process for all the 64 matrices of size

(292). At the end, all the vectors of size 4 obtained in the

previous step are concatenated and the dominant class is

computed. This class represents the class of the input image.

In this architecture, we suppose that the characteristics are

independent and that is why we transform each character-

istic of size (2, 2) into a Markov chain, which gives us 64

Markov chains. If we assume the opposite then all the

feature matrices which are of size (2, 2, 64) will be trans-

formed into a single Markov chain of size 256. We have

tested this possibility but the results were not satisfactory.

We illustrate the architecture of the CNN-HMC for the

4Conv model in Fig. 10.

5.3 mAlexNet description

We will now compare our proposal to a model called

mAlexNet [29] for mini AlexNet. This model takes RGB

images of size (224,224) as input. It is composed of three

convolutional layers and each of them is followed by a

Max-pooling layer. The first convolutional layer takes the

parameters: 16 for filters, (11, 11) for kernel size, and 4 for

the value of stride. The second convolutional layer takes

the parameters: 20 for filters, (5, 5) for kernel size, and 1

for the value of stride. And finally, the last convolutional

layer takes the parameters: 30 for filters, (3, 3) for kernel

size, and 1 for the value of stride. All those layers use the

ReLU activation function. The Max-Pooling layers use a

pool size of (3, 3) and stride of size 2. The features map

extracted by the convolutional and the pooling layers is of

size 393930. This means that we have 30 features with

each of them having a size of 393. Afterward, the classi-

fication is done by a regular neuronal network with one

layer having 48 neurons and an activation function, ReLU.

We obtain the output of the model by applying the ’’soft-

max‘‘ function which is used to normalize the output,

transforming it from weighted sum values to single-sum

probabilities. Each value in the softmax function is

Fig. 8 Initial transition graph for the cat class

Fig. 9 Initial transition graph for the dog class

Fig. 10 The architecture of CNN-HMC for 4Conv
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interpreted as the probability of belonging to each cate-

gory. In Fig. 11, we show a summary of the mAlexNet

model with input and the output size of each layer.

5.4 CNN-HMC for mAlexNet

During this stage we apply the same process applied to

4Conv to mAlexNet. We take the output of the model

before applying the flattening that is a volume of size

393930, representing the features map of the model. This

means that mAlexNet has extracted 30 features, each of

size 3 by 3. To each feature or matrix of size 393 we apply

the Peano scan to obtain a hidden Markov chain of size 9.

After that, we estimate the parameters for the MPM

method using the EM algorithm. We run the EM algorithm

for three iterations. We initialized its parameters as follow:

for the cat class: pð0Þ ¼ 0:25; pð1Þ ¼ 0:75,

A ¼ 0:4 0:6
0:4 0:6

� �
, m1 ¼ 1, r12 ¼ 0:9, m2 ¼ 0:9 and

r22 ¼ 2. For the dog class: pð0Þ ¼ 0:2; pð1Þ ¼ 0:8,

A ¼ 0:2 0:8
0:2 0:8

� �
, m1 ¼ 3, r12 ¼ 2, m2 ¼ 0:8, and r22 ¼ 1.

In Fig. 12, we show the architecture of the CNN-HMC

applied to the mAlexNet model.

6 Models training

We trained all the models with ‘‘Adam’’ optimizer [73]. The

parameters used for this algorithm are by default as follows:

learning rate alpha ¼ 0:001, beta1 ¼ 0:9, beta2 ¼ 0:999,

and epsilon ¼ 1exp�07. This parameters have shown a sig-

nificant performance for models learning and are rarely

modified. We have tested other parameters such as learning

rate = 0.01, and 0.0001, beta1 = 0.1, and 0.01, and beta2 =

0.1, and 0.01, but the best results were achieved by the

default parameters mentioned above. For the loss function,

we used Categorical CrossEntropy (CCE) [74]. This func-

tion is utilized in multi-classification problems, which is our

case with the two classes: cat and dog. It is defined as:

Loss ¼ �
XN

i¼1

yi � logðŷiÞ; ð11Þ

where:

yi: is the target output corresponding to the ith class it is

equal to 1 or 0;

ŷi: is the output predicted by the model for the ith class,

ŷ�½0; 1�;
N: is the output size, or the number of output classes in

the model.

This loss function is a useful indicator of how easily two

discrete probability distributions can be distinguished from

one another. In this case, yi represents the likelihood that

event I will occur, and the total of all yi equals 1, implying

that only one event will occur. When the distributions

become closer to one another, the negative sign ensures

that the loss gets lower.

To evaluated the performances of our models we used

recall, precision, F1-score, and accuracy metrics defined as

follows:

Recall ¼ Tp
Tp þ Fn

; ð12Þ

Precision ¼ Tp
Tp þ Fp

; ð13Þ

Fig. 11 mAlexNet model summary with input and output size of each

layer

Fig. 12 The architecture of CNN-HMC for mAlexNet
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F1� score ¼ 2� Precision� Recall

Precisionþ Recall
; ð14Þ

Accuracy ¼ Tp þ Tn
Tp þ Tn þ Fp þ Fn

; ð15Þ

where, Tp and Tn are true positives, and true negatives, Fp

and Fn are false positives and false negatives. The objec-

tive of the training is to minimize the loss and maximize

the accuracy.

6.1 4Conv training

We have run our models 15 times. In Fig. 13, we illustrate

the graph of the accuracy and the loss of the proposed

4Conv model. The training accuracy of this model is

68.21%, and the loss is 59.05%. As we can see from the

figure, the model does not suffer from the overfitting

problem [75], since the gap between the training and the

testing accuracy is small.

6.2 mAlexNet training

We have run mAlexNet 15 times. In Fig. 14, we illustrate

the graphs of the accuracy and the loss of the mAlexNet

model. The training accuracy of this model is 71.77%,

while the loss is 56.66%. Again this model also does not

overfit the data.

6.3 Datasets

To evaluate the performance of our model, we opted for a

classification of an image as a cat or a dog. For this

problem we used a dataset made up of 10,028 images of

cats and dogs [30]. We divided this data into two subsets:

the first for training and the second for testing. The training

set represents 80% of the data and the test set represents the

remaining 20%. We refer to the test dataset as ‘‘Test1’’

Fig. 15 illustrates two images belonging to the two classes

of cat and dog, respectively. Usually, models perform well

in the training and test datasets because most of the data are

from the same source, and they have almost the same

backgrounds and the same light degradation. That’s why

we used two other datasets for the test, the first is down-

loaded from [31], we refer to it by ‘‘Test2’’, and the second

was created by us, and we refer to it as ‘‘Test3’’ [32]. Test2

contains 4747 images of cats and 4724 images of dogs. For

Test3, we downloaded 20 random images of each class

from the internet. In Table 1, we show the details of the

datasets used for the training and the test of the model with

the number of images of each class.

In addition, in order to evaluate the performance of our

model with literature work, we used two other datasets.

The first is a Car-Bike dataset [33], and the second is an

Elephant dataset [34]. The Car-Bike dataset contains 2000

images in each class, while the elephant dataset has 840

images divided equally between the African and the Asian

elephant. Table 2 illustrates the details of the two datasets.

Fig. 13 Training and validation accuracy and loss of the 4Conv model

Fig. 14 Training and validation accuracy of the mAlexNet model

Fig. 15 Illustration of two dataset images, on the left an image of a

cat and on the right an image of a dog
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7 Evaluation experiments

7.1 Implementation details

To evaluate the performances of our models we used Keras

[76] which is a framework based on TensorFlow [77].

Keras is a high-level neural network library that provides a

lot of predefined algorithms, methods, and functions. We

run our solution on Google Colaboratory or Colab which is

a free online service based on Jupyter Notebook and

designed for deploying Machine Learning solutions. It can

be used without any hardware requirement and installation.

It offers a RAM of 13GB and a disk of size 78.19GB.

7.2 Results and discussion

In Table 3, we illustrate the results obtained from the tests

of 4Conv against CNN-HMC. We executed tests on three

datasets: Test1, Test2, and Test3. They are made up of

2023, 9471, and 40 images, respectively, divided equally

among the two classes. The table shows the number of cats

and dogs predicted by two classic CNN models, 4Conv,

against its corresponding CNN-HMC model. The models

are compared using the recall, the precision, the F1-score

and accuracy of the prediction. Test1 belongs to the same

dataset as the training dataset, which is the traditional

method used to evaluate any deep learning model. We

notice that the images of Test1 are unseen images by the

model. The recall of our model is 73.91% against only

45.55% of the 4Conv model. The CNN-HMC reached a

precision equal to 99.86% while the CNN model gives

83.36%. The values of the F1-score are 84.95% and

58.91% for the CNN-HMC and the 4Conv, respectively.

With this dataset, CNN-HMC reached an accuracy of

86.90% against only 68.21% for 4Conv. We also notice

that CNN-HMC has miss-classified only one image of a cat

while 1010 images were well classified. As mentioned

above, some deep learning models such as CNN works

well when testing them in the same dataset used for the

training as we did with Test1, but do not work well with

other datasets. This problem is due to the resolution of the

images. To prove the robustness of our model we test it

with two other datasets, Test2, and Test3.

The value of the recall is equal to 71.72% of the CNN-

HMC model compared to only 47.44% of the 4Conv model

in the Test2 dataset. 99.88% is the precision of our model

against 84.06% of the 4Conv model. The CNN-HMC

model gives an F1-score equal to 83.49% compared to

60.65% for its corresponding CNN with an improvement of

13%.

In Test2 CNN-HMC reached an accuracy of 85.85%

against only 69.29% for 4Conv, with an improvement of

16%. We notice that CNN-HMC was able to predict cor-

rectly 4743 images of cats from a total of 4747 images of

cats, which means that it has missed only four images.

Each one of the recall, the precision, and the F1-score are

equal to 100% for the Test3 dataset. While these metrics

are equal to 50%, 66.67%, and 57.14%, respectively, for

the 4Conv model.

In Test3 the CNN-HMC model was able to predict all

cats and dogs correctly unlike the 4Conv model, which

makes the accuracy of the CNN-HMC 100%, while the

accuracy of 4Conv is only 62.5%.

In Fig. 16, we plot the accuracies results of 4Conv and

its CNN-HMC version using the three datasets: Test1,

Test2, and Test3. We will refer to CNN-HMC in this fig-

ure as CNN-HMC1. The accuracy of CNN-HMC1 is

shown in purple striped color while that of 4Conv is shown

in yellow. As we can see in the graph, the accuracy of

CNN-HMC is always higher than that of 4Conv within the

three datasets.

In Table 4, we illustrate the comparison results of

mAlexNet and its CNN-HMC version using the same

datasets: Test1, Test2, and Test3. In the Test1 dataset, the

recall is 98.81% for our model against 75.39% of the CNN

model. The CNN-HMC gives a precision equal to 74.40%

while the mAlexNet model gives 70.32%. The F1-score is

84.88% for the CNN-HMC and 72.77% for the mAlexNet.

The mAlexNet gives an accuracy of 71.77%, while

CNN-HMC’s accuracy is 82.40% which shows an increase

of 10%. We notice here that the CNN-HMC has well

classified 1000 images of dogs from a total of 1012.

The CNN-HMC model reached a recall value equal to

98.92% compared to only 77.90% of the mAlexNet model

in the Test2 dataset. The CNN-HMC improved the recall

metric by 21% compared to mAlexNet. The precision is

73.46% for our model against 71.61% of the mAlexNet

model. Using the above values of the recall and the pre-

cision, we computed the F1-score metric. The CNN-HMC

model gives an F1-score equal to 84.31% compared to

Table 1 The datasets used for

models training and testing
Cat Dog Total

Training 4000 4005 8005

Test1 1011 1012 2023

Test2 4747 4724 9471

Test3 20 20 40

Table 2 The datasets used for comparison with related work

Class 1 Class 2

Car-Bike Bike: 2000 Car: 2000

Elephant African: 420 Asian: 420
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74.62% for its corresponding CNN with an improvement of

about 10%.

mAlexNet gives an accuracy of 73.57% compared to

81.63% for CNN-HMC, which means there was an

improvement of 8%. The last dataset used for the test is

Test3, that we collected ourselves.

In the Test3 dataset, 100%, 86.96%, and 93.02% are the

values of the recall, the precision, and the F1-score,

respectively, given by the CNN-HMC model. The recall of

the mAlexNet model is 85%, and the precision is 60.71%,

they are lower than those obtained using our model by

about 15%. 70.83% is the value of the F1-score given by

the mAlexNet model in the same dataset. For this last

metric, our model has shown an improvement of almost

23%.

The CNN-HMC model was able to predict correctly all

dogs’ images unlike the mAlexNet model, which has miss-

classified three dogs images. For the cat class, the number

predicted by mAlexNet is lower than the number predicted

by the CNN-HMC model. This last model was able to

predict correctly almost double of the images classified by

mAlexNet. These results have led to an accuracy of

92.50% for the CNN-HMC model and 65% for the mAl-

exNet model with the same datasets.

In Fig. 17, we plot the accuracies of mAlexNet and its

corresponding CNN-HMC model according to the three

used datasets. To make difference between CNN-HMC for

4Conv and the other for mAlexNet, we will refer to CNN-

HMC in this figure as CNN-HMC2. The accuracies of the

CNN-HMC2 are shown in purple striped color and those of

mAlexNet in yellow color. As we can see from the bar

chart, in the three datasets, the accuracy of mAlexNet is

always lower than that of CNN-HMC2.

From Figs. 16 and 17 we conclude that our proposed

model using convolutional neural networks for feature

extraction and hidden Markov chains for classification

gives significant results compared to a classic CNN model

in terms of accuracy.

We will use mAlexNet as a feature extractor since it has

the highest training accuracy compared to the 4Conv

model. We employ transfer learning to a far comparison

with similar related work; this means that we use the same

features map extracted by mAlexNet, and we vary the

classification algorithm between HMC, SVM, LSTM, RF,

and gcForest. All the models are tested on five datasets,

Test1, Test2, Test3, Car-Bike, and Elephant. Table 5 rep-

resents the results of comparing CNN-HMC, CNN-SVM

[35], CNN-LSTM [44], CNN-RF [71], and gcForest [71]

models using the recall, the precision, the F1-score, and the

accuracy for a classification task. The recall of the CNN-

HMC range from 98.81% to 100%. The CNN-SVM recall

Fig. 16 Comparison of CNN-HMC and 4Conv accuracy’s for

prediction using the three datasets

Table 4 Comparison of test

results of mAlexNet model with

the CNN-HMC model using

three cats vs dogs datasets

Datasets Models TN TP Recall (%) Precision (%) F1-score (%) Accuracy (%)

Test1 CNN-HMC 667 1000 98.81 74.40 84.88 82.40

mAlexNet 689 763 75.39 70.32 72.77 71.77

Test2 CNN-HMC 3059 4673 98.92 73.46 84.31 81.63

mAlexNet 3288 3680 77.90 71.61 74.62 73.57

Test3 CNN-HMC 20 17 100 86.96 93.02 92.5

mAlexNet 17 9 85.00 60.71 70.83 65.00

Table 3 Comparison of test

results of 4Conv model with the

CNN-HMC model using three

lats vs dogs datasets

Datasets Models TN TP Recall (%) Precision (%) F1-score (%) Accuracy (%)

Test1 CNN-HMC 1010 748 73.91 99.86 84.95 86.90

4Conv 919 461 45.55 83.36 58.91 68.21

Test2 CNN-HMC 4743 3388 71.72 99.88 83.49 85.85

4Conv 4322 2241 47.44 84.06 60.65 69.29

Test3 CNN-HMC 20 20 100 100 100 100

4Conv 15 10 50.00 66.67 57.14 62.50
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is equal to 87.45%, 91.26%, 95.0%, 92.90%, and 89.76%

in the Test1, the Test2, the Test3, the Car-Bike, and the

Elephant datasets, respectively. The recall of the CNN-

LSTM was less than the CNN-HMC and the CNN-SVM,

with a value ranging between 68.97% and 84.15%. The

worst value of the CNN-RF recall is 65.0% obtained in the

Test3 dataset, while the better value is 80.82% in the Test2

dataset. In the Test1 dataset, the recall of the gcForest is

62.35%, while its highest value is 76.52% obtained in the

Test2 dataset. In the remaining three datasets, the recall of

the gcForest is near 55.0%.

The precision of the CNN-HMC model is 74.40%

compared to 57.80%, 71.96%, 72.67%, and 64.65% for the

CNN-SVM, the CNN-LSTM, the CNN-RF, CNN-gcFor-

est, respectively, in the Test1 dataset. In the Test2 dataset,

the five models’ precisions were equal to 73.46%, 68.24%,

74.79%, 81.23%, and 76.30%, respectively. In the Test3

dataset, the precision of our model is 86.96%, while the

other models give a value ranging between 51.35% and

55.55%. In the Car-Bike dataset, of the CNN-HMC model

precision is 83.23%, while the rest of the models have a

value less than 50.0%. In the Elephant dataset, our model

has the highest precision value with 73.46% against an

average of 50.0% for the compared models.

The F1-score of our model, in the Test1 dataset, is equal

to 84.88% against almost 70.0% of the CNN-SVM, the

CNN-LSTM, and the CNN-RF, while the low value is

63.48% given by the CNN-gcForest model. In the Test2

dataset, the CNN-HMC gives the highest F1-score value

equal to 84.31%, followed by the CNN-RF with 81.02%,

then the CNN-SVM and the CNN-gcForest with 78.09%

and 76.41%, respectively, and finally CNN-LSTM with

73.40%. In the Test3 dataset, the F1-score of our model is

93.02% against 66.0% and 63.83% of the CNN-SVM, and

the CNN-LSTM, respectively, while the two based forest

models give a value of 57.7% and 53.66%. In the Car-Bike

dataset, the CNN-HMC, the CNN-SVM, the CNN-LSTM,

the CNN-RF, and the CNN-gcForest models give an F1-

score values equal to 90.76%, 63.82%, 62.73%, 58.27%,

and 49.96%, respectively. In the Elephant dataset, the

Table 5 Comparison of test results of CNN-HMC model against CNN-SVM, CNN-LSTM, CNN-RF, and CNN-gcForest using the same features

map extracted by mAlexNet

Datasets Models TP TN Recall(%) Precision (%) F1-score (%) Accuracy (%)

Test1 CNN-HMC 1000 667 98.81 74.40 84.88 82.40

CNN-SVM [35] 885 365 87.45 57.80 69.60 61.789

CNN-LSTM [44] 698 739 68.97 71.96 70.43 71.03

CNN-RF [71] 718 741 70.95 72.67 71.80 72.12

CNN-gcForest [71] 631 666 62.35 64.65 63.48 64.11

Test2 CNN-HMC 4673 3059 98.92 73.46 84.31 81.63

CNN-SVM [35] 4311 2741 91.26 68.24 78.09 74.46

CNN-LSTM [44] 3404 3600 72.06 74.79 73.40 73.95

CNN-RF [71] 3818 3865 80.82 81.23 81.02 81.12

CNN-gcForest [71] 3615 3624 76.52 76.30 76.41 76.43

Test3 CNN-HMC 17 20 100 86.96 93.02 92.50

CNN-SVM [35] 19 2 95.0 51.35 66.0 52.50

CNN-LSTM [44] 15 8 70.5 55.55 63.83 57.50

CNN-RF [71] 13 8 65.0 52.0 57.7 52.50

CNN-gcForest [71] 11 10 55.0 52.38 53.66 52.50

Car-Bike CNN-HMC 1996 1598 99.80 83.23 90.76 89.85

CNN-SVM [35] 1858 36 92.90 48.61 63.82 47.35

CNN-LSTM [44] 1683 317 84.15 50.0 62.73 50.0

CNN-RF [71] 1532 274 76.60 47.02 58.27 45.15

CNN-gcForest [71] 1088 733 54.40 46.20 49.96 45.52

Elephant CNN-HMC 418 269 99.52 73.46 85.0 81.79

CNN-SVM [35] 377 45 89.76 50.13 64.33 50.24

CNN-LSTM [44] 319 98 75.95 49.76 60.13 49.64

CNN-RF [71] 319 109 75.95 50.63 60.76 50.95

CNN-gcForest [71] 229 195 54.52 50.44 52.40 50.47
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worst F1-score value is equal to 52.40% given by the CNN-

gcForest followed by the CNN-LSTM, and the CNN-RF

with a value near 60.0%, the CNN-SVM with an F1-score

equal to 64.33%, and finally the CNN-HMC with a value of

85.0%.

The accuracy of our model is 82.40% in the Test1 test

dataset, while the accuracy of the CNN-LSTM and the

CNN-RF is around 70% and the accuracy of the CNN-

SVM and the CNN-gcForest is around 60%. In the Test2

test set, the accuracy of the CNN-HMC and the CNN-RF

are almost equal, while the accuracy of the other models

ranged from 73% to 76%. The CNN-HMC model reached

an accuracy of 92.5%, while the CNN-LSTM accuracy is

the highest among all the tested models with a 57.5%,

against 52.5% of the CNN-SVM, the CNN-RF, and the

gcForest models in the Test3 dataset. In the Car-Bike

dataset, the accuracy of our model is 89.85% against a

value less than 50% of the other compared to models. The

Elephant dataset yields the same outcomes as above with

an accuracy of up to 81.79% of our model compared to a

value near 50% of the other models.

From Table 5, we observe that the recall of the CNN-

HMC is the highest compared to CNN-SVM, the CNN-

LSTM, the CNN-RF, and the CNN-gcForest in the five

tested datasets. The precision of our model is better than all

the compared models in the five datasets except in the

Test2 dataset. The F1-score of the CNN-HMC is ranged

from 84% to 93% in the five datasets, while the other

models give fewer values. Finally, the accuracy of our

model is highest in the five test dataset, while the CNN-

SVM, the CNN-LSTM, the CNN-RF, and the CNN-

gcForest accuracies’ are near 50% in the Test3, the Car-

Bike, and the Elephant dataset.

These results are explained as follows. The Test1 dataset

is used for both the training and the testing of HMC, SVM,

LSTM, RF, and gcForest, and that is why the accuracy is

high while this dataset contains 2003 images. The Test2

dataset has more than 9000 images which explains the

good accuracy obtained by the CNN-SVM, the CNN-

LSTM, the CNN-RF, and the CNN-gcForest compared to

the CNN-HMC. The low performance of the machine

learning models are probably caused by the lack of data in

the Test3, the Car-Bike, and the Elephant datasets. We also

notice that the CNN-SVM, the CNN-LSTM, the CNN-RF,

and the CNN-gcForest parameters were adjusted to the

datasets used in the original work.

In summary, the CNN-HMC model outperforms the

CNN-SVM, the CNN-LSTM, the CNN-RF, and the CNN-

gcForest in terms of recall, precision, F1-score, and accu-

racy using five different test datasets.

8 Conclusion

We have proposed a new model, called CNN-HMC, for

convolutional neural networks (CNNs)-hidden Markov

chains (HMCs). Our model uses CNN for feature extrac-

tions and dimensionality reduction, and uses HMC for

classification. The objective is to enhance the performances

of CNN models for the image classification task. To

evaluate the performance of our proposal, it is compared to

six models in two series of experiments. In the first series,

we applied it to the problem of cats/dogs classification. We

have compared CNN-HMC to two CNN models. The first

one is composed of four convolutions, named 4Conv, and

the second is a minimal version of the well-known AlexNet

model, called mAlexNet. The results show that CNN-HMC

model outperforms the classical CNN model, and signifi-

cantly improves the accuracy of the Mini AlexNet.

In the second series, we have compared our solution to

four models CNN-SVM [35], CNN-LSTMs [44], CNN-RF

[71], and CNN-gcForests [71], which only differ from

CNN-HMC by the second classification step. Based on five

datasets and four metrics (i.e., recall, precision, F1-score,

and accuracy), results of these comparisons show again the

interest of the proposed CNN-HMC model.

Let us mention one perspective for further works. HMCs

considered in the paper are very basic ones, and different

extensions have been proposed since their introduction. In

particular, they have been extended to ‘‘pairwise’’ and

‘‘triplet’’ Markov chains [78], and to hidden Markov chains

with copulas, which model non-Gaussian correlated noise

[79]. Using such extensions instead of HMC are likely to

improve the CNN-HMC classifier proposed in the paper.

Data availability The five datasets used in this work can be accessible

via the links: Test1: https://www.kaggle.com/tongpython/cat-and-dog

Test2: https://www.kaggle.com/trishalsingh/dogs-vs-cats Test3:

https://drive.google.com/file/d/

Fig. 17 Comparison of CNN-HMC and mAlexNet accuracy’s for

prediction using the three datasets
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1vlVpP3ZtLSWCxUs0e9oypV857Bnia8Sv/view?usp=sharing Car-

Bike dataset: https://www.kaggle.com/datasets/utkarshsaxenadn/car-

vs-bike-classification-dataset Elephant dataset: https://www.kaggle.

com/datasets/vivmankar/asian-vs-african-elephant-image-

classification.
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