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Abstract
A common challenge encountered when using Deep Neural Network models for automatic ICD coding is their potential

inability to effectively handle unseen clinical texts, especially when these models are only trained on a limited number of

examples. This is because these models rely solely on the patterns and relationships present in the training data, and may

not be able to effectively incorporate additional knowledge about the relationships between medical entities. To address

this issue, we introduce KG-MultiResCNN—Knowledge Guided Multi-filter Residual Convolutional Neural Network

model, which combines training examples with external knowledge from the Wikidata Knowledge Graph (KG) in order to

better capture the relationships between medical entities. The KG is a structured database that contains a wealth of

information about various entities, including medical concepts and their relationships with one another. By incorporating

this external knowledge into our model, we are able to improve its ability to predict ICD codes for new clinical texts. In our

experiments with the MIMIC-III dataset, we found that the KG-MultiResCNN model significantly outperformed the

baseline approaches. This demonstrates the effectiveness of using external knowledge, in addition to training examples, to

improve the performance of deep learning models for automatic ICD coding.

Keywords Automatic ICD Coding � Computer-Aided Diagnosis � Knowledge Guided Convolutional Neural Networks �
Medical Entity Relationships � Embedding Knowledge Graphs

1 Introduction

In the past decade, Deep Learning (DL) and Natural Lan-

guage Processing (NLP) techniques have been widely used

in healthcare research [1–7] due to a large amount of

health data available. One significant application of these

techniques is in medical diagnostic decision-making [8, 9],

as deep learning approaches applied to medical images

have already achieved accuracy on par with human pro-

fessionals. DL techniques applied to textual data, such as

Electronic Health Records (EHR), are also gaining atten-

tion, particularly for the automatic detection and assign-

ment of International Classification of Diseases (ICD)

codes. The ICD is a globally recognized list of codes

developed and maintained by the World Health Organiza-

tion (WHO) to represent diagnoses and medical procedures

with universal codes for healthcare systems such as hos-

pitals and health insurance companies. It is commonly used

by healthcare providers for a variety of purposes, including

improving the usability and maintainability of records,

facilitating reimbursement, and enabling the storage and

retrieval of diagnostic and procedural information when-

ever needed [10, 11]. As part of hospital services, clinical

EHRs are often linked to the corresponding ICD codes for

each patient’s hospital admission, allowing for better

organization and management of patient data.

& Zeyd Boukhers

zeyd.boukhers@fit.fraunhofer.de

Prantik Goswami

prantik@uni-koblenz.de

Jan Jürjens

juerjens@uni-koblenz.de

1 University of Koblenz-Landau, 56070 Koblenz, Germany

2 Fraunhofer Institute for Applied Information Technology

FIT, 53757 Sankt Augustin, Germany

3 Fraunhofer Institute for Software and Systems Engineering

ISST, 44227 Dortmund, Germany

4 Faculty of Medicine and University Hospital Cologne,

University of Cologne, 50937 Cologne, Germany

123

Neural Computing and Applications (2023) 35:17633–17644
https://doi.org/10.1007/s00521-023-08581-2(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0001-9778-9164
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-023-08581-2&amp;domain=pdf
https://doi.org/10.1007/s00521-023-08581-2


The use of automatic ICD coding from textual clinical

notes has been a topic of research for over two dec-

ades [12, 13]. Early methods often relied on handcrafted

features [14], but as technology and data processing power

have improved, a range of approaches have been devel-

oped. Perotte et al. [15] used a Support Vector Machine

(SVM) to classify ‘‘flat’’ and ‘‘hierarchical’’ ICD codes,

while Koopman et al. [16] also used an SVM to classify

hierarchical ICD codes related to cancer from textual death

certificates. Shi et al. [17] used a character-level Long

Short-Term Memory (LSTM) model to identify similarities

between discharge summary notes and ICD code descrip-

tions. Prakash et al. [18] developed a neural memory net-

work model called ‘‘C-MemNNs’’ that learned

representations from textual data and predicted top-50 and

top-100 codes and also used Wikipedia as an external

knowledge to improve model performance. Vani et al. [19]

created a Grounded Recurrent Neural Network (GRU) that

utilized label-specific dimensions for hidden units to pre-

dict specific diseases. Baumel et al. [20] used a Hierar-

chical Attention-Bidirectional Gated Recurrent Unit (HA-

GRU) to assign multiple ICD codes to patients’ discharge

summary notes. Wang et al. [21] proposed a mixed

embedding model that calculated the cosine similarity

between word embedding vectors and label vectors in the

same embedding space to predict the labels.

Li and Yu [22] recently proposed the Multi-Filter

Residual Convolutional Neural Network (MultiResCNN)

as a state-of-the-art model for predicting multiple possible

ICD codes from the content of the discharge summaries.

The model uses multiple filter CNN networks followed by

residual networks and was evaluated on the MIMIC-III

discharge summary notes dataset, where it achieved satis-

factory results. However, like many other existing

approaches, the model still struggles to effectively capture

the correlation between diseases (represented by ICD

codes) and the physiological and symptom attributes

mentioned in clinical text. This is a significant challenge

because most current methods rely only on training

examples (i.e., clinical cases documented in clinical texts)

to learn this correlation. However, the high dimensionality

and sparsity of the feature/class space make it difficult to

find a sufficient number of training examples, in reality, to

accurately model this relationship. The dimensionality

refers to the number of possible diseases and physiological,

symptom, and lab-test attributes, while sparsity refers to

the rarity of certain attributes in clinical cases. As a result,

there is a need for more effective methods that can better

handle the high dimensionality and sparsity of this task,

and further improve the accuracy of automatic ICD coding

from free-text clinical notes.

The goal of this research is to improve the state-of-the-

art method for automatic ICD coding from clinical texts,

which currently struggles to effectively capture the rela-

tionship between diseases and physiological and symptom

attributes mentioned in the text. To address this issue, the

proposed approach simulates the way physicians interpret

clinical texts into diagnoses, using their medical knowledge

to understand the clinical situation and the relationships

between different diseases, symptoms, and treatments.

Consequently, this approach aims to improve the perfor-

mance of automatic ICD coding by incorporating external

medical knowledge in the form of a knowledge graph. To

this end, this work enhances the state-of-the-art method

proposed by Li and Yu [22] by guiding the model with

external medical knowledge. To incorporate this structured

medical knowledge into the model, we introduce KG-

MultiResCNN—Knowledge G uidedMulti-filter Residual

Convolutional Neural Network model that is guided by an

additional embedding vector. This vector is a knowledge

graph embedding of medical entities automatically

extracted from the clinical text and is concatenated with the

word embedding vector. The model is then trained using

both the original text word embeddings and the knowledge

graph embeddings. We also compute the Term Frequency-

Inverse Document Frequency (TF-IDF) value for each

word in the clinical text as a weighting factor for the

medical entities and use two residual (ResNet) blocks to

extract better feature representation due to the large size of

the embedding vectors. The assumption is that medical

entities that are not synonyms and have similar relation-

ships should have similar embeddings. Overall, this work

aims to tackle a single but important research question:

‘‘Does the inclusion of knowledge graph support the pro-

cess of automatic ICD coding?’’. The main contributions of

this work are as follows:

• Improved the MultiResCNN [22] model by introducing

an additional embedding layer based on a knowledge

graph of significant medical entities extracted from the

text;

• Used knowledge graph embedding for automatic ICD

coding for the first time, to our knowledge;

• Weighted the importance of each word in the text using

the Term Frequency-Inverse Document Frequency (TF-

IDF) score as a weighting factor;

• Employed two residual (ResNet) blocks to improve

feature representation and handle the large size of the

embedding vectors;

• Made all implementations publicly available for further

research.

The remainder of this paper is organized as follows: In

Sect. 2, we review previous research on the topic and

discuss the relevant approaches and their strengths and

limitations. Section 3 describes our proposed method in

detail with all technical details. Section 4 presents the
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results of the experimental evaluation of our method,

including statistical analyses and comparisons with other

approaches. Finally, in Sect. 5, we summarize the main

findings of our research and discuss the implications of the

results for future work. We also include recommendations

for practical applications and directions for future research.

2 Related work

Assigning an ICD code to a free-text EHR document is a

challenging and arduous process. It demands expertise in

the healthcare field and can be both financially and error-

prone. This has led to prolonged research on developing

automatic methods to extract ICD codes from clinical notes

for over two decades [12, 13]. In this section, we thor-

oughly review the most critical ICD coding techniques,

grouping them into three distinct categories for enhanced

comprehension and organization.

2.1 Classical machine learning

Early efforts to assign ICD codes to inpatient episodes have

largely relied on handcrafted features [14] and traditional

machine learning models. Perotte et al. [15] used a Support

Vector Machine (SVM) to classify flat and hierarchical

ICD codes, while Koopman et al. [16] employed a similar

SVM approach to classifying hierarchical ICD codes

related to cancer from free-text death certificates. Ferrao

et al. [23] proposed an adaptive data processing method

that utilizes structured electronic health record data and is

trained by SVM classifiers to predict codes, resulting in F1-

measure values around 52%. Zhou et al. [24] proposed a

regular expression-based approach to establish a corre-

spondence between unique ICD codes and diagnosis

descriptions in both outpatient and inpatient settings. Diao

et al. [25] evaluated the performance of two feature engi-

neering methods for processing discharge diagnosis and

procedure texts, using the gradient boosting algorithm on a

dataset of 71,709 admissions at Fuwai Hospital and 168

primary diagnoses with ICD-10 codes.

2.2 Neural network-based approaches

Over the past decade, the majority of proposed ICD coding

solutions have been based on Neural Networks, such as

in [17, 19, 22], due to their impressive performance across

a variety of tasks. Shi and colleagues ([17]) utilized char-

acter-level LSTM to identify similarities between dis-

charge summary notes and ICD code descriptions. Vani

et al. [19] developed a Grounded Recurrent Neural Net-

work (GRU) that incorporates label-specific dimensions for

hidden units to predict specific diseases. Baumel et al. [20]

employed a Hierarchical Attention-bidirectional Gated

Recurrent Unit (HA-GRU) to assign multiple ICD codes to

patients’ discharge summary notes. Wang et al. [21] pro-

posed a mixed embedding model, assuming that projecting

word and label vectors in the same embedding vector space

would lead to better results. Their model calculates the

cosine similarity between word embedding vectors and

label vectors to predict the labels. Xu et al. [26] proposed

an ensemble-based approach that combines the outputs of

three neural network models, each handling different types

of data (unstructured, semi-structured, and tabular). The

models utilize CNNs, LSTMs, and decision trees for data

processing and classification. The approach was evaluated

using MIMIC-III data and demonstrated improved perfor-

mance by using multiple modalities of data. Meanwhile,

Mullenbach et al. [27] proposed the CNN model CAML,

which utilizes label attention to enhance ICD coding task

performance. The model uses pre-trained word vectors and

was tested on MIMIC-III and MIMIC-II discharge sum-

mary notes, outperforming previous methods.

As the most recent state-of-the-art model, Li and

Yu [22] proposed Multi-Filter Residual Convolutional

Neural Network (MultiResCNN) which utilizes a one-hot

encoded label vector to predict multiple ICD codes related

to the discharge summary text. Their approach uses a

multiple-filter CNN network, with a residual network [28]

following each filter, and employs a label attention mech-

anism for better prediction accuracy. They evaluated their

model on the MIMIC-III discharge summary notes dataset

and showed improved performance with both MIMIC-Full

codes and MIMIC-50 codes.

The limitation of these approaches is that they rely

solely on the examples present in the training set, which

can only represent a small subset of the vast and complex

space of diseases, symptoms, and epidemiological factors.

This can restrict the model’s ability to generalize to new

and unseen data. To overcome this limitation, it is crucial

to incorporate external knowledge sources that can aug-

ment the training data and provide additional information

to improve the performance of the models.

2.3 Knowledge-enhanced approaches

Many studies have investigated the effect of external

information sources on medical text understand-

ing [18, 29, 30]. While Kumar Chanda et al. [30] proposed

a method for learning medical term embeddings from

limited notes by using medical term definitions as external

knowledge, Bai and Vucetic [31] built upon the CAML

model by incorporating a Knowledge Source Integration

(KSI) framework to improve performance. KSI uses

superficial knowledge from Wikipedia to add extra weight

to the input text for ICD code prediction, specifically
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focusing on rare diseases. The model was evaluated on the

MIMIC-III dataset and showed improved performance in

predicting rare diseases. These studies demonstrated the

need for external knowledge, but the unstructured knowl-

edge used can be difficult for the machine to process. As an

alternative, it may be beneficial to incorporate structured

knowledge sources in the form of knowledge graphs.

Choi et al. [32] introduced GRAM, which combines

information from medical ontologies with deep learning

models via attention mechanism. Ancestors of less frequent

medical concepts are adaptively combined by frequency

and attention, and the attention mechanism is trained end-

to-end. This means that if enough training data are avail-

able, GRAM achieves comparable results without incor-

porating the medical ontology. In contrast, KAME [33]

exploits a medical ontology (i.e., ICD 9) to learn repre-

sentations of medical codes and their ancestors in the

whole prediction process. Bao et al. [34] used ICD

descriptions as external knowledge sources to improve

medical code prediction in their hybrid capsule network

model with a bi-directional LSTM and label embedding

framework. Similarly, Du et al. [35] used GCN to obtain

diagnosis codes’ semantic representations and construct a

co-occurrence graph from EHR data, improving token

extraction with an attention mechanism to model the

interaction between diagnosis codes’ ontology representa-

tions and clinical notes. Peng et al. [36] proposed MIPO, a

healthcare representation learning model that uses medical

knowledge and patient journey to predict future diagnoses.

MIPO consists of a task-specific representation learning

module and a graph-embedding module, and it jointly

learns task-specific and ontology-based objectives.

The works mentioned above utilize structured knowl-

edge in the entire prediction process, however, the medical

ontologies and ICD descriptions predominantly used pri-

marily reveal connections among diseases and not all

medical entities mentioned in medical texts, such as

symptoms and epidemiological factors. This can hinder the

machine’s ability to effectively utilize all available medical

information and evidence-based knowledge during the

prediction process. To address this limitation, a more

comprehensive knowledge graph should be properly inte-

grated, which can enable the machine to incorporate a

broader range of information and improve the accuracy of

predictions.

3 KG-MultiResCNN

This paper presents a novel model called KG-Multi-

ResCNN—Knowledge Guided Multi-filter Residual Con-

volutional Neural Network, based on the state-of-the-art

approach proposed by Li and Yu [22]. The main

contribution of this work is to predict disease ICD codes

from unstructured clinical texts by leveraging a knowledge

graph. The model first extracts tokens from the clinical text

and represents them numerically, weighting them accord-

ing to their importance. Subsequently, it identifies medical

entities and represents the relationships between them

numerically using knowledge graph embedding. As illus-

trated in Fig. 1, these representations are concatenated and

passed through a Multi-filter Residual Convolutional

Neural Network to predict the ICD code. We employed

CNNs due to their effectiveness in processing sequential

unstructured data such as free text. Due to the complexity

of the task, a deep CNN is needed. Therefore, residual

blocks have been considered to address the vanishing

gradient problem. In the following, we discuss each of the

elements of KG-MultiResCNN:

3.1 Word embedding input

The first part of the input layer is an embedding matrix (E)

obtained from the sequence of the words of the text doc-

ument. The word sequence is denoted as w, which is

defined as w ¼ ðw1;w2; ::::;wnÞ, where n is the total num-

ber of words present in the text. For each word, the

embedding vector is obtained using the pretrained word2-

vec model [37]. Furthermore, each word embedding is

weighted using a TF-IDF1 score. TF-IDF measures the

relevance of words such that those frequent in the docu-

ment but rare in the collection are considered most rele-

vant. Specifically, the embedding vector can be formulated

as e ¼ g � u where u is the word embedding and g[ 0 is

the TF-IDF score of that word. Consequently, the the word

embedding input part becomes E ¼ fe1; e2; � � � ; eng where

ei 2 RdðwÞ
. dðwÞ is the dimension of the word embedding

vector.

3.2 Input KG-embedding input

The second part of the input layer is the knowledge graph

embedding matrix (K), which encode the relationships

between the medical entities present in the clinical text

with all related entities regardless of whether they are

present in the clinical text or not. To this end, we extract

from w the most significant medical entities using a

domain-specific Named Entity Recognition model .2 This

results in the sequence t denoted as t ¼ ft1; t2; ::::; tmg,
where m is the number of medically significant entities

extracted by the entity extraction model. Using each entity

jj, a Knowledge Graph is queried to obtain the knowledge

graph embedding kj. Hence the knowledge graph

1 Term frequency-inverse document frequency.
2 https://huggingface.co/samrawal/bert-base-uncased_clinical-ner.
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embedding matrix becomes, K ¼ fk1; k2; ::::; kmg 2
Rm�dðkÞ

, where dðkÞ denotes the dimension of the knowledge

embedding. In this paper, we employed PyTorch BigGraph

(PGB)[38] which is an embedding system provided by

Meta Research3 community. PGB learns the node and

edges representations of massive knowledge graphs and

embeds the nodes and relations in the graph. Its strength

lies in the fact that it is trained on the large Wikidata4

knowledge graph with 78 million entities and 4131 rela-

tions and provides embedding of 200 dimensions. It is

highly likely that the medical entities extracted from the

clinical text exist in Wikidata and are connected to other

medical entities with several relationship types. The word

embedding matrix and the KG embedding matrix jointly

serve as the input layer (i.e., clinical text representation) to

the model.

3.3 Multi-filter convolution layer

To map the clinical text representation to the ICD codes,

we followed the work of Li and Yu [22] by building a

multi-filter 1-dimensional Convolutional Neural Network

architecture. The strategy is to pass the varied length of

texts through a parallel set of CNN networks. However, the

kernel size is of different lengths for each CNN filter.

Given p filters, the corresponding kernel size would be kp

and the convolution filter would be Wp 2 Rkp�dðeÞ�dðcÞ

where dðeÞ is the input dimension and dðcÞ is the output

dimension. In general, the filter/convolution operation on a

vector reduces the size of the output vector. However, in

this approach, we aim to keep the size of the output vector

the same as the input. To this end, the number of param-

eters is calculated as follows:

Lout ¼
Lin þ 2� padding � dilation� ðkernel size � 1Þ � 1

stride
þ 1

� �

By setting the stride = 1, dilation = 1, kernel_size = k, and

padding = floorðk
2
Þ, we can achieve our goal of same output

size. With all these adjustments, the 1-Dimensional con-

volution operation can be formalized as:

{p;jðEÞ ¼ WT
p � Ej:jþkp�1

Hp ¼
Xn

j¼1

tanhð{p;jðEÞÞ

Here, � represents a convolution operation and {p;j indi-

cates the output of pth convolution where the input matrix

position starts from j th row and ends at the row j þ kp � 1.

Hn indicates the final layer output after the convolution

output is passed though tanh activation for total n sequence

of input and then concatenated (indicated by
P

) together.

Fig. 1 An overview of ‘‘Kg-MultiResCNN’’ architecture for ICD code prediction using a Multi-filter Residual Convolutional Neural Network

3 https://github.com/facebookresearch.
4 https://www.wikidata.org.
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3.4 Residual convolution layer

The output of each convolutional filter again goes through

a series of convolution filters called a residual block. Each

of these blocks consists of 3 convolution layers. A typical

1-D convolution architecture is shown in Fig. 2, where the

convolution filter Wp slides through the embedding matrix

E with a stride of 1. Formally, if we consider p multi-filter

convolution layers then each of these convolution filters

has a series of q residual blocks on top. Each of the residual

blocks have three convolution filters, namely rpq1 ; rpq2 ; rpq3

and their corresponding filter weights are Wpq1 ;Wpq2 ;Wpq3 ,

where rpq is the qth residual block on top of pth multi-filter

convolution layer. The output of each convolution filter

inside a residual block can be formulated as

{pq1;jðXÞ ¼ WT
pq1

� Xj:jþkpq1
�1;

Hpq1 ¼
Xn

j¼1

tanhð{pq1;jðXÞÞ;

Hpq2 ¼
Xn

j¼1

{pq2;jðHpq1Þ;

Hpq3 ¼
Xn

j¼1

{pq3;jðXÞ;

Hpq ¼ tanhðHpq2 þ Hpq3Þ;

where þ represents the element-wise addition and Hpq is

the final output from the qth residual block that used the

initial input matrix from the output of pth multi-filter con-

volutional block. X is the input matrix to each of the residual

blocks. The first residual block is fed with the output of the

multi-filter convolution layer. Finally, the output of each of

the final residual blocks is concatenated together to use in

the next step. The final output can be formulated as:

H ¼
Xp

1

Hpq

where p is the total no of filters used in the multi-filter

convolution layer.

3.5 Attention layer

The final output matrix H is typically reduced to a vector

using the max-pooling operation before passing it to a

classifier. However, in this model, we used an additional

label attention step as suggested by Mullenbach et al. [27].

The idea is that some words have higher weights for a label

for multi-class classification. Therefore, the label attention

can select the most relevant k-grams from the text that can

benefit in predicting the correct label. Formally, the pro-

cedure is to create a vector parameter U for the labels and

then compute the matrix–vector product HU. Then we use

a softmax layer to obtain the word distribution in the text.

a ¼ softmaxðHUÞ

where a is the attention vector. To get the final vector

representation from the attention layer we again perform a

Fig. 2 A general architectural

overview of 1-D convolution

with stride 1
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matrix multiplication between the attention vector a and

the input matrix H. The final output is formulated as

V ¼ aT H

3.6 Output layer

The output layer is a superficial linear layer that takes the

input V from the attention layer. The score vector of all the

labels is obtained using the sum-pooling operation on the

output vector resulting from a linear transformation. The

final probability vector is calculated using sigmoid acti-

vation on the score vector for multi-class classification,

such that Y ¼ VW , where W of dimension ððp � dpqÞ; lÞ is
the weight matrix. Here, p is the total number of convo-

lution filters used in the multi-filter convolution step, and

dpq is the output dimension from the residual convolution

layer. l is the output dimension, the total number of labels

that we are classifying. The score vector Ŷ can be formu-

lated as:

Ŷ ¼ pooling
Xl

j¼1

Yij

 !

and the final predicted vector is:

~Y ¼ rðŶÞ

4 Results

In this section, we evaluate the effectiveness of the KG-

MultiResCNN against the baseline state-of-the-art approa-

ches. To reproduce the results and further improvements,

we made the implementation of the KG-MultiResCNN

publicly available 5 and the details of the architecture are

illustrated in Fig. 3.

We conducted several experiments with different

parameters to determine the optimal operation settings for

our model. We found that using 100-dimensional embed-

ding vectors for the input word embedding yielded better

performance than using higher-dimensional embedding

vectors. Additionally, the number of words in the clinical

text played a significant role in the model’s performance,

with a maximum of 3000 words resulting in the best per-

formance. We also discovered that using a maximum of 30

medical entities extracted from the clinical text led to

optimal performance, and architecture with nine CNN

channels was the most advantageous for modeling this

number of words. For the combined input of word

embeddings and KG embeddings, the model performed

best with two residual layers. Although the complexity of

the ‘‘KG-MultiResCNN’’ model was relatively high, it had

comparable computational costs to the ‘‘MultiResCNN’’

model. However, if the number of words and extracted

medical entities is higher, more CNN channels and/or

residual layers would be needed, leading to increased

computational costs.

4.1 Dataset

Medical Information Mart for Intensive Care (MIMIC-

III) [39] is one of the largest labeled datasets of clinical

texts with clinical records of around 40 thousand patients.

Also, it is used by most of the state-of-the-art approa-

ches [22, 26, 27, 40, 41]. Therefore, MIMIC-III is adopted

in this work to be the evaluation dataset. Similarly to

Mullenbach et al. [27] and Li and Yu [22], we use in this

work the ‘‘Discharge summaries’’ which contain a general

description of the patient, starting from their medical his-

tory to the final discharge notes. On top of that, we aim also

to assess the capability of KG-MultiResCNN on predicting

the ICD codes from the clinical descriptive texts and

without using the discharge notes. We mean by clinical

descriptive texts, texts that describe the clinical case (e.g.,

lab tests and clinical observations) without any explicit or

implicit clue of the diagnosis and they include clinical

notes, nursery observations and free-text notes from med-

ical examinations such as radiology, electrocardiography,

echocardiography, and respiratory check examinations.

Following the baseline approaches (e.g., [22]), we consider

two experiments, one will full codes (4216) and the second

one with the top occurring 50-codes. This means that only

clinical instances, that are assigned to at least one of the top

50 most frequent codes, are considered. This is because

most of the ICD codes are assigned to very few hospital

admissions.

4.2 Evaluation metrics

KG-MultiResCNN is a multi-class classifier, distinguishing

between several ICD codes. It is customary to evaluate this

kind of classifier at a range of thresholds ps 2 ½0; 1� for the
decision p[ ps and then represent the results in the form of

Receiver Operating Characteristic (ROC) curves and Area

Under ROC (AUROC). However, although the distinction

is important, it may not properly address clinical usefulness

[42–47]. More specifically, a false negative prediction is

more harmful than a false positive decision. In that case, a

model with high sensitivity may be preferable to a model

with high specificity and low sensitivity. In other words, a

model is clinically useful if its decisions for patients lead to

a better ratio between benefits and harms compared to not

using the model. Therefore, we employed other evaluation5 https://KG-MultiResCNN.ai-research.net.
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metrics: AUC, Precision@5 (P@5), Precision@8 (P@8),

and Precision@15 (P@15). Since the classes (ICD codes)

are not supposed to be balanced, micro and macro aver-

aging are adopted for better computation of the average

score among the different classes.

4.3 Baselines

Because the main contribution of KG-MultiResCNN is

enhancing MultiResCNN [22] with external knowledge

guidance, the main comparison is against MultiResCNN. In

addition, we consider the following baselines:

• Logistic regression (LR): Mullenbach et al. [27] used

Logistic Regression (LR) to predict ICD codes using a

unigram bag-of-words vector for all words in the

MIMIC-III text data.

• SVM: Perotte et al. [15] experimented with hierarchical

and flat ICD code prediction on MIMIC-II using

Support Vector Machine (SVM). Later, Xie et al. [48]

used also SVM for hierarchical ICD code prediction on

the MIMIC-III dataset. Their model performed moder-

ately with 10,000 unigram word vectors and with TF-

IDF weighting.

• CNN: Mullenbach et al. [27] experimented with the

performance of 1D-CNN on classifying ICD codes

from MIMIC-III clinical notes.

• Bi-GRU: Mullenbach et al. [27] achieved modest

performance by applying the Bi-GRU [49] for ICD

classification with MIMIC-III clinical notes.

• C-LSTM-Att: Shi et al. [17] used an LSTM based

language model called the Character-aware LSTM-

based Attention (C-LSTM-Att). The model used an

attention mechanism to handle the mismatch between

notes and ICD codes and was used to predict the top 50

ICD codes from the MIMIC-III dataset.

• LEAM: Wang et al. [21] proposed a text classification

model called the Label Embedding Attentive Model

(LEAM) that predicts the top 50 ICD codes from the

MIMIC-III dataset. The model projects the embedding

of words and labels in the same latent vector space and

calculates the similarities between the embeddings.

• CAML: Mullenbach et al. [27] introduced the Convo-

lutional Attention Network for Multi-Label classifica-

tion applied on ICD code classification using MIMIC-

III notes. The model achieved high performance for

multi-label ICD code classification.

• DR-CAML: As an extension of CAML, Mullenbach

et al. [27] introduced the Description Regularized

CAML. The model used the text description of the

codes for better prediction accuracy.

Fig. 3 Full implemented architecture of ‘‘KG-MultiResCNN.’’
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4.4 Comparison against the baselines

In this comparison, only ‘‘Discharge summary’’ is consid-

ered because it is the only type of note used by the base-

lines. As the main comparison, we compared KG-

MultiResCNN against all baseline approaches mentioned

above. Table 1 presents the comparative results in terms of

Micro and Macro F1-score averages for both ‘‘full-codes’’

and ‘‘50 codes’’ experiments. It is evident from the results

that KG-MultiResCNN significantly outperforms all the

baseline approaches, including current state-of-the-art

MultiResCNN. Even with the full diagnosis and procedural

ICD coding setting, KG-MultiResCNN acquired a Micro

F1-score average of 56:1%, surpassing all approaches.

For further evaluation, we compare KG-MultiResCNN

against MultiResCNN in terms of predicting the diagnosis

ICD codes using the ‘‘Discharge summary’’ notes. Table 2

shows the comparison results between the two approaches,

demonstrating that KG-MultiResCNN achieved better

macro and micro F1-score compared to MultiResCNN. It is

important to note that the results of MultiResCNN can be

slightly different than what was mentioned on the

paper [22] as we reproduced them to guarantee a fair

comparison. When applied to the ‘‘full code’’ dataset, the

guidance of the knowledge graph in KG-MultiResCNN

improved the Micro F1-score average by 0:9%. In terms of

Macro F1-score average, KG-MultiResCNN is better with

1:7%. Similarly, for the ‘‘50-code’’ dataset, ‘‘KG-Multi-

ResCNN’’ achieved better results compared to Multi-

ResCNN, where the Micro F1-score and Macro F1-score

are improved with 1:46% and 3:9%, respectively. The

results also show a stable standard deviation for both the

‘‘full-codes’’ and ‘‘50 codes’’ experiments. Despite the

result improvement is marginal, it clearly answers the

research question raised in this work and proves that

guiding the model with medical knowledge graph embed-

dings of clinical entities is beneficial in automatic ICD

coding.

4.5 Results on different note types

Since all the baseline approaches used only ‘‘discharge

summary’’ notes which might explicitly comprise the dis-

ease, we aim to evaluate the performance of KG-Multi-

ResCNN on the other note types that definitely do not

contain an explicit indication of the disease.

Table 3 illustrates a comparative results of ‘‘KG-Mul-

tiResCNN’’ with different notes combination for the full

code prediction and for top 50 code prediction settings. As

anticipated, the model performed better when using only

‘‘Discharge summary’’ notes. By including ‘‘Physician’’

and ‘‘Nursing’’ notes, the results drop slightly, which can

be explained by the high dimensionality of the input layer

and the complex relationships between the huge number of

entities in the text. We assume that a more sophisticated

architecture with more layers would work better with a

large number of tokens/entities. Another reason could be

the huge amount of indirect or irrelevant information that

Table 1 Comparison results of KG-MultiResCNN against the base-

line methods on predicting ICD codes using ‘‘Discharge summary’’

notes in terms of F1-Score

Model Full codes Top-50 codes

Micro(%) Macro(%)

LR 27.2 1.1 53.3 47.7

Flat SVM 39.7 – – –

Hierarchy SVM 44.1 – – –

C-LSTM-Att – – 53.2 –

CNN 41.9 4.2 62.5 57.6

Bi-GRU 41.7 3.8 54.9 48.4

LEAM – – 61.9 54.0

CAML 53.9 8.8 61.4 53.2

DR-CAML 52.9 8.6 63.3 57.6

MultiResCNN 55.2 8.5 67.0 60.6

KG-

MultiResCNN

56.1±0.1 10.2 ± 0.1 69.5 ± 0.1 64.5 ±0.1

Bold values signify the highest-performing methods among those

compared

± indicates standard deviations

Table 2 Comparison results of KG-MultiResCNN against KG-MultiResCNN on diagnosis ICD code with ‘‘Discharge summary’’ notes

Model Full codes Top-50 codes P@8 P@15 P@5

Micro (%) Macro (%) Micro (%) Macro (%)

F1 AUC F1 AUC F1 AUC F1 AUC

MultiResCNN 55.2 98.6 8.5 90.5 67.0 94.5 60.6 92.5 59.1 43.7 57.5

KG-MultiResCNN 56.1 ±0.1 98.4 10.2 ± 0.1 87.1 69.5 ±0.1 94.5 64.5 ± 0.1 92.7 59.9 44.0 57.8

Bold values signify the highest-performing methods among those compared

± indicates standard deviations
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misleads the model. Due to the same reasons, the perfor-

mance drops significantly when using only ‘‘Physician’’

and ‘‘Nursing’’ notes. However, the results are still

promising for using the model in other tasks (e.g., pre-

liminary diagnosis) and/or for further improvements of the

model.

4.6 Performance

Table 4 presents the performance comparison between KG-

MultiResCNN and the state-of-the-art baseline Multi-

ResCNN from different aspects. As shown in the table, KG-

MultiResCNN converges after 15 epochs only, whereas

MultiResCNN took 26 epochs to converge. Also, both

models have the same number of training parameters.

However, KG-MultiResCNN takes about 2185 s for each

epoch whereas, MultiResCNN takes about half of the time.

This is due to the higher complexity of KG-MultiResCNN.

For instance, KG-MultiResCNN uses nine convolution

channels compared to MultiResCNN which uses only six.

5 Conclusion

In this study, we presented KG-MultiResCNN, a Multi-

filter Residual Convolutional Neural Network model for

predicting multi-label ICD codes using clinical text

embeddings. KG-MultiResCNN incorporates medical

knowledge graph embeddings that capture the relationships

between medical entities in the clinical text. It also con-

siders the relevance of each word by weighting its

embedding with a TF-IDF score based on its occurrence in

the document and corpus. The obtained results demonstrate

that KG-MultiResCNN outperforms state-of-the-art meth-

ods, especially with discharge summary notes, which pro-

vide critical patient information.

Future research will focus on constructing a medical-

specific knowledge graph to address the limitations of the

currently adopted knowledge graph, which contains irrel-

evant relationships. This new graph will be automatically

generated from unstructured medical sources like Wikipe-

dia articles and scientific papers. We also plan to combine

knowledge representation (via a knowledge graph) with

concept representation (via an ontology) to create a model

capable of understanding data at three levels: examples

from training data, knowledge from the knowledge graph,

and the general framework of the data domain.
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Notes type Full codes Top-50 codes P@8 P@15 P@5

Micro (%) Macro (%) Micro (%) Macro (%)

F1 AUC F1 AUC F1 AUC F1 AUC

‘‘Discharge summary’’ notes 53.8 98.4 10.2 87.1 69.06 94.5 64.21 92.7 59.9 44.0 57.8
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Bold values signify the highest-performing methods among those compared

Table 4 Performance comparison between KG-MultiResCNN and

MultiResCNN
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Number of epochs 26 15
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