
S. I . : TECHNOLOGIES OF THE 4TH INDUSTRIAL REVOLUTION WITH

APPLICATIONS

Combining deep reinforcement learning with technical analysis
and trend monitoring on cryptocurrency markets

Vasileios Kochliaridis1 • Eleftherios Kouloumpris1 • Ioannis Vlahavas1

Received: 30 December 2022 / Accepted: 21 March 2023 / Published online: 20 April 2023
� The Author(s) 2023

Abstract
Cryptocurrency markets experienced a significant increase in the popularity, which motivated many financial traders to

seek high profits in cryptocurrency trading. The predominant tool that traders use to identify profitable opportunities is

technical analysis. Some investors and researchers also combined technical analysis with machine learning, in order to

forecast upcoming trends in the market. However, even with the use of these methods, developing successful trading

strategies is still regarded as an extremely challenging task. Recently, deep reinforcement learning (DRL) algorithms

demonstrated satisfying performance in solving complicated problems, including the formulation of profitable trading

strategies. While some DRL techniques have been successful in increasing profit and loss (PNL) measures, these tech-

niques are not much risk-aware and present difficulty in maximizing PNL and lowering trading risks simultaneously. This

research proposes the combination of DRL approaches with rule-based safety mechanisms to both maximize PNL returns

and minimize trading risk. First, a DRL agent is trained to maximize PNL returns, using a novel reward function. Then,

during the exploitation phase, a rule-based mechanism is deployed to prevent uncertain actions from being executed.

Finally, another novel safety mechanism is proposed, which considers the actions of a more conservatively trained agent, in

order to identify high-risk trading periods and avoid trading. Our experiments on 5 popular cryptocurrencies show that the

integration of these three methods achieves very promising results.

Keywords Deep reinforcement learning � Machine learning � Proximal policy optimization � Trading � Technical analysis �
Risk optimization

1 Introduction

Cryptocurrencies are digital currencies that circulate

through a computer network, which is not reliant on any

central authority [1]. Over the last few years, both popu-

larity and value of this type of technology has risen, so

many traders and investors have shifted their attention to

trading cryptocurrency assets, such as Bitcoin.

Cryptocurrency assets are traded in a similar manner to

how stocks are traded, but are fundamentally different [2].

First of all, cryptocurrency markets are accessible every

hour. Secondly, there are no intermediaries involved in

cryptocurrency transactions, so the transaction costs could

be lower. Finally, cryptocurrency markets are characterized

by their tremendous volatility and rapid fluctuations. For all

these reasons, cryptocurrency markets provide traders with

great money-earning opportunities, but also involve higher

risk [2].

Nowadays, financial markets information spreads easier

and more quickly than ever before. As a result, numerous

professional investors and traders use technical analysis,

which is a tool that is applied on past market data and

allows traders to forecast market trends. Technical analysis

provides technical indicators, which are pattern-based

indications of an asset’s momentum, volatility and trend

[3]. However, technical indicators are prone to producing

& Vasileios Kochliaridis

vkochlia@csd.auth.gr

1 School of Informatics, Aristotle University of Thessaloniki,

54124 Thessaloniki, Greece

123

Neural Computing and Applications (2023) 35:21445–21462
https://doi.org/10.1007/s00521-023-08516-x(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0001-9431-6679
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-023-08516-x&domain=pdf
https://doi.org/10.1007/s00521-023-08516-x

false trend signals, so investors and financial analysts

usually combine a set of technical indicators [3].

Some researchers and financial investors combined

technical analysis with machine learning approaches to

forecast upcoming trends [4] in both stock and cryptocur-

rency markets as further described in Sect. 2. The same

works prove that machine learning approaches, especially

DRL, has the potential to outperform traditional trading

methodologies. Our research, however, highlights a num-

ber of crucial aspects, specifically for cryptocurrency

trading, that were overlooked by previous works. First,

several popular technical indicators were missing from the

training data. Second, the majority of these works lack a

social indicator, which could possibly confirm several trend

signals [5] alongside with the market data. Lastly, previous

DRL research relies heavily on black-box agents that

attempt to maximize PNL returns, but without safety

mechanisms to prevent losses, caused by the agent’s

uncertain actions [6, 7]. This issue is well addressed on this

work, by integrating rule-based safety mechanisms during

the trading procedure, and thus reducing trading

uncertainty.

In this paper, we extend the methodology of TraderNet-

CR [8], which is a trading system composed of three

modules. The first module involves the training of a DRL

agent, named TraderNet, using a novel reward function,

named Round-Trip Strategy [8]. Furthermore, in this work,

we modified the Round-Trip Strategy, in order to combine

both market and limit orders, which resulted in signifi-

cantly higher PNL returns. The second module deploys a

rule-based safety mechanism, named ‘‘N-Consecutive,’’

which inspects a window of TraderNet’s previous actions

in order to examine whether a suggested action is uncertain

and prevent it from being executed. Finally, in the third

module, another safety mechanism is used, named Smurf-

ing, which trains a DRL agent, named Smurf, more con-

servatively than TraderNet. Smurf agent is deployed during

the exploitation phase in order to detect high-risk trading

periods and avoid high-risk trading activity. This approach

successfully maximizes PNLs, reduces the trading risk and

also improves other portfolio performance measures that

are also included in this work.

The remaining of the paper is structured as follows:

Section 2 presents the literature review of this research;

Section 3 presents the fundamentals of technical analysis,

the reinforcement learning (RL) background and Tra-

derNet-CR architecture, which is our previous approach;

Section 4 further describes the improvements and additions

of TraderNet-CR methodology; Section 5 presents the

experiment design, results and discussion; and Sect. 6

includes the conclusion and future work.

2 Related work

Huang et al. [9] investigated cryptocurrency return pre-

dictability using technical analysis. More specifically, they

constructed a tree-based model for return prediction, which

was trained on 124 technical indicators. Their study pro-

vided evidence that it is possible to increase the predictive

power of a machine learning model by applying technical

analysis on market data.

Guarino et al. [4] compared the performance of algo-

rithmic trading agents, which employ technical analysis to

build trading strategies, with adaptive and autonomous

agents, such as DRL agents, on cryptocurrency markets and

other financial assets. The trading agents have been eval-

uated on well-studied portfolio performance measures in

the trading test period. In their work, they discovered that

DRL agents used technical indicators more efficiently than

automated trading agents. However, in their work, all

agents operated in commission free markets. Also, as the

authors point out, DRL agents lack explainability, which

makes algorithmic trading agents more preferable to

investors.

Satarov et al. [6] applied DQN algorithm in order to

identify profitable trading points. In this work, a DRL agent

was rewarded only during sell actions, with the reward

being a subtraction between the current selling price and

the most recent buying price. Moreover, penalties were

given to the same sequential actions, in order to avoid

holding or selling multiple times in a row. The work

demonstrated that the reinforcement learning (RL)

approach performed better than three traditional technical

strategies, considering trading fees of 0.15 percent, which

is considerably low.

Mahayana et al. [10] applied PPO to automate BTC

trading, using 1-minute candlesticks data and a set of 18

technical indicators. The authors designed a reward func-

tion based on the agent’s position, including also a penalty

which increased for every time step that the agent held a

losing position. Five agent variations based on PP0 were

evaluated in simulated cryptocurrency trading scenarios.

Yet, the work did not consider any transaction costs, and

the final evaluation revealed that none of the agents were

able to outperform the buy and hold strategy.

In Schnaubelt research [7], PPO was applied on Bitcoin

limit orders data, in order to learn optimal limit order

placement strategies. Compared to aggressive market order

executions, PPO agent reduced total transaction costs by up

to 36:93% by using limit orders. PPO agent’s strategy was

evaluated in comparison with other DRL algorithms, such

as DQN and double DQN, as well as a number of other

thoroughly researched execution techniques and was found

to have superior performance.

21446 Neural Computing and Applications (2023) 35:21445–21462

123

Li et al. [11] proposed another deep reinforcement

learning architecture for high-frequency trading (HFT) of

cryptocurrencies. The key component of their system was

the long sequence representation extractor (LSRE), which

is a transformer-based architecture designed to extract

long-sequence representations. Because HFT requires fast-

performing systems, the authors modified the transformer–

encoder to include an attention bottleneck based on latent

units, which was able to decrease the model’s time com-

plexity from quadratic to linear. The learned representa-

tions are fed into the cross-asset attention network (CAAN)

in order to produce asset scores for portfolio management,

and the entire architecture is trained using PPO. Experi-

menting on four crypto datasets, the LSRE-CAAN trading

strategy had better profitability and risk measures com-

pared to previous works, but with some limitations. First,

the system’s complexity makes it challenging to implement

for high-frequency trading. Second, the work only con-

siders historical candlestick data for market order place-

ment and disregards other external factors such as social

indicators. Lastly, the system is tested under considerably

low fees.

While the previous work considers a single DRL agent

to manage the entire portfolio, Lucarelli and Borrotti [12]

employed a multi-agent framework by training local DRL

agents for each cryptocurrency asset (Bitcoin, Etherium,

LiteCoin, Riple). The performance of each local agent

produced a local reward signal, which is combined with the

rest signals to formulate a global reward signal. The goal of

this multi-agent framework was the maximization of the

global reward signal, in order to achieve optimal portfolio

management. The state space consisted of closing prices

across all assets. Even though they achieved very promis-

ing results, they completely disregarded the commissions

fees.

In another work by Cui et al. [13], the authors trained

proximal policy optimization (PPO) agent on market data.

In order to construct a low-risk cryptocurrency trading

system, they made use of a conditional value at risk

(CVaR) reward function, which could effectively capture

the compounding effect of tail risk in financial markets.

Even though their trading system was able to eliminate

devastating market estimation errors during fluctuating

periods, their work completely disregarded transaction

costs.

To finish with this short related work review, a major

problem of the existing literature is that the current state of

the art DRL methodologies train agents that are intended

mainly for unsupervised use and on low commission fees.

Additionally, the previous works prioritized in finding

optimal strategies to maximize profits, with very little work

done in minimizing trading risk. In our work, we aim to

improve upon existing literature by: (a) combining market

data with technical indicators and a social indicator,

(b) experimenting with a high-performance deep RL

algorithm and a novel risk-adjusted reward function and

(c) adding layers of safety mechanisms as an extension of

our main methodology, which customizes the agent’s

trading behavior, optimizes trading risks and improves

other portfolio performance measures as well.

3 Background

This section focuses on providing important literature

regarding the fundamentals of technical analysis as well as

the reinforcement learning approaches. Also, this section

presents PPO algorithm, which has been used to train the

agents, as well as its benefits. Finally, the architecture of

TraderNet-CR and the main concepts of our previous work

are presented.

3.1 Technical analysis

Technical indicators are used by investors in order to

simplify market information and help them formulate

trading strategies [3]. In this work, we analyze and provide

the definition only of a small subset of technical indicators

that are presented on Huang et al. [9] work, which, how-

ever, have gained high popularity by traders.1

Definition 1 (Exponential moving average) or EMA is a

popular type of moving average, which is used to smooth

[14] and lessen the amount of noise on a signal. The

mathematical formula of EMA is described by Eq. (1).

EMAðnÞ ¼ PriceðnÞ � k þ EMAðn � 1Þ � ð1� kÞ ð1Þ

where

k ¼ 2

N þ 1

is the smoothing factor and N is the rolling window size

of the indicator.

Definition 2 (Double exponential moving average) or

DEMA is a trend indicator, which is used to reduce the lag

produced by the exponential moving average (EMA)

indicator [14]. The mathematical formula of DEMA is

described by Eq. (2).

DEMAN ¼ 2EMAN � EMA of EMAN ð2Þ

1 The most popular technical indicators used by traders and financial

experts have been selected by *AlphaVantage* platform, which can

be found on this URL: https://www.alphavantage.co/documentation/.

Neural Computing and Applications (2023) 35:21445–21462 21447

123

https://www.alphavantage.co/documentation/

Definition 3 (Moving average convergence/divergence) or

MACD is also a trend-following indicator, which shows

the relationship between two EMAs of different periods

[14]. The MACD formula is described by Eq. (3).

MACD ¼ EMA12 � EMA26 ð3Þ

Definition 4 (Aroon) indicator is used to identify trend

changes and estimate their strength [14] . The mathemati-

cal formula for Aroon up and Aroon down are described by

Eqs. (4) and (5), respectively.

25� Period since newHigh

25
� 100 ð4Þ

25� Period since newLow

25
� 100 ð5Þ

Definition 5 (Commodity Channel Index) or CCI is a

trend indicator, which is used to calculate price trend,

direction and strength [14]. The mathematical formula of

CCI is described by Eq. (6).

CCI ¼ TPðnÞ � 20� Period EMATP

MeanDeviation
� 0:015 ð6Þ

where

TPðnÞ ¼ HighðnÞ þ LowðnÞ þ CloseðnÞ
3

Definition 6 (Average Directional Index) or ADX is a

very popular another trend indicator, which is used to

determine whether the strength of a trend is strong [14].

The exact mathematical formula of ADX is described by

Eq. (7).

ADX ¼ MA � PDI� NDI

PDIþ NDI
� 100 ð7Þ

where

MA ! MovingAverage

PDI ! PositiveDirectional Indicator

NDI ! Negative Directional Indicator

Definition 7 (Stochastic oscillator) or STOCH is a

momentum indicator, which is most effective in large

trading ranges or slow-moving trends [14]. The mathe-

matical formula of STOCH is described by Eq. (8).

CloseðnÞ � L14

H14 � L14

ð8Þ

where

L14 ¼ minfLowðnÞ;Lowðn � 1Þ;Lowðn � 2Þ; . . .;Lowðn � 13Þg
H14 ¼ maxfHighðnÞ;Highðn � 1Þ;Highðn � 2Þ; . . .;Highðn � 13Þg

Definition 8 (Relative Strength Index) or RSI is another

very popular momentum indicator, which is used to iden-

tify securities that may be primed for a trend reversal or

corrective pullback [14]. The mathematical formula of RSI

is described by Eq. (9).

RSI ¼ 100� 100

1þ RS
ð9Þ

where

RS ! Average Gain

Average Loss

is the ratio of average gains (increases) to average losses

(drops) of the close price.

Definition 9 (On-Balance Volume) or OBV is a popular

technical analysis tool that uses volume flow to predict

changes in the prices of an asset [14]. The mathematical

formula of OBV line is described by Eq. (10).

OBVðnÞ ¼ OBVðn � 1Þ

þ
VolumeðnÞ CloseðnÞ\Closeðn � 1Þ

0 CloseðnÞ ¼ Closeðn � 1Þ
�VolumeðnÞ CloseðnÞ[Closeðn � 1Þ

8
><

>:

9
>=

>;

ð10Þ

Definition 10 (Bolliger Bands) or BBANDS is a widely

used volatility indicator, which is plotted with 2 lines of the

standard deviation of the simple moving average [14]. The

mathematical formula of BBANDS for the upper line and

the bottom line are described by Eqs. (11) and (12),

respectively.

BBANDUP ¼ MeanðTPÞ þ 2 � StdðTPÞ ð11Þ
bbandDOWN ¼ MeanðTPÞ � 2 � StdðTPÞ ð12Þ

where Mean(TP) is the average typical price and

Std(TP) is the standard deviation of typical price.

Definition 11 (Volume-Weighted Average price) or

VWAP is a volume technical analysis tool, which as the

name suggests, is the average price of an asset weighted by

the total trading volume, over a period of time [14]. The

mathematical formula of VWAP is described by Eq. (13).

21448 Neural Computing and Applications (2023) 35:21445–21462

123

VWAPðnÞ ¼
PN�1

n¼0 TPðN � iÞ � VolumeðN � iÞ
PN�1

n¼0 VolumeðN � iÞ
ð13Þ

Definition 12 (Accumulation/Distribution Line) or ADL is

a volume-based indicator, which was designed to measure

underlying supply and demand [14]. It accomplishes this

by determining whether traders are actually accumulating

(buying) or distributing (selling). The mathematical for-

mula of ADL indicator is described by Eq. (14).

ADLðnÞ ¼ ADLðn � 1Þ þ ðClose� LowÞ � ðHigh� CloseÞ
High� Low

ð14Þ

3.2 Reinforcement learning (RL)

A typical RL problem is formulated as a Markov decision

process (MDP), which involves an environment and an

agent, who has the role of traversing the environment’s

states by executing actions and receiving rewards for each

action [15]. At each discrete time t, the agent observes the

state St of the environment, selects an action At and then

receives a reward or a penalty rtþ1 from the environment.

The goal of the agent is to maximize the discounted

cumulative reward, as described by Eq. (15).

Gt ¼ rtþ1 þ c � rtþ2 þ c2 � rtþ3 þ � � � ¼
XT

t¼0

ct � rtþ1

ð15Þ

The discount factor c 2 ð0:0; 1:0Þ is used, in order to ensure
the convergence of Gt.

An alternative way to formulate the MDP problem is to

find a policy p that maximizes the expected discounted

cumulative return, as described by Eq. (16).

max
p

Ep½Gt� ð16Þ

To estimate the expected return of a particular state s, the

policy can use a state value function, which is defined as in

Eq. (17).

VpðsÞ ¼ E½Gt j s0 ¼ s� ¼ E
XT

t¼0

ctrtþ1 j s0 ¼ s

" #

ð17Þ

State values are sufficient to define an optimal policy.

However, an alternative way is to estimate an action value

function, which is used by value-based algorithms and is

defined as in Eq. (18).

Qpðs; aÞ ¼ E R j s; a; p½ � ð18Þ

Finally, some algorithms use the advantage function to

optimize a policy, which combines both VpðsÞ and Qpðs; aÞ
and is defined as in Eq. (19).

Apðs; aÞ ¼ Qðs; aÞ � VðsÞ ð19Þ

3.2.1 Deep reinforcement learning

In many real-world decision-making problems, the states of

an MDP environment are high-dimensional and cannot be

easily solved by using traditional RL approaches. DRL is a

subfield of machine learning, which incorporates deep

learning approaches allowing agents to make both discrete

and continuous actions from continuous state spaces as

well [15]. This is done by approximating the policy pða j sÞ
using a neural network.

There are many DRL techniques to train policies, each

having their own benefits [16]. These techniques can be

separated between value-based and policy gradient algo-

rithms [15]. Value-based algorithms, such as double DQN

[15], try to approximate only a value function, which is

then used to find a corresponding policy. On the other

hand, policy gradient approaches explicitly build a repre-

sentation of a policy, which they directly try to optimize

[15]. There are also some approaches, such as PPO [17],

which attempt to combine the best of both methodologies.

policy gradient algorithms are usually less prone to failure

and can be also adjusted to continuous action spaces as

well.

3.2.2 Policy gradient methods

Policy gradient methods attempt to parameterize the policy

function defined as phðs; aÞ ¼ Pða j s; hÞ, with a parameter

h [15]. The simplest algorithm of policy gradient method is

REINFORCE [15], which tries to maximize the expected

return JðhÞ with respect to policy p, usually with the help

of Gradient Ascent methods. The parameter h is updated

along the direction of JðphÞ, through Monte Carlo updates,

which is defined by Eq. (20).

rJðphÞ ¼ E
XT

t¼0

rh logphðatjstÞQphðst; atÞ
" #

ð20Þ

This algorithm, however, introduces high variance in log

probabilities and cumulative reward values, because during

training each trajectory can deviate from each other at great

degrees. One way to reduce variance and increase training

stability is to subtract the cumulative reward by a baseline

function BðstÞ as described in Eq. (21).

Neural Computing and Applications (2023) 35:21445–21462 21449

123

rJðphÞ ¼ E
XT

t¼0

rh logphðat j stÞðQphðst; atÞ � BðstÞ
" #

ð21Þ

Usually, the value function is used as baseline function

[16]. By combining Eqs. (21) and (19), with VðstÞ ¼ BðstÞ,
it is possible to achieve a more stable training formula,

which is described by Eq. (22).

rJðphÞ ¼ E
XT

t¼0

rh logphðat j stÞAðst; atÞ
" #

ð22Þ

3.2.3 Proximal policy optimization (PPO)

PPO belongs to policy gradient family of algorithms as

well and is an improvement of trusted-region policy opti-

mization (TRPO) algorithm [17]. However, PPO usually

achieves higher performance and is less computationally

expensive due to the use of first-order methods, while

managing to maintain satisfying policy update sizes [17].

The objective function that PPO tries to maximize is

defined by Eq. (23).

LðhÞ ¼ Êt rtÂt

� �
ð23Þ

where

rt ¼
phðata j stÞ
pholdðata j stÞ

PPO suggests using an importance sampling factor (or

clipping factor) � to clip the policy updates and constraint

the new policy from going far off from the old policy, as

described by Eq. (24).

LCLIPðhÞ ¼ Êt minðrtÂt; clipðrtðhÞ; 1� �; 1þ �ÞÂtÞ
� �

ð24Þ

In other words, the objective function of PPO is upper-

bounded, subsequently maximizing gradient step size

without letting it become regrettably large. PPO-Clip is

usually performed in multiple steps of taking minibatch

Stochastic Gradient Descent [17].

To make training even more stable, PPO incorporates

the ‘‘actor-critical’’ architecture [17]. This architecture

involves two networks: actor and critic. The actor network

decides which action should be taken using its policy and

the critic network informs the actor about the quality of the

taken action and how to update its policy. The learning of

the actor is based on the policy gradient approach, while

the critic network tries to approximate the value function.

PPO has been proved to be a high-performance algo-

rithm that usually outperforms other policy gradient

algorithms, as well as value-based algorithms, in many

DRL tasks [17]. PPO training procedure is shown in Fig. 1.

3.3 TraderNet-CR

TraderNet-CR is a risk-aware cryptocurrency trading sys-

tem composed of two modules: the DRL module and the

risk management module. DRL module involves the use of

a simulated trading environment to train TraderNet, in

order to make appropriate actions and maximize its returns.

PPO was selected as the learning algorithm of the agent,

because it is stable, robust, fast and easy to implement. The

risk management module deploys a safety mechanism,

named N-Consecutive, which prevents uncertain actions

from being executed.

The goal of the agent is to maximize PNL returns by

spotting and exploiting profitable round-trips. A round-trip

is a pair of two opposite orders placed one after the other

(BUY-SELL or SELL-BUY) that aims to take advantage of

price differences and produce profit.

3.3.1 Problem formulation

The trading environment can be formulated as an MDP

problem, defined as a tuple ðS;A;Pa;RaÞ, where S;A;Ra

define the state space, action space and reward function of

the problem, respectively, while Pa denotes the probability

transition function. The goal of the agent is to find a good

policy ph, which chooses the best action at in a state st.

Therefore, the optimization objective of the agent is to find

the parameters of h in order to maximize the PNL returns

given by the reward function.

The action space A is defined by 3 actions: {‘‘BUY’’,

‘‘SELL’’, ‘‘HOLD’’}. First, the agent selects an action at at

a state st, then receives a reward rtþ1 by the reward func-

tion and finally transits into the next state stþ1.

The state space of the environment is defined as

S 2 RN�21. A state st is a sequence of ordered vectors

kt ¼ fvt; vðt � 1Þ; . . .; vðt � NÞg, with N being a user-de-

fined sequence length. In essence, each state includes

information regarding the market state at N previous 1-hour

time intervals. Each vector has 21 features, including

market features and technical indicators, as well as a

Google trends score, which is a social indicator that has

been shown to be able to increase the forecasting ability of

machine learning models [5].

3.3.2 Round-Trip Strategy

After opening a round-trip, TraderNet expects an extreme

price fluctuation to occur, in order to close a round-trip and

receive a reward, based on the returned PNL, so it is forced

21450 Neural Computing and Applications (2023) 35:21445–21462

123

to wait a few time steps. Because this method could

potentially slow down the training process, the agent is

immediately rewarded after opening a round-trip based on

the maximum possible return within the next K time steps,

which correspond to the next K hours. The K parameter is a

user-defined horizon value. This eventually trains the

internal layers of the agent’s networks to estimate future

price fluctuations within the near future and use the Round-

Trip Strategy to make profit.

Given that f is the fee percentage and Ct the close price

of an asset at time step t, the reward function can be

mathematically modeled by Eq. (25).

rtþ1 ¼
Ctmax

� Ct � f ðCtmax
þ CtÞ at ¼ BUY

Ct � Ctmin
� f ðCtmin

þ CtÞ at ¼ SELL

�maxðrtðaiÞÞ at ¼ HOLD

8
><

>:

9
>=

>;

ð25Þ

where

Ctmax
¼maxfCtþ1;Ctþ2; . . .;Ctþkg ð26aÞ

Ctmin
¼minfCtþ1;Ctþ2; . . .;Ctþkg ð26bÞ

The presented reward function ensures that if the agent

anticipates a spectacular increase in the price when buying

or a huge drop in the price when selling, then it receives a

high reward. Additionally, the agent is rewarded more in

states where the price volatility is high and less in states

that involve low profit potential due to low price volatility,

which helps the agent adjust trading risk.

In some previous works, no reward was used (rtþ1 ¼ 0)

when choosing HOLD. However, during our investigation,

it was found that in some states the agent would prefer to

hold its position and avoid trading, due to early losses

resulted by exploration. By adopting Round-Trip Strategy

as the reward function, the agent is discouraged from fre-

quently holding, because it receives penalties when making

unnecessary holds.

3.3.3 N-Consecutive rule

Small price fluctuations in the market, such as noise, could

possibly distort the overall market trend. Even with the use

of many technical indicators, the agent could be tricked by

the market noise and execute unprofitable actions. Such

cases can be identified, for example, when the agent

switches between BUY and SELL actions in consecutive

time steps. To avoid such cases, a rule-based mechanism is

deployed, which constraints an action at from being exe-

cuted, unless the N previously suggested actions by the

agent are the same (at ¼ at�1 ¼ at�2 ¼ ::: ¼ at�Nþ1).

Because the price of an asset will not change much after

the first few time steps, this constraint allows the agent to

also examine the suggested action on the next consecutive

states and thus reduce the uncertainty.

This mechanism does not interfere with the agent’s

training and is deployed during the exploitation phase only.

Another benefit of N-Consecutive is that it can customize

the trading behavior of TraderNet according to the user’s

Fig. 1 Diagram of proximal policy optimization algorithm using the actor–critic method. The actor uses its policy to select an action at, while the

critic evaluates that action and informs actor how to update its policy

Neural Computing and Applications (2023) 35:21445–21462 21451

123

preference. Investors that prefer more safe investments

may choose large window sizes, while more aggressive

investors may choose smaller window sizes.

4 Methodology

In the following section, we present two major improve-

ments of TraderNet-CR, which resulted in higher PNL

returns and a more satisfying portfolio optimization

performance.

4.1 Modified Round-Trip Strategy

Because TraderNet operates on discrete time steps t, it

might miss out small price fluctuations, which have not

been considered by the previous Round-Trip Strategy, due

to the fact that TraderNet can make market orders only. In

this work, we further modify Round-Trip Strategy to allow

the agent to use market orders to open round-trips and then

fill limit orders to close them, within a fixed number of

time steps (referred to as a horizon of K time steps in Sect.

3). Using limit orders allows the broker service to execute

the order when the desired price is reached, rather than

requiring the agent to make a market order at a specific

time step.

Another issue with TraderNet’s reward function is that it

is heavily dependent by the close price. An alternative

approach to modeling TraderNet’s reward function could

be to use percentage PNL returns, which, however, cannot

be summed up, as the base value for each percentage would

be different at each time step. So, the objective of the

agent, which is to maximize the cumulative discounted

reward, as described in Eq. (15), would be inappropriate.

For that reason, we further improve the reward function

by transforming PNL percentages to natural logarithmic

returns. We can then calculate the total PNL return by

summing up these logarithmic returns. If Ht and Lt denote

the high price and low price, respectively, between the time

ðt � 1; tÞ; the reward function can now be described by

Eq. (27).

rtþ1 ¼

ln
Htmax

� f � Htmax

Ct þ f � Ct

� �

at ¼ BUY

ln
Ct þ f � Ct

Ltmin
þ f � Ltmin

� �

at ¼ SELL

�maxðrtðaiÞÞ at ¼ HOLD

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

ð27Þ

where

Htmax
¼maxfHtþ1;Htþ2; . . .;Htþkg ð28aÞ

Ltmin
¼minfLtþ1; Ltþ2; . . .; Ltþkg ð28bÞ

We can also use the well-known logarithmic property

described by Eq. (29) to further simplify the reward func-

tion, as described by Eq. (30)

lnðA � BÞ ¼ lnA þ lnB ð29Þ

rtþ1 ¼

ln
Htmax

Ct

� �

þ l at ¼ BUY

ln
Ct

Ltmin

� �

þ l at ¼ SELL

�maxðrtðaiÞÞ at ¼ HOLD

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

ð30Þ

where

l ¼ ln
1� f

1þ f

� �

is a constant value. The calculation of modified Round-Trip

Strategy is also shown in Fig. 2.

Another benefit of using logarithmic PNL returns

instead of actual PNL returns is ‘‘raw-log equality’’: When

returns are very small, which is a common thing on round-

trips due to short holding duration and high commission

fees, the approximation described by Eq. (31) ensures they

are close in value to raw returns.

logð1þ rÞ � r; r � 1 ð31Þ

The above mathematical property motivates the agent not

to trade on uncertain trading periods, where the potential

profit is very small. On the other hand, the agent will prefer

trading on periods where there is higher potential of large

profits.

4.2 Smurfing

Even though modified Round-Trip Strategy discourages

TraderNet to avoid trading on risky states with small

potential of profits, we noticed that in some states Tra-

derNet could overestimate price volatility and engage

unprofitable round-trips. A potential solution that works

well in this problem is to train another agent, named

‘‘Smurf,’’ with the goal of detecting high-risk states that it

is best to be avoided.

To achieve that, Smurf is trained similarly to TraderNet,

but with some modifications. First, Smurf is trained with

higher commission fees f 0, with f 0 [f , leading to less high

PNL returns, which makes Smurf more conservative trader.

Furthermore, because Smurf is deployed on TraderNet’s

environment, which includes lower commission fees, it

reduces the probability of overestimating PNL returns.

Second, we set the reward for the holding action to be a

positive small constant w � 1. The w constant can be

adjusted by users, so that higher values of w will result in

Smurf tending to avoid trades more frequently, while a

21452 Neural Computing and Applications (2023) 35:21445–21462

123

smaller values will ensure that Smurf engages prof-

itable round-trips more frequently. Smurf’s reward func-

tion can be described by Eq. (32).

rtþ1 ¼

ln
Htmax

Ct

� �

þ l0 at ¼ BUY

ln
Ct

Ltmin

� �

þ l0 at ¼ SELL

w at ¼ HOLD

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

ð32Þ

l0 ¼ ln
1� f 0

1þ f 0

� �

4.3 The integrated TraderNet-CR

In this paper, we integrate all the aforementioned modules

into a single integrated agent. For each market, we first

train TraderNet using PPO algorithm and the modified

Round-Trip Strategy. Then, we train a Smurf agent on

same markets, but with slightly higher commission fees.

During the exploitation phase, we use Smurf’s policy to

determine whether opening a round-trip at a state st has

high PNL potential. Then, we use TraderNet’s policy to

select an action at, which is a BUY or SELL. Finally, we

use N-Consecutive mechanism to further reduce the

uncertainty of action at. If action at passes from

N-Consecutive mechanism, then we open a round-trip by

executing the selected action. The exploitation phase is

also shown in Fig. 3.

5 Experiments and results

In this section, we first analyze the datasets and the pre-

processing part. Next, we evaluate the performance of each

module, as well as the Integrated TraderNet-CR architec-

ture. The evaluation is performed on five cryptocurrency

markets. To assess the effectiveness of each module, we

use a range of portfolio performance metrics, which are

described in the following section. Finally, we examine the

performance of the Integrated TraderNet-CR when using a

simpler, but widely used DRL algorithm, which is double

DQN. The implementation of the extended TraderNet-CR

is also available on Github2.

5.1 Datasets

For our experiments, we used historical hourly Open-High-

Low-Close-Volume (OHLCV) market data of five highly

traded cryptocurrency tokens, which were downloaded

Fig. 2 Visualization of Modified Round-Trip Strategy. The top line

represents the high prices, while the middle and the bottom lines

represent the close and low prices respectively. The agent opens a

round-trip when the price equals Ct, but uses limit orders to

automatically close the round-trip

2 https://github.com/kochlisGit/TraderNet-CRv2.

Neural Computing and Applications (2023) 35:21445–21462 21453

123

https://github.com/kochlisGit/TraderNet-CRv2

from CoinAPI platform. The datasets include past OHLCV

data of Bitcoin (BTC), Ethereum (ETH), Cardano (ADA),

Litecoin (LTC) and XRP3, from 2016, up until November

2022. After the data collection, we applied technical

analysis on each dataset, by using widely used technical

indicators. These technical indicators, which are also

described in Sect. 2, are provided by AlphaVantage plat-

form. Additionally, we added hourly Google Trends scores

for each cryptocurrency asset, as a social indicator, which

can be retrieved by Google Trend’s platform4. To retrieve

Google Trends scores, we constructed a request for each

asset separately by using its name.

During the preprocessing phase, we observed significant

variances in the ranges of values for various features. To

avoid biases in the training process and to speed up the

process, we scaled all features to a range between 0 and

1.0, using Min–Max scaling method, which is described by

Eq. (34). To ensure that our model generalizes well, we

first scaled the training data by computing maxðxÞ and

min(x) from the training samples, and then, we used the

same transformation min and max parameters to scale the

test data as well.

x0 ¼ x �minðxÞ
maxðxÞ �minðxÞ ð34Þ

Finally, we built the environment states using sequences of

size N ¼ 12. To calculate the reward function, we set

round-trip horizon to K ¼ 20. These parameter values have

also been used in the original TraderNet-CR paper and

were highly effective in this approach as well.

5.2 Experiment setup

To train the agents, a training and an evaluation environ-

ment was built for each market. The agents were trained on

the training environments, but were evaluated on the

evaluation environments every 10,000 training steps. The

evaluation environments include the final 2250 hours of

each market dataset, which is approximately equivalent to

a trading period of three months.

To ensure that TraderNet does not overfit on data, the

evaluation samples were only available during the evalu-

ation and were not used on training. Moreover, during our

investigation, we noticed that different datasets of the same

time period were similar (e.g., BTC price volatility was

same as ETH price volatility). For that reason, we used

different evaluation timelines in each evaluation environ-

ment so that no timeline overlapped with another, as shown

in Fig. 4.

We added 1:0% commission fees to each market envi-

ronment to simulate the effects of trading in a real cryp-

tocurrency market. These fees are representative of what is

typically charged by exchanges and brokers in the cryp-

tocurrency market.

To evaluate the performance of TraderNet, we used

portfolio performance metrics as in [4] work, which

include: (i) cumulative returns (CR), (ii) cumulative PNL

(CP), (iii) investment risk (IR), (iv) Sharpe ratio (SHR), (v)

Sortino ratio (SOR) and (vi) maximum drawdown (MDD).

The cumulative returns is defined as the sum of all returns.

Because PNL returns are expressed as logarithmic values,

we can use the logarithmic property described by Eq. (35)

and the exponential constant e to calculate the actual

cumulative returns as described by Eq. (36).

Fig. 3 Integrated TraderNet-CR

architecture. First, Smurf

receives a state and selects an

action. If the action is not

HOLD, then the state is passed

on TraderNet, which selects an

action to open a round-trip.

Finally, the N-Consecutive

mechanism examines

TraderNet’s certainty and

allows the action to be executed

by the broker service

3 CoinAPI URL: https://www.coinapi.io/.
4 Google Trends URL: https://trends.google.com/trends/?geo=GR.

21454 Neural Computing and Applications (2023) 35:21445–21462

123

https://www.coinapi.io/
https://trends.google.com/trends/?geo=GR

ln
y1
y0

þ ln
y2
y1

þ � � � þ ln
yT

yT�1

¼ ln
y1 � y2 � � � � � yT

y0 � y1 � � � � � yT�1

¼ ln
yT

y1

ð35Þ

where yt expresses the log PNL return at time step t and the

ratio yT

y1
can be interpreted as the percentage change from

the initial value to the final value. We can use this property

to compute CR as Eq. (36).

CR ¼ e
PT

t¼0
rtþ1 ð36Þ

where rtþ1 is the log return given by reward function at

time step t.

To compute the rest of the metrics, we define the step

Log PNL return on each time step

Rt ¼
rtþ1 at ¼ BUY or SELL

0 at ¼ HOLD

� �

The cumulative PNL is similar to CR, but without the

HOLD rewards. The definition of CP can be described by

Eq. (37).

CP ¼ e
PT

t¼0
Rt ð37Þ

Both CR and CP metrics measure the overall performance

of TraderNet and both should be maximized. However,

these metrics are not risk-adjusted and do not provide any

information about trading risk. Traders usually consider

other more risk-adjusted metrics, such as investment risk,

SHR, SOR and MDD.

IR is defined as the probability of a round-trip returning

negative PNL divided by all returned PNLs. A well-trained

agent should have low investment risk and high returns.

The mathematical formula of IR metric is described by

Eq. (38):.

IR ¼ BT

BTþ GT
ð38Þ

where

BT ¼
XT

t¼0

1 Rt\0

0 Rt [0

� �

GT ¼
XT

t¼0

1 Rt [0

0 Rt\0

� � ð39Þ

SHR is defined by Eq. (40).

Fig. 4 Each agent is evaluated

on a different time period,

which is shown as red color.

The blue color indicates the

training time period of each

agent. Finally, gray color shows

samples that are excluded from

the training environment. This

is because it is unfair to train an

agent on future time periods and

evaluate it on the past

Neural Computing and Applications (2023) 35:21445–21462 21455

123

SHR ¼ E Rt½ � � rf

r Rt½ � ð40Þ

where rf indicates the risk-free interest rate. For this

experiment setup, we used rf ¼ 0. Even though SHR is a

widely used metric, a better risk-adjusted metric is SOR,

which is similar to SHR, but it uses the Standard Deviation

only of negative PNL returns instead. The mathematical

formula of SOR can be described by Eq. (41).

SOR ¼ E RðtÞ½ � � rf

r
PT

t¼0

RðtÞ RðtÞ\0A

0 RðtÞ	 0

� �� 	
ð41Þ

MDD measures the maximum loss percentage of a port-

folio wealth and can be mathematically described as

Eq. (42).

MDD ¼ max
Ct �minfCtþ1;Ctþ2; . . .;CNg

Ct

ð42Þ

Finally, to ensure the viability of our approach, we assume

that the agent’s actions do not affect the market state and

that a broker service is available to execute market orders

and fill limit orders whenever it is requested.

5.3 Hyper-parameter tuning

PPO components have a number of hyper-parameters. The

combinatorial space of those hyper-parameters for both

algorithms is too large for an exhaustive search; therefore,

we performed limited tuning. We started with the values

used in the original paper of PPO that introduced each

component, and tuned the most sensitive among hyper-

parameters using the grid search method. To determine the

best values for each hyper-parameter, we trained our Tra-

derNet model using the modified Round-Trip strategy on

Bitcoin environment and selected the values that achieved

the highest CR. Due to limited computational resources

available to tune our system, the Smurf agent used the

same hyper-parameters as TraderNet.

PPO uses a clipping factor � ¼ 0:2, which was selected

among f0:1; 0:2; 0:3g and discount factor c ¼ 0:99, which

is a typical discount factor value in RL problems. It trains

on mini-batches of 128 samples, and each mini-batch is

trained on 40 epochs. For the actor and critic networks, we

tried various architectures, including both convolutions and

hidden dense layers. For both networks, we used a con-

volutional layer of 32 filters and kernelsize ¼ 3 and 2

hidden layers of 256 units each. Both networks used Adam

optimizer with learning rate lr ¼ 0:001 to update their

weights. We selected this configuration, because the agent

was trained fast and achieved satisfying cumulative returns

among other configurations. The selected hyper-parameters

of PPO are also given in Table 1.

In the final evaluation of Integrated-TraderNet-CR, we

also used double DQN (DDQN) algorithm. Double DQN

uses exploration of � ¼ 0:1, which is a typical exploration

value in most DRL environments. We also tested a varia-

tion of DQN, on which � starts with � ¼ 1:0 and decays

over the time until it drops to zero, but we achieved similar

results with the agent training slower. The target network is

updated every 3000 steps, which was selected among

f1000; 2000; 3000; 5000g steps. We also used the Adam

optimizer to train the Q-network with initial learning of

lr ¼ 0:0005 and batch size equals 64 as this achieved the

best results. The discount factor c was also set to 0.99.

Finally, the architecture of both Q and Target network is

the same as actor network of PPO, because it was also fast

to train and achieved the most satisfying performance.

Table 2 also shows the selected DDQN hyper-parameters.

5.4 Modified Round-Trip Strategy evaluation

In this experiment, we examined how the modified Round-

Trip Strategy improves the overall performance of the

agent, when compared to the previous Round-Trip Strat-

egy. The experiment results for the modified reward

Table 1 PPO hyper-parameters

Parameter Value

Epsilon clipping � 0.2

Mini-batch size 128

Discount factor c 0.99

Optimizer Adam

Learning rate 0.001

Actor network convolutional layers ð32; 3Þ½ �
Actor network hidden dense layers 256; 256½ �
Critic network convolutional layers ð32; 3Þ½ �
Critic network hidden dense layers 256; 256½ �

Table 2 Double DQN hyper-parameters

Parameter Value

Exploration � 0.1

Batch size 64

Target network update steps c 3000

Discount factor c 0.99

Optimizer c Adam

Learning rate 0.001

Q-network convolutional layers ð32; 3Þ½ �
Q-network hidden dense layers 256; 256½ �

21456 Neural Computing and Applications (2023) 35:21445–21462

123

function performance are shown in Table 3 and Fig. 5. It

can be observed that the modified Round-Trip Strategy

outperforms the old reward function in all five markets.

More specifically, TraderNet achieves ten times more PNL

returns in Bitcoin market and two times more in the other

four markets (Ethereum, Cardano, Litecoin, XRP). Overall,

the modified Round-Trip Strategy is a more effective

trading strategy, as evidenced by its ability to significantly

increase PNL returns compared to the previous reward

function, which can be attributed to several factors.

One key factor is the use of Log PNL returns, which are

calculated based on the natural logarithm of the net profit

or loss from a trade. This metric is advantageous because it

is not influenced by the close price of a token, allowing the

agent to make more informed decisions based on the

overall trend of the market rather than being swayed by

short-term price fluctuations. Additionally, the modified

Round-Trip Strategy utilizes both market orders and limit

orders, allowing the agent to take advantage of small price

movements that occur between time steps. This allows the

agent to more effectively execute trades and optimize its

portfolio by maximizing profits while also minimizing risk.

5.5 N-Consecutive evaluation

In this experiment, we tested the performance of TraderNet

when combined with N-Consecutive mechanism, for

N ¼ f2; 3; 4; 5g. The experiment results for the N-Con-

secutive mechanism are shown in Table 4. It can be

observed that, usually, larger window sizes result in lower

investment risk and maximum drawdown. Additionally, it

can be seen that a window size between 3 and 4 performs

well in reducing risk metrics while still achieving a satis-

factory profit return. This is an important consideration for

investors, as a high-risk trading can lead to significant

financial losses.

However, larger window sizes also result in decreased

PNL returns, due to TraderNet engaging in fewer trades.

This is likely because N-Consecutive mechanism forces

TraderNet to take a more conservative approach by waiting

for more certain market signals before trading. This can be

a good strategy in some cases, but it may also result in

missed opportunities for profit. For example, using a win-

dow size of 5 actions might lead to a significant less profits,

such as in XRP and LTC markets environment, where the

total PNL dropped almost by 60%.

Overall, it is important to carefully consider the trade-

off between risk and return when choosing the window size

for the N-Consecutive mechanism. For window size equals

to 2 or 3, it usually achieves satisfying balance between

investment risk and profit return.

Although the N-Consecutive mechanism can lead to

positive cumulative profits for the agent with less trading

uncertainty, there are cases where the agent may receive a

negative cumulative return by the reward function, as seen

in the XRP market example given in Table 4. This happens

because agent is penalized for avoiding trades in situations

where there is a potential for profit, even during high-risk

trading periods. However, since the N-Consecutive rule is

only applied during the exploitation period and not during

Table 3 Modified Round-Trip

Strategy performance
Market Reward function CR CP IR SHR SOR MDD

Round-Trip Strategy 1.186 1.186 0.617 1.030 1.097 0.978

BTC Modified Round-Trip

Strategy

13.173 13.173 0.477 1.357 4.475 0.357

Round-Trip Strategy 17.237 17.249 0.472 1.365 3.035 0.581

ETH Modified Round-Trip

Strategy

35.808 35.808 0.331 1.776 54.248 0.112

Round-Trip Strategy 14.934 14.934 0.495 1.339 2.609 0.901

ADA Modified Round-Trip

Strategy

29.304 29.933 0.338 1.736 26.970 0.791

Round-Trip Strategy 16.973 17.000 0.466 1.380 3.329 0.896

LTC Modified Round-Trip

Strategy

27.939 27.939 0.353 1.706 24.905 0.156

Round-Trip Strategy 21.790 21.790 0.465 1.379 3.991 0.972

XRP Modified Round-Trip

Strategy

37.607 37.967 0.341 1.668 73.033 0.328

The bold entries indicate that Modified Round-Trip Strategy achieved higher performance in all metrics

than previous Round-Trip Strategy

Modified Round-Trip Strategy outperformed the previously implemented Round-Trip Strategy in all market

environments

Neural Computing and Applications (2023) 35:21445–21462 21457

123

learning period, it does not affect the trained policy of the

agent.

5.6 Smurfing evaluation

In this experiment, we used Smurfing method as a safety

mechanism for TraderNet. Smurf agent was trained using

modified Round-Trip Strategy with HOLD reward

rtHOLD¼0:0055 for all markets, commission fees f 0 ¼ 1:3% for

ETH, ADA, LTC, XRP markets and f 0 ¼ 1:2% for BTC

market. These values were selected after several experi-

ment trials. The results of this experiment are given in

Table 5. While TraderNet alone achieves higher profit

percentage, it can be seen that by combining TraderNet

Fig. 5 Performance of TraderNet using modified Round-Trip Strategy vs previous Round-Trip Strategy. In both cases, TraderNet was trained for

1 million steps and was evaluated every 10,000 steps

21458 Neural Computing and Applications (2023) 35:21445–21462

123

with Smurf, we are able to achieve a satisfying profit

percentage return and at the same time reduce investment

risk, as well as maximum drawdown in every market.

Additionally, in XRP market, it even outperformed Tra-

derNet in all portfolio performance measures.

Table 4 N-Consecutive

performance
Market N-Consecutive CR CP IR SHR SOR MDD

BTC 1 13.173 13.173 0.477 1.357 4.475 0.357

2 11.096 12.754 0.475 1.350 4.256 0.817

3 9.373 12.356 0.475 1.343 2.958 0.531

4 7.669 11.984 0.474 1.336 2.780 0.572

5 5.978 11.578 0.473 1.329 2.647 0.242

ETH 1 35.808 35.808 0.331 1.776 54.248 0.112

2 31.467 34.562 0.331 1.750 46.450 0.126

3 27.016 33.190 0.326 1.723 39.871 0.124

4 22.532 31.698 0.327 1.693 33.118 0.110

5 18.269 30.324 0.325 1.666 28.661 0.102

ADA 1 29.304 29.934 0.338 1.736 26.970 0.791

2 10.552 24.101 0.331 1.60 13.433 0.853

3 3.395 21.958 0.329 1.572 10.766 0.350

4 - 3.219 19.670 0.328 1.528 8.148 0.331

5 - 8.399 18.014 0.321 1.501 6.585 0.314

LTC 1 27.939 27.939 0.353 1.706 24.905 0.156

2 15.494 23.926 0.353 1.624 15.518 0.165

3 8.756 21.073 0.341 1.585 13.630 0.151

4 2.561 18.767 0.339 1.548 11.178 0.143

5 - 2.885 16.541 0.335 1.517 9.215 0.140

XRP 1 37.607 37.967 0.341 1.668 73.033 0.328

2 7.098 28.076 0.321 1.515 24.391 0.470

3 - 9.646 22.575 0.311 1.439 12.714 0.324

4 - 21.461 18.467 0.306 1.387 7.803 0.320

5 - 29.829 15.443 0.297 1.351 5.649 0.301

Performance of the N-Consecutive mechanism for different window sizes. Window size N ¼ 1 means that

the rule is ignored. The N-Consecutive mechanism was deployed after TraderNet’s training, using the

modified Round-Trip Strategy. Based on the bold entries, it can be observed that when using smaller

window sizes, the agent achieves higher CR and CP, but will higher transaction risks

Table 5 Smurfing performance
Market Modules CR CP IR SHR SOR MDD

TraderNet 13.173 13.173 0.477 1.357 4.475 0.357

BTC TraderNet ? smurfing - 22.734 4.126 0.394 1.197 1.549 0.289

TraderNet 35.808 35.808 0.331 1.776 54.248 0.112

ETH TraderNet ? smurfing 28.370 33.601 0.294 1.783 45.097 0.035

TraderNet 29.304 29.933 0.338 1.736 26.970 0.791

ADA TraderNet ? smurfing 17.658 26.034 0.319 1.609 17.915 0.230

TraderNet 27.939 27.939 0.353 1.706 24.905 0.156

LTC TraderNet ? smurfing 12.706 24.789 0.344 1.588 17.031 0.148

TraderNet 37.607 37.967 0.341 1.668 73.033 0.328

XRP TraderNet ? smurfing 37.158 38.576 0.330 1.702 80.101 0.308

Smurfing approach effectively reduces IR and MDD metrics on all markets. In XRP market, it outper-

formed TraderNet alone. Also, in ETH market, it also achieved higher Sharpe ratio. Finally, the Smurfing

mechanism causes the Bitcoin agent to receive negative cumulative returns. However, the cumulative profit

is still reasonable and both IR and MDD have been improved, as it is displayed by bold entries

Neural Computing and Applications (2023) 35:21445–21462 21459

123

Similarly to using N-Consecutive mechanism, the agent

receives lots of penalties for holding, which explains the

lower cumulative returns in every market; however,

cumulative PNLs are similar in all markets, except BTC.

The comparison between TraderNet and TraderNet com-

bined with the Smurfing approach is also shown in Fig. 6.

From the figures, it can be observed that when TraderNet is

combined with Smurfing, cumulative PNL increases more

steadily and has lower drawdowns compared to

TraderNet alone, in all experiments.

5.7 Integrated TraderNet-CR evaluation

In Fig. 7, we compare the performance of the Integrated

TraderNet-CR approach, as measured by its cumulative

PNL, with the corresponding curves for the TraderNet,

Fig. 6 Performance of standalone TraderNet, compared to the Smurfing approach. The Smurfing approach results in lower PNL returns, but less

risky trading

21460 Neural Computing and Applications (2023) 35:21445–21462

123

TraderNet-Smurf and lighter version of Integrated Tra-

derNet-CR (trained with DDQN). The figure shows that the

performance of the integrated approach is slightly better

than its lighter version in four markets (BTC, ADA, LTC

and XRP), as well as the TraderNet-Smurf approach,

without the use of the N-Consecutive mechanism. Finally,

it can be seen that when TraderNet is trained using DDQN,

it has the worst performance most of the times when

combined with the rest of modules, which makes it an

unreliable learning algorithm for this specific problem.

Even though TraderNet alone achieves the highest PNL

measures, it is still consider an unreliable trading algo-

rithm, as it can be seen by its PNL curve that it has frequent

and bigger drawdowns. On the other hand, the integrated

approach results in lower but steadily increasing profits

over the trading period.

Fig. 7 Performance of Integrated-TraderNet-CR. Integrated TraderNet-CR avoids high-risk trading just like Smurfing approach, but also makes

more certain actions, which results in fewer losses

Neural Computing and Applications (2023) 35:21445–21462 21461

123

6 Conclusion and future work

In this paper, we have demonstrated that several modules

can be integrated into TraderNet-CR architecture, in order

to achieve high PNL performance and reduce trading risk

at the same time. More specifically, we have shown that the

integrated algorithm is a better consideration for investors,

who prefer lower but steadily increasing profits.

Despite the effectiveness of the N-Consecutive mecha-

nism in preventing uncertain actions from being executed

and reducing losses, the TraderNet-CR approach can still

be impacted by overestimations of price volatility. To

address this issue, we have incorporated the Smurfing

method into the TraderNet-CR architecture. The Smurfing

method helps to identify high-risk trading periods and

seeks high-profit opportunities. As a result, the Integrated

TraderNet-CR approach, which combines the N-Consecu-

tive mechanism and Smurfing method, has shown

improved performance compared to the standalone Tra-

derNet-CR and TraderNet-Smurf approaches.

Finally, in this work, we have focused on training Tra-

derNet using PPO, which has also been used in the previ-

ous TraderNet-CR architecture. We have also compared

the performance of integrated algorithm when using a well-

known value-based method instead, which is DDQN.

DDQN has shown sub-optimal performance in all experi-

ments, except in Ethereum market, which has shown a

slightly better performance.

Future work regarding the Integrated TraderNet-CR

methodology can try to add more technical indicators, as

well as try more complicated DRL algorithms, such as

Apex-DQN and soft actor–critic (SAC). Additionally, a

feature importance on technical indicators might also

improve the TraderNet’s performance, because state space

would become simpler.

Funding Open access funding provided by HEAL-Link Greece. The

authors did not receive support from any organization for the sub-

mitted work.

Data availability This research uses only publicly available cryp-

tocurrency data from CoinAPI platform, as well as Trends data from

Google Trends platform.

Declarations

Conflict of interest The authors have no relevant financial or non-

financial interests to disclose.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Nakamoto S (2008) Bitcoin: a peer-to-peer electronic cash sys-

tem. Decent Bus Rev 21260

2. Fang F et al (2022) Cryptocurrency trading: a comprehensive

survey. Financ Innov 8(1):1–59. https://doi.org/10.1186/s40854-

021-00321-6

3. Lin TC (2012) The new investor. UCLA L Rev 60:678

4. Guarino A, Grilli L, Santoro D, Messina F, Zaccagnino R (2022)

To learn or not to learn? Evaluating autonomous, adaptive,

automated traders in cryptocurrencies financial bubbles. Neural

Comput Appl 34(23):20715–20756. https://doi.org/10.3390/

app10041506

5. Arratia A, López-Barrantes AX (2021) Do google trends forecast

bitcoins? Stylized facts and statistical evidence. J Bank Financ

Technol 5(1):45–57. https://doi.org/10.1007/s42786-021-00027-4

6. Sattarov O et al (2020) Recommending cryptocurrency trading

points with deep reinforcement learning approach. Appl Sci

10(4):1506. https://doi.org/10.3390/app10041506

7. Schnaubelt M (2022) Deep reinforcement learning for the optimal

placement of cryptocurrency limit orders. Eur J Oper Res

296(3):993–1006. https://doi.org/10.1016/j.ejor.2021.04.050

8. Kochliaridis V, Kouloumpris E, Vlahavas I (2022) Tradernet-cr:

cryptocurrency trading with deep reinforcement learning.

Springer, Berlin, pp 304–315

9. Huang J-Z, Huang W, Ni J (2019) Predicting bitcoin returns using

high-dimensional technical indicators. J Finance Data Sci

5(3):140–155

10. Mahayana D, Shan E, Fadhl’Abbas M (2022) Deep reinforcement

learning to automate cryptocurrency trading, pp 36–41. IEEE

11. Li J, Zhang Y, Yang X, Chen L (2023) Online portfolio man-

agement via deep reinforcement learning with high-frequency

data. Inf Process Manag 60(3):103247

12. Lucarelli G, Borrotti M (2020) A deep Q-learning portfolio

management framework for the cryptocurrency market. Neural

Comput Appl 32(23):17229–17244. https://doi.org/10.1007/

s00521-020-05359-8

13. Cui T, Ding S, Jin H, Zhang Y (2023) Portfolio constructions in

cryptocurrency market: a CVaR-based deep reinforcement

learning approach. Econ Model 119:106078

14. Pring MJ (1991) Technical analysis explained. McGraw-Hill,

New York

15. Sutton RS, Barto AG (2018) Reinforcement learning: an intro-

duction. MIT Press, Cambridge

16. Lazaridis A, Fachantidis A, Vlahavas I (2020) Deep reinforce-

ment learning: a state-of-the-art walkthrough. J Artif Intell Res

69:1421–1471. https://doi.org/10.1613/jair.1.12412

17. Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O (2017)

Proximal policy optimization algorithms. arXiv preprint arXiv:

1707.06347. https://doi.org/10.48550/ARXIV.1707.06347

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

21462 Neural Computing and Applications (2023) 35:21445–21462

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1186/s40854-021-00321-6
https://doi.org/10.1186/s40854-021-00321-6
https://doi.org/10.3390/app10041506
https://doi.org/10.3390/app10041506
https://doi.org/10.1007/s42786-021-00027-4
https://doi.org/10.3390/app10041506
https://doi.org/10.1016/j.ejor.2021.04.050
https://doi.org/10.1007/s00521-020-05359-8
https://doi.org/10.1007/s00521-020-05359-8
https://doi.org/10.1613/jair.1.12412
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.48550/ARXIV.1707.06347

	Combining deep reinforcement learning with technical analysis and trend monitoring on cryptocurrency markets
	Abstract
	Introduction
	Related work
	Background
	Technical analysis
	Reinforcement learning (RL)
	Deep reinforcement learning
	Policy gradient methods
	Proximal policy optimization (PPO)

	TraderNet-CR
	Problem formulation
	Round-Trip Strategy
	N-Consecutive rule

	Methodology
	Modified Round-Trip Strategy
	Smurfing
	The integrated TraderNet-CR

	Experiments and results
	Datasets
	Experiment setup
	Hyper-parameter tuning
	Modified Round-Trip Strategy evaluation
	N-Consecutive evaluation
	Smurfing evaluation
	Integrated TraderNet-CR evaluation

	Conclusion and future work
	Open Access
	References

