
ORIGINAL ARTICLE

A modified Adam algorithm for deep neural network optimization

Mohamed Reyad1 • Amany M. Sarhan1 • M. Arafa1

Received: 8 January 2022 / Accepted: 5 April 2023 / Published online: 25 April 2023
� The Author(s) 2023

Abstract
Deep Neural Networks (DNNs) are widely regarded as the most effective learning tool for dealing with large datasets, and

they have been successfully used in thousands of applications in a variety of fields. Based on these large datasets, they are

trained to learn the relationships between various variables. The adaptive moment estimation (Adam) algorithm, a highly

efficient adaptive optimization algorithm, is widely used as a learning algorithm in various fields for training DNN models.

However, it needs to improve its generalization performance, especially when training with large-scale datasets. Therefore,

in this paper, we propose HN Adam, a modified version of the Adam Algorithm, to improve its accuracy and convergence

speed. The HN_Adam algorithm is modified by automatically adjusting the step size of the parameter updates over the

training epochs. This automatic adjustment is based on the norm value of the parameter update formula according to the

gradient values obtained during the training epochs. Furthermore, a hybrid mechanism was created by combining the

standard Adam algorithm and the AMSGrad algorithm. As a result of these changes, the HN_Adam algorithm, like the

stochastic gradient descent (SGD) algorithm, has good generalization performance and achieves fast convergence like

other adaptive algorithms. To test the proposed HN_Adam algorithm performance, it is evaluated to train a deep con-

volutional neural network (CNN) model that classifies images using two different standard datasets: MNIST and CIFAR-

10. The algorithm results are compared to the basic Adam algorithm and the SGD algorithm, in addition to other five recent

SGD adaptive algorithms. In most comparisons, the HN Adam algorithm outperforms the compared algorithms in terms of

accuracy and convergence speed. AdaBelief is the most competitive of the compared algorithms. In terms of testing

accuracy and convergence speed (represented by the consumed training time), the HN-Adam algorithm outperforms the

AdaBelief algorithm by an improvement of 1.0% and 0.29% for the MNIST dataset, and 0.93% and 1.68% for the CIFAR-

10 dataset, respectively.

Keywords Optimizer � Adaptive Moment Estimation � Adam � AMSGrad � RMSprop � Nesterov Accelerated Adam �
Deep Neural Networks

1 Introduction

Deep neural networks (DNNs) are widely regarded as the

most popular and powerful machine learning method. They

have been successfully applied in a variety of fields such as

computer vision, natural language processing (NLP),

bioinformatics, speech recognition, and medical computer

technology, among others. DNNs are artificial neural net-

works (ANNs) that have multiple hidden layers. In DNNs,

the number of hidden layers can reach 100 or more [1].

In recent years, the significant improvements in com-

puter speeds, such as GPU accelerators and cloud com-

puting, have greatly increased the prevalence of DNNs.

They enable us to train deep neural networks much faster

than before [2, 3]. Furthermore, the existence of a large

& Mohamed Reyad

m.r.elhelesy@xed.aucegypt.edu;

PG_38823@feng.tanta.edu.eg

Amany M. Sarhan

amany_sarhan@f-eng.tanta.edu.eg

M. Arafa

m.arafa@f-eng.tanta.edu.eg

1 Computers and Control Department, Faculty of Engineering,

Tanta University, Tanta, Egypt

123

Neural Computing and Applications (2023) 35:17095–17112
https://doi.org/10.1007/s00521-023-08568-z(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-023-08568-z&domain=pdf
https://doi.org/10.1007/s00521-023-08568-z

volume of data necessitates the development of deep neural

networks to keep up with the growing volume of data.

Furthermore, significant progress in DNN training methods

has aided in the development of deep learning models that

are now used in a wide range of applications. In the vast

majority of applications, these models have delivered ele-

gant results. All of these factors propelled DNNs to the

forefront of the machine learning field, inspiring many

researchers to work on improving their training methods

[1, 4].

Deep neural networks can be optimized in a variety of

ways, including optimizing the network model’s structural

design and determining the optimal parameters such as

weights and biases of a predefined network structure, pre-

processing of the datasets, and choosing the best opti-

mization technique during the learning process. There are

currently no established criteria for developing an ideal

deep neural architecture [5]. Any optimizer’s goal is to

minimize an objective function, also known as a loss

function, which is the difference between the expected and

computed values. The minimization procedure determines

the best set of parameters for designing DNNs for classi-

fication, prediction, and clustering tasks.

Many researchers [6, 7] present several optimization

algorithms for deep neural networks in the literature. The

gradient descent approach, which is a first-order differen-

tial method used to obtain an array of weights that satisfy

the error criteria, is used by the majority of these algo-

rithms. The most widely used optimization algorithms for

deep neural networks in the literature are gradient descent

techniques such as back-propagation and adaptive moment

estimation (Adam) algorithms [8–10].

Training procedures remain relatively simple in com-

parison to the increasing complexity of deep neural net-

work topologies. The majority of practical optimization

approaches for DNNs employ the stochastic gradient des-

cent (SGD) technique. However, as a hyper-parameter, the

SGD learning rate is frequently difficult to tune and must

be adjusted throughout the training process. To address this

issue, several adaptive SGD variants have been developed,

including adaptive gradient (AdaGrad), adaptive delta

(Adadelta), root mean square propagation (RMSProp), and

Adam. Based on the gradient statistics, these SGD variants

aim to automatically adapt the learning rate of parameter

updates. This explains why the SGD method is still used in

training the most recent DNN models, particularly the feed-

forward type [11].

The main goal of this paper is to create an optimization

method that has good generalization performance like the

SGD method while also achieving fast convergence like

the adaptive methods. To address the shortcomings of

current optimization algorithms, this paper proposes a

modified Adam algorithm that does not require any

additional parameters. The modified algorithm’s main

contribution is an increase in both convergence speed and

accuracy. There is a mathematical proof that shows the

differences between the modified and basic algorithms.

Extensive experiments are carried out to demonstrate the

proposed algorithm’s superiority to state-of-the-art opti-

mization algorithms, which are trained on two different

datasets. The results show that the proposed algorithm

outperforms the other algorithms in terms of convergence

speed and accuracy.

The sections of the paper are organized as follows. The

second section summarizes recent reviews of adaptive

optimization techniques for deep neural network opti-

mization. Section 3 describes the deep neural network

architectures. The convolution neural network (CNN) is

reviewed in Sect. 4. The concept and the mathematical

proof of the modified Adam algorithm are discussed in

detail in Sect. 5. The experiments and results discussion are

given in Sect. 6. Section 7 concludes the paper and gives

the future work.

2 Literature review of deep neural networks
optimization

DNNs have been a hot topic in the machine learning

community in recent years. The optimization methods used

to train DNNs can be divided into two types: first-order

optimization methods and second-order optimization

methods [12]. The first-order derivative values of the

objective function are used to direct the search process

towards the steepest decreasing direction in first-order

methods. It should be noted that the gradient denotes the

first-order derivative of a multivariate objective function

[12]. The gradient descent (GD) optimization algorithm is a

popular first-order optimization algorithm that uses the

objective function’s negative gradient to find its minimum.

Since tuning the SGD algorithm’s learning rate as a

hyper-parameter is difficult, it is adjusted throughout the

training process [14]. The adaptive variants of SGD algo-

rithms attempt to automatically adapt the learning rate for

parameter updates based on gradient statistics. Although

these adaptive variants simplify learning rate settings and

increase convergence speed, in some applications, their

overall performance is significantly worse than the basic

SGD algorithm. As a result, the SGD (possibly with

momentum) algorithm is still used in training cutting-edge

deep neural models such as feed-forward DNNs [15, 16].

Furthermore, recent studies have shown that the ability of

DNN models to fit noisy data is dependent on the opti-

mization methods used [17, 18].

The RMSProp algorithm [19] and the AdaGrad [20] are

two optimization methods that are strongly attributable to

17096 Neural Computing and Applications (2023) 35:17095–17112

123

Adam. These connections will be demonstrated later. Other

stochastic optimization methods discussed include vSGD

[21], AdaDelta [22], and the natural newton method [23].

All of these optimizers use the first derivative (gradient) of

the loss function to estimate the curvature of the loss sur-

face and determine the optimal learning rate step sizes. As

in the natural gradient descent (NGD) method, some

variants of Adam use a preconditioner (like AdaGrad) that

adjusts to the geometry of the data based on the approxi-

mation for the diagonal of the Fisher information matrix

[24]. The adaptation mechanism in Adam’s preconditioner

is more conventional than vanilla NGD [25]. Other variants

of Adam have also been proposed such as NosAdam [26],

Sadam [27], and Adax [28].

Throughout this paper, we attempt to improve the

learning rate update step during the training process for

first-order optimization methods. Other approaches, such as

Lookahead [29], update the weights slowly and quickly

separately. It is regarded as a wrapper that can be combined

with other optimizers.

When compared to the SGD algorithm, adaptive gradi-

ent methods like Adam typically converge quickly in the

early training phases, but they still have poor generaliza-

tion performance [31, 32]. Recent advances have attempted

to combine the advantages of adaptive methods and the

SGD method, such as switching from Adam to SGD with a

hard schedule, as in SWATS [33], or with a smooth tran-

sition as in AdaBound [34]. Other Adam modifications are

also proposed. The AMSGrad algorithm [35] solves

Adam’s convergence analysis problem. Dokkyun et al. [36]

solve the problem of trapping into a local minimum for

non-convex cost functions. The Adam algorithm’s param-

eter update formula has been modified to include the cost

function. The evolved gradient direction optimizer is a

novel gradient-based algorithm introduced by the authors

of [37]. (EVGO). It solves the vanishing gradient problem

by updating the weights of the DNNs using the first-order

gradient and a proposed hyperplane. The authors of [38]

create YOGI, an adaptive optimization approach. It takes

into account the training dataset’s mini-batch size. The

MSVAG algorithm [39] segregates Adam assign update

and magnitude scaling, the RAdam algorithm [40] corrects

learning rate variance, the Fromage algorithm [41] controls

function space distance, and the AdamW algorithm [42]

decouples weight decay from gradient descent.

Although these modifications outperform Adam in terms

of accuracy, they perform worse in terms of generalization

on large-scale datasets like ImageNet [43]. Furthermore,

many optimizers are empirically unstable when training

generative adversarial networks (GAN) compared to Adam

[44].

Aside from the first-order methods, there are second-

order methods that use the objective function’s second-

order derivative values (also known as the Hessian matrix)

to minimize it. They provide us with additional information

about the objective function’s curvature surface, which aids

in estimating a better step size for the learning rate.

Newton’s method, quasi-newton method, gauss–newton

method [45, 46], and conjugate- gradient [47] are some

common examples of second-order optimization methods.

To train deep auto-encoders without using pre-training,

Hessian-free optimization (HFO) [48] is used. The sum-of-

functions optimizer (SFO) [49] is a quasi-newton method

that employs mini-batches, which are small subsets of the

dataset. Its performance is determined by the number of

mini-batches generated from the dataset. This method is

frequently impractical on memory-constrained systems

such as GPUs.

Second-order optimization methods are not widely used

because they require more computations to obtain second-

order derivatives [49]. Table 1 summarizes the survey

results for some selected optimization methods for

improving the performance of deep network networks that

have recently appeared in the literature.

Recently, other new versions of Adam have been arisen.

A new version of Adam based on combining adaptive

coefficients and composite gradients using randomized

block coordinate descent is proposed in [50]. It enhances

the performance of the Adam algorithm to a certain extent

in terms of accuracy and convergence speed. The effect of

the second-order momentum and the use of different

learning rates was not considered on the performance of the

original algorithm. In [51], an Adam-style algorithm,

denoted by Amos, is introduced. It uses adaptive learning-

rate decay and weight decay to improve the performance of

the original algorithm. It utilizes model-specific informa-

tion to establish the initial learning rate and decaying

schedules. In [52], a faster version of Adam algorithm

named Adan is suggested to accelerate the training process

of deep neural networks effectively. It develops a new

Nesterov momentum estimation method to estimate the

first- and second-order moments of the gradient in adaptive

gradient algorithms like Adam. This method increases the

convergence speed of the Adam algorithm.

3 Deep neural networks (DNNs)
architectures

Deep neural network (DNN) is a type of artificial neural

network (ANN) with multiple hidden layers between the

input and output layers [1]. DNN structures vary, but they

all share the same basic building blocks, such as neurons,

synapses, weights, biases, and activation functions [1].

They can be trained to perform functions similar to human

Neural Computing and Applications (2023) 35:17095–17112 17097

123

brains using supervised or unsupervised learning algo-

rithms [53].

3.1 Activation functions

Because of matrix operations in artificial neural networks,

the network and its components are linear. The established

linear structure is transformed into a nonlinear one using

the activation functions. Choosing appropriate activation

functions makes it simple to increase the network’s com-

putation speed. The common activation functions that are

used in the deep neural networks are sigmoid, tangent

hyperbolic (Tanh), rectified linear unit (ReLU) and leaky

rectified linear unit (Leaky ReLU) [53, 54].

3.2 Training of deep neural networks

Deep neural network training (or learning) is the process of

determining the weight of neuron connections to achieve

the required relationships between inputs and outputs with

a certain precision. There are two types of learning

methods used to train neural networks [53]: supervised

learning and unsupervised learning. In most machine

learning practical applications, where the network model

has a training dataset of inputs and outputs, supervised

learning is used. This type of learning is used to provide an

approximation of a mapping function to represent the

relationship between inputs and outputs.

Classification and regression are two common problems

addressed by supervised learning. Unsupervised learning is

used when the network model only has input data and no

corresponding outputs, such as in clustering problems. The

goal of this type of learning is to learn more about the data

by modeling the underlying structure or distribution

[13, 54].

The basic learning algorithm used to train DNNs for

supervised learning is back-propagation, which has two

operating phases, forward propagation and backward

propagation [53, 60]. It is based on the gradient descent

algorithm (GD), which calculates gradients across the

entire dataset. This results in a large number of iterations

and increases the risk of becoming trapped in local

Table 1 Performances results for some selected optimization algorithms

DNN Models Datasets Algorithm Performance

CNN (2015) [8] MNIST Adam,

AdaMax

Loss = 0.26

WRN-22, WRN-28 (2018)

[13]

CIFAR-10-

CIFAR-100

ND-Adam Loss = (3.70–19.30) (3.70–18.42)

Deep4Net ResNet (2019)

[42]

CIFAR-10 (AdamW)-

(SGDW)

Accuracy = (73.68%)

(72.04%)

ResNet18, PreActResNet18

(2019) [35]

CIFAR-10 AMSGrad and

AdamX

–

–

CNN1, CNN2 (2019) [61] MNIST HuperAdam Accuracy = 98.63%

99.78% After 1000 steps

(ResNet20, ResNet32)

(2020) [62]

CIFAR-10 SGD

Adam

AdamW

AdaHessian

Accuracy = (92.08–93.14%)

(90.33%–91.63%)

(91.97%–92.72%)

(92.13%–93.08%)

VGG11, ResNet18,

DenseNet121 (2020) [60]

CIFAR-10

CIFAR-100

EAdam

Adam

RAdam

Adabelief

Accuracy = (91.45%–94.99%- 95.61%)

(88.95%–92.88%93.55%)

(89.54%–94.26%- 94.97%)

(91.66%–94.85%–95.69%) all accuracy for 150 epochs

AlexNet- ResNet20 (2020)

[37]

MNIST

CIFAR-10

EVGO For MNIST(Val = 98.06%- Test = 98.12%)

For CIFAR(Loss = 0.05240.4616

Accuracy = 80.92%–87.52%)

BPNN (2023) [50] MNIST

CIFAR-10

ACGB-Adam For MNIST (Loss(MSE) = 0.253- Accuracy = 95.9%)

For CIFAR(Loss(MSE) = 2.287- Accuracy = 94.1%)

ResNet50 (2023) [51] ImageNet Amos (Loss = 0.261)

ResNet, ConvNext (2022)

[52]

ImageNet ADAN (Top-1 accuracy on ViT Small = 80.9, on ViT Base = 82.3, on Swin

Tiny = 81.6, on Swin small = 83.7, Swin Base = 83.8)

17098 Neural Computing and Applications (2023) 35:17095–17112

123

optimums with early convergence. Due to these issues, the

mini-batch gradient descent method was proposed. The

training dataset is divided into fixed-size batches for use

during the training process in this method. The total error is

computed, and the weights for each sub batch are updated.

When the mini-batch value is set to ‘‘1,’’ the stochastic

gradient descent algorithm is used. In this case, the error is

calculated for one sample at a time, and the weights are

also updated, resulting in faster convergence through direct

data vectoring. The error value is then propagated back

through the networks, and the weights are updated using

GD in the opposite direction of the curvature. The network

parameters (h) to be optimized are updated according to the

following formula [10].

htþ1 ¼ ht � g � rhJ htð Þ ð1Þ

where g is the learning rate, rhJðhtÞ is the gradient of the

loss function JðhtÞ with respect to ht.
The updated weight values are affected by the value of

the learning rate. It converges for convex surface areas and

non-convex surfaces on a global minimum. The batch-

gradient descent is also known as the vanilla gradient

descent. It works with extremely large training datasets

where it performs intensive calculations that take up a lot

of memory space, making it difficult to use. Furthermore, it

provides numerous redundant updates that we do not

require. As a result, several methods based on stochastic

gradient descent have been developed for use in practical

applications. Because the network only processes one

training sample at a time, stochastic gradient descent is

easy to fit in memory and fast in computations. This suits

the large datasets as it updates the parameters more fre-

quently and converges faster. Some of the improved

algorithms that are based on the stochastic gradient descent

are illustrated in the following section.

1) Stochastic-Gradient Descent (SGD)

The stochastic gradient descent (SGD) algorithm calculates

the lost function for a single training sample at a time

rather than considering all training data samples. Memory

deficiency problems can be avoided in this manner. SGD

was created to address the shortcomings of the batch-gra-

dient descent algorithm. The problem with using SGD is

determining the proper learning rate value to avoid oscil-

lations and reach the global optimal. For parameter

updating, it employs the following equation [6, 10].

htþ1 ¼ ht � g � rhJðht; x ið Þ; y ið ÞÞ ð2Þ

where g is the learning rate, rhJðhtÞ is the gradient of the

loss function JðhtÞ with respect to ht. Also x ið Þ and y ið Þ

represent the training data in the form of inputs-outputs

pairs. If the loss function curve has saddle points where one

dimension slopes up and the other dimension slopes down,

the SGD algorithm does not perform well [6].

2) Gradient descent with momentum

The learning steps in gradient descent methods is desired

to move faster towards the best result. When the learning

steps are very large, the global optimal cannot always be

reached. These large steps can have a direct impact on the

time required to achieve global optimal. To address these

issues, the momentum gradient descent method has been

proposed. It limits the speed of the next learning step by

using the average speed of previous learning steps. In this

method, the dynamic average of the past gradients ðmt�1Þ is
exponentially decreased and it is kept. Its direction is

determined by taking these dynamic averages into account.

In this way, learning steps move faster towards the best

result with less deviation [6, 10]. We can express the

updating rules as [10]:

mt ¼ cmt�1 þ g � rhJ htð Þ ð3Þ

htþ1 ¼ ht �mt ð4Þ

where c is the momentum parameter, it is usually set to 0.9

or a similar value.

3) Nesterov Accelerated Gradient (NAG)

Nesterov accelerated gradient (NAG) is a method to give

our momentum term this kind of prediction. The NAG

algorithm determines the first step in the direction of the

average gradient for the current position before measuring

the new position. The momentum term cmt�1 will be used

to move the parameters ht. Computing the term ht � cmt�1
will give an approximation to the next position of the

parameters and this is considered a rough idea to know

where our parameters are going to be [6, 10]. The param-

eters are updated based on the following two equations

[10].

mt ¼ cmt�1 þ g � rhJ ht � cmt�1ð Þ ð5Þ

htþ1 ¼ ht �mt ð6Þ

4) Adaptive Gradient Algorithm (AdaGrad)

The adaptive gradient (AdaGrad) algorithm divides the

learning rate component by the square root of vt, which is

the sum of the current and past squared gradients up to time

instant t. The gradient component, like in SGD, remains

unchanged. AdaGrad makes different updates for each

parameter by using different learning rates for each step.

The most significant advantage of using AdaGrad is that

the learning rate is not manually adjusted, as in other

adaptive learning systems. The update equations of the

AdaGrad can be expressed as [10]:

Neural Computing and Applications (2023) 35:17095–17112 17099

123

gt ¼ rht J htð Þ ð7Þ

htþ1 ¼ ht �
g

ffiffiffiffiffiffiffiffiffiffiffiffi

vtþ 2
p gt ð8Þ

where 2 is a smoothing term that avoids division by zero

(usually set as 10�8), and vt is the exponential moving

average of the gradient.

E) Root Mean Square Propagation (RMSProp)

RMSProp is an optimization method that is closely

related to Adam [19]. A version with momentum has

sometimes been used. There are a few key differences

between RMSProp with momentum and Adam. RMSProp

with momentum updates the parameters by using a

momentum on the rescaled gradient, whereas Adam

updates the parameters directly by using the moving

average of the gradient’s first and second moments vt. The

update rules of the RMSProp algorithm are [10, 19]:

gt ¼ rht J htð Þ ð9Þ

vt ¼ b2vt�1 þ 1� b2ð Þg2t ð10Þ

htþ1 ¼ ht �
g

ffiffiffiffiffiffiffiffiffiffiffiffi

vtþ 2
p gt ð11Þ

where gt is first derivative for loss function (the gradient)

and b2 is the exponential decay rate.

6) Adaptive Delta (Adadelta):

The parameters in the Adadelta optimization method have

their own learning speeds that gradually decrease until it is

no longer possible to continue the learning process. To

address this issue, the RMSProp method was developed

[6, 10, 22]. The following equations [10] are used to update

the parameters.

RMS½Dht � ¼
ffi

E D2
ht

h i

þ 2
r

ð12Þ

Dht ¼ �
RMS½Dht�1 �
RMS½gt�

gt ð13Þ

htþ1 ¼ ht þ Dht ð14Þ

where RMS½Dht � and E Dht
2

� �

are the root mean squared

error and the expected moving average of the parameter

updates Dht at time step t, respectively.

7) Adaptive Moment Estimation (Adam)

Adam is a highly efficient adaptive optimization algorithm

that is frequently used as a replacement for the traditional

stochastic gradient reduction method. It dynamically

updates the learning rate for each parameter and is thought

to be computationally efficient with low memory require-

ments [8]. Adam employs a parameter update method akin

to gradient descent with RMSProp and momentum. It uses

the exponential moving average of the squared gradient

(vt), as in RMSProp, in addition to the exponential moving

average of the gradient (mt). So, it combines between the

benefits of the RMS-Prop and the momentum [6, 10]. For

parameter updates, the following equations are used

[6, 10]:

mt ¼ b1mt�1 þ 1� b1ð Þgt ð15Þ

vt ¼ b2vt�1 þ 1� b2ð Þg2t ð16Þ

m^t ¼
mt

1� bt1

� �

v^t ¼
vt

1� bt2

� �

ð17Þ

htþ1 ¼ ht �
g

ffiffiffiffiffiffiffiffiffiffiffiffiffi

v^t þ 2
p m^t ð18Þ

where b1 is the exponential decayrate. The default values

for b1 and b2 are 0.9 and 0.999, respectively. m^t and v^t are

correction biases for mt and vt respectively.

8) Nesterov-accelerated adaptive momentum estimation

(Nadam)

Nadam consists of a combination of the three algorithms

Nadam, Adam and NAG. In order to include the NAG

algorithm in the Adam algorithm, the momentum expres-

sion is modified using the following update rule [6, 10].

htþ1 ¼ ht �
g

ffiffiffiffiffiffiffiffiffiffiffiffiffi

v^t þ 2
p b1m

^
t þ

1� b1ð Þgt
1� bt1

� �

ð19Þ

4 Convolutional neural networks
architectures

The Convolutional Neural Network (CNN) is a type of

DNN that is made up of multi-layer perceptrons. It is the

most commonly used model for DNNs. The key advantage

of CNN is that it can automatically identify relevant fea-

tures without the need for human intervention [1]. It is

frequently used in classification problems involving data

with a topological input, such as time-series data in one

dimension and image data in two dimensions [3, 5].

A CNN model is used as a classifier in the current study,

with two different benchmark datasets. Figure 2 depicts

the general architecture of a CNN model [55]. It is com-

posed of a number of layers known as multi-building

blocks [53]. Each layer in the CNN architecture, including

its function, will be explained in detail below.

(1) Convolutional layer

A CNN is a neural network that has at least one

convolutional layer. The most important component

of the CNN model is the convolutional layer. It is

17100 Neural Computing and Applications (2023) 35:17095–17112

123

made up of a set of convolutional filters known as

kernels. The input image is convolved with these

filters to map an output feature, which is expressed as

N-dimensional metrics. The Kernel is a grid of dis-

crete values representing the kernel weights. The

convolutional operation is carried out in the follow-

ing order. The CNN input format is first described.

The vector format is the traditional neural network’s

input, whereas the multi-channeled image is the

CNN’s input. For instance, the single-channeled is

the format of the gray-scale image, while the RGB

image format is three-channeled. In the CNN model,

a convolutional layer often incorporates with the

ReLU activation function to be as one layer and then

it followed by a pooling layer [56].

(B) Pooling layer

The pooling layer’s primary purpose is to sub-

sample the feature maps. These maps are created by

using convolutional operations. The pooling layer is

available in several variations, but its general pur-

pose is to replace the output of the convolutional

layer with a summary statistic of the neighboring

outputs. There are several types of pooling methods

that can be used in different pooling layers. Tree

pooling, gated pooling, average pooling, min pool-

ing, max pooling, global average pooling (GAP), and

global max pooling are examples of these methods.

The most common and widely used pooling methods

are the max, min, and GAP pooling.

(C) Fully connected layer

The pooling layer’s primary function is to sub-

sample the feature. This layer is typically found at

the end of the CNN architecture. Each neuron in this

layer is connected to all neurons in the previous

layer, which is known as the fully connected (FC)

approach. It serves as the CNN classifier. It adheres

to the fundamental layers of the conventional mul-

tiple-layer perceptron.

Because the CNN is a feed-forward ANN, the input to

the FC layer comes from the previous pooling or convo-

lutional layer. This input takes the form of a vector, which

is generated after flattening the feature maps. As shown in

Fig. 1, the FC layer output represents the final CNN output.

There are many reasons to use a CNN instead of a

standard multi-layer perceptron network for classifying

images [55]. The main reason is the weight sharing feature,

which reduces the number of trainable network parameters

and enhances the generalization performance and prevents

overfitting of the network model. Moreover, concurrently

learning of the feature extraction layers and the classifi-

cation layer causes the model output to be both highly

organized and highly reliant on the extracted features.

5 The proposed modification of Adam
algorithm

There are various reasons to use a CNN rather than a

standard multi-layer perceptron network for image classi-

fication [55]. The main reason is the weight sharing feature,

which reduces the number of trainable network parameters

while improving generalization performance and prevent-

ing network overfitting. Furthermore, learning the feature

extraction and classification layers concurrently results in a

model output that is both highly organized and heavily

reliant on the extracted features.

In this section, we will present our proposed modified

algorithm, which is based on the standard Adam optimizer.

Adam is one of the best optimization algorithms for

training DNNs, and it is gaining popularity [53]. As a result

of some issues that arose when it was used in some

applications, such as the generalization performance

problem and the convergence problem, several trials were

conducted to improve its performance, as in the case of the

SGD optimizer with momentum. Algorithm 1 describes the

pseudo-code for the basic Adam algorithm.

Throughout this paper, we attempt to tackle the con-

vergence problem associated with the standard Adam

Fig. 1 General architecture of a CNN model

Neural Computing and Applications (2023) 35:17095–17112 17101

123

algorithm in order to achieve a high convergence speed.

The proposed modified algorithm, denoted by HN Adam, is

based on the adaptive norm technique and the hybrid

technique between the original Adam algorithm and the

AMSGrad algorithm, with the letters ‘‘H’’ and ‘‘N’’ refer-

ring to the hybrid mechanism and the adaptive norm,

respectively. To improve the generalization performance of

the basic Adam algorithm, we use a hybrid mechanism

with some modifications between the Adam algorithm and

the AMSGrad algorithm.

The main challenge that our proposed algorithm

attempts to overcome is having good generalization per-

formance like the SGD while also achieving quick con-

vergence like the adaptive methods. The basic idea behind

our modification is to automatically adjust the learning rate

step size based on the adaptive norm for each current and

past gradient, where the norm function for any two points is

considered the Euclidean distance between them. The

adaptive norm means that the norm value is changed

dynamically based on the gradient values obtained in each

epoch. Furthermore, a hybrid mechanism between the

original Adam algorithm and the AMSGrad algorithm has

also been made to enhance the generalization performance

and achieve a high speed of convergence for the most

architecture of DNNs. We validate the proposed algorithm

in extensive experiments of image classification through

two different standard datasets.

At first, the modified algorithm, HN_Adam, trains the

network model using the Adam algorithm but with the

adaptive (or dynamic) norm function to increase the step

size of the learning rate and avoid dropping in a local

minimum.

Once it closes to the global minimum, the hybrid tech-

nique is invoked where it switches to use the AMSGrad

algorithm also with the adaptive norm function. It can thus

achieve an accurate optimization at an acceptable switch

point based on the value of the threshold (Kt0), the absolute

value of gradients (gtj j) and the exponential moving aver-

ages of the past gradient mt�1.
The pseudo-code of the modified algorithm, HN_Adam,

is described in algorithm 2. The modifications that are

made compared to the original Adam algorithm are in bold.

As the HN_Adam algorithm uses a dynamic norm value,

the absolute value of the gradient must be taken before the

power is calculated. This is done to ensure that only pos-

itive values will be added if it uses the possibly odd values

for the norm.

The threshold value of the norm (Kt0) is randomly

chosen in the range from 2 to 4 and then the norm value

K tð Þ is adaptively computed depending on the value of the

absolute gradient gtj j and the exponential moving average

of the past gradient mt�1, as described in the following

equation.

K tð Þ Kt0 �
mt�1
mmax

ð20Þ

where mmax is the maximum value between gtj j and mt�1.

It is observed that in the case of higher power values of

the norm, longer steps are required to converge and reach

to the global minimum of the cost function. In the case of

lower power values of the norm, short steps are required to

converge. This indicates that using a higher norm value

leads to more exploration and less exploitation, and vice

versa. It is known that any optimization problem needs

different rates of exploration and exploitation during the

search process. Thus, instead of using a fixed norm value

(equal to 2 as in the original Adam algorithm), it is

dynamically changed in the proposed HN_Adam algorithm

to make a balance between the exploration and exploita-

tion. The dynamic value of the norm function can achieve

17102 Neural Computing and Applications (2023) 35:17095–17112

123

better results in terms of accuracy and convergence speed.

HN_Adam is designed to adjust the adaptation of the norm

value for the standard Adam algorithm by changing its

power value at every update. This is done based on the

information of the previous gradient updates.

It is highly recommended to keep the norm value in the

range between 1 and 4 since smaller values lead generally

to bad results and higher values lead hardly to improve-

ments with more expensive computations being exerted,

see Fig. 2.

In Eq. (20), the ratio mt�1
mmax

is less than or equal to 1, this

implies that the norm value will be in the range from 1 to 4.

So, the sequence is switched to the AMSGrad algorithm

under the condition that K tð Þ\2. This means that

HN_Adam uses the modified Adam algorithm with more

exploration ability of search as long as the norm value is

within the range from 2 to 4. Otherwise, it uses the

AMSGrad algorithm with more exploitation ability.

Figure 2 illustrates the effect of increasing the norm

value from 1 to 5 for the standard Adam algorithm using

the loss function f ðxÞ ¼ x^2 þ y^2. It shows that increasing
the norm values leads to a decrease in the number of

updates, the number of epochs and the learning period.

5.1 Comparison to Adam

In this part, the comparison between the standard Adam

algorithm and the modified algorithm, HN_Adam, will be

highlighted as well as the differences between them will be

explained. Also, the enhancement of the HN_Adam algo-

rithm in terms of accuracy and convergence speed will be

Fig. 2 Example of plotting the Adam search on a contour plot with different norm values for the loss function f ðxÞ ¼ x^2 þ y^2

Neural Computing and Applications (2023) 35:17095–17112 17103

123

discussed. As shown in Algorithm (1) and Algorithm (2),

the update direction of the original Adam algorithm is
m^t
ffiffiffiffi

v^t
p ,

where m^t is bias corrected for the exponential moving

average (EMA) of the gradient (gt) and v^t is bias corrected

for the exponential moving average (EMA) of the squared

gradient (g2t). The update direction of the HN_Adam

algorithm is mt

v
1=K
t

, where v
1=K
t is the EMA of gKt and K is the

adaptive norm value.

We can observe that HN_Adam takes a small step size

of the learning rate when the absolute gradient gtj j is close
to mmax; like Adam, and a large step size when the gradient

significantly deviates from mmax.

Now, we will demonstrate that HN_Adam can use the

curvature information of the loss functions to choose a

proper step size of the learning rate in order to enhance the

training process. For explanation, Let us consider the loss

function shown in Fig. 3 [57]. We use three regions on the

graph to explain the behavior of the HN_Adam algorithm

that concerns with the amount of parameter updates while

searching the loss function to find the global minimum.

These regions are used the same as in [57]. The learning

rate can be expressed in terms of the step size which is

responsible for the amount of change in parameter updates.

So, we will clarify that the HN_Adam algorithm can

choose an appropriate value of the step size and matches

the ideal behavior to make suitable amount of changes for

parameters updating.

Figure 3 shows how an ideal optimizer considers the

curvature information to determine the proper step size for

the three tested regions. We use it as a reference in eval-

uating the HN_Adam algorithm. Furthermore, we make a

comparison between the HN_Adam algorithm and two

other algorithms SGD and Adam. The step size formulas

for SGD, Adam, and HN_Adam can be written as:

DhSGDt ¼ �g:mt ð21Þ

DhAdamt � g:
mD

t
ffiffiffiffiffi

vDt
p ð22Þ

DhHN Adam
t ¼ �g: mt

v
1=K
t

ð23Þ

where jDhtj is the step size for the parameter update at the

instant t.

The first, second, and third regions are denoted as 1, 2,

and 3, respectively, in Fig. 4. Now, for these three regions,

we will compare the step sizes of HN Adam, SGD, and

Adam to the ideal optimizer’s step size. The gradient is

close to 0 in the first region because the loss function is flat.

To increase its learning rate, the ideal optimizer should

take large steps. The SGD algorithm, unlike the ideal

optimizer, will take small steps because it is proportional to

the EMA of the gradient mt. While both the Adam algo-

rithm and the HN_Adam will make large step sizes like the

ideal optimizer because v^t is a small value and the norm

value K is a large value.

In the second region, both gtj j and mt are large since the

loss function in this region oscillates in a steep and narrow

valley. To reach the global optimum, the ideal optimizer

should decrease its learning rate and make small steps. The

SGD algorithm, unlike the ideal optimizer, will take large

steps because its learning rate is proportional to mt. Finally,

the ideal optimizer should increase its learning rate and use

a large step size in the third region where the loss function

has a large v^t value and the norm value K is a small value.

Finally, in the third region where the loss function has a

large gtj j with a small curvature, the ideal optimizer should

increase its learning rate and apply a large step size. Unlike

the ideal optimizer, the Adam algorithm will make a small

step size because the denominator
ffiffiffiffiffi

v^t
p

in its update for-

mula is large. Despite that gtj j and vt are large, the norm

value KðtÞ is also large this could happen because the ratio

of the exponentially moving average of past gradients and

the current absolute gradient is small and the HN_Adam

will use a large step size as in the ideal optimizer. The SGD

algorithm will also take a large step size.

We summarize these three cases in Table 2, where S and

L refer to small and large values, respectively. jDhtj
ideal

is

the step size for the parameter update of the ideal opti-

mizer. The HN_Adam algorithm matches the behavior of

the ideal optimizer over the three tested regions.

5.2 Mathematical illustration of the learning
rate step size for HN_Adam

The HN Adam algorithm’s updated term differs slightly

from the standard Adam algorithm. It is based on a

Fig. 3 Curvature of the loss function for an ideal optimizer [57]

17104 Neural Computing and Applications (2023) 35:17095–17112

123

dynamic norm value that changes with the gradient values

during epochs. In Adam, it is left constant value of 2 during

the learning process for ease of use [33, 40]. Changing the

norm value influences the size of the learning step.

Now we will investigate how the Adam algorithm’s

fixed norm differs from the HN_Adam algorithm’s

dynamic norm. For both Adam and, the general equation

for the step size of the parameter updates at the moment t,

for both Adam and HN_Adam, can be reformulated as

illustrated in the following steps.

The formulas of the exponential moving average

terms,mt and vt, are [8, 35]:

mt ¼ b1:mt�1 þ 1� b1ð Þ:gt ð24Þ

vt ¼ b2:vt�1 þ 1� b2ð Þ:g2t ð25Þ

If we assume that mt¼0 ¼ 0 andvt¼0 ¼ 0, we can rewrite

these formulas of the moving averages as:

mt ¼ 1� b1ð Þ
X

t

i¼0
bt�i1 :gi ð26Þ

vt ¼ 1� b2ð Þ
X

t

i¼0
bt�i2 :g2i ð27Þ

Using Eqs. 26 and 27, the correction bias terms for mt

and vt will be,

m^t ¼
mt

1� bt1
¼

X

t

i¼0
bt�i1 :gi ð28Þ

v^t ¼
vt

1� bt2
¼

X

t

i¼0
bt�i2 :g2i ð29Þ

From Eqs. 22, 23, 28 and 29, we can rewrite the general

equation of the step size for the parameter updates for both

Adam and HN_Adam as:

Dht ¼ �g:
Pt

i¼0 gi hið Þ:b
t�i
1

ffi

Pt
i¼0 jgi hið Þj

K:bt�i2
K

q

þ e
ð30Þ

where the norm value is fixed, K ¼ 2, for the parameter

updates of the Adam algorithm.

To illustrate the difference of using Eq. 30 by the Adam

algorithm from the HN_Adam algorithm, the equality

relation between them for the step size of the parameter

updates will be examined as follows.

�g:
Pt

i¼0 gi hið Þ:b
t�i
1;x

ffi

Pt
i¼0 jgi hið Þj

K:bt�i2;x
K

q

þ e

?
¼

� g:

Pt
i¼0 gi hið Þ:b

t�i
1;y

ffi

Pt
i¼0 gi hið Þ

2:bt�i2;y
2

q

þ e
ð31Þ

where the left side of the examined equality represents the

step size of the HN_Adam algorithm and the right side is

the step size of the Adam algorithm. To distinguish

Fig. 4 Architecture of the deep CNN model using the MNIST dataset

Table 2 Comparison of optimizers’ behavior for determining the step

size of parameter updates over three different regions of a loss

function based on the curvature information

Case No jgtj; vt mt�1
mmax jDhtj

ideal

Case 1 S S L

jDhtj
SGD jDhtj

Adam jDhtj
HN Adam

S L L

Case 2 L L S

jDhtj
SGD jDhtj

Adam jDhtj
HN Adam

L S S

Case 3 L S L

jDhtj
SGD jDhtj

Adam jDhtj
HN Adam

L S L

Neural Computing and Applications (2023) 35:17095–17112 17105

123

between the parameters of the two algorithms, we use the

subscript x for HN_Adam’s hyper-parameters and the

subscript y for Adam’s hyper-parameters. The same sym-

bols are used for the learning rate (g) and the smoothing

term (e). Taking all of the above into account, Eq. 31 can

be simplified to,
Pt

i¼0 gi hið Þ:b
t�i
1;x

ffi

Pt
i¼0 jgi hið Þj

K:bt�i2;x
K

q

þ e

?
¼

Pt
i¼0 gi hið Þ:b

t�i
1;y

ffi

Pt
i¼0 gi hið Þ

2:bt�i2;y
2

q

þ e
ð32Þ

If we assume that b1;x=b1;y, the condition that makes the

above examined equality to be true is:
ffi

X

t

i¼0
jgi hið Þj

K:bt�i2;x

K

v

u

u

t ¼

ffi

X

t

i¼0
gi hið Þ2:bt�i2;y

2

v

u

u

t ð33Þ

Just by looking, K ¼ 2 makes the two sides of Eq. 33 to

be the same if b2;x=b2;y. So we will choose a different norm
value K 6¼ 2 with t[0. For easy, let try to use K ¼ 1 and

t ¼ 1, Eq. 31 becomes,

X

1

i¼0
jgi hið Þj:bt�i2;x ¼

ffi

X

1

i¼0
gi hið Þ2:bt�i2;y

2

v

u

u

t ð34Þ

After expanding the summation, Eq. (34) becomes

jg0 h0ð Þj:b2;x þ jg1 h1ð Þj ¼
ffi

g0 h0ð Þ2b2;y þ g1 h1ð Þ22

q

ð35Þ

By squaring the both sides,

jg0 h0ð Þj2:b22;x þ 2:jg0 h0ð Þj:b2;x:jg1 h1ð Þj þ jg1 h1ð Þj2

¼ g0 h0ð Þ2b2;y þ g1 h1ð Þ2 ð36Þ

By omitting jg1 h1ð Þj2 from both sides and dividing both

sides by g0 h0ð Þ2, we obtain

b22;x þ
2:b2;x:jg1 h1ð Þj
jg0 h0ð Þj

¼ b2;y ð37Þ

This means that, in order for the Adam algorithm to

behave like the HN Adam algorithm, its hyper-parameter

b2 needs to be modified to be dependent on current and past

gradients, rather than just the HN Adam algorithm’s hyper-

parameter b2. This ensures that the hyper-parameter of the

modified algorithm, HN_Adam, is dependent on the

obtained gradients in each epoch and makes use of the loss

function’s curvature information.

6 Experiments and results

The modified algorithm, HN_Adam, is tested by using it to

train a deep convolutional neural network using two dif-

ferent datasets CIFAR-10 [30] and MNIST [13]. Each of

these datasets contains ten classes. The experiments are

carried out using the Python programming language as well

as two open-source libraries called Tensorflow and Keras.

All experiments and results are obtained using the same

hardware device, a digital computer equipped with a CPU

core i5-5300U (2.30 GHz) and 8.00 GB of RAM.

The HN Adam algorithm is compared to the basic Adam

algorithm and the SGD algorithm, as well as five other

SGD adaptive algorithms: AdaBeilf [30], Adam, RMSprop,

AMSGrad, and Adagrad. We use the default parameter

settings where b1 = 0.9, b2 = 0.99, e = 10–8, and g = 0.001.

For all compared algorithms, the training, validation, and

testing datasets are batched with a size of 128. The

experimental findings are divided into two sections, one for

each dataset.a) The first experiment: training a deep CNN

model using the MNIST dataset

The MNIST dataset [13] contains 60,000 handwritten

digit images. It is divided into three sets: the first set of

40,000 images is the training, the second one of 10,000

images is the validation set and the third set of 10,000

images is the testing set. The digits have been centered in a

fixed-size (28 9 28 pixel) image with values ranging from

0 to 255. All images are converted to float32 data type with

size-normalized values in the range from 0 to 1.

2) Network architecture

The convolutional neural network is built in the first

experiment, as shown in Fig. 4. It begins with two 3 9 3

convolutional layers of 32 kernels each, followed by a

max-pooling layer with a 2 9 2 window. Following that, a

ReLU activation function is used. Following that, two more

convolutional layers with 64 kernels of size 3 9 3 are

added, followed by a max-pooling layer with a 2 9 2

window. A ReLU activation function is also used. Fol-

lowing that, the max-pooling layer’s 2-dimensional output

vector is converted to a 1-dimensional vector with a size of

1024 9 1 using a flatten module from the tensorflow

package. The converted vector is then passed through four

hidden layers. These hidden layers have 512, 128, 256, and

32 nodes, respectively. The ReLU activation function is

applied after each hidden layer. Then the dropout layer is

included with a default probability value of 0.1. Finally, a

hidden layer of 10 nodes is used and the Softmax activation

function is applied to produce the output from the output

layer.

3) Experimental setup

The MNIST dataset is used to train a deep CNN model

with a total of 697,034 parameters. The model is trained

using the optimization algorithms HN_Adam, AdaBelief,

Adam, AMSGrad, SGD, RMSProp, and AdaGrad indi-

vidually. These algorithms are used to train the CNN

model as learning algorithms. The performance for each

17106 Neural Computing and Applications (2023) 35:17095–17112

123

compared algorithm is measured in terms of the minimum

training loss function and the testing accuracy.

4) Results and discussions

The response curves of the compared algorithms during

training process are indicated in Figs. 5 and 6. Figure 5

shows the accuracy curves for the compared algorithms

during the training process for the CNN model. We focus

on the basic Adam algorithm and the AdaBelief algorithms

as they are the most competitive ones of the compared

algorithms. Figure 6 shows the loss function minimization

curves of the compared algorithms through the training

process for the CNN model.

To demonstrate the differences between these response

curves, the response characteristics in terms of the mini-

mum loss function during training process, the accuracy of

the testing on test dataset are calculated and listed in

Table 3. For simplicity, the minimum training loss function

and testing accuracy are determined after 200 epochs for 5

independent runs with randomly shuffled training data. The

best achieved value for each response characteristic is

highlighted in bold.

As shown in Figs. 5 and 6, HN_Adam could achieve fast

convergence like the adaptive methods with better accu-

racy. The results illustrated in Table 3 confirm this, as it

Fig. 5 Training accuracy of the CNN model for the compared algorithms, case of using MNIST dataset

Fig. 6 Loss function minimization during the training process for HN_Adam, Adam and AdaBelief, case of using MNIST dataset

Table 3 Accuracy results, case of using MNIST dataset

Algorithm Min_Loss_Training Dataset Test_Accuracy

HN_Adam 1.471718 98.59%

AdaBelief [30] 1.48115 97.6%

Adam [8] 1.483735 97.04%

AMSGrad [35] 1.484545 97.09%

SGD [33] 2.296593 96.84%

RMSprop [19] 1.476105 97.09%

Adagrad [20] 2.279421 96.97%

Bold indicates the best achieved value for each response characteristic

Table 4 The consumed training time for the compared algorithms,

case of using MNIST dataset

Algorithm Training Time

HN_Adam 1048 s

AdaBelief [29] 1051 s

Adam [8] 1067 s

AMSGrad [38] 1051 s

SGD [36] 1320 s

RMSprop [18] 1075 s

Adagrad [19] 1050 s

Neural Computing and Applications (2023) 35:17095–17112 17107

123

outperforms the other compared algorithms and achieves

values of 1.471718, and 98.59%, for the minimum training

loss function, and the testing accuracy, respectively.

Table 4 also includes the training time in seconds con-

sumed by the compared algorithms during the training

process, demonstrating the increase in convergence speed.

The learning algorithms use these values of the training

time to train the CNN model and achieve the reported

accuracy results in Table 3, where 10 epochs are consid-

ered for simplicity.

With a minimum training time of 1048 s, the HN_Adam

algorithm clearly outperforms the other optimizers and

achieves a high speed of convergence.b) The second

experiment: training a deep CNN model using the CIFAR-

10 dataset

Like the first experiment, the second one is conducted

on another convolutional neural network, with slight dif-

ferences in architecture from the previous model and using

a different type of input data. The CIFAR-10 dataset [30] is

used to train the CNN model. It consists of 60,000 color

images fragmented into 10 classes, with 6000 images in

each. The dataset is divided into three sets: the training set

of 40,000 images, the validation set of 10,000 images and

the testing set of 10,000 images. The images have been

centered in a fixed-size image (32 9 32 pixels) with values

ranging from 0 to 255. All image sizes are n1ormalized on

a scale of 0 to 1.

(1) Network architecture

In this experiment, the CNN model is constructed

as shown in Fig. 7. It starts with two convolutional

layers of 32 kernels of size 3 9 3, followed by a

max-pooling layer with a 2 9 2 window. Following

that, a ReLU activation function is used. After that,

two more convolutional layers with 64 kernels of

size 3 9 3 are added, followed by a max-pooling

layer with a 2 9 2 window. A ReLU activation

function is also used. The max-pooling layer’s

2-dimensional output vector is then converted to a

1-dimensional vector with a size of 1600 9 1 using a

flatten module from the TensorFlow package. The

converted vector is then passed through four hidden

layers. These hidden layers have 512, 128, 32, and 10

nodes, respectively. Following each of these hidden

layers, the ReLU activation function is used. Finally,

the output layer is generated using a hidden layer of

ten nodes and the Softmax activation function.

(B) Experimental setup

The CIFAR-10 dataset is used to train a deep

CNN model with a total of 955,512 parameters. The

model is trained using the optimization algorithms

HN_Adam, AdaBelief, Adam, AMSGrad, SGD,

RMSProp, and AdaGrad individually. These algo-

rithms are used as learning algorithms to train the

CNN model. The performance for each compared

algorithm is measured in terms of the minimum

training loss function and the testing accuracy.

(C) Results and discussions

The response curves of the compared algorithms

during training process are indicated in Figs. 8 and 9.

Figure 8 shows the accuracy curves for the compared

algorithms during the training process for the CNN

model. We focus on the basic Adam algorithm and

the AdaBelief algorithms as they are the most com-

petitive ones of the compared algorithms. Figure 9

shows the loss function minimization curves of the

compared algorithms through the training process for

the CNN model.

To illustrate the differences between these response

curves, the response characteristics in terms of the

Fig. 7 Architecture of the deep CNN model using the CIFAR-10 dataset

17108 Neural Computing and Applications (2023) 35:17095–17112

123

minimum loss function during training process, the accu-

racy of the testing on test dataset are calculated and listed

in Table 5. For simplicity, the minimum training loss

function and testing accuracy are determined after 100

epochs for 5 independent runs with randomly shuffled

training data. The best achieved value for each response

characteristic is highlighted in bold.

According to the test accuracy, the proposed HN_Adam

algorithm outperforms the other compared algorithms with

a value of 97.51%. For the minimum training loss function,

AdaBelief was in the first rank with a value of 0.0101.

HN_Adam was in the second rank with a value of 0.0188.

Adagrad gives the worst values among the compared

algorithms.

Table 6 shows the training time in seconds consumed by

the compared algorithms during the training process. The

learning algorithms use these training time values to train

the CNN model and achieve the previous accuracy results

shown in Table 5, where 20 epochs are considered for

simplicity. The HN_Adam outperforms the other

Fig. 8 Training accuracy of the CNN model for the compared algorithms, case of using CIFAR-10 dataset

Fig. 9 Loss function minimization during the training process for HN_Adam, Adam and AdaBelief, case of using CIFAR-10 dataset

Table 5 Accuracy results, case of using CIFAR-10 dataset

Algorithm Min_Loss_Training Dataset Test_Accuracy

HN_Adam 0.0188 97.51%

AdaBelief [30] 0.0101 96.60%

Adam [8] 0.0292 96.0431%

AMSGrad [35] 0.0281 96.096%

SGD [33] 0.0318 96.042%

RMSprop [19] 0.0577 96.091%

Adagrad [20] 0.387 96.97%

Bold indicates the best achieved value for each response characteristic

Table 6 The consumed training time for the compared algorithms,

case of using CIFAR-10 dataset

Algorithm Training Time

HN_Adam 2737 s

AdaBelief [30] 2784 s

Adam [8] 2767 s

AMSGrad [35] 2822 s

SGD [33] 2788 s

RMSprop [19] 2851 s

Adagrad [20] 2780 s

Bold indicates the best achieved value for each response characteristic

Neural Computing and Applications (2023) 35:17095–17112 17109

123

optimizers with a minimum training time value of 2737 s

and thus it achieves a high speed of convergence.

Remark 1. Without loss of generality, the modified algo-

rithm, HN_Adam, is applied to the deep CNN models of

the sequential architecture. It can also be applied to more

complex and diverse deep CNN architectures such as

LeNet-5 [58], ResNet [59] and AlexNet [60]. The authors

of [58], for example, use the EVGO algorithm to train three

different CNN models based on these architectures. The

first model employs the LeNet-5 architecture, which has a

total of 81,194 parameters. The second model employs the

AlexNet architecture, which has a total of 1,250,666

parameters (1,249,866 trainable and 800 non-trainable).

The final model employs the ResNet architecture, which

has a total of 271,690 parameters. The first model, like

ours, is trained on the MNIST dataset [13], while the other

two models are trained on the CIFAR-10 dataset [30].

Their results in terms of maximum training accuracy,

minimum training cost, maximum validation accuracy, and

minimum validation cost are (99.90%, 9.69E-06, 97.98%,

and 0.066) for the first model, (98.11%, 0.0534, 80.42%,

and 0.066) for the second model, and (91.06%, 0.6192,

87.25%, and 0.4666) for the third model, as shown in [37].

To ensure that the HN_Adam algorithm can be used effi-

ciently with a variety of CNN model architectures, we used

it to train the same CNN model architectures as in [37].

Based on the results, HN_Adam outperforms the EVGO

algorithm for all three architectures tested. The maximum

training accuracy, minimum training cost, maximum vali-

dation accuracy, and minimum validation cost for the

LeNet-5 architecture are (100%, 5.81E-06, 99.23%, and

0.0388), respectively, for the AlexNet architecture

(99.29%, 0.0230, 97.89%, and 0.0827), and for the ResNet

architecture (98.00%, 0.2689, 95.49%, and 0.3382). This

demonstrates that the HN Adam algorithm can deal with

various CNN architectures while achieving high perfor-

mance results.

Remark 2. It should be noted that while advanced com-

putational devices can train deep CNN models quickly,

they cannot solve the convergence problem for more

complex deep neural network models with different

architectures that can be handled by the proposed algo-

rithm. Furthermore, the proposed algorithm can be easily

applied to computational devices with limited hardware

resources.

Remark 3. To ensure the good performance of the modi-

fied algorithm, HN_Adam, over large-scale datasets, we

evaluate it using the ImageNet dataset that contains 3.2

million cleanly annotated images spread over 5247 cate-

gories [64]. This dataset is used to train a deep CNN model

of the ResNet-18 architecture [65], which has a total of

11,196,042 parameters (11,186,442 trainable parameters

and 9,600 non-trainable parameters). We use HN_Adam,

AdaBelief [30], Adam [8], SGD [33], Yogi [38], RAdam

[40] and MSVAG [39] as learning algorithms during the

training process of the ResNet18 deep network model. The

results are obtained in terms of the top-1 accuracy con-

sidering the testing dataset for 100 epochs. The top-1

accuracy represents conventional accuracy considering the

class with the highest probability (the top one). The results

of the top-1 accuracy for the learning algorithms are listed

in Table 7. The results of the compared algorithms are

taken the same as in [30, 66]. The results of our proposed

HN_Adam algorithm are obtained considering the param-

eter settings for Mini-batch size, learning rate (g), b1, b2,
and e to be the same as in [30].

As illustrated in Table 7, HN_Adam achieves the

highest top-1 accuracy with a value of 73.2% and

outperforms the other adaptive methods. This confirms

that HN_Adam has a good generalization performance for

different deep CNN models over different sizes of datasets.

7 Conclusion and future work

We proposed a simple and intuitive approach for modify-

ing the basic Adam algorithm to address the generalization

performance and convergence issues. The modified algo-

rithm, denoted by HN_Adam, can improve the basic Adam

algorithm’s generalization performance and reduce training

time without increasing its complexity. HN_Adam is used

to train a deep CNN model over two different benchmark

datasets. To evaluate the HN_Adam algorithm, it is com-

pared to the following learning algorithms: AdaBelief,

Adam, AMSGrad, SGD, RMSProp, and AdaGrad. The

results are presented in terms of the minimum training cost,

maximum training accuracy, minimum validation cost,

maximum validation accuracy, maximum test accuracy,

and training time consumed. Where the minimum training

and validation costs are the least values of the loss function

Table 7 Top-1 accuracy results using ImageNet dataset

Algorithm Top -1 Accuracy

HN_Adam 73.20%

AdaBelief [30] 70.08%

Adam [8] 63.79%

SGD [33] 70.23%

Yogi[38] 68.23%

RAdam [40] 67.62%

MSVAG [39] 65.99%

Bold indicates the best achieved value for each response characteristic

17110 Neural Computing and Applications (2023) 35:17095–17112

123

that are attained by the learning algorithms during the

training and validation processes, respectively. Moreover,

the accuracy curves during the training and validation

processes are also given. The results demonstrate that

HN_Adam outperforms the compared algorithms for the

majority of the compared items.

For future work, the modified algorithm can be used to

enhance the learning stability for other more complex deep

learning models such as the generative adversarial net-

works (GANs), and the autoencoders networks.

Funding Open access funding provided by The Science, Technology

& Innovation Funding Authority (STDF) in cooperation with The

Egyptian Knowledge Bank (EKB).

Data availability All data generated or analyzed during this study are

included in this published article. Derived data supporting the findings

of this study are available from the corresponding author on request.

Declarations

Conflict of interest The authors declare that they have no known

competing financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Alzubaidi L, Zhang J, Humaidi AJ (2021) Review of deep

learning: concepts, CNN architectures, challenges, applications,

future directions. J Big Data 8:53

2. Michael G, Kaldewey T, Tam D (2017) Optimizing the efficiency

of deep learning through accelerator virtualization. IBM J Res

Dev 61:121–1211. https://doi.org/10.1147/JRD.2017.2716598

3. Maurizio C, Beatrice B, Alberto M, Muhammad S, Guido M

(2020) An updated survey of efficient hardware architectures for

accelerating deep convolutional neural networks. J Fut Inter

12:113

4. Pouyanfar S, Sadiq S, Yan Y (2018) A survey on deep learning:

algorithms, techniques, and applications. ACM Comput Surv

51:5

5. Hassen L, Slim B, Ali L, Chih CH, Lamjed BS (2021) Deep

convolutional neural network architecture design as a bi-level

optimization problem. J Neuro Comput 439:44–62

6. Shiliang S, Zehui C, Han Z, Jing Z. (2019) A survey of opti-

mization methods from a machine learning perspective,

supported by NSFC Project 61370175 and Shanghai Sailing

Program 17YF1404600

7. Qbal I, Sarker H (2021) Machine learning: algorithms, real-world

applications and research directions, J SN Comput Sci

8. Kingma DP, Jimmy B (2015) Adam: a method for stochastic

optimization, Presented at International Conference on Learning

Representations (ICLR)

9. Liangchen L, Yuanhao X, Liu Y, Sun X (2019) Adaptive gradient

methods with dynamic bound of learning rate, arXiv preprint

arXiv:1902.09843

10. Ruder S, Park SM, Sim KB (2017) An overview of gradient

descent optimization algorithms, arXiv:1609.04747v2 [cs.LG]

11. Sebastian B, Josef G, Martin W (2018) An improvement of the

convergence proof of the Adam-optimizer, CoRR, abs/

1804.10587

12. Agnes L, Sagayaraj F (2019) A survey of optimization techniques

for deep learning networks, Int J Res Eng Appl Manag (IJREAM)

5:2

13. Zhang Z (2018) Improved Adam optimizer for deep neural net-

works, IEEE/ACM 26th International Symposium on Quality of

Service (IWQoS), pp. 1–2

14. Wilson AC, Roelofs R, Stern M, Srebro N, Recht B (2017) The

marginal value of adaptive gradient methods in machine learning,

in Advances in Neural Information Processing Systems

15. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D,

Erhan D, Vanhoucke V , Rabinovich A (2015) Going deeper with

convolutions. In Proceedings of the IEEE conference on com-

puter vision and pattern recognition, pp. 1–9

16. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for

image recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 770–77

17. Zhang C, Bengio S, Hardt M, Recht B, Vinyals O (2017)

Understanding deep learning requires rethinking generalization,

in ICLR 2017

18. Arpit D, Jastrz̨ebski S, Ballas N, Krueger D, Bengio E, Kanwal

MS, Maharaj T, Fischer A, Courville A, Bengio .Y (2017) A

closer look at memorization in deep networks, arXiv preprint

arXiv:1706.05394

19. Tieleman T, Hinton G (2012) Lecture 6.5—RmsProp: divide the

gradient by a running average of its recent magnitude, COUR-

SERA: Neural Networks for Machine Learning

20. Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods

for online learning and stochastic optimization. J Mach Learn Res

12:2121–2159

21. Tom S, Sixin Z, Yann L (2012) No more pesky learning rates.

arXiv preprint arXiv:1206.1106

22. Zeiler MD (2012)Adadelta: an adaptive learning rate method,

arXiv preprint arXiv:1212.5701

23. Nicolas RL, Andrew FW (2010) A fast natural newton method. In

Proceedings of the 27th International Conference on Machine

Learning (ICML-10), pp. 623–630

24. Razvan P, Yoshua B (2013) Revisiting natural gradient for deep

networks. arXiv preprint arXiv:1301.3584

25. Amari S (1998) Natural gradient works efficiently in learning.

Neural Comput 10(2):251–276

26. Huang H, Wang C, B Dong (2018) Nostalgic adam: weighting

more of the past gradients when designing the adaptive learning

rate, arXiv preprint arXiv:1805.07557

27. Wang G, Lu S, Tu W, Zhang. (2019) LSadam: A variant of adam

for strongly convex functions, arXiv preprint arXiv:1905.02957

28. Li W, Zhang Z, Wang X, Luo P (2020) Adax: Adaptive gradient

descent with exponential long term memory, arXiv preprint

arXiv:2004.09740

29. Zhang M, Lucas J, Ba J, Hinton GE (2019) Lookahead optimizer:

k steps forward, 1 step back, in Advances in Neural Information

Processing Systems, pp. 9593–9604

Neural Computing and Applications (2023) 35:17095–17112 17111

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1147/JRD.2017.2716598
http://arxiv.org/abs/1902.09843
http://arxiv.org/abs/hep-th/1609.04747v2
http://arxiv.org/abs/1706.05394
http://arxiv.org/abs/1206.1106
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1301.3584
http://arxiv.org/abs/1805.07557
http://arxiv.org/abs/1905.02957
http://arxiv.org/abs/2004.09740

30. Zhuang J, Tang T, Ding Y, Tatikonda S, Dvornek, X. Papade-

metris N, Duncan JS (2020) AdaBelief Optimizer: Adapting

stepsizes by the belief in observed gradients, 34th Conference on

Neural Information Processing Systems (NeurIPS

31. Wilson AC, Roelofs R, Stern M, Srebro N, Recht B (2017) The

marginal value of adaptive gradient methods in machine learning.

In Advances in Neural Information Processing Systems,

pp. 4148–4158

32. Lyu K, Li J (2019) Gradient descent maximizes the margin of

homogeneous neural networks,‘‘ arXiv preprint arXiv:1906.

05890

33. Keskar NS, Socher R (2017) Improving generalization perfor-

mance by switching from adam to sgd, arXiv preprint arXiv:

1712.07628

34. Luo L, Xiong Y, Liu Y, Sun X (2019) Adaptive gradient methods

with dynamic bound of learning rate, arXiv preprint arXiv:1902.

09843

35. Reddi SJ, Kale S, Kumar S (2019) On the convergence of adam

and beyond, arXiv preprint arXiv:1904.09237

36. Yi D, Ahn J, Ji S (2020) An effective optimization method for

machine learning based on ADAM. Appl Sci 10:1073. https://doi.

org/10.3390/app10031073

37. Karabayir I, Akbilgic O, Tas N (2020) A novel learning algorithm

to optimize deep neural networks: evolved gradient direction

optimizer (EVGO). IEEE Transactions on Neural Networks and

Learning Systems

38. Manzil Z, Sashank R, Devendra S, Satyen K, and Sanjiv K (2018)

Adaptive methods for nonconvex optimization. Adv Neural Inf

Process Syst 9793–9803

39. Balles L, Hennig P (2017) Dissecting Adam: the sign, magnitude

and variance of stochastic gradients, arXiv preprint arXiv:1705.

07774

40. Liu L, Jiang H, He P, Chen W, Liu X, Gao J, and Han J (2019)

On the variance of the adaptive learning rate and beyond, arXiv

preprint arXiv:1908.03265

41. Bernstein J, Vahdat A, Yue Y, Liu M (2019) On the distance

between two neural networks and the stability of learning, arXiv

preprint arXiv:2002.03432

42. Loshchilov I, Hutter F (2017) Decoupled weight decay regular-

ization, arXiv preprint arXiv:1711.05101

43. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S,

Huang Z, Karpathy A, Khosla A, Bernstein M (2015) Imagenet

large scale visual recognition challenge. Int J Comput Vis

115(3):211–252

44. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D,

Ozair S, Courville A, Bengio Y (2014) Generative adversarial

nets. Adv Neural Inf Process Syst 2672–2680

45. Wedderburn RW (1974) Quasi-likelihood functions, generalized

linear models, and the gauss—newton method. Biometrika

61(3):439–447

46. Nocedal J (1980) Updating quasi-newton matrices with limited

storage. Math Comput 35(151):773–782

47. Pascanu .R, Bengio .Y (2013) Revisiting natural gradient for deep

networks, arXiv preprint arXiv:1301.3584

48. Martens J (2010) Deep learning via hessian-free optimization.

ICML 27:735–742

49. Jascha SD, Ben P, Surya G (2014) Fast large-scale optimization

by unifying stochastic gradient and quasi-Newton methods,

Proceedings of the 31 st International Conference on Machine

Learning, Beijing, China

50. Miaomiao L, Dan Y, Zhigang L, Jingfeng G, Jing C (2023) An

Improved adam optimization algorithm combining adaptive

coefficients and composite gradients based on randomized block

coordinate descent. Hindawi Computational Intelligence and

Neuroscience Volume, Article ID 4765891(2023).

51. Ran. T, Ankur. P. P ‘‘Amos: An Adam-style Optimizer with

adaptive weight decay towards model-oriented scale’’, confer-

ence paper at ICLR (2023).

52. Xingyu X, Pan Z, Huan L, Zhouchen L, Shuicheng Y (2022)

Adan: adaptive nesterov momentum algorithm for faster opti-

mizing deep models. arXiv:2208.06677v3 [cs.LG]

53. Keijsers NLW (2010) Neural Networks, in Encyclopedia of

Movement Disorders

54. Yang ZR, Yang Z (2014) Bioinformatics. In Comprehensive

Biomedical Physics

55. Jiuxiang G, Zhenhua W, Jason K, Lianyang M, Amir S, Bing S,

Ting L, Xingxing W, Wangb L, Gang W, Jianfei C , Tsuhan C

(2017) Recent advances in convolutional neural networks. Adv

Neural Inf Process Syst 4148–4158

56. Wang B, Sun Y, Xue B, Zhang M (2018) Evolving deep con-

volutional neural networks by variable-length particle swarm

optimization for image classification. arXiv preprint arXiv:1803.

06492

57. Toussaint M (2012) Lecture notes, Some notes on gradient

descent

58. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based

learning applied to document recognition. Proc IEEE

86(11):2278–2324

59. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for

image recognition. In Proceedings of IEEE Conf. Computer

Vision and Pattern Recognition (CVPR), pp. 770–778

60. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classi-

fication with deep convolutional neural networks In Proc Adv

Neural Inf Process Syst 1097–1105

61. Wang S, Sun J, Xu Z HyperAdam (2019) A learnable task-

adaptive adam for network training, The Thirty-Third AAAI
Conference on Artificial Intelligence (AAAI-19)

62. Yao Z, Gholami A, Shen S, Keutzer K, Mahoney MW (2020)

Adahessian: An adaptive second order optimizer for machine

learning, arXiv preprint arXiv:2006.00719

63. Yuan W, Gao K (2020) Eadam optimizer: How epsilon impact

Adam, arXiv preprint arXiv:2011.02150

64. Jia Li, Kai Li, Li Fei-Fei (2009) Imagenet: A large-scale hier-

archical image database. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

248–255

65. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2016)

Deep residual learning for image recognition. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 770– 778.

66. Jinghui C, Quanquan G (2018) Closing the generalization gap of

adaptive gradient methods in training deep neural networks,’’

arXiv preprint arXiv:1806.06763

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

17112 Neural Computing and Applications (2023) 35:17095–17112

123

http://arxiv.org/abs/1906.05890
http://arxiv.org/abs/1906.05890
http://arxiv.org/abs/1712.07628
http://arxiv.org/abs/1712.07628
http://arxiv.org/abs/1902.09843
http://arxiv.org/abs/1902.09843
http://arxiv.org/abs/1904.09237
https://doi.org/10.3390/app10031073
https://doi.org/10.3390/app10031073
http://arxiv.org/abs/1705.07774
http://arxiv.org/abs/1705.07774
http://arxiv.org/abs/1908.03265
http://arxiv.org/abs/2002.03432
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1301.3584
http://arxiv.org/abs/hep-th/2208.06677v3
http://arxiv.org/abs/1803.06492
http://arxiv.org/abs/1803.06492
http://arxiv.org/abs/2006.00719
http://arxiv.org/abs/2011.02150
http://arxiv.org/abs/1806.06763

	A modified Adam algorithm for deep neural network optimization
	Abstract
	Introduction
	Literature review of deep neural networks optimization
	Deep neural networks (DNNs) architectures
	Activation functions
	Training of deep neural networks

	Convolutional neural networks architectures
	The proposed modification of Adam algorithm
	Comparison to Adam
	Mathematical illustration of the learning rate step size for HN_Adam

	Experiments and results
	Conclusion and future work
	Open Access
	References

