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Abstract
Traffic accidents are the leading cause of death among young people, a problem that today costs an enormous number of

victims. Several technologies have been proposed to prevent accidents, being brain–computer interfaces (BCIs) one of the

most promising. In this context, BCIs have been used to detect emotional states, concentration issues, or stressful situa-

tions, which could play a fundamental role in the road since they are directly related to the drivers’ decisions. However,

there is no extensive literature applying BCIs to detect subjects’ emotions in driving scenarios. In such a context, there are

some challenges to be solved, such as (i) the impact of performing a driving task on the emotion detection and (ii) which

emotions are more detectable in driving scenarios. To improve these challenges, this work proposes a framework focused

on detecting emotions using electroencephalography with machine learning and deep learning algorithms. In addition, a

use case has been designed where two scenarios are presented. The first scenario consists in listening to sounds as the

primary task to perform, while in the second scenario listening to sound becomes a secondary task, being the primary task

using a driving simulator. In this way, it is intended to demonstrate whether BCIs are useful in this driving scenario. The

results improve those existing in the literature, achieving 99% accuracy for the detection of two emotions (non-stimuli and

angry), 93% for three emotions (non-stimuli, angry and neutral) and 75% for four emotions (non-stimuli, angry, neutral and

joy).
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1 Introduction

The World Health Organization (WHO) has listed road

traffic accidents as the leading cause of death among young

people. In addition, between 20 and 50 million people

worldwide suffer non-fatal injuries due to accidents,

resulting in disability [1]. Despite these numbers, road

traffic fatalities have decreased in recent years. This

reduction is due to the large awareness campaigns con-

ducted by different organizations and, to a greater extent,

the new technologies included in vehicles to improve

safety on the road.

Examples of these driving assistance technologies are

the electronic stability control (ESP) or the anti-lock

braking system (ABS). Today, new technologies are being

investigated to avoid accidents, and brain–computer inter-

faces (BCIs) are among them. BCIs have been used pri-

marily as driver support mechanisms as they provide direct
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feedback from the brain, being used in various scenarios

[2]. For example, some of the existing solutions aim to

mark the direction to be followed by an autonomous car [3]

or control a vehicle’s multimedia system [4]. Nevertheless,

these systems must consider existing cybersecurity chal-

lenges, such as the impact of adverse external stimuli [5],

or data disruption based on malicious signals [6]. Other

works, for instance, try to detect when the driver is dis-

tracted by using electroencephalography (EEG) [7].

In recent years, the relationship between brain waves

and the different moods of the subject has been studied to

detect subjects’ stress, identify if they are lying, or see their

emotional state. EEG has taken great relevance in such a

context because it is a simple, cheap, portable, and easy-to-

use solution for identifying emotions. Thanks to these

advances, EEG has been introduced in driving scenarios as

assistive technology [8]. One of these works is proposed in

[9] and focuses on detecting the emotional state of the

driver to improve it with music. However, most of the

existing work in the literature focuses on emotion detection

in a calm state, or in the case that it is applied to a driving

scenario, it does not focus on emotion detection but other

parameters such as drowsiness or distractions. Because of

this, the main research question of this work is offering a

clear perspective on how a secondary task, a driving sim-

ulator, affects the primary task of eliciting and recognizing

different emotions. Furthermore, it is necessary that the

model has a reduced complexity, since it is intended to be

applied in a real scenario. In addition, it has been studied

how increasing the number and type of emotions detected

affects the detection of emotions both when performed as a

primary task (in a calm state) and when it is a secondary

task (using a driving simulator).

In order to improve the previous challenges, the main

contributions of the paper at hand are the following ones:

• The design and implementation of a framework for

detecting emotional states based on machine learning

(ML) and deep learning (DL) algorithms in driving

scenarios. This framework is composed of different

layers, which are directly associated with the BCI cycle.

It starts with an acquisition layer that allows obtaining

the EEG signals of a subject while driving. After that, a

preprocessing applies the bandpass and notch filter, and

then, independent component analysis (ICA) is per-

formed to remove possible noise. Following this,

features related to brain rhythms and entropy are

gathered. A total of 280 features have been obtained,

thus avoiding the possible loss of information. These

features are obtained from four-second data intervals,

applying them in a sliding window model. To improve

the performance of the framework so that it can be

applied in a real use case. The dimensionality of these

features is reduced, those correlated by more than 95%

have been eliminated. Later a selection is performed

using the principal component analysis (PCA) algo-

rithm. Once the data are available for classification,

supervised ML algorithms are applied. On the other

hand, due to the use increase in recent studies, DL

algorithms have been involved with different neural

networks to measure their performance.

• The creation of a scenario composed of (i) a BCI to

collect the user’s EEG signals, (ii) a driving simulator

and (iii) a sound stimulus generator. A series of use

cases directly related to the driving scenario has been

designed to measure the framework performance. In

particular, the use cases are divided into two phases. On

the one hand, the first phase focuses on presenting to

subjects just auditory stimuli, while they are in a calm

condition. On the other hand, the second phase aims to

present auditory stimuli when the subjects are using the

driving simulator. This allows to answer the question of

how the execution of the main task affects emotion

recognition. Each phase is divided into four sub-phases

classified by the type of stimuli presented to the subject:

no stimulus, neutral stimulus, positive stimulus, and

negative stimulus.

• The validation of the overall framework performance

and the individual performance of each of the models is

obtained by measuring the performance of each of the

algorithms. In this way, it is possible to compare with

the literature. The ML algorithms selected were

K-nearest neighbors (KNN), random forest (RF) and

XGBoost. On the other hand, a series of nodes have

been chosen for DL, such as long short-term memory

(LSTM) and convolutional neural network (CNN) [10].

The results obtained by this framework show an

accuracy of up to 99% for the detection of two

emotions, 93% for three emotions and 75% for four

emotions. These results are better than those reported in

the literature. Regarding the research question, the

results when using a simulator are better because it

provokes a more significant impact of the sound

stimulus on the subject and, therefore, better separates

the different emotional states. In all cases, the best-

performing algorithm was RF.

The remainder of the paper is structured as follows. Sec-

tion 2 reviews the state of the art in emotion recognition

and its implementation in driving scenarios. After that,

Sect. 3 introduces the elements that compose the created

scenario and the interaction between them. Section 4 pre-

sents the protocol followed for each of the experiments

performed. Additionally, Sect. 5 describes the results

obtained for each experiment, comparing the results
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between experiments. Finally, Sect. 7 presents conclusions

and future work.

2 Related work

Thanks to the advance in BCIs and research in neurology,

it has been possible to develop systems for detecting

emotions through BCIs and EEG. When studying EEG,

some repetitive features can be identified. These charac-

teristics are known as rhythms and are classified into dif-

ferent frequency bands [11]. Each of these bands is

assigned to a different mental state. After knowing the

assignment of each of the bands to the different states of

the subject, different ML algorithms can be applied to

identify them. In this sense, Elfaramawy et al. [12] pro-

posed the detection of six emotions: anger, fear, happiness,

neutral, sadness, and surprise. The unsupervised Gamma-

GWR algorithm and 30 subjects were used for the emo-

tions classification. To measure accuracy, subjects were

asked to identify the mood of a different group of subjects

from a series of images. This identification was 90.2%

accurate, while the classifier was 88.8% accurate. In

summary, the authors claimed that the use of human body

language to identify different emotions is very effective.

Zheng and Lu [13] conducted an experiment in which

they sought to detect positive, neutral, and negative emo-

tions from the EEG. For this, they created a dataset with 15

subjects and aimed to modify the emotional state of the

user using film clips. For the classification, they applied

different ML and DL algorithms. For deep learning, they

used the DBSN algorithm, obtaining an accuracy of

86.08%. The machine learning algorithms applied were

SVM, LR, and kNN, bringing an accuracy of 83.99, 82.70,

and 72.60%, respectively. Similar to this work, Joshi and

Ghongade [14] used the SEED-VIG and DEAP datasets for

their experiments to detect positive, negative, and neutral

states. In this study, the authors use features based on the

signal power and features related to the entropy of the

signal. Another work that uses film clips to modify the

emotions of the subjects is the one conducted by Kaur

et al. [15], where the emotions to be predicted vary: happy,

calm, and angry. The classification algorithm was SVM,

obtaining 60% of accuracy in this case.

Bhatti et al. [16] designed an experiment in which they

intended to modify the mood of 30 subjects using music

tracks. Four emotions were intended to be detected (happy,

sad, love and anger), and different musical styles such as

rap, metal, or jazz were selected. The MLP, kNN, and

SVM algorithms were used to classify these emotions,

obtaining an accuracy of 78.11, 72.80, and 75.52%,

respectively. Iacoviello et al. [17] created an experiment

where they intended to detect users’ emotions, but these

emotions would be self-induced in this case. To do this, ten

subjects were selected and, depending on a symbol dis-

played on a screen, they should try to get upset or relaxed.

The classification was conducted using SVM and PCA,

obtaining an average of 90% accuracy. Other authors have

studied how to solve this problem with DL techniques

based on CNN and LSTM, as well as a combination of

these. Sheykhivand et al. [18] sought to predict positive

and negative emotional states from a sound stimulus. Using

a network based on LSTM?CNN, it obtained about 96%

accuracy.

There is a variety of work linking BCIs to driving sce-

narios, but to detect conditions other than emotions.

Khaliliardali et al. [19] intended to anticipate acceleration

and braking actions by the user. In this case, the prediction

results were better, reaching 83% for braking and 79% for

acceleration. Other types of works try to detect when the

subject is distracted. This is the case of Izquierdo et al. [20]

where EEG is used to detect when the subject is absent-

minded and to issue a series of alerts. To test this system,

ten experiments were done where the subjects presented a

series of obstacles such as pedestrians, signs, and other

traffic objects. These experiments showed that the beta and

theta band potentials increased upon receiving a distrac-

tion. Something similar was sought by Parasuram and

Jagadeesh [21], who tried to identify distractions such as

cell phone use or drowsiness using EEG, obtaining 87% of

accuracy.

Finally, there is work seeking to help the driver by

detecting emotions. Fan et al. [22] aimed to detect the

emotional state of the subject while facing certain traffic

situations. This study used Bayesian network (BNs) to

achieve a 78% accuracy rate. Something similar was done

by Bankar et al. [9], detecting the user’s state and applying

music therapy to try to improve it. Using SVM, they

obtained up to 81.46% accuracy. In addition, it was con-

cluded that music has a great power to influence human

emotions, making them a great mechanism to control them.

On the other hand, Yan et al. [23] sought to detect a neg-

ative or angry emotional state in drivers when confronted

with driving situations that usually elicited these modes, for

example, a red traffic light. For this purpose, they used

Hidden Naı̈ve Bayes (BVP), obtaining 85% accuracy.

These experiments and some other relevant ones are

summarized in Table 1.

After studying the existing literature on this topic, it can

be seen that detecting emotions using BCIs, and specifi-

cally by the use of EEG, is at a very advanced stage.

However, very few studies apply this methodology to a

driving scenario. Most of the works applied to this use case

focus their efforts on detecting other aspects that are

external to emotions, such as the cognitive state to detect a

distraction or the user’s intentions when driving the
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Table 1 Summary of articles on the detection of human emotions using EEG

References Year Driving

scenario

Stimulus

category

Database

used

Features Classification Emotions

detected

Accuracy

[22] 2010 Yes Traffic
situations

Own dataset Power spectrum of

Alpha, Beta, Gamma

BNs Happy

Angry

78%

[13] 2015 No Movie clip Own dataset DE, DASM, RASM, DCAU,

from Delta, Theta, Alpha,

Beta, and Gamma

kNN

LR

SVM

DBNS

Positive

Neutral

Negative

SVM 83.99%

DBN 86.08%

[17] 2015 No Self-induced
emotions

Own dataset Eigenvalues

vector

SVM Disgust 90.2%

[16] 2016 No Music tracks Own dataset PSD, BP Entropy, Energy,

Statistical features, Wavelets

SVM

MLP

kNN

Happy

Sad

Love

Anger

SVM 75.62%

MLP 78.11%

kNN 72.81%

[15] 2018 No Music video
clips

Own dataset FD RBF

SVM

Happy

Calm

Angry

Avg 60%

[9] 2018 Yes Music Own dataset Wavelet SVM HAHV

HALV

LALV

LAHV

81.46%

[23] 2018 Yes Traffic
situations

Own dataset Statistical characteristics BVP Angry

Not Angry

85%

[24] 2019 No Not provided DEAP and

SEED IV

PSD, Energy,

DE, Statistical features

SVM HAHV

HALV

LALV

LAHV

Avg DEAP
79%

Avg SEED
76.5%

[25] 2019 No Not provided DEAP Statistical characteristics, PSD BT

SVM

LDA

BLDA

CNN

Valence

Arousal

AUC BT
92.54%

BLDA
80.93%

SVM 74.60%

LDA 51.47%

CVCNN
99.97%

GSCNN
100%

[26] 2019 No Not provided SEED Electrodes-frequency

Distribution maps (EFDMs)

CNN Positive

Negative

Neutral

Avg 82.16%

[27] 2019 No Music video
clips

Own dataset PSD, BP, Quadratic mean,

AR parameters, Hjorth

SVM Happy

Sad

Fear

Relaxed

Avg 90.41%

[28] 2019 No Not provided DEAP Statistical measures, Hjorth,

autoregressive parameters,

frequency bands,

the ratio between frequency
bands,

wavelet domain features

XGBoost Valence,
arousal,

dominance,

and liking

Valence
75.97%

Arousal
74.20%

Dominance
75.23%

Liking
76.42%

[29] 2019 No Flight simulator Own dataset Statistical measures, DE,
Wavelets

ANN Happy, Sad,

Angry,
Surprise,

Scared

Avg 53.18%
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vehicle. Due to this scarcity of work, some unknowns

remain to be solved, such as studying how the concentra-

tion required for driving affects EEG emotion recognition

or what the maximum number of emotions can be detected

while performing a secondary task.

3 Driving scenario and framework
description

This section describes each of the elements that define the

proposed driving scenario and framework able to classify

emotions. The following elements and their relationships

are shown in Fig. 1. In addition, each of these components

will be discussed in detail below.

• A BCI responsible for capturing the EEG.

• A software for driving simulation.

• A sound generator to present auditory stimuli related to

different emotions to subjects.

• A framework able to orchestrate all the previous

elements.

3.1 BCI headset

This work uses the eight-channel Versatile EEG Semi-Dry

brain–computer interface designed by Bitbrain for EEG

signals acquisition. This interface is based on semi-dry

EEG, which means that it offers similar capture quality to

interfaces that use gel on the electrodes but with better

usability. Moreover, the arrangement of the electrodes can

be easily interchanged following the 10–20 system. This

scheme is an internationally recognized method to describe

and apply the location of scalp electrodes in the context of

an EEG exam. For our use case, the electrodes have been

positioned mainly in the frontal area of the scalp since this

is where the frontal lobe, responsible for emotions, is

located. Thus, the eight electrodes have been placed in the

positions Fp1, Fp2, F1, F2, F7, F8, F5, and F6 [31].

3.2 Driving simulator

The software selected for the driving simulation was City

Car Driving [32]. This software has been chosen because it

allows a wide range of modes of use. On the one hand, it is

possible to create circuits for users to drive, moving from

point A to point B. It is also possible to add different

random parameters to this circuit. Some of these parame-

ters could be other vehicles driving, pedestrians crossing

the road, trams, and the different dynamic traffic signals,

such as traffic lights. All these elements force the subject to

stay alert to meet the objective of the circuit. On the other

hand, a free circulation model allows simulating driving in

a big city. Within this model, the simulator can define

random routes for the subject. In addition to all this Arti-

ficial Intelligence (AI), there is a high level of customiza-

tion of the scenario, such as the weather or the simulation

time, with excellent graphics that allow greater subject

immersion. It is also possible to add peripherals such as

steering wheels, pedals, and even augmented reality glas-

ses. As a negative point, since this software has alreadyFig. 1 Conceptual diagram of the solution designed, including all

relevant actors

Table 1 (continued)

References Year Driving
scenario

Stimulus
category

Database
used

Features Classification Emotions
detected

Accuracy

[30] 2020 No Not provided DEAP PSD,

Logarithmic compression of
power bands,

LFCC, PSD, DW

NB

CART

kNN

RBF

SVM

SMO

Dislike SMO 81.1%

NB 63.55%

kNN 86.73%

CAR 74.08%

[14] 2021 No Not provided DEAP and
SEED

PSD,

Hjorth parameters

MLP

BiLSTM

Positive

Negative

Neutral

Avg 90.22%
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been compiled for commercial use and private license, it is

impossible to modify the code to add custom features.

3.3 Sound generator

Different alternatives have been considered for sound

generation. The first of these options is the use of wireless

over-ear headphones. This option would be the most

interesting in user comfort and sound isolation from the

outside. However, the shape of these headphones causes

direct contact between all the wiring and the electrodes,

which would introduce noise to our EEG signals.

The second option was to use in-ear headphones, both

wired and wireless versions. This would have lower iso-

lation than the previous one, but its shape would allow the

scalp electrodes not to be in contact with them. Moreover,

they present two problems. First, the wireless ones can

cause interferences with the Bluetooth signals of our

interface. In addition, an issue of both wireless and wired

ones is that they make direct contact with the clip placed on

the ear of the subjects used by the interface as a reference,

so it would again cause noise in the signals.

The last option, and the one used in this work, is to use

speakers with stereo sound. This option was chosen

because it is the most comfortable for users and does not

cause interference with the signals captured by the elec-

trodes of the interface.

3.4 Framework

All the elements described above are organized by a

framework that contains all the design logic. The general

structure of this design is described in Fig. 2. In general,

the framework is composed of five phases that could be

associated with the BCI cycle phases. The first of these

phases focuses on communicating with the external agents

that form the scenario. The second of these phases is

responsible for data collection and processing, where var-

ious techniques are applied to transform raw EEG data into

relevant information. The third phase is applied to extract

the relevant information using feature extraction tech-

niques. The fourth phase is conducted to reduce the

dimensionality of the data by feature selection. Finally, DL

and ML algorithms are used to predict the emotional states

of the subjects in the fifth phase. The implementation of

each of the phases is available in Github [33].

The first phase is responsible for establishing the nec-

essary connections with the various external stakeholders.

In this case, it is required to have a sound control module,

which selects the sounds to be played at each moment,

depending on the emotions intended to be provoked. On the

other hand, the time control module is mainly in charge of

detecting the initial and final instants of the simulations to

label the data. Finally, the EEG Acquisition component

connects to the BCI to obtain the EEG signals and store

them for use in later phases.

The second phase of the proposed framework consists in

obtaining the data captured by the BCI. For this purpose,

this work uses the ‘‘Bitbrain Viewer’’ software. From the

data processing perspective, one of the techniques used to

remove artifacts is signal filtering. In this direction, two

types of signals can interfere with EEG signals, corre-

sponding to external signals and biological signals. The

external signals are produced by electromagnetic interfer-

ence, such as the noise made by the frequency of the

electrical network. A notch filter has been applied to

eliminate these signals, based on the elimination of a

specific frequency, in this case, 50 Hz. In Fig. 3, it can be

seen how after applying the filters, the different signal

changes can be seen more clearly. In the same way, it

eliminates those frequencies above or below the target

frequencies, eliminating noise for the classifier.

The second type of signal affecting EEG, the biological

signals, is produced by muscle contractions such as blinks

or finger movements. Two different techniques are used to

eliminate this noise, a bandpass filter on the one hand and

the ICA algorithm on the other. The bandpass filter is

applied between frequencies 4–60 Hz, which avoids

eliminating the Alpha, Gamma, Theta and Beta frequency

bands, in which we are interested in performing the emo-

tions classification. However, after applying these filters,

some noise still contaminates the original signals. To

Fig. 2 Architecture of the proposed framework
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remove these signals, the ICA algorithm is used. To

eliminate noise signals, ICA allows selecting the signals by

studying an electrooculogram (EOG).

For this case study, the most commonly used features

related to brain waves. The Short-Time Fast Fourier

(STFT) algorithm has been implemented to obtain these

features. Once this algorithm has been applied, the fol-

lowing intervals are extracted, corresponding to each of the

frequency bands: Theta (5–8 Hz), Alpha (8–12 Hz), Beta

(12–30 Hz), and Gamma (30–60 Hz). Representative sta-

tistical data, such as mean or standard deviation, have been

extracted for these defined frequency intervals. These sta-

tistical data allow knowing the distributions of the data

within each band. In this way, it is possible to characterize

the trend that the data follow for each emotional state. The

sparse data distribution for each state allows the model to

learn the trends and uniquely identify each class to be

predicted. Moreover, characteristics related to signal

entropy are extracted, which measures the uncertainty of a

source of information. These algorithms have been applied

in four-second sliding windows to obtain better perfor-

mance. These characteristics and how to calculate them are

defined in Table 2.

In this case study, we have 288 features, so it is quite a

large number. Because the features may be highly corre-

lated, a previous phase of feature selection is performed

(see Fig. 4). Two methods were applied for feature selec-

tion. The first of these methods consists in calculating the

correlation between these variables. Fig. 4b shows how the

correlation matrix looks like after eliminating those cor-

related by more than 90%. Once these characteristics have

been dropped, 113 features were selected, which is still a

significant number for the classification task. The second

method applied to reduce the dimensionality is principal

component analysis (PCA). To apply this method, we seek

to obtain new features that represent 95% of the initial

dataset. Using PCA, it was possible to reduce the number

of 55 features without any correlation, as can be seen in

Fig. 4c.

Once the data are available, the framework proceeds to

the learning phase. In this phase, different algorithms were

applied to formulate and recognize patterns in the data and

learn by themselves. There is a wide variety of applied

algorithms in the literature, but we use ML and DL algo-

rithms for our case study. Focusing on ML, the algorithms

selected for this task have been the most widely used in the

literature: RF, kNN, and XGBoost. The Sklearn [37] and

XGBoost [38] libraries have been used to implement these

models, respectively. A hyperparameter search was not

performed for the RF algorithm in the quaternary and

ternary models due to its time cost. Once the data are

reduced to only two emotions, a hyperparameter search

using RandomSearch can be applied to improve the

parameter search time, sacrificing a minimum classification

accuracy. In the case of kNN, hyperparameter search can

be applied since the computational cost is lower in this

case. Finally, for XGBoost, the training and testing time is

less, with acceptable accuracy in most models by following

a boosting methodology.

For classification using DL, three types of neural net-

works have been implemented using the TensorFlow with

Keras library, with nodes of type CNN, LSTM and a

combination of these. These structures have been the ones

with the best results reported in the literature. The layer

configuration followed for the LSTM model was two layers

of 32 neurons with a ReLU activation model. Between

them, there is a Dropout layer with 20%, and at the output

a Flatten layer to smooth the result. The architecture for the

CNN network is composed of two 32-neuron Conv1D

layers, with ReLU activation and a kernel size of 3� 3.

This architecture, similar to the one created based on

LSTM, has added a Dropout layer between CNN layers

and a Flatten layer at the output. CNNs are good at

extracting the spatial local relevant features of data, but

they struggle to capture the long-term dependence rela-

tionship in sequence data, which the LSTM can improve

[39]. For this reason, a hybrid model has been proposed,

composed by two layers, establishing 32 nodes per layer.

Fig. 3 Comparison between non-filtered and filtered EEG signals
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For the output layers, a perceptron layer was designed in

which a softmax activation was configured for the multi-

class models, while a sigmoid activation was established

for the binary classification. Finally, an EarlyStop function

has been designed and applied to all DL algorithms in order

to avoid overfitting in the model.

The relationship of each of the described steps is shown

in Fig. 5. This figure shows how the data used by the

framework, both sound and EEG, go through the different

phases of the framework until the creation of a model that

allows the identification of the various states.

4 Experimental protocol

The protocol followed for conducting the experiments is an

essential factor as it directly influences the subjects and,

consequently, their emotions. Thus, an incorrect protocol

can lead to obtain unconnected or erroneous results. These

experiments have been applied to a total of three subjects

with different sexes and ages, not presenting diagnosed

mental illnesses. The subjects were 22, 23 and 29 years old,

being two males and one female.

Fig. 4 Correlation matrix in each of the feature selection steps

Table 2 Features used for

classification
Feature Description Algorithm

Mean Arithmetic mean of the values for each band 1
n

Pn
i¼1 ai ¼ a1þa2þ���þan

n

Variance Variance of the values for each band
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1 xi � �xð Þ2

q

STD Standard deviation of the values for each band
ffiffiffiffiffi
l2

p

Max Maximum of the values for each band max n

Sum Sum of the values for each band PlenðnÞ
n¼0 f ðnÞ

Median Median of the values for each band nþ 1

2

th

Spectral entropy Spectral entropy of a data interval �
Pn

i¼1 pi ln pi

SVD entropy Singular value decomposition entropy UnxnSnxpVTpxp

APP entropy Approximate entropy [34]

Hjorth mobility Hjorth mobility parameter
ffiffiffiffiffiffiffiffiffiffiffiffiffi
var

dyðtÞ
dtð Þ

varðyðtÞÞ

r

Hjorth complexity Hjorth complexity parameter Moblity
dyðtÞ
dtð Þ

MobilityðyðtÞÞ

Zero crossings Number of zero crossings
Pn�1

0 ðf ðv1½i�; v1½iþ 1�ÞÞ
Petrosian Petrosian fractal dimension logN

log S

Katz Katz fractal dimension logN
logNþlogdL

Higuchi Higuchi fractal dimension [35]

Detrended Detrended fluctuation analysis [36]
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For this use case, the general structure of the protocol is

divided into two equal phases, detailed below. The objec-

tive of this use case is, on the one hand, to measure the

performance of the framework in two different situations,

and on the other hand, to study how the primary task of

driving affects the detection of emotions through a BCI.

However, there are specific parameters of the scenario that

must be considered. One of these parameters is the sub-

ject’s posture, which must be in a comfortable position,

perpendicular to the screen. An adjustable chair has been

used, and the loudspeakers have been positioned on both

sides of the subject, trying to obtain a more enveloping

sound. The subjects were asked to avoid all movements

except those necessary to use the simulator to conduct the

experiments.

As for the experiments themselves, they are divided into

two equal phases (see Fig. 6). Each experiment is com-

posed of two equal phases, which reduces the fatigue

produced by prolonged use of the BCI. Each of these

phases is composed of two different configurations of the

scenario. In these configurations, the main task that the

subject has to perform varies. In the first configuration, the

subject is calm and only has to listen to auditory stimuli. In

the second configuration, the task of listening to sounds

takes a back seat, being the main task the use of the driving

simulator. The creation of these two configurations allows

to determine whether it is possible to detect emotions using

a BCI when the subject is performing an external task.

In each of these configurations, four different types of

sounds are applied. On the one hand, we have the first

experiment where no sound is introduced, i.e., the subject

is not exposed to any auditory stimulus. The second

experiment is based on a series of stimuli classified as

neutral. This type of stimulus corresponds to environmental

sounds, such as the sound of rain. For the third experiment,

positive stimuli are applied. These positive stimuli are

mainly major musical hits, which have been categorized as

optimistic songs. Finally, the fourth experiment is a series

of negative stimuli, where the subject is presented with a

series of uncomfortable and loud sounds. Some of these

sounds are heavy traffic or a drilling sound.

The experiment where negative stimuli are applied has

been conducted last in each subphase to prevent it from

affecting subsequent experiments. In addition, as in the last

experiment, the subject’s fatigue induces an irritable mood

so that we would get better results. A rest time of 15 min is

determined for the subjects to prevent the different phases

and sub-phases from influencing each other.

5 Results

This section starts by measuring the framework detection

performance following the most common experiments in

the literature, such as the binary experiments. Subse-

quently, the results obtained for both three-class and four-

class classifications are presented, and a comparison

between the results obtained from the different experiments

is conducted. To determine how good is the classification

of an algorithm, the F1-score metric has been used, as it is

the most robust for this purpose. Finally, a comparison is

made with the results reported in the literature by similar

works.

5.1 Binary classification

The results obtained without the simulator and later with

the simulator are reviewed, after which a comparison is

conducted between them. Finally, we study how the

experiments have affected the different subjects. The

classes studied in this experiment are the ‘‘angry’’ and

‘‘non-stimuli’’ classes since they are the most widely

Fig. 5 Flow of data obtained by the framework
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conducted literature experiments and are also the most

distinct classes.

The results without simulator are presented in Fig. 7.

This figure shows that the algorithm with the best results is

XGBoost, with an 86.5% F1-score on average for all sub-

jects. However, the results are quite similar among the

different algorithms, with a negligible difference except for

kNN, whose results are quite mediocre. On the other hand,

the difference between ML and DL algorithms is quite

small.

The results of using the simulator experiments are

shown in Fig. 7b. In this case, the best-performing algo-

rithm is RF, with a 97% F1-Score on average. Again, the

difference with DL algorithms, such as LSTM networks, is

minimal, with only a 3% difference. Finally, it can be

observed that there is an improvement in the results of the

experiments when using the simulator. This is mainly

because the use of the simulator provides that the stimuli

have a more significant impact, and therefore, the emotions

are more recognizable.

Figure 11 shows the respective confusion matrices for

the RF algorithm in the case of the subject I since it is the

one that has provided the best results in this case and can

therefore be seen more clearly. The labels representing the

classifications are zero for the class ‘‘non-stimuli’’ and one

for the class ‘‘angry.’’ In this figure, it can be seen that the

classes are more identifiable in the case of the classifica-

tions with the simulator. Because of this, the classifier

obtains results with a higher F1-score. This improvement in

classification when using a simulator could be attributed to

the fact that the subject reacts better to stimuli when in

concentration. For experiments in which the subject is in a

situation where they only have to listen to the stimuli, it

may be easier to control the reactions to the stimuli and

Fig. 6 Structure of the protocol followed for the experiments

Fig. 7 Binary classification of emotions
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thus obtain a lower response. We will try to confirm or

disprove this hypothesis with the results of the following

experiments. Finally, the results obtained for each of the

subjects appear to be quite similar for each of the algo-

rithms tested.

5.2 Classification with three emotions

The results without simulator experiments are shown in

Fig. 8a. The best-performing algorithm is RF, with an

average F1-score for all subjects of 66.1%, reaching a

maximum of 74% in the best subject. In this case, the

difference between ML and DL algorithms has been

increased, obtaining better performance in ML algorithms,

except for kNN.

For the simulator experiments, the results are shown in

Fig. 8b. Again, the best-performing algorithm is RF, with

an average of 91.8% and a maximum individual score of

94.1% for Subject I. In this case, the difference between the

ML and DL algorithms is relatively high, with up to 40%

for the best algorithms in each case regarding the F1-

scores.

When compared to the binary classification conducted in

the previous experiment, it can be observed that a much

lower score is obtained when no simulator is used and

similar when the simulator is used. This is due to the

confusion generated by the previous classes and the addi-

tion of the neutral class. This new class has a high confu-

sion rate compared with the ‘‘non-stimuli’’ class. This can

be seen in Fig. 11, where the confusion matrix for these

classes is presented. In the case of the experiments without

the simulator, almost 32% of the time, ‘‘non-stimuli’’ class

is classified as ‘‘neutral.’’ Theoretically, this makes sense

since both are represented by brain waves with lower fre-

quencies like Theta or Alpha, corresponding to calm states

of mind. The following section, which presents the clas-

sification of four emotions, will more clearly detail the

reason for this effect. Unlike the previous results, in this

case, the DL algorithms obtain the lowest accuracies, even

below kNN. This is mainly due to the uncertainty caused

by the data from biosignals, which are labeled with the

subjective states of the subject. In addition, an increase in

the complexity of biosignals can cause a reduction in the

temporal dimension, considered by algorithms such as

LSTM.

5.3 Classification with four emotions

The results for studying four emotions follow the same

trend as for the previous two experiments. As shown in

Fig. 9a, the best algorithm, in this case, is the LSTM net-

work, where up to 54% F1-score is obtained. However, the

maximum was obtained for RF with a 55.2% F1-score for

the first subject. Again, the differences between the ML

and DL algorithms are practically indistinguishable.

For the simulator experiments, shown in Fig. 9b, the

best-performing algorithm is RF with an average of 80.7%

for all subjects, reaching a maximum of 84.2% F1-score for

the second subject. As in the previous experiments, the

difference between the ML and DL algorithms is increased.

Fig. 8 Three emotion classification
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In this case, when introducing a new emotion, the

problem of emotion confusion described above increases.

The complete confusion matrix is taken into account for

this section. For the experiments without the simulator, the

emotions of joy and neutral have a very high confusion.

However, this confusion is reduced in the experiments

where the simulator is used.

6 Discussion

6.1 Results analysis

The results obtained in this work show how ML algo-

rithms, and in particular RF, get the best results for accu-

racy metrics. Figures 7, 8 and 9 show the accuracy

obtained for each of the subjects and the applied algo-

rithms. Figure 10 summarizes the best results obtained for

each subject participating in the experiments without

simulator and with simulator. It can be seen that the higher

number of class to predict, the lower accuracy. The results

for classifications without the simulator are 95–92% for a

binary model, 77–63% for ternary models, and 62–56% for

quaternary models. Similarly, using a driving simulator

increases the model accuracy in all cases, obtaining

99–98% for binary, 97–92% for ternary and 92–83% for

quaternary.

As can be seen in Fig. 11, in the case of the classifica-

tions with simulator, the classes are more identifiable and

the classifier obtains results with a higher F1-score. This

improvement in classification when using a simulator could

be attributed to the fact that the subject reacts better to

stimuli when in concentration. For experiments in which

the subject is in a situation where they only have to listen to

the stimuli, it may be easier to control the reactions to the

stimuli, and thus to obtain a lower response.

To explain this, plots of the statistical values of the

resulting FFT data have been obtained. Figure 12 shows

these static data in the form of a box plot for each of the

different brain bands. Starting with the emotion ‘‘Joy,’’

Fig. 12a shows the results obtained without the simulator,

while Fig. 12e shows the results obtained for the simulator.

It can be observed that in the experiments with and without

the simulator, the predominant bands are Beta and Gamma.

These bands correspond to the states of concentration and

stress so that the use of the simulator provokes in the

subjects a higher state of attention than when it is not used.

In the case of the neutral emotion, the results are shown

in Fig. 12c, f. The results obtained for this emotion show

that the predominant wave is Alpha, related to a neutral

state. This is directly related to the type of stimulus used

since the stimuli are classified as relaxing, provoking in the

subject a state without stress.

The angry class is the most recognizable since it has the

highest voltage values of all the categories. In Fig. 12c, it

can be seen how the values of the Gamma band become

very high due to the stress that this type of stimuli provokes

in the subjects. However, when using the simulator, this

Fig. 9 Classification of four emotions
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stress is channeled into concentration to meet the objective

proposed by the simulator, while the subject is subjected to

a series of irritating stimuli. Because of this, the predom-

inant range of frequencies is the Beta wave, closely related

to a state of high concentration.

Finally, for the non-stimuli class, disparate results are

obtained. In Fig. 12f, it is shown that the predominant

wave is Gamma, which could mean that the subject is

under some level of stress. Since no stimulus is applied

when conducting this experiment, it depends directly on the

subject’s mood during the experimentation. On the other

hand, these stress levels are reduced when the simulator is

used, and Alpha waves predominate. This may be due to

the concentration generated by using the simulator, which

causes the subject to focus the attention on it. Since the

simulator has a simple objective and no external stimuli,

the level of concentration required to conduct the task is

not too high, so the predominant wave is the Alpha wave

and not the Gamma wave.

Once the results of the experiments have been obtained,

they have been compared with those reported in the liter-

ature. One of the main drawbacks of the literature is that

the accuracy metric is used, although other metrics, such as

F1-score, work better for this type of task. The use of F1-

score allows for more robust results since it considers recall

and precision. On the other hand, accuracy only considers

the number of hits that the model has had, which can lead

to erroneous conclusions. To make a fair analysis, this

Fig. 10 Summary of best accuracies obtained in each experiment

Fig. 11 Confusion matrix for RF and subject 1 when classifying four emotions
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section will take into account the accuracy of our solution

(but the F1-score is also available in Sect. 5).

Table 3 shows a comparison with several works repor-

ted in the literature focusing on EEG emotion recognition.

On the one hand, Zheng et al. [13] and Kaur et al. [15]

aimed to detect three emotions, provoking them with the

use of film clips. This type of stimulus, a priori, is more

effective than music since it is both auditory and visual,

and the subject pays full attention to this stimulus. The

results obtained for these experiments are 86 and 60%

accuracy, respectively. If we compare them with our best

results for the classification of three emotions, we have

93% accuracy, improving these results.

Nevertheless, this type of stimulus does not apply to our

use case, as it would be a dangerous distraction for the

driver. Because of this, our work focuses on just auditory

stimuli. In this direction, Bhatti et al. [16] experimented

with auditory stimuli, classifying four different classes:

happy, love, sad, and anger. For this work, the authors

obtained 78% accuracy, which is slightly below our results

(79% accuracy).

However, none of these works use a simulator or another

sequential task when receiving the stimuli. In particular, for

the driving scenario, the results conducted are pretty lim-

ited, and a work that can be directly compared is Halim

et al. [43]. This work sought to detect when the driver is

under stress, implementing a binary classification. This

study obtained 97% accuracy, while our work obtained

99%. This slight improvement may be due to the addition

of entropy-derived features or the application of feature

extraction through time windows. The novelty that this

work brings to the literature is, on the one hand, to gain

insight into how a secondary task affects the detection of

emotional states. In this case, using a driving simulator

leads to a more significant differentiation for each emotion.

Because of this, the classifier can identify each category

more accurately.

The most recent works follow the same methodology

defined by previous works. In the case of Zeng et al. [44],

the authors aim to predict when drivers are fatigued. To

provoke this state, they conducted the experiments at the

end of the day, when users were most tired. After collecting

the data, they applied classification algorithms such as

kNN, SVM, or PSO-HELM, obtaining a maximum of 83%

accuracy. Another of the works carried out in 2022 is the

one developed by Halin et al. [45]. This work is a proposal

for a system based on virtual reality and a driving simu-

lator. In this proposal, virtual reality glasses were used to

simulate events that happen in real driving environments,

which can modify the users’ attitudes. This work does not

offer results or experimentation, so its performance cannot

be measured.

Fig. 12 Statistical values of FFT for different emotions
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On the other hand, this framework is designed so that

the computation time is as short as possible and can be

applied in a real environment. Therefore, dimensionality

reduction techniques such as correlation or PCA have been

used to increase the time performance of the model. In

addition, different ML and DL algorithms have been tested

to study which ones offered the best results. In this way, it

was found that RF obtained the best results both in terms of

prediction accuracy and prediction time.

Table 3 Comparison of this work with the literature

References Emotions

detected

Use of simulator Stimulus type Channels

used

No

subjects

Algorithms

used

Accuracy

[13] Positive

Negative

Neutral

No Film clip 12 15 SVM

DBN

kNN

LR

86%

[15] Anger

Calm

Happy

No Film clip 14 10 SVM 60%

[40] Low arousal

High arousal

No Virtual reality 18 4 TSception 86.03%

[41] Positive

Negative

No Reality 12 4 LDA 91.75%

[42] Relaxed

Neutral

Concentrating

No Music 4 5 kNN 96%

[16] Happy

Love

Sad

Anger

No Music 1 30 MLP

SVM

kNN

78%

[43] Stress

Calm

Yes Music

Wheater

Cell phone

Traffic

congestion

16 89 SVM

RF

kNN

97%

[44] Fatigue Yes No stimuli 32 5 SVM

kNN

ELM

HELM

PSO-HELM

83%

[45] Fear

Nervous

Relax

Surprise

Focus

Yes Traffic events 14 0 Not provided Not provided

This work Joy

Neutral

Angry

Non-Stimuli

Yes Music 8 3 RF

kNN

XGBoost

LSTM

CNN

LSTM?CNN

Four emotions: 79%

Three emotions:

93%

Two emotions: 99%
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6.2 Framework computational costs

This framework is designed to be extrapolated to a real use

case, so execution times and resource consumption must be

limited. The tests have been executed on a computer with a

Ryzen 5 3600X processor with six cores at 3.6 Ghz, 16 GB

of DDR4 RAM, and a Nvidia RTX2060 graphics card with

6 GB of VRAM. However, this graphics card will be used

only to accelerate DL model training.

Figure 13 shows the hardware and time resources for

training and prediction in each of the phases of the

framework. The creation of the system is divided into two

stages, on the one hand, the training of the model, where a

more considerable amount of data is needed. The optimal

model is trained in this work with about 300,000 vectors

for each class. On the other hand, the evaluation of the

model takes place, where 128 vectors are sufficient to

recognize an emotional state.

Therefore, the first phase of the framework is the data

acquisition phase. The consumption of this phase in terms

of hardware resources depends directly on the library

offered by the BCI. In the library offered by Bitbrain, the

consumption of resources is reduced, around 40% of CPU.

This consumption is caused by the management that must

be done for the Bluetooth connections and data storage.

The time required for this phase depends on the frequency

of sending data from the BCI, in this case at 256 Hz, so it

takes at least 20 min per class to create a model, 80 in total.

In an evaluation in real time, 128 vectors are needed,

requiring then 500 ms. Once the data are available, the

second phase applies filtering that removes possible noise

that may be introduced during the capture. This procedure

is light on hardware resources, consuming only 25% CPU

and 6% RAM resources. This procedure takes 2 min for

training all data and only 50 ms for data evaluation.

The next phase of the framework is feature extraction,

this procedure is the most expensive phase in terms of

hardware resources. Using STFT algorithms and proce-

dures to obtain the signal entropy (see Table 2) is costly.

These algorithms are applied in windows of 128 vectors,

reaching up to 65% of CPU consumption and 25% of

RAM. RAM usage is configurable by limiting the amount

of data that can be stored before writing it to disk. As for

the execution time of this phase, it is high reaching up to

1 h due to the sliding window. The evaluation of an epoch

takes only 400 ms, an adequate time for a system operating

in real time. After this phase, 280 features are obtained for

each of the vectors, so the amount of data is considerable,

especially for the training of a model. Therefore, a feature

selection phase is applied where features correlated by

more than 95% are eliminated, and the PCA algorithm is

applied. The consumption of this phase is limited in terms

of hardware and time, improving the training time of new

models.

Finally, the model training and prediction phase highly

depend on the selected algorithm and the configuration

used. For algorithms such as RF, the resources used are

limited, around 35% of CPU. However, when using neural

networks, the complexity increases, especially while

training. For this reason, we have used the GPU opti-

mization offered by the TensorFlow library, which causes

the computation to be performed on the GPU, requiring up

to 65% of GPU capabilities available. However, the

training time of a DL model is reduced by up to 50% when

training with GPU instead of CPU.

6.3 Limitations

The limitations of this work are the data captured and the

training of the model. On the one hand, the data quality

depends on the BCI used. Since it is a non-medical device

product, the accuracy of the data is reduced, being very

vulnerable to external noise. The BCI also has a limited

sampling frequency and a reduced number of electrodes,

decreasing the spatio-temporal resolution. On the other

hand, when training the model, the labeling is subjective to

the states evoked by the users. In general, the selected

sounds evoke the states they have been designed for.

However, it may happen that they do not evoke the target

emotional state in specific situations. This labeling failure

confuses the models, reducing the accuracy of evaluating

new data. Another limitation of this system is the genera-

tion of models for new users. The models are individual-

ized for each subject, which is why the system has to train a

new model for each user. In addition, these models need a

large amount of data to generalize correctly, so the entry of

a new user into the system can take a significant time to run

(around 1.5 h).

7 Conclusion

This work studied and analyzed the usage of BCI and EEG

to detect emotions in driving environments. To achieve that

goal, a realistic scenario has been created with the fol-

lowing elements: (i) a driving simulator allowing a good

immersion for the user, using for this the City Car Driving

simulator; (ii) a sound stimulus generator, in this case

stereo loudspeakers have been used; (iii) a sound stimulus

generator module, enabling the presentation of different

types of sounds directly related to the emotions intended to

provoke, among them, intense traffic sounds or irritating

sounds to cause anger, environmental sounds to produce

neutrality or tranquility, or music to induce a happy mood;
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finally (iv) a BCI Headset (Bitbrain Versatile BCI of eight

channels) has been used to capture the EEG of the subjects.

Once the previous scenario was deployed correctly, a

framework was created to recognize emotions in driving

environments. This framework is composed of different

steps associated with the BCI cycle. First, it acquires the

EEG signals, processes them to eliminate potential noise,

conducts a feature extraction process, and applies different

classification algorithms to study their effectiveness. The

algorithms tested have been, on the one hand, supervised

ML algorithms such as RF, KNN and XGBoost. On the

other hand, a set of DL algorithms based on networks with

LSTM and CNN nodes.

After this, a use case related to a driving environment

has been designed, where a series of experiments have been

performed. In addition, the experiments are applied using

the simulator and without it. In this way, it is possible to

study how listening to auditory stimuli affects when they

are a primary task and when they are a secondary task

when the use of the driving simulator comes to the fore-

front. The results obtained for these experiments show that

the lower the number of emotions, the better the classifi-

cation received. An average of 99% accuracy was obtained

when using a binary classifier to detect two emotions, 97%

for three, and 75% for four emotions. In addition, better

accuracy is obtained when using a simulator. This is

mainly because the different emotional states have more

disjoint values, i.e., more disparate. Because of this, the

classifier can recognize them more accurately as they are in

different ranges. These results improve those already

reported in the literature and provide insight into whether it

is possible to employ BCI as a method for emotion iden-

tification in driving environments. Moreover, since it is a

model with reduced dimensionality, it is possible to apply

Fig. 13 Hardware resources and time consumed in each phase of the framework

Neural Computing and Applications (2023) 35:8883–8901 8899

123



it in a real use case where a relatively fast response is

needed.

In future work, it is proposed to increase the number of

subjects to obtain a more general vision of the results. In

this way, it is possible to check with more certainty whe-

ther there is a homogeneous response between the different

genders. In addition, it is intended to create a more

immersive scenario, where the simulator is controlled using

a steering wheel and pedals. On the other hand, the accu-

racies at the time of classification, especially for four

emotions, can be increased. Different techniques will be

tested with a more extensive set of algorithms. Features

related to sound waves can be taken into account in order to

obtain more accurate information about them. In this way,

classification algorithms will be able to create relationships

between sound features and the states they evoke. Finally,

different types of stimuli will be added, such as the sound

of an incoming call or different weather sounds.
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