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Abstract
Steam injection is a popular technique to enhance oil recovery inmature oil fields.However, the conventional approachof using a

constant steam rate over an extended period can lead to sub-optimal performance due to the complex nature of the problem and

reservoir heterogeneity. To address this issue, the Markov decision process can be employed to formulate the problem for

reinforcement learning (RL) applications. The RL agent is trained to optimize the steam injection rate by interacting with a

reservoir simulation model and receives rewards for each action. The agent’s policy and value functions are updated through

continuous interactionwith the environment until convergence is achieved, leading to amore efficient steam injection strategy for

enhancing oil recovery. In this study, an actor-critic RL architecture was employed to train the agent to find the optimal strategy

(i.e., policy). The environment was represented by a reservoir simulation model, and the agent’s actions were based on the

observed state.Thepolicy functiongavea probability distributionof the actions that the agent could take,while thevalue function

determined the expected yield for an agent starting from a given state. The agent interacted with the environment for several

episodes until convergence was achieved. The improvement in net present value (NPV) achieved by the agent was a significant

indication of the effectiveness of the RL-based approach. The NPV reflects the economic benefits of the optimized steam

injection strategy. The agent was able to achieve this improvement by finding the optimal policies. One of the key advantages of

the optimal policywas the decrease in total field heat losses. This is a critical factor in the efficiencyof the steam injection process.

Heat loss can reduce the efficiency of the process and lead to lower oil recovery rates. Byminimizing heat loss, the agentwas able

tooptimize the steam injectionprocess and increaseoil recovery rates.Theoptimal policy had four regions characterizedby slight

changes in a stable injection rate to increase the average reservoir pressure, increasing the injection rate to a maximum value,

steeply decreasing the injection rate, and slightly changing the injection rate tomaintain the average reservoir temperature. These

regions reflect the different phases of the steam injection process and demonstrate the complexity of the problem. Overall, the

results of this study demonstrate the effectiveness ofRL in optimizing steam injection inmature oil fields. The use ofRL can help

address the complexityof the problemand improve the efficiencyof the oil recoveryprocess.This studyprovides a framework for

future research in this area and highlights the potential of RL for addressing other complex problems in the energy industry.

Keywords Physics informed reinforcement learning � Production optimization � Reservoir management � Digital
transformation in oil and gas industry

1 Introduction

In general, the recent technological advancements in

upstream fields make closed-loop reservoir management

approaches popular and attractive solutions. Production

optimization is considered the ultimate goal of closed-loop

reservoir management [1]. It is done by using updated

reservoir model(s), optimal well controls (such that the

NPV of the production is maximized), or hydrocarbon

recovery in the reservoir lifecycle is maximized [2].
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Steam flooding is a thermal oil recovery method. In this

method, steam forms a condensing zone inside the reser-

voir. The heat of condensation is utilized to heat up the

heavy crude oil, facilitating its displacement due to a

reduction in viscosity [3]. The injected steam forms a

steam chamber around the injection well [4]. Figure 1

shows the steam chamber around the injection well. This

steam chamber is expanded toward the production well.

Consequently, the condensed water displaces the reservoir

fluid into the production well [4, 5].

Because of the high steam cost, one of the necessary

objectives in steam injection projects is the optimization of

the dynamic injection rates. Due to the reservoir simulation

complexity involved in the steam injection, no single steam

injection rate value can be optimal for all steam flooding

situations. Also, it is difficult for engineers to find a strat-

egy to inject steam over the entire production horizon that

maximizes the net present value. Hence, there are some

attempts in the literature to optimize steam injection rates.

These attempts can be divided into two groups. The first

group deals with steam injection as a steady-state problem,

which means such research would provide only one single

value of injection rate as an optimum value along the

production horizon. The other group studies the problem as

a dynamic optimization problem, where the output would

be an injection rate strategy over time.

Both optimization solutions would have the objective of

maximizing the cumulative performance of the wells. The

first group includes evolutionary algorithms such as non-

dominated sorting genetic algorithms and particle swarm

optimization algorithms to optimize injection rate. Amei

et al. have applied particle swarm optimization, a genetic

algorithm, and an imperialist competitive algorithm in

order to optimize the steam-to-oil ratio [6]. They concluded

that the genetic algorithm (GA) worked 6% better in

comparison to other optimization techniques and was also

faster in comparison to the continuous optimization algo-

rithm. As aforementioned, the biggest drawback of that

approach is that it provides only one single value for steam

injection or steam ration, which is not sufficient in such a

complex problem.

On the hand, the second group of researches deal with

steam injection as an optimal control problem. This group

of researches include the model predictive control algo-

rithm and the adjoint state method. Model Predictive

Control (MPC) is considered the most widely used

advanced control method in refining, chemical, and petro-

chemical processes [7–11]. MPC is a control algorithm that

is built on the concept of moving horizon [12]. For the

steam injection problem, a proxy model is introduced to

formulate the problem. This proxy model is a relation

between injection rates and oil and water production rates.

Finally, the formulated problem is optimized over the

prediction horizon to find the steam injection rates that

maximize the net present value. However, MPC approach

is preferable but the drawback of combining with proxy

model to formulate the system makes it unstable and only

suitable for small horizon of production [13].

In the second group also lies the adjoint-method. It is

perform some sort of gradient-based optimization method

where the derivatives are obtained through the use of an

adjoint equation or co-state equation [14]. It depends on the

barrier function to formulate the augmented objective

function. Hence, the augmented objective function includes

the calculation of net present value and the constraints that

formulate the reservoir dynamics. The disadvantage of this

approach is that the equations representing the gradient of

the augmented objective function with respect to the steam

injection rate must be hard-coded which is not easy in case

of thermal oil recovery processes where compositional

models are used [15].

2 Reinforcement learning applications in oil
and gas industry

More recent applications in the area of complex control

included the application of reinforcement learning (RL)

[16–18]. It is one of three basic machine learning para-

digms, alongside supervised learning and unsupervised

learning. Recently, Machine learning applications are

rapidly developed in upstream field. It transforms our

ability to describe complex systems from observational

data, rather than first-principles modeling.

It is obvious that reinforcement learning is different from

unsupervised learning. While the latter focuses on the

extraction of patterns and useful information hidden in the

unlabeled data, reinforcement learning has the ability to

map inputs to an output. Although both supervised and

reinforcement learning work on mapping inputs to outputs,

in reinforcement learning, a learner and decision-maker

called an agent is trained to find the optimal policy, whichFig. 1 Steam injection process
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acts as a feedback to the agent and gives RL an advantage in

optimization problems. Hence, both supervised and unsu-

pervised have different objectives they are applied for.

While supervised learning can be used for solving nonlinear

prediction and classification problems [19–24], reinforce-

ment learning is used for data-driven optimization [25–28].

The application of machine learning techniques, par-

ticularly reinforcement learning, has shown great promise

for dynamic optimization tasks in recent years. The pri-

mary objectives for such approaches are typically two-fold:

(1) to develop control policies that enable effective map-

ping from sensor inputs to actuation outputs and (2) to

support decision-making in real-time, even in complex and

changing environments [29]. Subsequently, machine

learning is well-suited to deal with high-dimensional,

nonlinear optimization problems that are difficult to model

explicitly. Reinforcement learning, in particular, enables

agents to learn from their interactions with the environment

and adapt their behavior accordingly, making it a powerful

tool for control and decision-making in complex systems.

For data-driven optimization, evolutionary algorithms

could also be used, but as aforementioned, they are search

meta-heuristic algorithms that reflect the process of natural

selection, where the fittest individuals are selected for

reproduction in order to produce offspring of the next

generation, while reinforcement learning is structured as an

agent interacting with an environment.

Defining a certain optimization task, RL is concerned

with a specific type of optimization problem in which the

objective is to find policies (strategies) that maximize the

return while an agent interacts with an environment in time

steps. On the other hand, evolutionary algorithms are self-

learning algorithms that can be applied to any optimization

problem where you can encode solutions, define a fitness

function that compares solutions, and stochastically change

those solutions.

Regarding the problems that each algorithm can solve,

RL is concerned with a specific type of optimization

problem in which the objective is to find policies (strate-

gies) that maximize the return while an agent interacts with

an environment in time steps. On the other hand, evolu-

tionary algorithms are self-learning algorithms that can be

applied to any optimization problem where you can encode

solutions, define a fitness function that compares solutions,

and stochastically change those solutions. Therefore, rein-

forcement learning would be more suitable in our case to

find the optimal policy for injection rates over time.

In this study, we will focus on reinforcement learning

applications in closed-loop reservoir management. In gen-

eral, RL applications are still very few and limited in engi-

neering processes [18, 30, 31] as the respective algorithms are

still in their development phases. Also, the research com-

munity is still working out the kinks in howadvancements are

validated and shared [32]. In the energy domain specifically,

the systems are too complex to be simulated, and it is also too

risky to allow the algorithms to interact directly with pro-

duction systems [33]. However, RL algorithms may have a

greet rule in the further development of artificial intelligence.

Therefore, the interest in these algorithms has been continu-

ing for the past decade [34]. Some researchers addressed the

application of reinforcement learning in the energy domain.

Such applications mainly had objectives regarding decision

management or flow control. Field applications are mainly

categorized into two groups: either to control autonomous

drilling or to optimize production.

In the context of autonomous drilling control [35–37],

the objective is tracking some set points; therefore, it is

often either a penalty function for downhole pressure in the

case of managed pressure drilling or for landing position,

final inclination, and maximum curvature in the case of

controlled directional drilling positioning.

In the context of production optimization, the general

configuration of closed-loop reservoir simulation consists of

two main parts as follows: (1) model-based data assimila-

tion, which acts as reservoir parameters and states an esti-

mator, and (2) a model-based optimizer. As mentioned

above, the task of the optimizer is to maximize the oil

recovery factor or other desired economic criteria such as

the NPV. The required inputs for the optimizer part may be

field total metrics such as injection and production data or

volumetric data from grids such as pressure and water sat-

uration in wells’ windows. The objectives are often to

maximize production, minimize losses, increase net present

value and reduce lost time. Therefore, all of these applica-

tions used net present value as a reward function for their

agent to search for the optimum policy. However, they have

various objectives on the reservoir simulation prospective.

For waterflooding optimization projects, there are three

attempts [38–40]. These attempts differ in either the state

definition or the complexity of the model or the applied

reinforcement learning algorithm. Both Hourfar et al. and

Ma et al. [38, 39] have used the estimation of the residual

oil in percentages and also the values of water cuts in the

total produced fluid. On the other hand, Miftakhov et al.

[40] have used pixels of the reservoir simulation model to

define the state. It works fine in this case, may be because

the model was so simple, but we expect such a state defi-

nition would lead to the curse of dimensionality because of

the huge number of inputs in such a case.

For steam-assisted gravity drainage, unlike SARSA that

has been used by Guevara et al. [15], we propose the usage

of the actor-critic reinforcement learning algorithm. It

combines the advantages of value-based and policy-based

approaches. In this algorithm, the actions are generated by

a policy neural network. This network is evaluated based

on a corresponding change in state potential. The values of
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the state potential are given by another neural network

called the critic network. This network approximates the

expected cumulative reward from the given state. The

actor-critic algorithm is also recommended for a competi-

tive non-Markovian environment where a stochastic action

can be preferable to a deterministic one. It is also used in

the case of continuous action spaces like continuous

robotic control [41].

There are other miscellaneous applications such as the

usage of reinforcement learning to optimize injection rates

in carbon dioxide storage [42] unlike the traditional

methods and evolutionary algorithms that are used in the

literature [43, 44], the agent could maximize the reward

that is built depend on risk and economical factors. There

are also other applications in optimal well placement and

well type selection in the area of pressure transient tests

interpretation [45–47].

In this study, we present a novel approach to production

optimization in reservoir simulation through the applica-

tion of reinforcement learning. Our focus is specifically on

the challenges associated with data-driven optimization,

which differ from those of data-driven modeling. By pri-

oritizing this concentration, we highlight the key message

of our work: that optimizing production through data-dri-

ven techniques requires a distinct set of considerations and

approaches. We believe that this emphasis on the unique

challenges of data-driven optimization is crucial to

advancing autonomous drilling and production optimiza-

tion. Our work represents a significant contribution to this

field.

In this work, model-free reinforcement learning (RL) is

applied for steam injection rate optimization. It was

selected because it overcomes the shortcomings of the

aforementioned methods in two ways. Firstly, it does not

require a full description of the process required to be

optimized. Secondly, this approach takes advantage of

previous experiences or interactions with the environment

to find an optimal policy of injection rate to maximize the

net present value without human interference. Also, among

reinforcement learning algorithms, we explore the usage of

actor-critic (A2C). The advantages of such an algorithm are

the following [48]:

1 Sample efficiency: Actor-Critic is more sample effi-

cient than some other reinforcement learning algorithms,

such as Q-learning and SARSA. This is because it uses

both the value function and the policy to learn, which can

help to reduce the number of interactions needed with the

environment.

2 Convergence to an optimal policy: Actor-Critic has a

strong theoretical basis for convergence to an optimal

policy, and it guarantees improvement at each iteration.

This means that the performance of the policy will improve

over time.

3 Handling of non-stationary environments: Actor-Critic

can handle non-stationary environments where the distri-

bution of the data changes over time. This is because the

policy is updated using its own experience, and the critic’s

value function is updated using the temporal difference

error.

4 Ability to balance exploration and exploitation: Actor-

Critic can balance exploration and exploitation using the

policy and value function. The policy is used to explore the

environment and discover new solutions, while the value

function is used to exploit the current knowledge of the

environment and make decisions based on the expected

return of each action.

3 Elements of RL

The reinforcement learning technique is the preferred

method for the purpose of this paper. It is highlighted

because it is the optimal policy (a policy that maximizes

the reward of the decision process). Hence, it supports

automated transformation and goes beyond conventional

approaches to solve the task at hand. Reinforcement

learning problems involve learning how to map situations

to actions in a closed-loop structure where the learning

system’s actions influence its later inputs, which converge

toward the maximum numerical reward signal. Moreover,

the learner discovers which actions yield the best reward by

trying them out. Figure 2 presents agent-environment

interaction in RL.

Achieving agent-environment interaction in real life

requires four basic features to be well defined. They are the

environment, the reward function, the value function, and

the policy function with its relevant actions.

3.1 Environment

‘‘Environment’’ is a mathematical model that mimics the

behavior of the environment. In other words, it presents

inferences about how the environment behaves. For

instance, the model might predict the resultant next state

stþ1 and next reward rtþ1 given a state st and taking action

at.

3.2 Reward function

A reward signal is considered the target or the objective

function in a reinforcement learning problem. It is a single

number sent from the environment to the reinforcement

learning agent at any time, depending on the agent’s cur-

rent action and the current state of the environment. The

agent can influence the reward signal through its action.

Therefore, maximizing the total reward that the agent

16636 Neural Computing and Applications (2023) 35:16633–16647

123



receives over the long run is considered its main objective.

The reward signal defines good and bad actions for the

agent. It is denoted by Rt at time step (t).

3.3 Value function

A value function is used to evaluate success in the long run.

Roughly speaking, the value of a state, i.e., the status of the

agent (what has been learned, what must be done), is the

total amount of rewards an agent can expect to accumulate

over the future, starting from a specific state at time (t),

which can, for instance, be the initial conditions of the

simulations toward the end of the episode. Whereas a

reward determines the immediate return at a specific

environmental state, a function value indicates the long-

term desirability of the state after considering the states

that are likely to follow. In other words, the value function

at state (s) considers the reward available in (s) and the

upcoming states. The value function is denoted by Vp,

where VpðSÞ is the value function for a specific state (S)

under a specific policy p.

3.4 Policy function

A policy defines the learning agent’s way of behaving at a

given time. Roughly speaking, a policy can be considered

as an interconnection between states (the input vector from

the environment at a specific time step t) and actions (what

should be done?). The policy is denoted pt, where ptða j sÞ
is the probability of taking an action (a) when being in a

certain state (s).

4 Learning dynamics (agent-environment
interactions)

Over a sequence of discrete time steps

t ¼ f0; 1; 2; 3; � � � ; Tg, an agent interacts with an environ-

ment E. In every iteration, the agent receives a current state

from the environment (st) and selects an action from some

set of possible actions (a) according to its policy p. In
return, the agent receives the next state stþ1 and receives a

scalar reward rt. The process continues until either the

agent reaches a terminal state or the maximum number of

time steps satisfied after which the process restarts [49].

The total accumulated return from time step t can be

calculated from Rt ¼
P1

k¼0 c
k rtþk were c 2 ½0; 1� is the

discount factor. The value of state s under policy p is

defined as VpðsÞ ¼ ½Rt j st ¼ s� and is simply the expected

return for following policy pi from state s. Another

important function while learning is the action value

function Qpðs; aÞ ¼ E½Rt j st�. It is the expected cumulative

reward an agent can receive by taking a specific action in a

specific state, and following a certain policy p.
Solving a reinforcement learning task means reaching

the optimal policy. It is the one that going to give us the

maximum value in any state we are in

p� ¼ argmaxp½Ep
P1

k¼0 c
k rtþk�. There are two techniques

to solve the problem in model-free reinforcement learning

either value-based technique or policy-based technique.

In value-based model-free reinforcement learning

methods, There is no explicit policy is stored but only

solving the problem of the value function [50]. The policy

is here implicit and can be derived directly from the value

function by picking the action with the best value. For

instance DQN is the most popular Q-learning algorithm. In

this algorithm, the action value function is represented

Fig. 2 The agent-environment

interaction in RL
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using a function approximation, such as a neural network

Qðs; a; hÞ. The objective is to directly approximate the

optimal action value function: Q � ðs; aÞ � Qðs; a; hÞ.
The learning is done through iterative continuous update of

the parameters h of the action value function minimizing a

sequence of loss functions. Equation 1 shows the loss

function applied per iteration i.

JðhiÞ ¼ Eðr þ cmax
a; Qðs;; a;; hi�1Þ � Qðs; a; hiÞÞ2 ð1Þ

where s;, is the state at t þ 1 after state s at time t.
On the contrary, we explicitly build a parameterized

representation of the policy pðat j st; hÞ in the policy-based

methods. Then, gradient ascent on E½Rt� is performed to

update the parameters h. An example of such a method is

the REINFORCE family of algorithms [51].

In this algorithm the policy parameters h is updated in

the direction rh log pðat j st; hÞ � Rt. In order to solve the

problem of the high variance of such estimates while

keeping it unbiased, a learned estimate of the value func-

tion is commonly used as the baseline btðstÞ � VpðstÞ. It
is commonly known as a baseline. This base line is sub-

tracted from the return. Hence, the resulting gradient is

calculated from rh log pðat j st; hÞ ðRt � btðstÞÞ [52].
The advantage actor-critic reinforcement learning com-

bines both techniques, the value based and the policy

based, together [51]. It consists of two neural networks and

the advantage function. The later calculates the agent’s TD

Error or Prediction Error. The actor network can be con-

sidered as a policy gradient algorithm that chooses an

action at each time step. On the other hand, the critic

network evaluates the Q-value or provide a feedback on

how to adjust. While the critic network learns which states

are better or worse, the actor uses the critic results to teach

the agent to seek out good states and avoid bad states.

Hence, the combination of deep learning with RL would

be a new powerful tool. It is called deep reinforcement

learning. Such a combination hindered classical RL by

allowing the use of high-dimensional state spaces and

exploiting the feature extraction capabilities of deep neural

networks. That makes deep reinforcement learning suit-

able to be explored in the field of fluid mechanics where

challenging environments with nonlinear problems of high

dimensionality are confronted. Hence, if neural networks are

properly trained, they can estimate value function and output

an action distribution given set of states and therefore rep-

resents arbitrarily complex mappings between spaces [53].

5 Steam injection model

Reservoir simulation is a crucial tool for understanding the

behavior of oil and gas reservoirs, as it allows engineers to

predict the flow of fluids through porous media over time.

However, simulating a reservoir can be a highly complex

task, particularly when dealing with fluids such as gas

condensate and volatile oil.

The models used for simulating these types of reservoirs

are known as compositional models. They typically involve

a complex mix of thermodynamic relations and equations

for modeling the differential material balances, which must

take into account the phase transitions of the different

occurring components. In other words, conservation laws

are applied for each component in each grid, using equa-

tions for fluid transport through porous media, rock or fluid

properties, and the conservation of mass, momentum, and

energy in order to solve the problem.

This results in a large system of highly nonlinear dif-

ferential equations, which must be solved for each grid

block using computers. To achieve this, the reservoir must

first be discretized into a large number of grid blocks to

describe the dynamic behavior of a real hydrocarbon

reservoir. However, because real reservoirs are often highly

heterogeneous in terms of pore structure, oil saturation, and

other factors, a significant number of grid blocks must be

defined to accurately capture the behavior of the system.

Furthermore, optimizing the production of hydrocarbons

in a reservoir involves significant complexity. The goal of

optimization is to determine the optimal well placement

and production schedule to maximize the recovery of

hydrocarbons while minimizing costs and environmental

impact. This involves a range of factors, including reser-

voir characterization, wellbore construction, fluid proper-

ties, and surface facilities.

Optimization strategies typically involve using simula-

tion models to evaluate different scenarios and determine

the most effective production strategy. However, this can

be a complex and time-consuming process, as it involves

running multiple simulations with different input parame-

ters and evaluating the results to determine the optimal

solution. Overall, the complexity of reservoir simulation

and optimization highlights the importance of using

advanced computational tools and strategies to improve the

efficiency and accuracy of hydrocarbon production.

In this use case, the reservoir simulation model repre-

sents the environment where oil displacement is carried out

using steam injection. Specifically, an inverted nine-spot

pattern is used [54], which is divided into eight equal parts,

with one of the parts being modeled. The total area of the

pattern is 2.5 acres, and a grid system of 23 9 12 9 12 is

used to represent the reservoir. This means that the reser-

voir is divided into a large number of small grid blocks,

with the grid points distributed uniformly in the horizontal

plane. The well radii for all three wells are 0.3 ft, which is

an important parameter in determining the effectiveness of

the steam injection process. The case is shown in Fig. 3.
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Figure 3 shows element of symmetry used in the sim-

ulation of steam injection in an inverted nine-spot. Rock

Properties: Vertical permeability is 50% of horizontal

values. Porosity of all layers is 0.3 (fraction). Thermal

conductivity of reservoir overburden and under-burden is

24 BTU/(ft-D-OF). Heat capacity of reservoir overburden

and under-burden is 35 Btu/(ft3 of rock-OF). Effective rock

compressibility is 5 9 10-4 psi- 1.

Fluid Properties: Properties of pure water are assumed

Oil density at standard conditions is 60.68 Ibm/ft3. com-

pressibility is 5910-6 psi-1. The coefficient of thermal

expansion is 3.8 9 10-4 OR-1, and the molecular weight is

600. Temperature and viscosity data are shown in Table 1.

Further information about the produced fluid properties and

initial oil composition can be found in Tables 2 and 3.

Rock-fluids interaction: For water/oil system, the

residual oil saturation (Sorn) is 0.15. For gas/oil system, the

residual oil saturation (Sorg) is 0.10. The critical gas sat-

uration (Sgc) is 0.06.
Regarding permeability, the oil relative permeability at

interstitial water saturation, kroiw is 0.4. For water/oil

system, water relative permeability at residual oil satura-

tion (krwro) is 0.1. For gas/oil system, gas relative per-

meability at residual oil saturation (krgro) is 0.2.

Equations (2)–(5) define the relative permeability for the

water/oil system and for the gas/oil system as

krw ¼ krwro
Sw � Swir

1� Sorw � Swir

� �2:5

ð2Þ

krow ¼ kroiw
1� Sorw � Sw
1� Sorw � Siw

� �2

ð3Þ

Fig. 3 3 element of symmetry

used in the simulation of steam

injection in an inverted nine-

spot

Table 1 Temperature and viscosity data

Temperature (�F) Viscosity (cp)

75 5780

100 1380

150 187

200 47

250 17.4

300 8.5

350 5.2

500 2.5

Table 2 Properties of oil components

Components

1 2 3

Molecular weight 250 450 600

Specific heat, Btu/Ibm-oR 0.53 0.55 0.6

Density at standard conditions Ibm/ft3 52.3 57.64 61.2

Critic pressure, psia 225 140 –

Critical temperature, �F 800 950 –

Table 3 Initial oil composition
Components Mole fraction

C1 0.5030

C2 0.1614

C3 0.3356
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krg ¼ krgro
Sg � Sgc

1� Siw � Sgc

� �1:5

ð4Þ

krw ¼ krwro
1� Siw � Sorg � Sg

1� Siw � Sorg

� �2

ð5Þ

Initial Conditions The initial oil and water saturation is

55% and 45% respectively. Reservoir temperature is

125�F. The pressure at the center of the top layer is 75 psia.

Operating Conditions The steam is injected into the

bottom layer only, while production occurs in all four

layers. Steam injection capacity is subject to the following

constraints: (I) a maximum BHP of 1600 psia at the center

of the bottom layer and (II) a maximum injection rate of

300 STBID on a full-well basis. The capacity of the pro-

duction wells is subject to the following constraints: (I) a

minimum BHP of 17 psi at the center of the top layer; (II) a

maximum production rate of 1000 STBID of liquids. The

operation shall take 820 days of injection and production.

The next step would be to reformulate the reservoir

simulation problem to match the Markov decision process

(MDP). After preparing the model, the actor-critic agent

starts to interact with the environment for a production

period of 820 days. Multiple agents interacting with the

reservoir simulation environment as a multi-agent actor-

critic can be considered a next level of study. It is also

worth mentioning that this study is based on the general

assumption of a reliable history-matched model.

6 Steam Injection problem formulation
based on RL

6.1 State

As aforementioned, a true MDP state should provide

something that is Markovian and captures the environment

at its fundamental level. Therefore, the state of the reser-

voir simulation should carry enough information to capture

the history of the process or the previously applied injec-

tion rates. Equation 6 shows how the state is set at every

time step.

St ¼ ½Cumulative oil production;

Cumulative steam injection;

Cumulative water production�
ð6Þ

6.2 Actions

‘‘In this study, a discrete action space consisting of three

possible actions is used: increase, decrease, and no change

in steam injection rate. The action taken in each time step

is with reference to the previous time step injection rate by

a constant value (20 BPD). This design of the action space

prevents dramatic changes in steam injection rate.’’ The

action space for the agent is designated according to Eq. 7.

at ¼
Qinjðt � 1Þ þ 20 if action ¼¼ 0

Qinjðt � 1Þ � 20 if action ¼¼ 1

Qinjðt � 1Þ if action ¼¼ 2

8
><

>:
ð7Þ

6.3 Reward function

During the reinforcement learning process, the reward

function serves as an essential guide for the agent. In this

study, the net present value (NPV) of the reservoir, as

defined by Eq. 8, is utilized as the metric for the reward

function. The ultimate aim is to optimize the steam injec-

tion strategy to maximize the cumulative sum of NPVs

calculated at each discrete time step. This serves as a key

indicator of the agent’s efficacy in enhancing oil recovery

through the use of steam injection.

Rt ¼ NPVt ¼
XN

n¼1

Poqo � Csteam qs � Cwaterqw

1þ i
t�tref
365

ð8Þ

where

• Poil;Csteam and Cwater are the oil price, the cost of steam

generation and the cost of produced water handling in

[USD/STB].

• qo; qs and qw are the oil production rate, steam

injection rate and water production rate in [STB/day].

• t; and tref are the current time and the reference time to

which NPV is discounted.

• i is the annual discount factor. The economical

parameters are presented in Table 4.

6.4 Components summary

A task, an environment and an agent are the main elements

of reinforcement learning optimization technique. For our

study, The contextual interpretations of these elements is

summarized in Table 5.

Table 4 Economical factor
Parameter Value

Poil 100

Csteam 12

Cwater 3

i½fraction� 0.2
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6.5 Implementation actor to critic method

The model consists of three wells (one injector and two

producers), and a production horizon of 820 days (one

episode) is considered. The state of the environment is

defined as cumulative, as oil and water production, and as

steam injection. For each time step, the three possible

actions defined previously are considered, and the reward is

represented by the NPV.

The training process is conducted through successive

interactions between the agent and the environment. The

agent executes an action each time step according to a

specific policy, and then it receives a reward that is the net

present value in our case. Hence, the policy is improved

through the action taken and the observation of new states

of the environment with each interaction. Then, the agent

learns to gain rewards so that it acts correctly in situations

not present in the training set.

In SARSA, the agent interacts with the environment and

updates the policy based on actions taken. SARSA learns

the Q-values associated to the policy that itself follows

QðSt;AtÞ  QðSt;AtÞ þ aðRtþ1 þ cQðStþ1;Atþ1Þ�
QðSt;AtÞÞ. Hence, this approach converges with possible

penalties from exploratory moves but at the same time it

avoids a possibly dangerous optimal path at the cost of

learning slowly. Subsequently, SARSA is rather preferred

in robotic experiments and less in simulations in order to

avoid damages.

Instead, in the actor-critic method, the actor proposes a

set of possible actions given a determined state, i.e., the

actor assumes the function of the policy (where to go?) and

the critic, on the other side, evaluates the actions taken by

the actor. This evaluation is defined as the ‘‘estimated value

function.’’

Using data from a reservoir, the environment is built as a

simulation model. Figure 4 shows the agent (A2C)-envi-

ronment (reservoir simulator) interaction in our implemen-

tation for the determination of optimal operating conditions

In this study, the agent can be inferred to represent an

injector well. It provide the environment with actions that

result in the optimal operating conditions for the simulated

system. This agent is trained based on the net present value

that is calculated using the feedback from the simulator.

The agent used is an actor-critic. The actor network rep-

resents a parameterized policy ðphÞ. Hence, it is responsi-
ble for mapping states (st) to actions (at). The output of the

actor’s network is a 3-dimensional vector representing the

probability of the three actions. Those are increase,

decrease and not changing in steam injection rate with

reference to the previous injection rate. Then, using the

probability distribution presented in Eq. 9, the action is

determined. On the other hand, the critic network evaluates

the impact of actions by estimating the Q-value of a state-

action pair. Hence, it takes both the state and the action as

inputs. This ensures that the actor to critic agent consis-

tently makes the best decision.

phðs; aÞ ¼ argmaxðsoftmaxp½a j s; h�Þ ð9Þ

The actor agent is trained through the policy gradient

method and optimized policy parameters are obtained

through iterations. Equations 10 and 11 show the policy

gradient cost function and parameters update.

rhJ hð Þ ¼ rhlogphða j sÞV
phðStÞ ð10Þ

htþ1 ¼ ht þ a rh J hð Þ ð11Þ

Combining Equations (10 and 11) with the value function

equation 12 results in Eq. 13

VpðSÞ ¼
X

a2A
p a; sð ÞðRa

s þ c
X

s0� S

Ta
ss0V

pðs0ÞÞ ð12Þ

htþ1 ¼ ht þ a½rh logphðajsÞ
X

a2A
pða; sÞðRa

s

þ c
X

s02 S

Ta
ss0V

pðs0Þ� ð13Þ

Such a technique exhibits high variance since trajectories

can lead to different returns. This is mainly due to the

stochasticity of the environment (random events during

episodes) and the stochasticity of the policy. For instance,

the same starting state can lead to very different returns.

Because of this, the return at a specific point starting from

the same state can vary significantly across episodes.

Table 5 Elements of the reinforcement learning in the context of steam injection

Element Steam injection context

Environment Compositional models of reservoir simulation

Task To find optimal injection steam injection rate autonomously along 820 days of production

State Operating conditions St = [Cumulative oil production, Cumulative steam injection, Cumulative water production]

Reward Net present value

Agent To send actions to the injector well

Policy To find optimal policy of steam injection rate to maximize the net present value

Action Manipulating parameter of the operating conditions which is the injection rate
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During iterations, the trajectory update was observed to

have a high variance due to stochasticity of the environ-

ment and stochasticity of the policy. For instance, the same

starting state can lead to different returns. Therefore, the

return starting at the same state can vary significantly

across episodes. The solution to mitigate the aforemen-

tioned problem is the usage of an advantage function

Eq. 14. The advantage function captures the degree of

importance an action has compared to others for a given

state, while the value function judges the strength of the

decision.

Aph S; að Þ ¼ Qph S; að Þ � Vph Sð Þ
¼ r at; Stð Þ þ c Vph Stþ1ð Þ � Vph Sð Þ

ð14Þ

Using Eq. 13 and 14, we get equations of actor and critic

weights update 15 and 16

htþ1 ¼ ht þ a½rhlogphða j sÞA
phðS; aÞ� ð15Þ

Wtþ1 ¼Wt þ bA½rwV
ph Stð Þ� ð16Þ

Algorithm 1 presents pseudocode for the actor-critic

algorithm for the steam injection process.

7 Results of the steam injection
optimization

In this section, we will perform a quasi-experimental study

to evaluate the performance of an AI-based agent in opti-

mizing the steam injection rate over time. Specifically, we

are interested in examining the learning curve that the

agent exhibits and the optimal steam injection rate policy

that it obtains. To assess the effectiveness of the agent’s

policy, we will compare it to a baseline policy where the

steam injection rate is kept constant at 138 bbl/day.

By analyzing the learning curve, we gain a deeper

understanding of the agent’s behavior and performance.

Figure 5 shows the learning curve for our agent, where the

line represents the cumulative net present value (NPV) for

each episode after 820 days. As observed, there are large

variations in the NPV of initial episodes, which can be

attributed to poor approximations of the actor network. In

reinforcement learning, the critic typically employs a state-

value function. After each actor selection, the critic eval-

uates the new state to determine whether things have

improved or become worse than expected. This evaluation

is based on the temporal difference (TD) error, which

measures the difference between the predicted and actual

values of the state-value function.

As the number of episodes increases, the critic learns

about the policy being followed by the actor. This critique

takes the form of a TD error, which serves as the sole

output of the critic and drives all learning in both actors

and critics. By minimizing the TD error through gradient

descent, the actor network is trained to select actions that

maximize the expected return. The critic network, on the

other hand, is updated to better estimate the state-value

function, which in turn improves the accuracy of the TD

error signal.

Figure 6 shows the optimal steam injection curves for

the a2c agent and the base model versus time. Four specific

regions can be distinguished in the optimal injection pol-

icy: from 0 to 380 days, the injection rate has slightly

changed between 98 to 118 bbl/day. The second region is

from 380 to 640 days where injection rate increased from
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118 bbl/day to a maximum value 148 bbl/day. The third

region (from 640 to 780) shows a steep decrease in the

injection rate from 148 bbl/day to 98bbl/day. The fourth is

from 780 to 820 showing a slight change between 98

bbl/day and 108 bbl/day. As per Fig. 6 and from eco-

nomical perspective, it is clear that the policy defined by

the agent was able to achieve the highest net present value.

However, the question that arises here is how can such a

policy be justified from a physical point of view.

The main aspect that explains the success of this policy

is that its ability to minimize the cumulative heat loss to the

surrounding rocks. Fig 7a, b shows the rate of heat loss and

Fig. 4 Actor-critic architecture and its interaction with the environment

Fig. 5 Learning curve of RL Fig. 6 Field water injection total versus time
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Fig. 7 Field heat losses versus time

Fig. 8 Field water cut versus time

Fig. 9 Cumulative water production versus time

Fig. 10 Field oil production versus time
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cumulative loss to surrounding rocks. It is obvious that the

policy defined by the (A2C) agent to change steam injec-

tion rate exhibits less heat loss to the surrounding rocks

compared to the base case. This effect explains the success

of this policy on water injection for optimizing oil

recovery.

Also it is important to study the effect of this injection

policy on the produced oil and water. From Figs. 8 and 9, it

is shown that total water cut and the cumulative water

production are less in the agent policy case than the base

case. This may be an effect of slightly smaller injection

rates at the first region of the production horizon that leads

to the steam chamber to grew vertically.

Figure 10a, b shows the oil rate and cumulative oil

production versus time. It is shown that the agent policy

shifted the profile of oil production rate. The second peak

shifted from day 260 to day 400. In the A2C policy this

leads to reduce the sharp decrease happening afterward and

also leads to delay the steam breakthrough in the near and

far wells. Figure 11a, b shows the total steam production

from the near and far wells in both A2C and base cases.

While the near well starts to produce steam after 160 days

in the A2C case while in the base case it starts to produce

steam after 140 days. The same happens for the far well

with approximately 80 days difference.

8 Conclusion

Steam injection is a common method to enhance the

recovery from mature oil fields. Commonly, a constant

steam rate is applied over a long period of time without

considering varying physical phenomena and reservoir

characteristics, consequently resulting in sub-optimal per-

formance of these thermal heavy oil recovery processes.

However, finding the optimal steam injection strategy is a

challenge due to the complex dynamics, i.e., nonlinear

formulation, variations over time, and reservoir hetero-

geneity. Such a problem can be reformulated using the

Markov decision process for the application of reinforce-

ment learning (RL). Subsequently, a decision-maker called

an agent generates actions to maximize the production

process’s yield. The agent interacts continuously with the

environment to determine the optimal injection rates,

adjusting its actions based on feedback from the system

until a satisfactory solution is reached.

In this work, an actor-critic RL architecture is used to

train an agent to find the optimal strategy (i.e., policy)

through continuously interacting with the environment. In

this study, the environment is represented by a reservoir

simulation model. At each time step, the agent executes an

action to either increase, decrease, or keep the steam

injection rate constant, and a subsequent reward is received

by the agent. A reward can be defined as a distinct number

from the environment. Then, the agent observes the new

state from the environment. Such a state could be the

cumulative amount of steam injected, the pressure distri-

bution, or any other input that could be representative of

the environment, which is the reservoir simulation model in

our case. During this interaction, a policy function and a

value function are trained. A policy gives a probability

distribution of the actions that the agent can take. For a

specific policy, a value function determines the expected

yield for an agent starting from a given state. This dynamic

process is executed for several episodes until convergence

is achieved.

In this study, we propose an application of an actor-

critical reinforcement learning (RL) approach to optimize

steam injection rates based on a problem of compositional

modeling of a fluid flowing through a porous medium. The

objective was to find a policy that could maximize the

cumulative net present value at the end of the production

Fig. 11 Cumulative steam production per well versus time
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horizon by optimizing the well water injection rates. The

purpose of the actor network is to estimate the value

function through a mimic of the physics of the environ-

ment’s inputs and outputs and to update the policy distri-

bution in the direction suggested by the critic network.

After a successive interaction between the agent and the

reservoir simulation model, it is shown that the agent was

able to choose a series of actions (steam injection rate

versus time) aimed at maximizing the net present value of

the project. The results from both the base and the optimum

policy cases are compared from a physical perspective to

explain the reasons leading to the increase in the net pre-

sent value of the whole project.

This work represents an initial step in the direction of

implementing a multi-agent reinforcement learning

framework to optimize multi-pad oil wells.
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14. Thévenin D, Janiga G (2008) Optimization and computational

fluid dynamics. Springer, Berlin Heidelberg

15. Guevara JL, Patel R, Trivedi J (2021) Optimization of steam

injection in SAGD using reinforcement learning. J Pet Sci Eng

206:108735. https://doi.org/10.1016/j.petrol.2021.108735

16. Mullapudi A, Lewis MJ, Gruden CL, Kerkez B (2020) Deep

reinforcement learning for the real time control of stormwater

systems. Adv Water Resour 140:103600. https://doi.org/10.1016/

j.advwatres.2020.103600

17. Siraskar R (2021) Reinforcement learning for control of valves.

Mach Learn Appl 4:100030. https://doi.org/10.1016/j.mlwa.2021.

100030

18. Garnier P, Viquerat J, Rabault J, Larcher A, Kuhnle A, Hachem E

(2021) A review on deep reinforcement learning for fluid

mechanics. Comput Fluids 225:104973. https://doi.org/10.1016/j.

compfluid.2021.104973

19. Abdalla R, El Ela MA, El-Banbi A (2020) Identification of

downhole conditions in sucker rod pumped wells using deep

neural networks and genetic algorithms (includes associated

discussion). SPE Prod Oper 35(02):435–447. https://doi.org/10.

2118/200494-PA

20. Abdalla R, Samara H, Perozo N, Carvajal CP, Jaeger P (2022)

Machine learning approach for predictive maintenance of the

electrical submersible pumps (ESPS). ACS Omega

7(21):17641–17651. https://doi.org/10.1021/acsomega.1c05881

21. Etesami D, Shirangi MG, Zhang WJ (2021) A semiempirical

model for rate of penetration with application to an offshore gas

field. SPE Drill Complet 36(01):29–46

16646 Neural Computing and Applications (2023) 35:16633–16647

123

https://github.com/OPM/opm-data
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s12182-014-0005-6
https://doi.org/10.1016/B978-0-12-813782-6
https://doi.org/10.1016/B978-0-12-813782-6
https://doi.org/10.1016/j.petrol.2018.08.008
https://doi.org/10.2118/84064-PA
https://doi.org/10.1016/j.ifacol.2015.09.023
https://doi.org/10.1016/j.ifacol.2015.09.023
https://doi.org/10.1016/j.compchemeng.2016.11.008
https://doi.org/10.1016/j.compchemeng.2016.11.008
https://doi.org/10.1007/978-1-84882-331-0_1
https://doi.org/10.1007/978-1-84882-331-0_1
https://doi.org/10.1016/j.petrol.2020.108168
https://doi.org/10.1016/j.petrol.2021.108735
https://doi.org/10.1016/j.advwatres.2020.103600
https://doi.org/10.1016/j.advwatres.2020.103600
https://doi.org/10.1016/j.mlwa.2021.100030
https://doi.org/10.1016/j.mlwa.2021.100030
https://doi.org/10.1016/j.compfluid.2021.104973
https://doi.org/10.1016/j.compfluid.2021.104973
https://doi.org/10.2118/200494-PA
https://doi.org/10.2118/200494-PA
https://doi.org/10.1021/acsomega.1c05881


22. Etesami D, Zhang WJ, Hadian M (2021) A formation-based

approach for modeling of rate of penetration for an offshore gas

field using artificial neural networks. J Nat Gas Sci Eng

95:104104. https://doi.org/10.1016/j.jngse.2021.104104

23. Manasipov R, Nikolaev D, Didenko D, Abdalla R, Stundner M

(2023) Physics informed machine learning for production fore-

cast. In: SPE reservoir characterisation and simulation conference

and exhibition

24. Noshi CI, Eissa MR, Abdalla RM (2019) An intelligent data

driven approach for production prediction. In: OTC offshore

technology conference. https://doi.org/10.4043/29243-MS

25. Castelletti A, Pianosi F, Restelli M (2013) A multiobjective

reinforcement learning approach to water resources systems

operation: Pareto frontier approximation in a single run. Water

Resour Res 49:3476–3486. https://doi.org/10.1002/wrcr.20295

26. Mahootchi M, Tizhoosh H, Ponnambalam K (2007) Reservoir

operation optimization by reinforcement learning. J Water Manag

Model. https://doi.org/10.14796/JWMM.R227-08

27. Gosavi A (1997) Simulation-based optimization: parametric

optimization techniques and reinforcement. Learning. https://doi.

org/10.1007/978-1-4757-3766-0

28. Abe T, Oh-hara S, Ukita Y (2021) Adoption of reinforcement

learning for the intelligent control of a microfluidic peristaltic

pump. Biomicrofluidics 15(3):034101. https://doi.org/10.1063/5.

0032377

29. Brunton SL, Kutz JN (2019) Data-Driven science and engineer-

ing - machine learning, dynamical systems, and control. Cam-

bridge University Press, Cambridge. https://doi.org/10.1017/

9781108380690

30. Dworschak F, Dietze S, Wittmann M, Schleich B, Wartzack S

(2022) Reinforcement learning for engineering design automa-

tion. Adv Eng Inform 52:101612. https://doi.org/10.1016/j.aei.

2022.101612

31. de Lara FM, Ferrer E (2022) Accelerating high order discontin-

uous Galerkin solvers using neural networks: 1d burgers’ equa-

tion. Comput Fluids 235:105274. https://doi.org/10.1016/j.

compfluid.2021.105274

32. Marten-Guerrero JD, Lamata L (2021) Reinforcement learning

and physics. Appl Sci. https://doi.org/10.3390/app11188589

33. Perera ATD, Kamalaruban P (2021) Applications of reinforce-

ment learning in energy systems. Renew Sustain Energy Rev

137:110618. https://doi.org/10.1016/j.rser.2020.110618

34. Chen X, Yao L, McAuley J, Zhou G, Wang X (2023) Deep

reinforcement learning in recommender systems: a survey and

new perspectives. Knowl Based Syst 11:335. https://doi.org/10.

1016/j.knosys.2023.110335

35. Liu H, Zhu D, Liu Y, Du A, Chen D, Ye Z (2018) A reinforce-

ment learning based 3d guided drilling method: Beyond ground

control. In: Proceedings of the 2018 VII international conference

on network, communication and computing. ICNCC 2018.

Association for Computing Machinery, pp 44–48. https://doi.org/

10.1145/3301326.3301374. Accessed 27 May 2022

36. ArnØ M, Godhavn J-M, Aamo OM (2020) Deep reinforcement

learning applied to managed pressure drilling. In: SPE,

pp. 021–007001. https://doi.org/10.2118/200757-MS. https://one

petro.org/SPEBERG/proceedings/20BERG/2-20BERG/Virtual/

448669 Accessed 27 May 2022

37. Yu Y, Chen W, Liu Q, Chau M, Vesselinov V, Meehan R (2021)

Training an automated directional drilling agent with deep rein-

forcement learning in a simulated environment. In:SPE ,

pp. 041–013002. https://doi.org/10.2118/204105-MS. https://one

petro.org/SPEDC/proceedings/21DC/4-21DC/Virtual/460374

Accessed 27 May 2022

38. Ma H, Yu G, She Y, Gu Y (2019) Waterflooding optimization

under geological uncertainties by using deep reinforcement

learning algorithms, pp 031–043001. https://doi.org/10.2118/

196190-MS. Accessed 18 Apr 2022

39. Hourfar F, Bidgoly HJ, Moshiri B, Salahshoor K, Elkamel A

(2019) A reinforcement learning approach for waterflooding

optimization in petroleum reservoirs. Eng Appl Artif Intell

77:98–116. https://doi.org/10.1016/j.engappai.2018.09.019

40. Miftakhov R, Al-Qasim A, Efremov I (2020) Deep reinforcement

learning: reservoir optimization from pixels. In: IPTC. 10.2523/

IPTC-20151-MS, pp 021–052002. . https://onepetro.org/IPT

CONF/proceedings/20IPTC/2-20IPTC/Dhahran,%20Kingdom%

20of%20Saudi%20Arabia/154747 Accessed 27 May 2022

41. Thuerey N, Holl P, Mueller M, Schnell P, Trost F, Um K (2021)

Physics-based deep learning. arXiv version: 3. arXiv: 2109.

05237. Accessed 24 July 2022

42. Sun A (2020) Optimal carbon storage reservoir management

through deep reinforcement learning. Appl Energy. https://doi.

org/10.1016/j.apenergy.2020.115660

43. Sun AY, Nicot J-P (2012) Inversion of pressure anomaly data for

detecting leakage at geologic carbon sequestration sites. Adv

Water Resour 44:20–29. https://doi.org/10.1016/j.advwatres.

2012.04.006

44. Nguyen A-T, Reiter S, Rigo P (2014) A review on simulation-

based optimization methods applied to building performance

analysis. Appl Energy 113:1043–1058. https://doi.org/10.1016/j.

apenergy.2013.08.061

45. De Paola G, Ibanez-Llano C, Rios J, Kollias G (2020) Rein-

forcement learning for field development policy optimization,

pp. 041–046003. https://doi.org/10.2118/201254-MS. Accessed

18 Apr 2022

46. Dawar K (2021) Reinforcement learning for well location opti-

mization. Pennsylvania State University, State College

47. Dong P, Chen Z-M, Liao X-W, Yu W (2022) A deep reinforce-

ment learning (DRL) based approach for well-testing interpreta-

tion to evaluate reservoir parameters. Pet Sci 19(1):264–278.

https://doi.org/10.1016/j.petsci.2021.09.046

48. Degris T, White M, Sutton RS (2012) Off-policy actor-critic.

arXiv: 1205.4839

49. Bilgin E (2020) Mastering reinforcement learning with python:

build next-generation, self-learning models using reinforcement

learning techniques and best practices. Packt Publishing,

Birmingham

50. Baird L (1995) Residual algorithms: reinforcement learning with

function approximation. In: Prieditis A, Russell S (eds) Machine

learning proceedings 1995. Morgan Kaufmann, San Francisco,

pp 30–37. https://doi.org/10.1016/B978-1-55860-377-6.50013-X

51. Dong H, Ding Z, Zhang S (2020) Deep reinforcement learning—

fundamentals, research and applications. Springer, Singapore

52. Sutton R, Barto A (2018) Reinforcement learning: an introduc-

tion. MIT Press, Cambridge. https://doi.org/10.1109/TNN.1998.

712192

53. Garnier P, Viquerat J, Rabault J, Larcher A, Kuhnle A, Hachem E

(2021) A review on deep reinforcement learning for fluid

mechanics. Comput Fluids 225:104973. https://doi.org/10.1016/j.

compfluid.2021.104973

54. Aziz K, Ramesh AB, Woo PT (1987) Fourth SPE comparative

solution project: comparison of steam injection simulators. J Pet

Technol 39(12):1576–1584. https://doi.org/10.2118/13510-PA

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2023) 35:16633–16647 16647

123

https://doi.org/10.1016/j.jngse.2021.104104
https://doi.org/10.4043/29243-MS
https://doi.org/10.1002/wrcr.20295
https://doi.org/10.14796/JWMM.R227-08
https://doi.org/10.1007/978-1-4757-3766-0
https://doi.org/10.1007/978-1-4757-3766-0
https://doi.org/10.1063/5.0032377
https://doi.org/10.1063/5.0032377
https://doi.org/10.1017/9781108380690
https://doi.org/10.1017/9781108380690
https://doi.org/10.1016/j.aei.2022.101612
https://doi.org/10.1016/j.aei.2022.101612
https://doi.org/10.1016/j.compfluid.2021.105274
https://doi.org/10.1016/j.compfluid.2021.105274
https://doi.org/10.3390/app11188589
https://doi.org/10.1016/j.rser.2020.110618
https://doi.org/10.1016/j.knosys.2023.110335
https://doi.org/10.1016/j.knosys.2023.110335
https://doi.org/10.1145/3301326.3301374
https://doi.org/10.1145/3301326.3301374
https://doi.org/10.2118/200757-MS
https://onepetro.org/SPEBERG/proceedings/20BERG/2-20BERG/Virtual/448669
https://onepetro.org/SPEBERG/proceedings/20BERG/2-20BERG/Virtual/448669
https://onepetro.org/SPEBERG/proceedings/20BERG/2-20BERG/Virtual/448669
https://doi.org/10.2118/204105-MS
https://onepetro.org/SPEDC/proceedings/21DC/4-21DC/Virtual/460374
https://onepetro.org/SPEDC/proceedings/21DC/4-21DC/Virtual/460374
https://doi.org/10.2118/196190-MS
https://doi.org/10.2118/196190-MS
https://doi.org/10.1016/j.engappai.2018.09.019
https://onepetro.org/IPTCONF/proceedings/20IPTC/2-20IPTC/Dhahran,%20Kingdom%20of%20Saudi%20Arabia/154747
https://onepetro.org/IPTCONF/proceedings/20IPTC/2-20IPTC/Dhahran,%20Kingdom%20of%20Saudi%20Arabia/154747
https://onepetro.org/IPTCONF/proceedings/20IPTC/2-20IPTC/Dhahran,%20Kingdom%20of%20Saudi%20Arabia/154747
http://arxiv.org/abs/2109.05237
http://arxiv.org/abs/2109.05237
https://doi.org/10.1016/j.apenergy.2020.115660
https://doi.org/10.1016/j.apenergy.2020.115660
https://doi.org/10.1016/j.advwatres.2012.04.006
https://doi.org/10.1016/j.advwatres.2012.04.006
https://doi.org/10.1016/j.apenergy.2013.08.061
https://doi.org/10.1016/j.apenergy.2013.08.061
https://doi.org/10.2118/201254-MS
https://doi.org/10.1016/j.petsci.2021.09.046
http://arxiv.org/abs/1205.4839
https://doi.org/10.1016/B978-1-55860-377-6.50013-X
https://doi.org/10.1109/TNN.1998.712192
https://doi.org/10.1109/TNN.1998.712192
https://doi.org/10.1016/j.compfluid.2021.104973
https://doi.org/10.1016/j.compfluid.2021.104973
https://doi.org/10.2118/13510-PA

	Actor-critic reinforcement learning leads decision-making in energy systems optimization---steam injection optimization
	Abstract
	Introduction
	Reinforcement learning applications in oil and gas industry
	Elements of RL
	Environment
	Reward function
	Value function
	Policy function

	Learning dynamics (agent-environment interactions)
	Steam injection model
	Steam Injection problem formulation based on RL
	State
	Actions
	Reward function
	Components summary
	Implementation actor to critic method

	Results of the steam injection optimization
	Conclusion
	Data availability
	References




