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Abstract
Nowadays, quick, and accurate diagnosis of COVID-19 is a pressing need. This study presents a multimodal system to

meet this need. The presented system employs a machine learning module that learns the required knowledge from the

datasets collected from 930 COVID-19 patients hospitalized in Italy during the first wave of COVID-19 (March–June

2020). The dataset consists of twenty-five biomarkers from electronic health record and Chest X-ray (CXR) images. It is

found that the system can diagnose low- or high-risk patients with an accuracy, sensitivity, and F1-score of 89.03%,

90.44%, and 89.03%, respectively. The system exhibits 6% higher accuracy than the systems that employ either CXR

images or biomarker data. In addition, the system can calculate the mortality risk of high-risk patients using multivariate

logistic regression-based nomogram scoring technique. Interested physicians can use the presented system to predict the

early mortality risks of COVID-19 patients using the web-link: Covid-severity-grading-AI. In this case, a physician needs

to input the following information: CXR image file, Lactate Dehydrogenase (LDH), Oxygen Saturation (O2%), White

Blood Cells Count, C-reactive protein, and Age. This way, this study contributes to the management of COVID-19 patients

by predicting early mortality risk.

Keywords Multimodal system � COVID-19 � Clinical data � Chest X-ray � Prognostic model � Deep learning �
Classical machine learning

1 Introduction

As of January 9, 2023 [1], the COVID-19 pandemic had

caused about 6.71 million fatalities and 668 million

infections, with new variations periodically developing [2].

Business, economic, and social dynamics on a worldwide

scale were all affected. Governments throughout the world

have adopted flight restrictions, social isolation, and

heightened awareness of hygiene. COVID-19 is easily

mistaken for other viral infections making detection
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challenging [3, 4]. Reverse-transcription polymerase chain

reaction (RT-PCR) arrays are the primary approved diag-

nostic approach for COVID-19 identification [5–7]. Con-

tamination/damage in the sample or viral changes to the

COVID-19 genome may hinder its detection performance

[8–10]. Sadly, despite the need of prompt diagnosis, this

test can take up to six hours from sample collection and

may require multiple tests to distinguish between false-

negative and false-positive results [7, 11]. The false

detection due to contamination concerns in RT-PCR

detection and the delays caused have motivated several

studies [12–14] have demonstrated chest computed

tomography (CT) imaging as a non-invasive alternative. In

addition, multiple publications [12, 13, 15] have advised a

CT scan as a follow-up test for patients with COVID-19

symptoms and negative RT-PCR findings due to them

being non-invasive and detailed that can aid in diagnosis.

However, it has poor sensitivity in early instances of

COVID-19 [16], and image gathering is time-consuming,

susceptible to infection transmission (since it is performed

in close proximity to patients) [17], and expensive [18]. On

the other hand chest X-ray (CXR) imaging is less expen-

sive, faster, and more widely available than computed

tomography (CT), and it exposes the body to less radiation

[19]. Recently chest X-rays are widely used as a COVID-

19 screening alternative, and their predictive value has

been established [20]. As early COVID-19 cases had

bilateral, multifocal ground-glass opacities (GGO) with

posterior or peripheral distribution, predominantly in the

lower lung lobes, which progressed to pulmonary consol-

idation [21, 22]. Many lung diseases have similar symp-

toms. Thus, doctors struggle to differentiate between

COVID-19 infection and other forms of viral pneumonia.

Consequently, symptom similarities may result in a mis-

diagnosis, delayed treatment, or even death in this instance.

Therefore, there is an urgent need for technology to assist

physicians in their analysis.

Significant advances in Deep Learning approaches have

led to state-of-the-art performance in a variety of Computer

Vision applications, including image classification, object

recognition, and image segmentation, in recent years.

Because of this development, solutions based on deep

learning are currently applied in a wider range of fields.

Since the advent of deep Convolutional Neural Networks

(CNNs), the use of CNNs to CXR images has been the

topic of substantial research and broad adoption. Rajpurkar

et al. [23] proposed the CheXNet network by updating

Densenet121 on one of the largest Chest X-ray datasets

[24] consisting of one hundred thousand X-ray pictures for

fourteen distinct diseases. Rahman et al. [25] trained CXRs

to detect pulmonary tuberculosis using a dataset of 3500

infected and 3,500 normal CXRs (TB). In addition, they

retrained the DenseNet201 network with TB and normal

datasets, attaining a TB diagnosis sensitivity of 99.57%.

Khuzani et al. [26] postulated that a set of CXR image

features might be built using the dimensionality reduction

method to create an effective machine learning classifier

capable of distinguishing COVID-19 cases from non-

COVID-19 cases with high accuracy and sensitivity.

Mathew et al. [27] developed a Siamese neural network-

based severity score to automatically quantify radiographic

COVID-19 pulmonary disease severity. This score was

validated with pulmonary X-ray severity (PXS) scores

from two thoracic radiologists and one radiologist-in-

training. Kim et al. [28] suggested a fully automated triage

pipeline that analyzes chest radiographs for the presence,

severity, and progression of COVID-19 pneumonia with

79.9% accuracy. In [29], Maguolo and Nanni questioned

the efficacy of COVID-19 detection from X-rays in various

literature and suggested that it should incorporate larger

and more diverse X-rays to eliminate biases. Robert et al.

[30] have reached a similar conclusion by doing a com-

prehensive literature study and proposing the use of a wide

and diversified dataset for the idea of COVID-19 detection

from Chest X-rays. The authors of this study were also the

pioneers in presenting a cutting-edge deep learning model

for detecting pneumonia [31] and COVID-19 [32] from

chest X-rays. However, until recently, lung segmentation

was used as the first step in their detection technique

[33, 34], which assisted to localize the decision-making

area for machine learning networks. They generated 704

X-ray images for Normal and TB patients using the well-

known Montgomery [35] and Shenzhen [36] CXR lung

mask databases. In extreme COVID-19 situations, where

the lungs are severely deformed, or where images are of

low resolution, the segmentation performance can degrade.

Using an effective human–machine collaboration tech-

nique to annotate ground-truth lung segmentation masks,

another study has built the largest benchmark dataset with

33,920 CXR images and 11,956 COVID-19 samples using

a human–machine collaborative strategy [37]. According to

the authors’ knowledge, this is the largest CXR lung seg-

mentation dataset, which can aid in the development of

CXR-related computer-aided diagnostic tools employing

deep learning techniques. In this study, the researchers

segmented the lung areas from the CXR images using the

model trained on this cutting-edge dataset. In a previous

study [38], we examined the effect of image enhancement

techniques on segmented lungs for COVID-19 prediction,

confirming that gamma correction enhancement provided

an F1-score of approximately 90% using a dataset of

18,479 Chest X-ray images (8851 normal, 6012 non-

COVID other lung diseases, and 3616 COVID-19) and

their ground truth lung masks. Huang and Liao in [39] have

proposed a lightweight CNN-based network (LightEffi-

cientNetV2) for COVID-19 detection with the help of
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segmented lung images. The network achieved 98.33%

accuracy in COVID-19 disease from Pneumonia and

Normal using 21,000 images. They claimed that the same

network achieved 97.48% accuracy on CT images. Despite

the benefits of radiological imaging being non-invasive and

the application of machine learning speeding up the diag-

nosis, several studies have favored accurate blood

biomarkers since variations in them can also help deter-

mine the severity, and progression of an abnormality

[40, 41].

Recent research indicates that biomarkers can play a

significant role in providing vital information about an

individual’s health and recognizing COVID-19. In addi-

tion, they can be utilized to diagnose severity, progression,

and forecast mortality. Sarah et al. [42] introduced the

Kuwait Progression Indicator (KPI) score as a predictor of

the severity of COVID-19 progression. The KPI model was

based on laboratory variables, which are objectively mea-

surable measurements, as opposed to grading systems that

rely on self-reported symptoms and other subjective fea-

tures. Patients were classified as low risk if their KPI score

was less than - 7 and as high risk if it was greater than 16;

however, those with a score between - 6 and 15 had an

unknown likelihood of advancement. This restricts its

applicability to a broad range of patient populations. Weng

et al. [43] presented the ANDC early prediction score to

predict COVID patient mortality risk. This model was

constructed using information from 301 adult individuals

with laboratory-confirmed COVID-19. Age, neutrophil-to-

lymphocyte ratio, D-dimer, and C-reactive protein were

identified as major predictors of mortality for COVID-19

patients by LASSO regression. Area under the curve

(AUC) values of 0.921 and 0.975 for the derivation and

validation cohorts, respectively, indicate that the nomo-

gram was well-calibrated and discriminative. Patients with

COVID were separated into three groups based on ANDC

cutoff values of 59 and 101. The low-risk group

(ANDC\ 59) had a mortality probability below 5%, the

moderate-risk group (59\ANDC\ 101) had a mortality

probability between 5 and 50%, and the high-risk group

(ANDC[ 101) had a mortality probability greater than

50%. Using a dataset of 444 patients, Xie et al. [44] created

a predictive model that integrates age, lactate dehydroge-

nase (LDH), lymphocyte count, and SpO2 as independent

predictors of death. The model performed well in both

internal (c = 0.89) and external (c = 0.98) validations.

However, the model over predicted low-risk individuals

while under predicting high-risk people. These severity

scoring can help in allocating resources efficiently to the

high-risk predicted patients. Intensive care units (ICUs) are

essential for preserving severely ill COVID-19 patients

because they provide oxygen, 24-h monitoring, care, and

when necessary, assisted ventilation. In regions with a high

COVID-19 infection incidence, therefore, ICU beds are a

useful resource [45–47]. Within the first hour of a hospital

visit, routinely collected healthcare data such as blood tests

and vital signs assessments are typically available. These

data give the COVID-19 patient change patterns observed

in various retrospective observational investigations

[48–50]. The results of these research indicate that alanine

aminotransferase (ALT), lymphocyte count, D-dimer,

C-reactive protein (CRP), and bilirubin concentrations are

significant clinical markers. Islam et al. in [51] developed a

generic and reliable predictive model with an accuracy of

85.35% for ICU admission for COVID-19 patients using

the optimal feature combination from the patient data upon

admission utilizing data from the pulmonology department

of Moscow City State Hospital. Significant risk variables

for ICU admission were identified as C-reactive protein

(CRP), chest computed tomography (CT), lung tissue

damage (%), age, hospital admission, and fibrinogen

parameters at hospital admission. Consequently, clinical

biomarkers can be utilized to construct a highly accurate

prognosis model utilizing traditional and deep learning

methods.

Convolutional Neural Networks (CNNs) can be trained

to classify diseases based on radiographic and other images

but cannot consistently identify the underlying medical

cause. Using a combination of patient symptoms, physical

exam findings, laboratory data, and radiologic imaging

findings, the underlying etiology and severity can be

diagnosed. Consequently, machine learning algorithms that

combine information from Chest X-rays with other clinical

data from the electronic health record (her) will be able to

better precisely predict the patient’s severity. However,

attempts to combine Electronic Health Record (HER) and

imaging data for machine learning applications in health-

care have not been widely studied. Few studies have uti-

lized a combination of radiographic imaging, clinical

biomarker data, and artificial intelligence to predict the

prognosis of COVID-19 patients. Jiao et al. in [52], using

patients data from hospitals in USA, have developed a

machine learning model using clinical data and CXR pic-

tures to predict the severity and development of COVID-19

with an AUC of 82%. Chieregato et al. [53] proposed a

multimodal approach based on CT images and clinical

parameters, which were supplied to Boruta feature selec-

tion algorithm with ShAP (SHapley Additive exPlanations)

values, and then the CatBoost gradient boosting classifier

demonstrated an AUC of 0.949% for reduced features on

the holdout test set. With a probability score based on the

significance of SHAP features, the model aimed to provide

clinical decision support to medical doctors. However, the

published research has either yielded unsatisfactory results,

employed tiny datasets, limiting the generalizability of the

models, or employed CT, which has drawbacks as a
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technology. Notably, there has been research employing a

DNA-based approach, but such data are not publicly

accessible, and genome sequence-based investigations are

computationally expensive [54].

As it can be seen that the pandemic has triggered much

research in the early detection of pulmonary abnormalities

using clinical imaging such as CT scans, Chest X-Rays but

had some limitations, which could be only addressed from

clinical examinations from blood biomarkers [55–57]. The

advances in Machine Learning approaches have further

catapulted the early detection automatically with high

reliability and without the need of medical expert opinion,

but there is a need to make it more reliable combining the

imaging and blood biomarkers information. The authors of

this study were inspired by the aforementioned pitfalls to

create a multimodal system that uses CXR and a clinical

biomarker-based system to stratify the severity of COVID-

19 patients and their risk of death. Although most of the

clinicians agree that there is a great need of multimodal

system but the main challenge to develop such a system is

the availability of such multimodal dataset. Even though a

plethora of publications came out in the early and later

stage of the pandemic, a very few works proposed different

multimodal system to make the model reliable and

explainable to the clinicians. This is one of the first studies

to develop a COVID-19 severity prediction model using

both CXR and biomarkers. The paper proposes a compre-

hensive, dependable, and novel approach that supplements

all previous work in this domain. The method is applicable

not only for COVID-19 detection and severity classifica-

tion but also for any other lung abnormality-related com-

plications. The following details help to explain the

approach’s novelty and utility:

• To segment the lungs from Chest X-rays, the authors

used a robust segmentation network (which they

proposed in their previous work [37]). This type of

segmentation will aid the machine learning network in

determining the region of interest.

• To extract features from the segmented X-rays, the

cutting-edge machine learning network ChexNet

[58, 59] (which was developed using the largest Chest

X-ray dataset) was used.

• A multimodal technique based on Chest X-rays and

Common Blood Count features was used. This will

allow the network to perform more accurately when the

severity cannot be determined solely by X-rays.

• Applied the stacking method to improve classification

and severity performance.

• Created a nomogram scoring technique that clinicians

can use to predict the severity of COVID-19 patients.

• The entire solution was implemented as an easy-to-use

app for clinicians.

The rest of the article is organized as follows: Sect. 2

describes the study’s methodology, which includes dataset

descriptions, preprocessing stages, machine learning and

stacking techniques, and the development of a nomogram-

based scoring system. Section 3 presents the experimental

results and reports on the performance of the scoring

technique, while Sect. 4 explains the results. Section 5

concludes the article by making future recommendations.

2 Methodology

This study included two major investigations. The first

study used a multimodal stacking model-based approach

combining CXR images and clinical data to predict the

severity risk of COVID-19 patients, while in the second

study, CXR images and clinical biomarkers-based com-

bined features were used to predict the death outcome in

high-risk patients using a nomogram-based scoring system.

The method is organized with the following sub-sections:

System Architecture, Dataset Description, Statistical

Analysis, Data Preprocessing, Experiments and Perfor-

mance Metrics.

2.1 System architecture of the proposed system

First, CXR images are preprocessed, and the lung area is

segmented and fed to a pre-trained deep CNN model to

extract image features, which are then reduced in dimen-

sionality using principal component analysis (PCA). Clin-

ical data were processed in parallel, and clinical features

were ranked using a feature selection algorithm. Finally,

the PCA components and top-ranked clinical features were

combined to create a stacking ensemble model to predict

whether patients were low or high risk. Then the high-risk

patient’s combined reduced dimensionality features were

used to develop another stacking model. Furthermore, we

developed a scoring technique based on a nomogram using

the stacking model for the early prediction of death out-

comes. The methodology is depicted schematically in

Fig. 1.

The study proposed a stacking-based approach and

compared the performance with conventional ML classi-

fiers. This approach consists of two-step learners such as

base learners and meta learners. The three best-performing

ML classifiers were selected as base learner models in the

stacking architecture and logistic regression was used for

the meta learner model (Mf Þ in the second phase of the

stacking model and finally produced the final prediction.

Figure 2 shows the architecture of the proposed stacking

model which combines N numbers of best-performing

classifiers m1; . . .;mn using an input dataset D, which has a
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feature vector (xi) and corresponding label (yi). In the first

step, n base level ML classifier produces the prediction

probabilities y1; . . .; yp. Finally, the prediction probabilities

of the best performing base learners feed to a logistic

regression-based meta-learner classifier (Mf ) for the final

prediction.

Each ML classifier in the base learner predicts a prob-

ability distribution according to the output class values.

Therefore, a probability distribution is created for the input

x using the predictions of the base-level classifier set m in

Eq. 1:

PDm xð Þ ¼ PDm l1jxð Þ; PDm l2jxð Þ; . . .; PDm lrjxð Þð Þ ð1Þ

where ðl1; l2; . . .; lrÞ is the original class values, and

PDm lijxð Þ denotes the probability distribution such as x

belongs to a class li as estimated (and predicted) by clas-

sifier m. The class lk with the highest-class probability

PDm lijxð Þ is predicted by classifier m. The meta-learner

attributes are the probabilities produced for each class by

each of the base-level classifiers, i.e., PDmk lijxð Þ for i ¼
1; . . .; r and k ¼ 1; . . .; n; where r and n are the number of

classes and the number of base-level classifiers.

Fig. 1 Overview of the proposed system architecture

Fig. 2 Proposed stacking model architecture
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2.2 Dataset description

The study utilized a dataset from the first wave of COVID-

19, collected between March and June of 2020, which

contained both CXRs and clinical data collected from six

Italian hospitals at the time of admission for symptomatic

COVID-19 patients [60]. This dataset includes a Posterior

Anterior (PA) or Anterior Posterior (AP) view of 930 X-ray

images and clinical data for COVID-19-positive patients

[60]. Each patient tested positive for COVID-19 using RT-

PCR. This data collection includes 396 (42.6%) low-risk

individuals and 534 (57.4%) high-risk patients. In addition,

364 (68.2%) of the 534 high-risk patients survived, while

170 (31.8%) perished. Figure 3 depicts CXR image sam-

ples from the dataset.

2.3 Statistical characteristics

A statistical analysis of the patient’s demographic, signs

and symptoms, clinical data, comorbidity, and the outcome

was performed using Stata/MP 13.0 software. The dataset

includes gender, age, and twenty-three signs and symp-

toms, comorbidity, and clinical biomarkers. Table 1 shows

the statistical characteristics of 25 parameters (age, gender,

sign and symptoms, comorbidity, clinical biomarkers).

Gender is represented numerically and in percentages. For

the remaining variables, the number of missing data (N),

presence and absence of signs and symptoms, mean (M),

and standard deviation (SD) were reported. Gender was

subjected to univariate analysis (Chi-square test), while the

other variables were subjected to Wilcoxon’s ranked tests.

Using a 95% statistical significance criterion, the p value

was considered significant if it was less than 0.05.

2.4 Data preprocessing

This section discusses the data preprocessing steps for both

data modalities in detail.

2.4.1 Chest X-ray image preprocessing

A. Gamma correction

Image enhancement is a common image-processing

technique that emphasizes important information in an

image while reducing or removing other information to

improve identification quality. As demonstrated in our

previous work [38], gamma correction was applied to

CXRs, which improves COVID detection performance by

improving image quality. For image normalization, linear

operations such as pixel-wise scalar multiplication, addi-

tion, and subtraction are frequently used, whereas the

Gamma correction technique is a nonlinear operation per-

formed on the pixels of the source image. Gamma cor-

rection employs a projection link with gamma and pixel

values determined by the internal map. The pixel value

here can range from 0 to 255. Figure 4 shows a samples X-

ray image for before and after applying gamma correction.

If G is the gray scale value, then the gamma corrected

output pixel s(G) can be written as in Eq. (2):

s Gð Þ ¼ 255
G

255

� �1=c Gð Þ
ð2Þ

where c(G) represents the gamma value.

B. Lung segmentation

As previously discussed, it is critical to localize the

region of interest for machine learning networks, in this

case, the lungs in the Chest X-rays. In our previous work

for CXR lung segmentation [37], the Feature Pyramid

Networks (FPN) [61] segmentation network with the

DenseNet121 [59] encoder as a backbone outperformed

other conventional segmentation networks. In [37], three

segmentation architectures with different encoder back-

bones: U-Net [62], U-Net ? ? [63], and Feature Pyramid

Networks (FPN) were investigated [61]. It segmented the

lung area very accurately using the FPN network with

DenseNet121 as the backbone, which was confirmed by

experienced radiologists. Figure 5 depicts some of the

X-ray images and their corresponding masks.

Fig. 3 Chest X-ray sample images for COVID-19. A Low-risk

patients, B High-risk patients with survival outcomes, and C High-

risk patients with death outcomes
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Table 1 Summary of statistical characteristics of the study patients

Item Low-risk High-risk Total Statistics P value

Gender v2 = 16.45 \ .05

Male (%) 159 (40%) - 149 (28%) 308 (33%)

Female (%) 237 (60%) 385 (72%) 622 (67%)

Age (years) Z = - 8.5 \ .05

N 396 (0) 534 (0) 930 (0)

M ± SD 60.3 ± 15.9 67.8 ± 13.5 64.7 ± 14.9

Body temperature (�C) Z = - 7.55 \ .05

N 354 (42) 456 (78) 810 (120)

M ± SD 37.5 ± 0.93 39.6 ± 1.3 37.56 ± 0.98

Cough (%) Z = - 6.67 \ .05

N 395 (1) 530 (4) 925 (5)

Yes/no 210/185 460/70 670/255

Difficulty in breathing Z = - 9.35 \ .05

N 395 (1) 531 (3) 926 (4)

Yes/no 180/215 450/81 630/296

Red blood cell (109 L) Z = - 16.56 \ .05

N 371 (25) 515 (19) 886 (44)

M ± SD 4.68 ± 0.7 4.56 ± 0.71 4.59 ± 0.7

White blood cell count (109 L) Z = - 8.77 \ .05

N 386 (10) 524 (10) 910 (20)

M ± SD 6.08 ± 2.76 7.87 ± 4.36 7.1 ± 3.87

CRP (mg/dL) Z = - 3.53 \ .05

N 377 (19) 514 (20) 891 (39)

M ± SD 23.01 ± 43.3 39.5 ± 69.4 32.5 ± 60.33

Fibrinogen (mg/dL) Z = 0.174 0.912

N 75 (321) 141 (393) 216 (714)

M ± SD 561.07 ± 115 641.19 ± 172 613.37 ± 159

Glucose (mg/dL) Z = - 11.84 \ .05

N 302 (94) 439 (95) 741 (189)

M ± SD 114.5 ± 48.2 130.9 ± 60.32 124.26 ± 56

LDH (U/L) Z = - 3.28 \ .05

N 291 (105) 404 (130) 695 (235)

M ± SD 282.4 ± 114 442.4 ± 272 375.4 ± 234

INR Z = - 7.93 \ .05

N 255 (141) 413 (121) 668 (262)

M ± SD 1.15 ± 0.29 1.3 ± 0.76 1.24 ± 0.63

D-dimer Z = - 1.81 0.064

N 106 (290) 144 (390) 250 (680)

M ± SD 1055.8 ± 1384 3780.6 ± 8635 2625.3 ± 6741

O2 percentage Z = - 6.42 \ .05

N 289 (107) 365 (169) 654 (276)

M ± SD 95.4 ± 3.72 89.5 ± 8.01 92.3 ± 7.02

PaO2 (mmHg) Z = - 8.33 \ .05

N 288 (108) 412 (122) 800 (130)

M ± SD 75.5 ± 17.15 69.95 ± 31.26 72.21 ± 26.5

SaO2 (%) Z = 1.36 0.845

N 165 (231) 212 (322) 377 (553)

M ± SD 94.92 ± 4.38 89.95 ± 8.92 92.13 ± 7.69
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C. Feature extraction

To extract important features from segmented Chest

X-rays, a ChexNet CNN model based on DenseNet-121

[59] architecture was used. It’s worth noting that CheXNet

is a DenseNet variant that was trained on a large Chest

X-ray dataset, and the pre-trained model is publicly

available. As demonstrated in our previous work [38], it

performed exceptionally well in the COVID-19 classifica-

tion task. To extract useful features from the segmented

lung area of the CXR images, features from the CheXNet

model’s last layer (‘AvgPool’) before the Softmax layer

were extracted.

D. PCA for dimensionality reduction

To reduce the dimensionality of the feature space pro-

duced by the ChexNet model, a feature reduction technique

known as Principal Component Analysis (PCA) was used.

It converts high-dimensional data into a new lower-di-

mensional representation with the least amount of recon-

struction error. There is no redundant data in the reduced

set because all the fundamental components are orthogonal

to one another. Whitening was used to calculate PCA,

which can improve accuracy by forcing data to meet cer-

tain assumptions.

2.4.2 Clinical data preprocessing

A. Data imputation and normalization

Missing data imputation is the most critical stage in

clinical data preprocessing for machine learning model

construction. Many blood biomarkers were obtained for

each patient, and many of them were missing in some

patients. Rather than removing missing data for the various

variables, various imputation techniques were investigated.

Deleting the missing variable may result in the loss of

critical and contextual information, as well as having an

impact on the generalized representation of the dataset

[35]. Missing value imputation methods based on machine

learning (ML) have grown in popularity. This technique,

on the other hand, necessitates the creation of a separate

Table 1 (continued)

Item Low-risk High-risk Total Statistics P value

PaCO2 (mmHg) Z = 5.36 \ .05

N 278 (118) 403 (131) 681 (249)

M ± SD 33.49 ± 5.4 33.1 ± 6.9 33.26 ± 6.34

pH Z = - 2.01 \ .05

N 271 (125) 386 (148) 657 (273)

M ± SD 7.45 ± 0.05 7.15 ± 0.06 7.35 ± 0.05

Cardiovascular disease Z = 7.78 \ .05

N 335 (61) 467 (67) 802 (128)

Yes/no 230/105 345/122 575/227

Heart failure (%) Z = 6.40 \ .05

N 333 (63) 465 (69) 798 (132)

Yes/no 215/118 288/187 503/305

High blood pressure Z = - 5.66 \ .05

N 337 (59) 467 (67) 804 (126)

Yes/no 227/110 330/337 557/447

Cancer Z = - 1.84 0.067

N 337 (59) 467 (67) 804 (126)

Yes/no 112/225 164/303 276/528

Chronic kidney disease (%) Z = - 5.81 \ .05

N 337 (59) 467 (67) 804 (126)

Yes/no 156/181 320/147 476/328

Respiratory disease Z = 0.177 .865

N 262 (134) 290 (244) 552 (378)

Yes/no 162/100 195/95 357/195
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model for each missing data column. In this study, a

popular data imputation technique known as multivariate

imputation by chained equations (MICE) was used to deal

with missing data. According to the literature and previous

works of the authors [64–67], the MICE technique out-

performs other imputation techniques for clinical data [68].

The effectiveness of machine learning models for gen-

eralized performance is heavily dependent on the input data

quality. The process of scaling or changing data so that

each feature contributes equally to the training process is

referred to as ‘‘data normalization.’’ Numerous studies

have shown that normalization improves the performance

of machine learning models [29]. Z-score normalization

was used in this study by subtracting the average of the

data and dividing it by the standard deviation.

B. Top-ranked features

The feature selection technique selects the features that

have the greatest influence on the output prediction. It

helps to reduce overfitting, typically improves accuracy,

and drastically reduces training time. Some of the feature

selection methods used in the literature include univariate

selection, principal component analysis (PCA), recursive

feature elimination (RFE), bagged decision trees (e.g.,

random forest), and boosted trees (e.g., Extreme Gradient

Boosting). Random forest frequently outperforms other

methods due to its ability to handle datasets with many

predictor variables [69]. As a result, a random forest-based

feature selection technique was used in this study to rank

the features in risk prediction out of 25 variables, including

age, gender, sign and symptoms, comorbidity, and clinical

biomarkers.

2.5 Experiments

All the experiments in this study were carried out using the

PyTorch library and Python 3.7 where PyTorch was used

for the feature extraction part using a deep neural network

and machine learning algorithms were used from the Sci-

kit-learn library. We did all investigation on an Intel�
Xeon� CPU E5-2697 v4 @ 2.30 GHz with 64 GB RAM

and a 16 GB NVIDIA GeForce GTX 1080 GPU.

As stated in the earlier section, two different types of

investigations were carried out: risk classification and

outcome prediction for high-risk patients. Fivefold cross-

Fig. 4 Samples X-ray image for before (a) and after (b) applying

gamma correction

Fig. 5 Samples X-ray images

from the study dataset (A),
generated masks by the best

performing densenet121 FPN

model (B) and corresponding

segmented lung (C)
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validation was performed in this study. Therefore, 80% of

the data were used for training and 20% for testing in each

fold. Finally, a weighted average of the five folds was

calculated. The number of training and test Chest X-ray

images, and clinical data used in the two experiments are

listed in Table 2.

2.5.1 Development and internal validation of stacking
classification model

We have used reduced features after using PCA from CXR

images and top-ranked clinical features individually and in

combination and used for risk and death prediction using

eight machine learning classifiers, namely Random Forest

[55], Support Vector Machine (SVM) [56], K-nearest

neighbor (KNN) [57], XGBoost [58], Adaboost [59],

Gradient boosting, linear discriminant analysis (LDA) [60],

and Logistic regression [61]. This study used fivefold

stratified cross-validation where four folds are used to

generate a training set for the classifiers and leave onefold

for validation. The best-performing three models were used

to train, validate, and test the Stacking model (as described

earlier).

2.5.2 Experiment-01: risk stratification using CXR Image
and clinical data

In this experiment, we investigated three different experi-

ments to predict the risk of COVID-19 patients. The first

one is conducted on CXR image features, while the second

one is carried on Clinical features, and finally, the com-

bined features from both modalities are used to stratify the

risk.

A. Binary classification (low vs high risk) using CXR

images

The CheXNet model was used to extract features from

CXR and then PCA was used to reduce the dimensionality

of the CXR features. Then, using reduced feature compo-

nents and fivefold cross-validation, eight alternative ML

classifiers were developed to determine which models

performed well in classifying low and high-risk patients.

The stacking model was built using the top three base

models and a meta-model, and the performance of the

stacking technique for the CXR image alone is reported.

B. Binary classification (low vs high risk) using clinical

data

Using fivefold cross-validation, Top-5 features (LDH,

O2 percentage, Age, WBC, and CRP) identified in the

previous stage were tested on eight different ML classifiers

to determine which models performed best in classifying

low and high-risk patients. A stacking model was trained

using the top-performing three algorithms as base models

to train a meta learner and the performance of the meta

learner and base models are reported.

C. Binary classification (low vs high risk) using CXR

images and clinical data

The performance of decreased CXR feature components

and top-ranked clinical variables in categorizing low- and

high-risk patients using different ML classifiers for fivefold

cross-validation was crucial to determine. This experiment

will demonstrate the efficacy of the multimodal method

presented in this work in comparison to the hundreds of

approaches published on CXR alone and the tens of

approaches published on clinical data alone.

2.5.3 Experiment-02: death probability prediction for high-
risk patients

We studied three investigations to predict the death out-

come of high-risk COVID-19 patients, as shown in

Experiment-01. The first one is conducted on CXR image

features, while the second one is carried on Clinical fea-

tures, and finally, the combined features from both

modalities are used to stratify the dead and survived

patients.

A. Binary classification (survival vs death) using CXR

images

The features extracted from the CXR images using

ChexNet were dimensionality reduced using PCA and used

to train eight different ML classifiers to see which models

performed well in predicting the mortality outcome of

high-risk patients using fivefold cross-validation. Among

the eight models, the best performing three models were

used to train the stacking model and the results of base and

stacking models are reported.

B. Binary classification (survival vs death) using clinical

data

Top-5 clinical features (LDH, O2 percentage, Age,

WBC, and CRP) were tested on eight different ML clas-

sifiers to determine which models performed best in pre-

dicting the mortality outcome among high-risk patients. A

stacking model was trained using the top-performing three

algorithms as a base model to train a meta learner and the

performance of the meta learner and base models are

reported.

C. Binary classification (survival vs death) using CXR

images and clinical data

As a multimodal approach, we have investigated the

efficacy of reduced CXR features and top-ranked clinical

features to predict the mortality outcome of high-risk
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patients using fivefold cross-validation using the same

eight models. Then the Top-3 best performing models were

used to train the Stacking ML model and the results for

base models and stacking model were reported.

2.5.4 Development and validation of logistic regression-
based nomogram

Nomograms are a popular graphical scoring technique for

converting statistical models into an estimate of the prob-

ability of a single event [70]. This can be accomplished

using various ML classifiers, such as the Logistic regres-

sion classifier. Multiple independent predictors (x) are

utilized by logistic regression to predict linearly related

outcomes (y). Using linear prediction, the event probability

(Pr) can be computed, and the results can be reported. A

logistic regression-based nomogram was developed for

patients at high risk to stratify their survival and mortality

rates. Using the integrated features from CXR and clinical

data as well as the base learners’ prediction, logistic

regression was used to create a nomogram. In addition,

calibration curves for model development and validation

were plotted to compare the projected and actual death

probability of high-risk patients. In addition, decision curve

analysis was utilized to finalize the threshold probability

ranges within the clinically useful range of the nomograms.

2.6 Performance metrics

Recall/Sensitivity (R), Precision (P), Accuracy (A),

Specificity (S), and F1-Score (F1) were used to evaluate

the performance of different classifiers in the literatures

[59]. The results of this study were drawn from the full

dataset because fivefold cross-validation was used (five test

fold-concatenated). Since the number of occurrences in

each class varies, we gave weighted values for both classes

and total accuracy. Area under the curve (AUC) was used

in judging the model performance. Equations (3–7) depict

the mathematical expressions of five evaluation metrics:

A ¼ TPclass i þ TNclass i

TPclass i þ TNclass i þ FPclass i þ FNclass i
ð3Þ

P ¼ TPclass i

TPclass i þ FPclass i
ð4Þ

R ¼ TPclassi
TPclassi þ FNclassi

ð5Þ

F1 ¼ 2
Precisionclassi � Sensitivityclassi
Precisionclassi þ Sensitivityclassi

ð6Þ

S ¼ TNclass i

TNclass i þ FPclass i
ð7Þ

where classi ¼ Mild and severe or survived and death

where TPclass i is true positive, indicating correct detection

of the actual class, TNclassi is true negative, indicating

correct detection of the other classes, FPclass i is false

positive, indicating incorrect detection of the other classes,

and FNclass i is false negative, indating incorrect detection

of the actual class.

3 Results

3.1 Best features and their combination
selection

The random forest feature ranking technique was used to

select the top-ranked ten features from 25 statistically

significant features (Fig. 6). Moreover, we used few fine-

tuned parameters for Random Forest features selection

technique using Optuna optimizer [71] and we trained the

algorithm with ‘n_estimators’ = 75, ‘criterion’ = ‘entro-

phy’, and ‘max_depth’ = 50. Table 3 shows the results of

testing these top-ranked 10 features with multiple classi-

fiers to determine the best-performing feature combina-

tions. When using the top-ranked 5 features, the Gradient

Boosting classifier outperforms other networks in binary

classification (low- vs. high-risk). Gradient Boosting pro-

duces overall accuracy, weighted sensitivity, precision,

specificity, and F1 scores of 82.91%, 82.91%, 82.87%,

82.91%, and 82.87%, respectively, when only the Top-5

characteristics are used (LDH, O2 percentage, WBC, Age,

and CRP). Among the Top-10 features, determining the

Table 2 Details of the dataset used for training, validation, and testing

Database Types # of patients Training data/fold Augmented training data/fold Test data/fold

Risk classification Low 396 317 317 9 4 = 1268 79

High 534 427 427 9 3 = 1281 107

Outcome prediction Survived 364 291 291 9 4 = 1164 73

Death 170 136 136 9 9 = 1224 34
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most appropriate parameters for the early prediction of

high-risk COVID-19 patients was critical.

3.2 Risk prediction of COVID-19 patients

In this section, the results of three different experiments to

predict low or high-risk COVID-19 patients were reported.

The performance of different ML models for CXR images,

then using clinical data was reported separately and in

combination. Each of these results is based on fivefold

cross-validation.

3.2.1 Performance analysis using CXR images

The gradient boosting classifier was the best performing

classifier for stratifying the low- and high-risk COVID-19

patients. It achieves precision, sensitivity, and F1 scores of

78.41%, 78.48%, and 78.41%, respectively. The stacking

model was built using the top three classifiers such as

Random Forest, KNN, and Gradient Boosting. The stack-

ing model produces slightly better performance with pre-

cision, sensitivity, and F1 scores of 79.5%, 79.53%, and

79.54%, respectively.

3.2.2 Performance analysis using clinical data

The gradient boosting classifier outperforms other classi-

fiers in binary classification with precision, sensitivity, and

F1 scores of 82.81%, 82.8%, and 82.81%, respectively.

The stacking model was trained using the top three algo-

rithms (Random Forest, Gradient Boosting, and XGBoost).

A meta-learner logistic regression classifier was used and

outperformed the base model with precision, sensitivity,

and F1 scores of 83.01%, 83.87%, and 83.01%,

respectively.

3.2.3 Performance analysis using both CXR images
and clinical data

The gradient boosting classifier outperforms other classi-

fiers with precision, sensitivity, and F1 scores of 88.81%,

88.81%, and 88.81%, respectively, using combined CXR

characteristics and clinical data. The stacking model was

built using the top three algorithms (Gradient Boosting,

LDA, and Random Forest) and it outperforms the base

models and produces precision, sensitivity, and F1 scores

of 89.03%, 90.44%, and 89.03%, respectively. Using a

combination of CXR and top-ranked clinical characteris-

tics, the stacking model revealed around a 6% improve-

ment. Table 4 compares, with a 95% confidence interval,

the prediction of low- or high-risk patients using CXR

characteristics and clinical data alone and in combination

with different classifiers employing distinct metrics.

In Fig. 7, it can be seen that combined CXR image

features and clinical top-ranked features outperformed

individual modality with an AUC of 91.5%. The AUC

values for CXR image features and clinical top-ranked

features individually using the stacking model produced

82.3% and 85% of AUC, respectively.

Fig. 6 Top ten features selected

using the random forest feature

selection technique
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Table 3 Summary of the

performance metrics for Top 1

to 10 clinical features

Feature combination Weighted average (95% confidence interval)

P R F1 S A

Top 1 feature 59.62 ± 6.33 59.71 ± 6.33 59.62 ± 6.33 59.62 ± 6.33 59.64 ± 6.33

Top 2 features 60.26 ± 6.31 60.26 ± 6.31 60.26 ± 6.31 60.26 ± 6.31 60.26 ± 6.31

Top 3 features 80.77 ± 5.08 80.8 ± 5.08 80.77 ± 5.08 80.77 ± 5.08 80.73 ± 5.09

Top 4 features 78.21 ± 5.32 78.22 ± 5.32 78.21 ± 5.32 78.21 ± 5.32 78.16 ± 5.33

Top 5 features 82.91 ± 1.83 82.87 ± 1.83 82.91 ± 1.83 82.91 ± 1.83 82.74 ± 1.84

Top 6 features 79.49 ± 5.21 79.58 ± 5.2 79.49 ± 5.21 79.49 ± 5.21 79.42 ± 5.21

Top 7 features 76.28 ± 5.49 76.39 ± 5.48 76.28 ± 5.49 76.28 ± 5.49 76.18 ± 5.49

Top 8 features 76.92 ± 5.43 77.22 ± 5.41 76.92 ± 5.43 76.92 ± 5.43 76.75 ± 5.45

Top 9 features 75 ± 5.58 75.33 ± 5.56 75.00 ± 5.58 75.00 ± 5.58 74.78 ± 5.6

Top 10 features 76.28 ± 5.49 76.39 ± 5.48 76.28 ± 5.49 76.28 ± 5.49 76.28 ± 5.49

Table 4 Comparison of performance metrics for risk prediction using different ML models and approaches (single mode and multimode)

Dataset Classifier Overall Weighted with 95% CI

A P R F1 S

CXR images Linear discriminant analysis

(LDA)

71.75 ± 2.97 71.75 ± 2.97 71.75 ± 2.97 71.75 ± 2.97 71.54 ± 3

XGBoost (XGB) 73.69 ± 2.62 73.7 ± 2.62 73.69 ± 2.62 73.69 ± 2.62 73.68 ± 2.63

Random forest (RF) 76.26 ± 3.05 76.3 ± 3.04 76.26 ± 3.05 76.25 ± 3.05 75.79 ± 3.12

Logistic regression (LR) 71.18 ± 2.36 71.63 ± 2.4 71.24 ± 2.19 71.92 ± 2.3 71.31 ± 2.57

Support vector machine (SVM) 74.26 ± 3.05 74.26 ± 3.05 74.26 ± 3.05 74.26 ± 3.05 74.96 ± 3.09

Extra tree (ET) 70.29 ± 3.19 70.32 ± 3.19 70.29 ± 3.19 70.3 ± 3.19 70.32 ± 3.19

K-nearest neighbors (KNN) 75.66 ± 2.43 75.66 ± 2.43 75.66 ± 2.43 75.66 ± 2.43 74.5 ± 2.46

Gradient boosting (GB) 78.41 ± 3.26 78.48 ± 3.27 78.41 ± 3.26 78.44 ± 3.27 77.9 ± 3.3

Stacking model

(RF ? KNN ? GB)

79.5 ± 1.97 79.53 ± 1.98 79.54 ± 1.97 79.54 ± 1.97 79.45 ± 1.98

Clinical data Linear discriminant analysis

(LDA)

78.75 ± 2.89 78.75 ± 2.89 78.75 ± 2.89 78.75 ± 2.89 78.54 ± 2.9

XGBoost (XGB) 80.69 ± 2.79 80.7 ± 2.79 80.69 ± 2.79 80.69 ± 2.79 80.68 ± 2.79

Random forest (RF) 81.66 ± 2.73 81.66 ± 2.73 81.66 ± 2.73 81.66 ± 2.73 81.5 ± 2.74

Logistic regression (LR) 74.81 ± 2.72 74.8 ± 2.73 74.81 ± 2.72 74.8 ± 2.73 74.56 ± 2.74

Support vector machine (SVM) 78.26 ± 2.91 78.26 ± 2.91 78.26 ± 2.91 78.26 ± 2.91 77.96 ± 2.93

Extra tree (ET) 77.29 ± 2.96 77.32 ± 2.96 77.29 ± 2.96 77.3 ± 2.96 77.32 ± 2.96

K-nearest neighbors (KNN) 76.26 ± 2.64 76.26 ± 2.64 76.26 ± 2.64 76.26 ± 2.64 76.96 ± 2.66

Gradient boosting (GB) 82.91 ± 1.83 82.87 ± 1.83 82.91 ± 1.83 82.91 ± 1.83 82.74 ± 1.84

Stacking model

(GB ? RF ? XGB)

83.01 ± 3.15 83.87 ± 3.14 83.01 ± 3.14 83.01 ± 3.14 83.04 ± 3.17

Both CXR images and clinical

data

Linear discriminant analysis

(LDA)

83.26 ± 2.51 83.26 ± 2.51 83.26 ± 2.51 83.26 ± 2.51 82.96 ± 2.53

XGBoost (XGB) 85.69 ± 2.35 85.7 ± 2.35 85.69 ± 2.35 85.69 ± 2.35 85.68 ± 2.35

Random forest (RF) 83.75 ± 2.48 83.75 ± 2.48 83.75 ± 2.48 83.75 ± 2.48 83.54 ± 2.49

Logistic regression (LR) 82.29 ± 2.57 82.39 ± 2.56 82.29 ± 2.57 82.31 ± 2.57 82.49 ± 2.55

Support vector machine (SVM) 81.66 ± 2.4 81.66 ± 2.4 81.66 ± 2.4 81.66 ± 2.4 81.5 ± 2.41

AdaBoost 80.75 ± 2.61 80.75 ± 2.61 80.75 ± 2.61 80.75 ± 2.61 80.54 ± 2.62

K-nearest neighbors (KNN) 76.66 ± 2.29 76.66 ± 2.29 76.66 ± 2.29 76.66 ± 2.29 76.5 ± 2.3

Gradient boosting (GB) 88.81 ± 2.59 88.8 ± 2.59 88.81 ± 2.59 88.8 ± 2.59 88.56 ± 2.61

Stacking model

(GB ? XGB ? RF)

89.03 ± 2.18 90.44 ± 2.15 89.03 ± 2.15 89.03 ± 2.15 88.7 ± 2.2
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3.3 Death probability prediction for high-risk
patients

In this section, the results of three different experiments to

predict the probability of death among high-risk COVID-

19 patients were reported. The fivefold performance of

different ML models for CXR images, then using clinical

data were reported separately.

3.3.1 Performance analysis with CXR images

Random Forest classifier outperforms the other 7 classifiers

in classifying the dead and survived COVID-19 patients

with precision, sensitivity, and F1 scores of 84.83%,

85.02%, and 84.83%, respectively. The stacking model was

built using the top three methods (Random Forest, Extra

Tree, and Gradient Boosting) and produces precision,

sensitivity, and F1 scores of 86.35%, 83.22%, and 86.35%,

respectively.

3.3.2 Performance analysis with clinical data

The gradient boosting model outperforms the other seven

classifiers in stratifying the survival and dead patients with

precision, sensitivity, and F1 scores of 89.14%, 89.86%,

and 89.14%, respectively. The stacking model was trained

using the top three models (Random Forest, XGBoost, and

Extra Tree). The stacking model beat previous base mod-

els, achieving 91.2% precision, 91.25% sensitivity, and

91.2% F1 scores, respectively.

3.3.3 Performance analysis using both CXR images
and clinical data

Random Forest classifier outperforms other models with

precision, sensitivity, and F1 scores of 91.76%, 91.86%,

and 91.76%, respectively. The stacking machine learning

model was trained using Random Forest, Extra Tree, and

Gradient Boosting and it outperforms the base model with

precision, sensitivity, and F1 scores of 92.88%, 93.37%,

and 92.88%, respectively. In terms of all the different

performance metrics, the performance of the stacking

model improved by * 6% when using both reduced CXR

features and clinical top features, refer to Table 5. More-

over, the finetuned parameters for the best performing

classifiers are shown in Supplementary Table 1.

In Fig. 8, it also can be visible that combined CXR

image features and clinical top-ranked features outper-

formed individual modalities with an AUC of 92.8%. The

reduced CXR image features and clinical top-ranked fea-

tures using the stacking model individually produce an

AUC of 88.4% and 91.1%, respectively. In this study, the

main contributing parameter which helped to improve the

result was the PCA variance. PCA was used to reduce the

dimensionality of the extracted features from the images

using CNN encoder with different variance from 70 to 95%

to produce the best performance. The performance for

single and multimodal data with different PCA variance

using stacking model are shown in Supplementary Tables 2

and 3 for study 1 and 3, respectively.

3.3.4 Stacking ML-based nomogram

Due to the superior performance of the Logistic regression

meta-learner in the classification of survival and death

patients, a Nomogram was created using the probability

scores of the three best models (Random Forest (M1),

Extra Tree (M2), and Gradient Boosting (M3)) to accu-

rately estimate the survival and death probabilities of the

high-risk group. Using multivariate logistic regression, the

relationship between the probability scores of these base

learner models and the likelihood of death in high-risk

patients was explored (Table 6). Using the z-value, which

is determined using the regression coefficient and standard

error, is a common way of detecting relevant characteris-

tics. High z-values indicate that the independent variable is

significant.

Table 6 demonstrates that Extra Tree (M2) is not a

particularly accurate predictor of COVID-19 individuals,

although Random Forest (M1) and Gradient Boosting (M3)

are accurate predictors. If p\ 0.05, the p value can be

utilized to identify a significant variable; X-variables may

have a substantial relationship with Y-variables. The

Fig. 7 ROC curves for risk prediction of COVID-19 patients with

single and multi-modal data using the stacking ML model
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p value also demonstrates that the Extra Tree model is a

weak predictor. The linear prediction (LP) and Probability

of death in high-risk patients (Prob) are calculated using

Eqs. 8–9.

Nonetheless, it was noticed that the model performance

was marginally diminished when two models were stacked

instead of three. Therefore, three models are utilized to

produce the Nomogram. As seen in Fig. 8, the nomogram

comprises six rows, running from 1 to 3, to represent the

variables included. The ‘‘Points axis’’ produced a score for

each variable in the high-risk death or survival category.

The total score was displayed in row 6 after being deter-

mined by adding the points from the three factors (row 4).

To determine a patient’s mortality risk, a line is drawn

from the ‘‘Total Score’’ axis to the ‘‘Prob’’ axis (row 5).

Alternatively, the following formula can be used to

calculate the nomogram score:

Table 5 Comparison of performance metrics for death prediction using different ML models and approaches (single mode and multimode)

Dataset Classifier Overall Weighted with 95% CI

A P R F1 S

CXR images Linear discriminant analysis

(LDA)

68.35 ± 4.41 73.22 ± 4.2 68.35 ± 4.41 68.35 ± 4.41 69.4 ± 4.37

XGBoost (XGB) 73.03 ± 4.21 75.9 ± 4.06 73.03 ± 4.21 73.03 ± 4.21 73.79 ± 4.17

Random forest (RF) 84.83 ± 3.4 85.02 ± 3.38 84.83 ± 3.4 84.83 ± 3.4 84.91 ± 3.4

Logistic regression (LR) 67.6 ± 4.44 72.65 ± 4.23 67.6 ± 4.44 67.6 ± 4.44 68.69 ± 4.4

Support vector machine

(SVM)

54.87 ± 4.72 59.08 ± 4.66 54.87 ± 4.72 54.87 ± 4.72 56.26 ± 4.71

Extra tree (ET) 82.4 ± 3.61 82.72 ± 3.59 82.4 ± 3.61 82.4 ± 3.61 82.53 ± 3.6

K-nearest neighbors (KNN) 72.85 ± 4.22 76.51 ± 4.02 72.85 ± 4.22 72.85 ± 4.22 73.68 ± 4.18

Gradient boosting (GB) 80.71 ± 3.74 82.59 ± 3.6 80.71 ± 3.74 80.71 ± 3.74 81.17 ± 3.71

Stacking model

(RF ? ET ? GB)

86.35 ± 3.26 83.22 ± 3.54 86.35 ± 3.26 86.35 ± 3.26 87.4 ± 3.15

Clinical data Linear discriminant analysis

(LDA)

69.29 ± 4.38 73.74 ± 4.17 69.29 ± 4.38 69.29 ± 4.38 70.29 ± 4.33

XGBoost (XGB) 87.08 ± 3.18 87.73 ± 3.11 87.08 ± 3.18 87.08 ± 3.18 87.26 ± 3.16

Random forest (RF) 89.14 ± 2.95 89.86 ± 2.86 89.14 ± 2.95 89.14 ± 2.95 89.31 ± 2.93

Logistic regression (LR) 68.91 ± 4.39 73.37 ± 4.19 68.91 ± 4.39 68.91 ± 4.39 69.92 ± 4.35

Support vector machine

(SVM)

53.56 ± 4.73 58.01 ± 4.68 53.56 ± 4.73 53.56 ± 4.73 55.02 ± 4.72

Extra tree (ET) 86.33 ± 3.26 86.31 ± 3.26 86.33 ± 3.26 86.33 ± 3.26 86.32 ± 3.26

K-nearest neighbors (KNN) 75.84 ± 4.06 79.56 ± 3.82 75.84 ± 4.06 75.84 ± 4.06 76.6 ± 4.02

Gradient boosting (GB) 71.72 ± 4.27 71.42 ± 4.29 71.72 ± 4.27 71.72 ± 4.27 71.56 ± 4.28

Stacking model

(RF ? XGB ? ET)

91.2 ± 2.69 91.25 ± 2.68 91.2 ± 2.69 91.2 ± 2.69 91.22 ± 2.68

Both CXR images and clinical

data

Linear discriminant analysis

(LDA)

74.34 ± 4.14 78.91 ± 3.87 74.34 ± 4.14 74.34 ± 4.14 75.19 ± 4.1

XGBoost (XGB) 77.53 ± 3.96 80.24 ± 3.78 77.53 ± 3.96 77.53 ± 3.96 78.15 ± 3.92

Random forest (RF) 91.76 ± 2.61 91.86 ± 2.59 91.76 ± 2.61 91.76 ± 2.61 91.8 ± 2.6

Logistic regression (LR) 79.78 ± 3.81 85.84 ± 3.31 79.78 ± 3.81 79.78 ± 3.81 80.47 ± 3.76

Support vector machine

(SVM)

69.29 ± 4.38 75.98 ± 4.05 69.29 ± 4.38 69.29 ± 4.38 70.34 ± 4.33

Extra tree (ET) 90.07 ± 2.84 90.65 ± 2.76 90.07 ± 2.84 90.07 ± 2.84 90.22 ± 2.82

K-nearest neighbors (KNN) 81.84 ± 3.66 83.8 ± 3.49 81.84 ± 3.66 81.84 ± 3.66 82.28 ± 3.62

Gradient boosting (GB) 88.95 ± 2.97 90.21 ± 2.82 88.95 ± 2.97 88.95 ± 2.97 89.19 ± 2.95

Stacking model

(RF ? ET ? GB)

92.88 ± 2.44 93.37 ± 2.36 92.88 ± 2.44 92.88 ± 2.44 92.65 ± 2.48
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LP ¼ 11:23907� 14:85299�M1� 5:028269�M2

� 1:788734 �M3 ð8Þ

Prob ¼ 1= 1þ exp �LPð Þð Þ ð9Þ

Figure 9 also depicts the Nomogram scores for both the

survived and the deceased classes. It was discovered that

50% classification probability cutoffs correspond to a

Nomogram score of 4.8 or a probability of 0.5, stratifying

the classes.

Figure 10 depicts both the internal and external valida-

tion calibration plots. It demonstrates that each calibration

curve is extremely near to the diagonal line, indicating a

valid model. The AUC values for internal and external

validation are 98.1% and 93.8%, respectively, which

demonstrates the model’s exceptional performance.

Figure 11 illustrates that the net benefit of each predictor

model was positive (threshold 0.95), showing that each

predictor contributed to the prediction of the outcome.

Particularly, the whole model produced the most accurate

results, necessitating the employment of three base models

as predictors in the Stacking model.

3.3.5 Performance evaluation of the model

Using the Nomogram score, we compared the actual death

rate to the projected death rate among high-risk people.

Table 7(A) demonstrates that the proportions of death

outcomes in the training set were 91.9% (125/136) for the

death group and 8.1% (11/136) for the surviving group,

while the proportions of death outcomes in the test set were

91.18% (31/34) for the death group and 8.82% (3/34) for

the survived group (Table 7(B)). The actual mortality rates

varied considerably between the two groups (p 0.001).

Consequently, this scoring method can be utilized to pre-

dict patient outcomes.

3.3.6 Web application with back-end server

As an extension of this work, we developed an online

application (https://qu-mlg.com/projects/covid-severity-

grading-AI) that allows clinicians to input demographic

and clinical data (LDH, O2 percentage, WBC, age, and

CRP) as well as CXR images. BIO-CXRNET is a Google

Cloud-based AI application that analyzes data to determine

whether a user is a low-risk or high-risk patient. Our model

identifies the patient’s death risk probability if the patient is

in the extreme risk group.

The backend application is written in Python using the

Flask framework. Python’s Flask is a strong backend

application framework. The cloud application is deployed

on an Apache 2.0 HTTP server using Ubuntu 20.01 LTS

Google Computation Engine (GCE). To reduce server

costs, a GCE instance with minimal configuration is hired.

The GCE server is equipped with a 4-core Intel Xenon

processor, 8 GB of DDR4 memory, and 100 GB of bal-

anced persistent storage. To handle the computation-in-

tensive ML models in a resource-constrained context, the

operating system kernel configurations are adjusted. Such

setups include activating non-threaded pre-forking for the

Apache web server so that Tensorflow processes have

access to more RAM. This online application was

Fig. 8 ROC curves for outcome prediction of high-risk patients with

single and multi-modal data using the stacking ML model

Table 6 Summary of logistic regression analysis

Outcome Coefficient Bootstrap std. error Z P[|z| [95% CI]

Random forest - 14.85299 3.262317 - 4.5 0.000 - 21.24701 - 8.458965

Extra tree - 5.028269 5.40965 - 0.93 0.353 - 15.63099 5.57445

Gradient boosting - 1.788734 0.47932 - 3.73 0.000 - 2.728183 - 0.84928

Cons 11.23907 1.822279 6.17 0.0004 7.667468 14.81067
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developed with Flutter, a programming language based on

Google’s Dart.

In the prototype system, screenshots of the system can

be seen in Supplementary Fig. 1, radiologists/clinicians/

users will submit demographic information before being

prompted to upload CXR image file and four biomarkers,

including Lactate Dehydrogenase (LDH) (U/L), Oxygen

Saturation (%), White Blood Count (WBC) (10^9L), and

C-Reactive Protein (CRP) (mg/dL). CXR image file means

the user will give a Chest X-ray image as an input in .png

or .jpg format. This will be uploaded to the server, where it

will be pre-processed and applied to the BIO-CXRNET

model to assess whether the user is a patient at low or high

risk (Fig. 12). The data will be processed by the AI

Fig. 9 A Nomogram for prediction of death in COVID-19 severe patients was created using Random Forest (M1), ExtraTree (M2), and Gradient

boosting (M3)

Fig. 10 A Internal validation calibration plot, B External validation calibration plot
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backend, and the screen will display a response. The

application will display and store the results in a local

SQLite database. In conclusion, the application can reduce

the load on the healthcare system by expeditiously ana-

lyzing the severity risk of COVID patients using a mini-

mum number of blood signs.

4 Discussion

This study proposes a multimodal system for forecasting

the risk of COVID-19-positive individuals and, as a result,

stratifying the probable outcome of patients at high risk.

Using CXR images and clinical data, the performances of

both of the tests were examined separately and in con-

junction. Both experiments demonstrated that the multi-

modal strategy outperformed the single modality. CXR and

clinical features combined demonstrated an accuracy of

89.03% for risk group stratification among COVID-19

patients, compared to 80.11% and 86.01% for CXR and

clinical features, respectively. Moreover, in the instance of

outcome prediction for high-risk patients, the multimodal

technique exceeded individual modality with a 92.3%

accuracy, whereas CXR pictures and clinical data alone

achieved an accuracy of 89.5% and 90.11%, respectively.

As indicated in Table 8, the performance of the results

provided in this work is superior to several state-of-the-art

performances published in the literature.

In our previous studies [75] on severe acute respiratory

syndrome (SARS) [76], the Middle East respiratory syn-

drome (MERS) [77], and COVID-19 [78], we discovered

that greater age predicted poor outcomes in COVID-19

patients. Since LDH signals tissue/cell death, it is a com-

mon indicator of tissue/cell damage. Serum LDH has been

recognized as a critical biomarker for the activity and

severity of idiopathic pulmonary fibrosis. According to

Yan et al. [72], the increase in LDH is one of the most

significant prognostic markers of lung injury in patients

with the severe pulmonary interstitial illness. The increase

in LDH levels in seriously ill COVID-19 patients suggests

a worsening of lung injury.

According to studies conducted by Lu et al. [79], CRP

testing upon admission is connected with the prediction of

short-term mortality related to COVID-19-related diseases.

Hepatocytes manufacture CRP when stimulated by

cytokines originating from active leukocytes, such as those

produced by infections, inflammations, or tissue injury.

Hepatocytes manufacture CRP when stimulated by

cytokines originating from active leukocytes, such as those

produced by infections, inflammations, or tissue injury.

Our study indicated that elevated CRP levels upon

admission were related to an increased risk of mortality

among COVID-19 participants. These data indicated that

these patients had developed a significant inflammation or

maybe a secondary infection, and antibiotic treatment may

be necessary. Increased CRP, a significant indicator of poor

prognosis in acute respiratory distress syndrome, suggests a

chronic inflammatory state [80, 81]. As a result of this

continuous inflammatory response, COVID-19 individuals

develop massive gray-white lesions there [82].

Based on prior research, the five biomarkers found in

our study were connected with inflammation, immunology,

and coagulation function, all of which may play a role in

COVID-19 etiology. We hypothesized that the inflamma-

tory response to severe acute respiratory syndrome coron-

avirus 2 (SARS-CoV-2) infection is fundamental to

COVID-19 pathogenesis and that dysregulation of the

immune and/or coagulation systems result in severe clini-

cal outcomes, such as Acute respiratory distress syndrome

(ARDS), coagulopathy, and septic shock, among others.

Patients who died showed lower WBC and O2 percentages,

as well as higher age, CRP, and LDH values than survivors.

Fig. 11 Decision curves analysis comparing different models to

predict the death probability of patients with high-risk COVID-19

Table 7 Performance evaluation of the model in the training cohort

(A) and testing cohort (B) using Fisher’s exact probability test

Prediction Outcome

Survived Death

(A)

Survived 280 (96.22%) 11 (8.1%)

Death 11 (3.78%) 125 (91.9%)

Overall 291 (100%) 136 (100%)

(B)

Survived 68 (93.1%) 3 (8.82%)

Death 5 (6.9%) 31 (91.18%)

Overall 73 (100%) 34 (100%)
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High-mortality-risk COVID-19 individuals may benefit

from early treatment based on a comprehensive evaluation

of the inflammatory response, immunologic dysfunction,

and coagulopathy. As anticipated, the combination of

clinical information and chest X-ray pictures aids in the

BIO-CXRNET
(Google Cloud)

Patient Self-Health Analysis

X-ray Acquisition System

X-ray Operator 

X-ray Images

X-ray Images

X
-r

ay

Clinical Data

Results
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Fig. 12 COVID-19 severity risk detection tool using web application framework

Table 8 Comparison with state-of-the-art works in the literature

Paper Method Dataset Results

Yan et al. [72] Predict individual patient mortality using the XGBoost

classifier

Clinical biomarkers (485 COVID-19

patients)

Accuracy of

90%

Rahman et al.

[65]

Predict COVID-19 severity using machine learning classifiers Clinical biomarkers (375 COVID-19

patients)

Accuracy of

90.8%

Abbas et al.

[73]

CNN (DeTraC) Chest X-ray images (749 COVID-19) Accuracy of

93%

Zulfaezal

et al. [74]

CNN Chest X-ray images (1565 COVID-19) Accuracy of

71.9%

Soda et al.

[60]

Deep multimodal CNN Chest X-ray images and clinical biomarkers

(820 COVID-19)

Accuracy of

76.8%

Proposed

study

CNN and ML classifiers to predict the severity, and developed

nomogram scoring tool

Chest X-ray images and clinical biomarkers

(930 COVID-19)

Accuracy of

92.88%
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accurate diagnosis of COVID-19 severity and mortality

risk.

Additionally, our nomogram is applicable in a range of

therapeutic contexts. To our knowledge, it outperforms

other models proposed in the literature. In addition, the

score of the nomogram served as a quantitative tool for

identifying patients with a high risk of mortality upon

admission and for guiding clinical management. COVID-

based hospital admission information, 19 individuals were

assigned to risk groups. In isolation centers, low-risk cases

should be isolated and treated. For comprehensive care,

survivors from high-risk categories should be admitted to a

hospital with an isolation unit. The high-risk group is

referred to the intensive care unit (ICU) for intensive

treatment and assistance.

5 Conclusion

The current gold standard for the identification of coron-

avirus illness (COVID-19) is the reverse transcription-

polymerase chain reaction (RT-PCR) test, despite its

drawbacks, which include a longer turnaround time, greater

false-negative rates of 20–25%, and more expensive

equipment. In addition, the detection of COVID-19

involves physical examinations, radiographic imaging,

blood testing, and the reverse transcription polymerase

chain reaction (RT-PCR) technique. Using clinical data,

CT radiographic imaging, and sign symptoms, the severity

of COVID-19 has been determined. There have been

researches employing DNA-based methods, however, such

data are not readily available, and genome sequencing

investigations are computationally costly. The objective of

this study is to develop a multimodal system that combines

both Chest X-ray (CXR) pictures and clinical data to pre-

dict the severity of COVID-19 infection in patients. The

severity classification method described by employing

commonly available and less expensive radiological

imaging (Chest X-rays compared to CT) and a smaller

number of biomarkers that may be easily obtained from

Common Blood Count tests is unquestionably a life-saving

and cost-effective option. In addition, the technique

improves the accuracy and dependability of the diagnosis.

The proposed architecture makes use of CXR pictures and

only five parameters: LDH, O2%, Age, WBC, and CRP,

and demonstrates exceptional results for recognizing low-

and high-risk COVID-19-positive individuals with extre-

mely high sensitivity. Moreover, the proposed nomogram-

based technique accurately predicts the likelihood of death

among high-risk people. Our prognostic nomogram for

COVID-19 patients displayed excellent discrimination and

calibration based on many risk markers. Since the model

utilizes CXR pictures and clinical factors, it can refute the

physicians’ complaints regarding the use of merely radio-

graphic images for prognostic purposes. This approach can

determine a patient’s probable risk upon admission, which

can considerably improve hospital resource management.

Although the study used data from initial variants, the

clinical biomarkers identified in this work are supported by

a large pool of clinical studies conducted on other variants;

as a result, we anticipate that this model will be equally

applicable to Omicron and other future variants that may

emerge in the upcoming winter. As a result, physicians

could use this technique to make a swift and objective

determination to enhance patient stratification management

and possibly reduce death rates. However, this quantitative

tool should be tested in large-scale prospective multicenter

and multi-country trials to verify its clinical utility.

Supplementary Information The online version contains

supplementary material available at https://doi.org/10.1007/s00521-

023-08606-w.

Funding Open Access funding provided by the Qatar National

Library. This work was supported by the Qatar National Research

Grant: UREP28-144-3-046. The statements made herein are solely the

responsibility of the authors.

Data availability The datasets used in this study are available from the

corresponding author on reasonable request.

Declarations

Conflict of interest The authors declare that they have no conflict of

interest.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. World Health Organization (2020) WHO Coronavirus Disease

(COVID-19) Dashboard [Online]. Available: https://covid19.

who.int/?gclid=Cj0KCQjwtZH7BRDzAR

IsAGjbK2ZXWRpJROEl97HGmSOx0_ydkVbc02K

a1FlcysGjEI7hnaIeR6xWhr4aAu57EALw_wcB. Accessed 1 Oct

2021

2. Barouch DH (2022) Covid-19 vaccines—immunity, variants,

boosters. N Engl J Med 387(11):1011–1020

17480 Neural Computing and Applications (2023) 35:17461–17483

123

https://doi.org/10.1007/s00521-023-08606-w
https://doi.org/10.1007/s00521-023-08606-w
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://covid19.who.int/?gclid=Cj0KCQjwtZH7BRDzARIsAGjbK2ZXWRpJROEl97HGmSOx0_ydkVbc02Ka1FlcysGjEI7hnaIeR6xWhr4aAu57EALw_wcB
https://covid19.who.int/?gclid=Cj0KCQjwtZH7BRDzARIsAGjbK2ZXWRpJROEl97HGmSOx0_ydkVbc02Ka1FlcysGjEI7hnaIeR6xWhr4aAu57EALw_wcB
https://covid19.who.int/?gclid=Cj0KCQjwtZH7BRDzARIsAGjbK2ZXWRpJROEl97HGmSOx0_ydkVbc02Ka1FlcysGjEI7hnaIeR6xWhr4aAu57EALw_wcB
https://covid19.who.int/?gclid=Cj0KCQjwtZH7BRDzARIsAGjbK2ZXWRpJROEl97HGmSOx0_ydkVbc02Ka1FlcysGjEI7hnaIeR6xWhr4aAu57EALw_wcB


3. Singhal T (2020) A review of coronavirus disease-2019 (COVID-

19). Indian J Pediatr 87(4):281–286

4. Sohrabi C, Alsafi Z, O’neill N, Khan M, Kerwan A, Al-Jabir A

et al (2020) World Health Organization declares global emer-

gency: a review of the 2019 novel coronavirus (COVID-19). Int J

Surg 76:71–76

5. Kakodkar P, Kaka N, Baig M (2020) A comprehensive literature

review on the clinical presentation, and management of the

pandemic coronavirus disease 2019 (COVID-19). Cureus 12(4)

6. Li Y, Yao L, Li J, Chen L, Song Y, Cai Z et al (2020) Stability

issues of RT-PCR testing of SARS-CoV-2 for hospitalized

patients clinically diagnosed with COVID-19. J Med Virol

92(7):903–908

7. Lee Y, Kim Y-S, Lee D-I, Jeong S, Kang G-H, Jang YS et al

(2022) The application of a deep learning system developed to

reduce the time for RT-PCR in COVID-19 detection. Sci Rep

12(1):1–10

8. Tahamtan A, Ardebili A (2020) Real-time RT-PCR in COVID-19

detection: issues affecting the results. Expert Rev Mol Diagn

20(5):453–454

9. Xia J, Tong J, Liu M, Shen Y, Guo D (2020) Evaluation of

coronavirus in tears and conjunctival secretions of patients with

SARS-CoV-2 infection. J Med Virol 92(6):589–594

10. DivyaShree CK (2022) Deep learning classification models for

detection of Covid patients. J Posit Sch Psychol 6(11):209–221

11. Heidari A, Jafari Navimipour N, Unal M, Toumaj S (2022)

Machine learning applications for COVID-19 outbreak manage-

ment. Neural Comput Appl 34:15313–15348

12. Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W et al (2020)

Correlation of chest CT and RT-PCR testing for coronavirus

disease 2019 (COVID-19) in China: a report of 1014 cases.

Radiology 296(2):E32–E40

13. Salehi S, Abedi A, Balakrishnan S, Gholamrezanezhad A (2020)

Coronavirus disease 2019 (COVID-19): a systematic review of

imaging findings in 919 patients. Ajr Am J Roentgenol

215(1):87–93

14. Kogilavani S, Prabhu J, Sandhiya R, Kumar MS, Subramaniam

U, Karthick A et al (2022) COVID-19 detection based on lung

CT scan using deep learning techniques. Comput Math Methods

Med 2022

15. Fang Y, Zhang H, Xie J, Lin M, Ying L, Pang P et al (2020)

Sensitivity of chest CT for COVID-19: comparison to RT-PCR.

Radiology 296(2):E115–E117

16. Baghdadi NA, Malki A, Abdelaliem SF, Balaha HM, Badawy M,

Elhosseini M (2022) An automated diagnosis and classification of

COVID-19 from chest CT images using a transfer learning-based

convolutional neural network. Comput Biol Med 144:105383

17. Liao X, Wang B, Kang Y (2020) Novel coronavirus infection

during the 2019–2020 epidemic: preparing intensive care units—

the experience in Sichuan Province, China. Intensive Care Med

46(2):357–360

18. Das NN, Kumar N, Kaur M, Kumar V, Singh D (2020) Auto-

mated deep transfer learning-based approach for detection of

COVID-19 infection in chest X-rays. Irbm

19. Brenner DJ, Hall EJ (2007) Computed tomography—an

increasing source of radiation exposure. N Engl J Med

357(22):2277–2284

20. Shi F, Wang J, Shi J, Wu Z, Wang Q, Tang Z et al (2020) Review

of artificial intelligence techniques in imaging data acquisition,

segmentation, and diagnosis for COVID-19. IEEE Rev Biomed

Eng 14:4–15

21. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y et al (2020)

Clinical features of patients infected with 2019 novel coronavirus

in Wuhan, China. Lancet 395(10223):497–506

22. Hosseiny M, Kooraki S, Gholamrezanezhad A, Reddy S, Myers L

(2020) Radiology perspective of coronavirus disease 2019

(COVID-19): lessons from severe acute respiratory syndrome and

Middle East respiratory syndrome. Ajr Am J Roentgenol

214(5):1078–1082

23. Rajpurkar P, Irvin J, Ball RL, Zhu K, Yang B, Mehta H et al

(2018) Deep learning for chest radiograph diagnosis: a retro-

spective comparison of the CheXNeXt algorithm to practicing

radiologists. PLoS Med 15(11):e1002686

24. Irvin J, Rajpurkar P, Ko M, Yu Y, Ciurea-Ilcus S, Chute C,

Marklund H, Haghgoo B, Ball R, Shpanskaya K, Seekins J (2019)

CheXpert: a large chest radiograph dataset with uncertainty labels

and expert comparison

25. Rahman T, Khandakar A, Kadir MA, Islam KR, Islam KF,

Mazhar R et al (2020) Reliable tuberculosis detection using chest

X-ray with deep learning, segmentation and visualization. IEEE

Access 8:191586–191601

26. Zargari Khuzani A, Heidari M, Shariati SA (2021) COVID-

Classifier: An automated machine learning model to assist in the

diagnosis of COVID-19 infection in chest x-ray images. Sci Rep

11(1):1–6

27. Li MD, Arun NT, Gidwani M, Chang K, Deng F, Little BP et al

(2020) Automated assessment and tracking of COVID-19 pul-

monary disease severity on chest radiographs using convolutional

siamese neural networks. Radiol Artif Intell 2(4):e200079

28. Kim CK, Choi JW, Jiao Z, Wang D, Wu J, Yi TY et al (2022) An

automated COVID-19 triage pipeline using artificial intelligence

based on chest radiographs and clinical data. NPJ Digit Med

5(1):1–9

29. Maguolo G, Nanni L (2021) A critic evaluation of methods for

COVID-19 automatic detection from X-ray images. Inf Fus

76:1–7

30. Roberts M, Driggs D, Thorpe M, Gilbey J, Yeung M, Ursprung S

et al (2021) Common pitfalls and recommendations for using

machine learning to detect and prognosticate for COVID-19

using chest radiographs and CT scans. Nat Mach Intell

3(3):199–217

31. Rahman T, Chowdhury ME, Khandakar A, Islam KR, Islam KF,

Mahbub ZB et al (2020) Transfer learning with deep convolu-

tional neural network (CNN) for pneumonia detection using chest

X-ray. Appl Sci 10(9):3233

32. Chowdhury ME, Rahman T, Khandakar A, Mazhar R, Kadir MA,

Mahbub ZB et al (2020) Can AI help in screening viral and

COVID-19 pneumonia? IEEE Access 8:132665–132676

33. Oh Y, Park S, Ye JC (2020) Deep learning COVID-19 features on

CXR using limited training data sets. IEEE Trans Med Imaging

39(8):2688–2700

34. Rajaraman S, Siegelman J, Alderson PO, Folio LS, Folio LR,

Antani SK (2020) Iteratively pruned deep learning ensembles for

COVID-19 detection in chest X-rays. IEEE Access

8:115041–115050

35. Jaeger S, Karargyris A, Candemir S, Folio L, Siegelman J, Cal-

laghan F et al (2013) Automatic tuberculosis screening using

chest radiographs. IEEE Trans Med Imaging 33(2):233–245

36. Candemir S, Jaeger S, Palaniappan K, Musco JP, Singh RK, Xue

Z et al (2013) Lung segmentation in chest radiographs using

anatomical atlases with nonrigid registration. IEEE Trans Med

Imaging 33(2):577–590

37. Tahir AM, Chowdhury ME, Khandakar A, Rahman T, Qiblawey

Y, Khurshid U et al (2021) COVID-19 infection localization and

severity grading from chest X-ray images. Comput Biol Med

139:105002

38. Rahman T, Khandakar A, Qiblawey Y, Tahir A, Kiranyaz S,

Kashem SBA et al (2021) Exploring the effect of image

enhancement techniques on COVID-19 detection using chest

X-ray images. Comput Biol Med 132:104319

Neural Computing and Applications (2023) 35:17461–17483 17481

123



39. Huang M-L, Liao Y-C (2022) A lightweight CNN-based network

on COVID-19 detection using X-ray and CT images. Comput

Biol Med 146:105604

40. Hirst N, Tiernan J, Millner P, Jayne D (2014) Systematic review

of methods to predict and detect anastomotic leakage in col-

orectal surgery. Colorectal Dis 16(2):95–109

41. Mandal S, Barnett J, Brill SE, Brown JS, Denneny EK, Hare SS

et al (2021) ‘Long-COVID’: a cross-sectional study of persisting

symptoms, biomarker and imaging abnormalities following hos-

pitalisation for COVID-19. Thorax 76(4):396–398

42. Al Youha S, Doi SA, Jamal MH, Almazeedi S, Al Haddad M,

AlSeaidan M et al (2020) Validation of the Kuwait Progression

Indicator Score for predicting progression of severity in

COVID19. MedRxiv (2020)

43. Weng Z, Chen Q, Li S, Li H, Zhang Q, Lu S et al (2020) ANDC:

an early warning score to predict mortality risk for patients with

coronavirus disease 2019. J Transl Med 18(1):1–10

44. Xie J, Hungerford D, Chen H, Abrams ST, Li S, Wang G et al

(2020) Development and external validation of a prognostic

multivariable model on admission for hospitalized patients with

COVID-19

45. Satu MS, Khan MI, Rahman MR, Howlader KC, Roy S, Roy SS

et al (2021) Diseasome and comorbidities complexities of SARS-

CoV-2 infection with common malignant diseases. Brief Bioin-

form 22(2):1415–1429

46. Uddin S, Imam T, Ali Moni M (2021) The implementation of

public health and economic measures during the first wave of

COVID-19 by different countries with respect to time, infection

rate and death rate. In: 2021 Australasian computer science week

multiconference, pp 1–8

47. Aktar S, Ahamad MM, Rashed-Al-Mahfuz M, Azad A, Uddin S,

Kamal A et al (2021) Machine learning approach to predicting

COVID-19 disease severity based on clinical blood test data:

statistical analysis and model development. JMIR Med Inform

9(4):e25884

48. Guan W-J, Ni Z-Y, Hu Y, Liang W-H, Ou C-Q, He J-X et al

(2020) Clinical characteristics of coronavirus disease 2019 in

China. N Engl J Med 382(18):1708–1720

49. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J et al (2020) Clinical

characteristics of 138 hospitalized patients with 2019 novel

coronavirus–infected pneumonia in Wuhan, China. JAMA

323(11):1061–1069

50. Kermali M, Khalsa RK, Pillai K, Ismail Z, Harky A (2020) The

role of biomarkers in diagnosis of COVID-19—a systematic

review. Life Sci 254:117788

51. Islam KR, Kumar J, Tan TL, Reaz MBI, Rahman T, Khandakar A

et al (2022) Prognostic model of ICU admission risk in patients

with COVID-19 infection using machine learning. Diagnostics

12(9):2144

52. Jiao Z, Choi JW, Halsey K, Tran TML, Hsieh B, Wang D et al

(2021) Prognostication of patients with COVID-19 using artificial

intelligence based on chest x-rays and clinical data: a retrospec-

tive study. Lancet Digit Health 3(5):e286–e294

53. Chieregato M, Frangiamore F, Morassi M, Baresi C, Nici S,

Bassetti C et al (2022) A hybrid machine learning/deep learning

COVID-19 severity predictive model from CT images and clin-

ical data. Sci Rep 12(1):1–15

54. Afzal A (2020) Molecular diagnostic technologies for COVID-

19: limitations and challenges. J Adv Res 26:149–159

55. Chen Y, Huang S, Zhou L, Wang X, Yang H, Li W (2022)

Coronavirus Disease 2019 (COVID-19): emerging detection

technologies and auxiliary analysis. J Clin Lab Anal

36(1):e24152

56. Subramanian N, Elharrouss O, Al-Maadeed S, Chowdhury M

(2022) A review of deep learning-based detection methods for

COVID-19. Comput Biol Med 143:105233

57. Abir FF, Alyafei K, Chowdhury ME, Khandakar A, Ahmed R,

Hossain MM et al (2022) PCovNet: a presymptomatic COVID-19

detection framework using deep learning model using wearables

data. Comput Biol Med 147:105682

58. Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T et al

(2017) Chexnet: radiologist-level pneumonia detection on chest

x-rays with deep learning. arXiv preprint http://arxiv.org/abs/

1711.05225

59. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017)

Densely connected convolutional networks. In: Proceedings of

the IEEE conference on computer vision and pattern recognition,

pp 4700–4708

60. Soda P, D’Amico NC, Tessadori J, Valbusa G, Guarrasi V,

Bortolotto C et al (2021) AIforCOVID: predicting the clinical

outcomes in patients with COVID-19 applying AI to chest-X-

rays. an Italian multicentre study. Med Image Anal 74:102216

61. Lin T-Y, Dollár P, Girshick R, He K, Hariharan B, Belongie S

(2017) Feature pyramid networks for object detection. In: Pro-

ceedings of the IEEE conference on computer vision and pattern

recognition, pp 2117–2125

62. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional

networks for biomedical image segmentation. In: International

conference on medical image computing and computer-assisted

intervention, pp 234–241

63. Zhou Z, Rahman Siddiquee MM, Tajbakhsh N, Liang J (2018)

Unet??: a nested u-net architecture for medical image seg-

mentation. In: Deep learning in medical image analysis and

multimodal learning for clinical decision support. Springer,

pp 3–11

64. Chowdhury ME, Rahman T, Khandakar A, Al-Madeed S,

Zughaier SM, Hassen H et al (2021) An early warning tool for

predicting mortality risk of COVID-19 patients using machine

learning. Cogn Comput 1–16 (2021)

65. Rahman T, Al-Ishaq FA, Al-Mohannadi FS, Mubarak RS, Al-

Hitmi MH, Islam KR et al (2021) Mortality prediction utilizing

blood biomarkers to predict the severity of COVID-19 using

machine learning technique. Diagnostics 11(9):1582

66. Rahman T, Khandakar A, Abir FF, Faisal MAA, Hossain MS,

Podder KK et al (2022) QCovSML: a reliable COVID-19

detection system using CBC biomarkers by a stacking machine

learning model. Comput Biol Med 143:105284

67. Rahman T, Khandakar A, Hoque ME, Ibtehaz N, Kashem SB,

Masud R et al (2021) Development and validation of an early

scoring system for prediction of disease severity in COVID-19

using complete blood count parameters. IEEE Access

9:120422–120441

68. Stevens JR, Suyundikov A, Slattery ML (2016) Accounting for

missing data in clinical research. JAMA 315(5):517–518

69. Speiser JL, Miller ME, Tooze J, Ip E (2019) A comparison of

random forest variable selection methods for classification pre-

diction modeling. Expert Syst Appl 134:93–101

70. Zlotnik A, Abraira V (2015) A general-purpose nomogram gen-

erator for predictive logistic regression models. Stand Genomic

Sci 15(2):537–546

71. Akiba T, Sano S, Yanase T, Ohta T, Koyama M (2019) Optuna: a

next-generation hyperparameter optimization framework. In:

Proceedings of the 25th ACM SIGKDD international conference

on knowledge discovery & data mining, pp 2623–2631

72. Yan L, Zhang H-T, Goncalves J, Xiao Y, Wang M, Guo Y et al

(2020) An interpretable mortality prediction model for COVID-

19 patients. Nat Mach Intell 2(5):283–288

73. Abbas A, Abdelsamea MM, Gaber MM (2020) Classification of

COVID-19 in chest X-ray images using DeTraC deep convolu-

tional neural network. arXiv preprint http://arxiv.org/abs/2003.

13815

17482 Neural Computing and Applications (2023) 35:17461–17483

123

http://arxiv.org/abs/1711.05225
http://arxiv.org/abs/1711.05225
http://arxiv.org/abs/2003.13815
http://arxiv.org/abs/2003.13815


74. Che Azemin MZ, Hassan R, Mohd Tamrin MI, Md Ali MA

(2020) COVID-19 deep learning prediction model using publicly

available radiologist-adjudicated chest X-ray images as training

data: preliminary findings. Int J Biomed Imaging 2020

75. Tahir AM, Qiblawey Y, Khandakar A, Rahman T, Khurshid U,

Musharavati F et al (2022) Deep learning for reliable classifica-

tion of COVID-19, MERS, and SARS from chest X-ray images.

Cogn Comput 1–21

76. Chan JC, Tsui EL, Wong VC, Hospital Authority SARS Col-

laborative Group (2007) Prognostication in severe acute respi-

ratory syndrome: a retrospective time-course analysis of 1312

laboratory-confirmed patients in Hong Kong. Respirology

12(4):531–542

77. Assiri A, Al-Tawfiq JA, Al-Rabeeah AA, Al-Rabiah FA, Al-

Hajjar S, Al-Barrak A et al (2013) Epidemiological, demo-

graphic, and clinical characteristics of 47 cases of Middle East

respiratory syndrome coronavirus disease from Saudi Arabia: a

descriptive study. Lancet Infect Dis 13(9):752–761

78. Chen R, Liang W, Jiang M, Guan W, Zhan C, Wang T et al

(2020) Risk factors of fatal outcome in hospitalized subjects with

coronavirus disease 2019 from a nationwide analysis in China.

Chest 158(1):97–105

79. Lu J, Hu S, Fan R, Liu Z, Yin X, Wang Q et al (2020) ACP risk

grade: a simple mortality index for patients with confirmed or

suspected severe acute respiratory syndrome coronavirus 2 dis-

ease (COVID-19) during the early stage of outbreak in Wuhan,

China

80. Ko J-H, Park GE, Lee JY, Lee JY, Cho SY, Ha YE et al (2016)

Predictive factors for pneumonia development and progression to

respiratory failure in MERS-CoV infected patients. J Infect

73(5):468–475

81. Wang J, Wu X, Tian Y, Li X, Zhao X, Zhang M (2018) Dynamic

changes and diagnostic and prognostic significance of serum

PCT, hs-CRP and s-100 protein in central nervous system

infection. Exp Ther Med 16(6):5156–5160

82. Yildiz B, Poyraz H, Cetin N, Kural N, Colak O (2013) High

sensitive C-reactive protein: a new marker for urinary tract

infection, VUR and renal scar. Eur Rev Med Pharmacol Sci

17(19):2598–2604

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2023) 35:17461–17483 17483

123


	BIO-CXRNET: a robust multimodal stacking machine learning technique for mortality risk prediction of COVID-19 patients using chest X-ray images and clinical data
	Abstract
	Introduction
	Methodology
	System architecture of the proposed system
	Dataset description
	Statistical characteristics
	Data preprocessing
	Chest X-ray image preprocessing
	Clinical data preprocessing

	Experiments
	Development and internal validation of stacking classification model
	Experiment-01: risk stratification using CXR Image and clinical data
	Experiment-02: death probability prediction for high-risk patients
	Development and validation of logistic regression-based nomogram

	Performance metrics

	Results
	Best features and their combination selection
	Risk prediction of COVID-19 patients
	Performance analysis using CXR images
	Performance analysis using clinical data
	Performance analysis using both CXR images and clinical data

	Death probability prediction for high-risk patients
	Performance analysis with CXR images
	Performance analysis with clinical data
	Performance analysis using both CXR images and clinical data
	Stacking ML-based nomogram
	Performance evaluation of the model
	Web application with back-end server


	Discussion
	Conclusion
	Data availability
	References




