
ORIGINAL ARTICLE

Neuromorphic processor-oriented hybrid Q-format multiplication
with adaptive quantization for tiny YOLO3

Tao Li1,2 • Yitao Ma2,3 • Tetsuo Endoh1,2,3

Received: 6 May 2022 / Accepted: 6 January 2023 / Published online: 13 February 2023
� The Author(s) 2023

Abstract
Deep neural networks (DNNs) have delivered unprecedented achievements in the modern Internet of Everything society,

encompassing autonomous driving, expert diagnosis, unmanned supermarkets, etc. It continues to be challenging for

researchers and engineers to develop a high-performance neuromorphic processor for deployment in edge devices or

embedded hardware. DNNs’ superpower derives from their enormous and complex network architecture, which is com-

putation-intensive, time-consuming, and energy-heavy. Due to the limited perceptual capacity of humans, accurate pro-

cessing results from DNNs require a substantial amount of computing time, making them redundant in some applications.

Utilizing adaptive quantization technology to compress the DNN model with sufficient accuracy is crucial for facilitating

the deployment of neuromorphic processors in emerging edge applications. This study proposes a method to boost the

development of neuromorphic processors by conducting fixed-point multiplication in a hybrid Q-format using an adaptive

quantization technique on the convolution of tiny YOLO3. In particular, this work integrates the sign-bit check and bit

roundoff techniques into the arithmetic of fixed-point multiplications to address overflow and roundoff issues within the

convolution’s adding and multiplying operations. In addition, a hybrid Q-format multiplication module is developed to

assess the proposed method from a hardware perspective. The experimental results prove that the hybrid multiplication

with adaptive quantization on the tiny YOLO3’s weights and feature maps possesses a lower error rate than alternative

fixed-point representation formats while sustaining the same object detection accuracy. Moreover, the fixed-point numbers

represented by Q(6.9) have a suboptimal error rate, which can be utilized as an alternative representation form for the tiny

YOLO3 algorithm-based neuromorphic processor design. In addition, the 8-bit hybrid Q-format multiplication module

exhibits low power consumption and low latency in contrast to benchmark multipliers.

Keywords Hybrid multiplication � Adaptive quantization � DNNs � Fixed-point representation � Neuromorphic processor

1 Introduction

The neuroscientists’ efforts to explore the human brain’s

computational model lay a solid foundation for imple-

menting intelligent perception and detection of electronic

devices in the modern Internet of Everything society. In

neuroscience, the communication theory of neuronal sig-

nals is vital for advancing the mathematical model and

very large-scale integration (VLSI) circuit development of

complex neural networks. Neurons mainly consist of den-

drites, soma, axon hillock, axon, axon terminal, etc. The

neuron is responsible for capturing and transferring signals

across the entire body, while the synapse acts as the bridge

between neuron communication. Specifically, as shown in

Fig. 1, if the signal intensity surpasses the axon hillock’s

& Tao Li

li.tao.e4@tohoku.ac.jp

Yitao Ma

mrmyt@cies.tohoku.ac.jp

Tetsuo Endoh

tetsuo.endoh@cies.tohoku.ac.jp

1 School of Engineering, Tohoku University, 6-6, Aramaki Aza

Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan

2 Center for Innovative Integrated Electronic Systems (CIES),

Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku,

Sendai, Miyagi 980-8572, Japan

3 Research Institute of Electrical Communication (RIEC),

Tohoku University, 2 Chome-1-1 Katahira, Aoba Ward,

Sendai, Miyagi 980-8577, Japan

123

Neural Computing and Applications (2023) 35:11013–11041
https://doi.org/10.1007/s00521-023-08280-y(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0003-2206-9490
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-023-08280-y&domain=pdf
https://doi.org/10.1007/s00521-023-08280-y

threshold, the dendrites transform the chemical signals

released by another neuron into electrical impulses that are

conveyed down the axon to the axon terminal.

Researchers in mathematics and electrical engineering

attempt to imitate the functioning of neurons and synapses

by employing mathematical models and logic gates based

on the information exchange theory from the following two

points. (1) Functional emulation: utilizing the electronic

components to emulate the neuron or synapse’s function

rather than its existing architecture, typically represented

by the hardware accelerator of convolutional neural net-

works. (2) Neurobiological mimicry: mimicking the brain’s

models, such as the Hodgkin–Huxley model and signal

transmission of neurons via integrated circuits, which holds

excellent promise in imitating human brain learning. The

memristor-based spiking neural networks are an emerging

research subject in this domain.

Neuromorphic computing, also referred to as brain-in-

spired computing, is an interdisciplinary field combined

with electronic engineering and neuroscience. Neuromor-

phic computing aims to mimic human beings’ brain

structures and functions by deploying silicon transistors.

Originating in the 1980 s, it emulates the biological func-

tions of the human brain using an electrical circuit [1].

Neuromorphic computing is distinguished from conven-

tional computing with von Neumann architecture by its

intimate relationship to the structure and parameters of

neural networks and its use of advanced neural network

models to imitate the processing processes of the human

brain [2, 3]. Deep neural networks (DNNs) have become

the soul of neuromorphic computing in recent years with

the emergence of machine learning. Spiking neural net-

works, in particular, play a crucial role in propelling neu-

romorphic computing forward, both in terms of the

algorithm (neuron model) [4, 5] and hardware (circuit

architecture) [6]. Neuromorphic computing, based on a

high-precision neural networks, new semiconductor mate-

rials [7, 8], or optimal circuit architecture [9], is the crucial

technology for achieving a neuromorphic processor design

with low power consumption, high reliability, and low

latency for modern industrial society. Conventional neu-

romorphic computing is constructed using the following

assessment criteria and methods:

• Lightweight Typically, high-performance DNNs are

composed of sophisticated network architecture and a

multitude of parameters, which poses substantial hur-

dles for the neuromorphic processor design with on-

chip memory. How to load entire weights into on-chip

memory is the key difficulty to be addressed in

neuromorphic computing. Current studies investigate

lightweight neural networks that exploit parameter

compression techniques such as weight/feature map

sparsification and quantization [10].

• Low-latency Real-time industrial applications (e.g.,

autonomous driving and unmanned aerial vehicles)

require a short response time for the neuromorphic

processor; otherwise, it may pose substantial potential

safety hazards to human beings. Employing parallel

processing technologies [11] and approximate comput-

ing [12] can effectively reduce the processor’s latency.

• Energy-efficiency One of the goals of industrial 5.0 is to

decrease carbon dioxide dissipation to prevent the

depletion of natural resources. Neuromorphic comput-

ing intends to circumvent the von Neumann bottleneck

in traditional processors, consuming large amounts of

power by shuffling data between memory and proces-

sor. Temporal and spatial on-chip memory design [13]

and emerging semiconductor materials [14] can effi-

ciently reduce the processor’s energy consumption.

As indicated in Table 1, a vast variety of neuromorphic

chips, including TrueNorth [15], Tianjic [16], Loihi/Loihi2

[17, 18], Neurogrid [19], etc., have developed in contem-

porary academia and industry.

TrueNorth incorporates 4096 neuromorphic cores,

which include 5.4 billion transistors, to achieve the func-

tionality of the neuromorphic processor. However, the

power consumption is only 63 milliwatts for real-time

object detection with 400 � 240 video inputs, which is

mainly utilized for inference. Distinct from the TrueNorth

chip, Loihi is a neuromorphic processor that combines

inference and training functions with 128 neuromorphic

cores (14 nm process). With the same processing technol-

ogy (28 nm process) as TrueNorth, Tianjic is developed as

an inference chip with 156 functional cores. Meantime, the

rapid evolution of DNNs delivers great opportunities and

challenges to neuromorphic processors in a variety of

applications such as autonomous driving [20–22], 6 G

network communication [23], intelligent medical diagnosis

[24] and smart industrial automation [25] etc. Cutting-edge

DNNs exhibit superior performance in various applications

Fig. 1 Diagram of neuron and synapse. Information transfer occurs at

the synapse, a junction between the axon terminal of the current

neuron and the dendrite of the next neuron. Soma does not engage in

the propagation of electrical signals, but it functions as the neuron’s

driving force to ensure its healthy operation

11014 Neural Computing and Applications (2023) 35:11013–11041

123

by expanding the number of layers or deploying complex

network architectures. Despite their higher performance,

DNNs pose significant challenges for embedded hardware

development in mobile and edge applications due to their

high compute complexity, high energy consumption, and

massive memory demands. Furthermore, the accuracy of

DNNs tends to be redundant in practical applications since

human capability for error-prone perception is limited.

Therefore, compression of DNNs is imperative to facilitate

the deployment of the neuromorphic processor in today’s

highly intelligent society.

The algorithm improvement and hardware approxima-

tion can accomplish DNNs compression. The essence of

DNNs compression is to take advantage of approximate

weights or feature maps, approximate arithmetic [26] or

approximate circuit [27–29] to realize convolution opera-

tions. The weight or feature map sparsification intends to

eliminate the redundant weights or feature maps that

contribute little to the accuracy of DNNs. The typical

sparsification approach is weight or feature map pruning,

which can significantly diminish weights or feature maps.

The weight pruning aims to remove the redundant weights

while feature map pruning decreases both feature maps and

weights [30]. Han et al. introduced the deep compression to

the DNNs by deploying the connection pruning approach,

which demonstrates that the connections can be reduced by

9� – 13� [31]. Recently, other pruning techniques have

been proposed such as random pruning [32, 33], channel

pruning [34, 35] etc. However, it is essential to retrain the

neural network after removing the unnecessary weights or

feature maps with pruning method, which raises design

challenges for neuromorphic processors. Single vector

decomposition (SVD) of weights or feature maps, as

another sparsification strategy, discards the weights or

feature maps with small eigenvalues. Specially, the weight

or feature map matrix is decomposed as the multiplications

Table 1 State-of-the-art neuromorphic processors

Neural Computing and Applications (2023) 35:11013–11041 11015

123

with two unitary matrices (left single vector and right

single vector) and one diagonal vector that determines the

weight or feature map matrix’s eigenvalues. The corre-

sponding weights or feature maps will be removed if the

eigenvalues are smaller than a pre-defined threshold [36].

Since the SVD algorithm prefers large matrices such as the

matrix in fully-connection layers, it has poor performance

for object detection with tiny YOLO3. Another effective

DNNs compression approach, named knowledge distilla-

tion, is to refine a compact student model from a complex

teacher model [37]. The knowledge distillation consists of

score-based [38] and probability-based [39] distillation

according to the different loss function definition. The

student model generally presents equal or even better

performance than the teacher model if the gap between

them is small enough [40, 41]. Although knowledge dis-

tillation is promising in DNNs compression, it is still

challenging to derive an effective student model from an

intricate teacher model.

Weight or feature map quantization, as an alternative

approach of DNNs compression, is assumed to be the most

promising technique in the area of neuromorphic design

owing to the following benefits,

• The quantization technique efficiently shortens the bit

length of weights or feature maps, allowing it to utilize

fewer logic gates to fulfill the arithmetic operation.

• The lack of sufficient layout space for on-chip memory

is a major design bottleneck for neuromorphic proces-

sors based on tiny YOLO3. Deploying a short-bit

representation format can lessen the memory require-

ment for the pre-trained weights’ storage, which in turn

reduces neuromorphic processors’ power consumption

due to less external memory access.

Quantization can be achieved by the following two per-

spectives: (1) training the DNNs using quantized weights

or feature maps, which is generally utilized for both the

training and inference stages; (2) offline quantization of

weights or feature maps, which mainly contributes to the

inference stage. Many studies on the topic of training with

low-precision bits have been published [42–45]. Our work

concentrates primarily on the inference of tiny YOLO3

with low-precision fixed-point representation format (sec-

ond category) since retraining the DNNs model is time-

and power-intensive. In the literature of [46], the authors

proposed an optimization algorithm based on quantization

errors for determining the bit length of feature maps in each

layer. The experimental results indicate that it is up to

20–40% compression rate without sacrificing accuracy.

Similarly, Zhu et al. deployed an adaptive quantization

technique to the DNNs, which demonstrated that the model

size and computation cost are decreased using CIFAR10

and ImageNet2012 datasets [47]. An adaptive quantization

technique proposed by Kwon et al. was applied to transfer

the trained weights to the synaptic devices, attaining up to

98.09% accuracy rate [48]. The weights or feature maps

can be quantized from 32-bit floating-point numbers to

16-bit, 8-bit, 4-bit, 2-bit, and even 1-bit fixed-point repre-

sentation formats [49–52]. However, as the bit length of

fixed-point representations decreases, the accuracy of

neural networks drops, making it challenging to develop a

high-performance neuromorphic processor with a long bit

length representation. Therefore, exploring the low-bit

representation of weights and feature maps while sustain-

ing the algorithm’s precision is meaningful for neuromor-

phic processor design. Since the representation range and

resolution of fixed-point numbers are constrained by the

length of integer bits and fraction bits, the correct bit length

of weights or feature maps is crucial for determining

whether a fixed-point number can accurately represent a

floating-point value. The accuracy degrades when assign-

ing the same bit length to the entire DNNs. This article

proposes a neuromorphic processor-oriented hybrid multi-

plication with adaptive quantization for tiny YOLO3, and

illustrates the addition and multiplication between two

16-bit fixed-point values for tiny YOLO3’s convolution

operation. Generally, using approximated fixed-point

numbers to perform convolution often results in overflow

problems and roundoff issues in some arithmetic opera-

tions, producing erroneous convolution results. Moreover,

since the inputs of the convolutional layer in tiny YOLO3

are the previous layers’ outputs except the first layer, it will

introduce numerous errors to the entire neural network if

the fixed-point numbers cannot correctly approximate the

weights or feature maps. The proposed hybrid multiplica-

tion can effectively alleviate the overflow errors caused by

addition or roundoff errors introduced by multiplication

operations using approximated fixed-point weights and

feature maps. In brief, the contributions of this study are

briefly summarized as follows.

• This paper thoroughly illustrates the addition of a 16-bit

fixed-point with adaptive quantization. The proposed

sign-bit check approach can effectively reduce the

overflow issues accompanied by the addition operation.

• An optimal strategy of bit length adjustment is proposed

to mitigate the roundoff errors in this article. Because

the bit length of multiplying two fixed-point numbers is

more than 16 bits, an appropriate bit length adjustment

can adequately ensure the validity of approximation

results.

• An optimal and suboptimal representation formats of

16-bit fixed-point numbers has been attained for

11016 Neural Computing and Applications (2023) 35:11013–11041

123

neuromorphic processor design by investigating the

conversion error rate of data (feature maps and weights)

and the accumulated calculation error of convolution.

• A hybrid multiplication module is presented to assess

the hardware cost of the adaptive quantization tech-

nique, and the experimental results prove that the

proposed multiplication module has low power con-

sumption and low latency in comparison with the

benchmark multipliers.

The remainder of this paper is organized as follows. Sec-

tion 2 offers the preliminaries of tiny YOLO3’s convolu-

tion operation. The details of the proposed hybrid

multiplication with adaptive quantization are illustrated in

Sect. 3 which includes an adaptive qunatization algorithm,

binary addition with sign-bit check, and binary multipli-

cation with bit roundoff methods. Section 4 describes the

experimental results and discussion regarding the hybrid

multiplication with adaptive quantization, and the conclu-

sion is presented in Sect. 5.

2 Convolution of tiny YOLO3

As shown in Fig. 2, the DNNs’ convolution is calculated

by multiplying between intra-channel elements of weights

and feature maps with inter-channel elements, and accu-

mulating the results along the depth direction.

Specifically, the following expression defines the con-

volution (C) between weights (W) and feature maps (F),

ci ¼
PN

i¼1 wi � fi, where ci 2 C is the convolution result.

wi 2 W and fi 2 F are the weights and feature maps in each

intra-channel, respectively. From the layers, intra-channels,

inter-channels, and depths of DNNs, it is possible to per-

form convolution operations with quantized weights and

feature maps. Two main steps implement the convolution

operation of tiny YOLO3: (1) feature matrix conversion

(FMC) and (2) general matrix multiplication (GEMM).

Concretely, the FMC converts the inputs to feature maps

based on the window dimension of filters, and the convo-

lution is achieved via an element-by-element multiply-ac-

cumulate operation (MAC) between the weights and

feature maps. The tiny YOLO3 has 13 convolution layers

and two types of filters (1�1 and 3�3 kernel size). It is

required to convert inputs into feature maps using FMC for

the filters with 3�3 kernels, while it does not need to

convert input vectors for the filters with 1�1 kernel. As

shown in Table 2, the eighth, tenth, eleventh, and thirteenth

layers deploy filters with 1�1 kernel while other layers use

filters with 3�3 kernel.

Since tiny YOLO3 employs one stride zero-padding, the

width and height for the inputs and outputs of convolution

are identical. The dimensions of inputs and filters

determine the dismension of output feature maps. Assum-

ing that the dimensions of inputs and filters are w� h� d

(width, height and depth of input) and fw � fh � fd (width,

height and depth of filter), respectively, the dimension of

output FMC can be calculated by dfmc ¼ w� h� d�
fw � fh, where dfmc is the dimension of FMC outputs. The

depth of the feature map and the weight should be the same

in order for the convolution operation to be implemented.

Table 2 concisely summarizes the dimension of output

feature maps in each convolution layer of tiny YOLO3,

revealing that the maximum amount of data in feature

maps is over 6 million (layer 2). A total of 23.765625

Megabytes memory is required if the 32-bit floating-point

format represents these feature maps. However, the mem-

ory utilization will be halved if the 16-bit fixed-point for-

mat represent these feature maps. The fixed-point numbers

are represented by Q-format, which is denoted by QðLFI �
LFRÞ or QðLFRÞ. The symbol ‘‘�’’ indicates the radix point.

LFI and LFR are the integer and fraction bit lengths of

fixed-point representation, respectively.

The implementation of GEMM includes two steps: (1)

element-by-element multiplication (MUL); (2) summation

of the multiplication result (ADD). As illustrated in Fig. 3,

each element in the filter is multiplied by each element in

Fig. 2 Principle of convolution operation between weights and

feature maps, and definitions of DNNs’ parameters

Neural Computing and Applications (2023) 35:11013–11041 11017

123

the first row of the feature map, and the result is stored in

memory.

The second element of the filter is then multiplied by

each element in the second row of the feature map, and the

product is summed to each element in memory. The cal-

culation process continues until the filter’s last element is

multiplied by every element in the last row of the feature

map. Then, the addition operation is conducted using the

result of the previous summation. The convolution process

between the first filter and the feature maps is now com-

plete. In general, the filters of tiny YOLO3 is a 4-dimen-

sion vectors (M � w� h� d), with each filter dimension

specified as fn which equals w� h� d. According to the

principle of matrix multiplication, the output dimension of

GEMM is M � fk (refer to Fig. 3) where fk ¼ fw � fh.

Table 3 presents that the GEMM of tiny YOLO3 involves

8841794 16-bit fixed-point addition operations and

2782480896 16-bit fixed-point multiplication operations,

which is the bottleneck for real-time object detection.

A simple way to convert a floating-point number to a

fixed-point number is to multiply the floating-point number

by the scaling factor, which is calculated by

Xfixed ¼ INT Xfloat � 2LFR
� �

, where INTð�Þ indicates the

function of rounding calculation result to the nearest inte-

ger number. Xfloat and Xfixed are the floating-point and

fixed-point numbers, respectively. As an instance, the

fixed-point number of �2:89037 can be derived by

�2:89037Qð2:13Þ ¼ INT �2:89037float � 213
� �

� �23678.

Therefore, the floating-point number �2:89037 can be

represented by the binary: 10100011100000102. ‘‘Appen-

dix’’ provides the pseudo codes for the format conversion

between floating-point, fixed-point formats and their cor-

responding binary representations.

3 Hybrid Q-format multiplication
with adaptive quantization proposal

3.1 Adaptive quantization for tiny YOLO3

As shown in Fig. 4, suppose different fixed-point repre-

sentation formats are employed among DNNs’ layers while

designing a multi-layer based neuromorphic processor.

In this instance, it is vital to independently control the

different arithmetic logic units (ALUs) in each layer.

Moreover, since the ALUs output in the previous layer is

the current layer’s input, a bit post-processing circuit of the

feature maps is required to ensure that the two layers’ data

representation formats are consistent. The M ALU modules

shown in Fig. 4 share the control signal, and each module

can be directly attached without the bit post-processing

circuit if each layer and channel of weights and feature

maps adopt an adaptive fixed-point representation format.

Hence, in order to tackle the aforementioned challenging

issues, this paper proposes a fully adaptive quantization

proposal to improve the neuromorphic processor design.

Typically, the following inequality equation is used to limit

the range of integer bit length (LFI) for fixed-point values,

LFI�
log2

Xfixed
1� 21�Lb

� �

if Xfixed [0

log2 �Xfixed
� �

if Xfixed\0

8
><

>:
ð1Þ

where Lb is the total bit length of a fixed-point represen-

tation, which is defined by,

Lb ¼ LFI|{z}
integer bits

þ LFR|ffl{zffl}
fraction bits

þ 1|{z}
sign bit

ð2Þ

Eq. (1) constrains the length of an integer for positive and

Table 2 Dimension of feature

maps in different convolution

layers

Convolution Inputs Filters Dimension of feature maps

Layer 1 416�416�3 3�3�3 416�416�3�3�3 (4672512)

Layer 2 208�208�16 3�3�16 208�208�3�3�16 (6230016)

Layer 3 104�104�32 3�3�32 104�104�3�3�32 (3115008)

Layer 4 52�52�64 3�3�64 52�52�3�3�64 (1557504)

Layer 5 26�26�128 3�3�128 26�26�3�3�128 (778752)

Layer 6 13�13�256 3�3�256 13�13�3�3�256 (389376)

Layer 7 13�13�512 3�3�512 13�13�3�3�512 (778752)

Layer 8 13�13�1024 1�1�1024 13�13�1�1�1024 (173056)

Layer 9 13�13�256 3�3�256 13�13�3�3�256 (389376)

Layer 10 13�13�512 1�1�512 13�13�1�1�512 (86528)

Layer 11 13�13�256 1�1�256 13�13�1�1�256 (43264)

Layer 12 26�26�384 3�3�384 26�26�3�3�384 (2336256)

Layer 13 26�26�256 1�1�256 26�26�1�1�256 (173056)

11018 Neural Computing and Applications (2023) 35:11013–11041

123

negative numbers, respectively. However, the above

inequality equation will be trivial if the result of the log-

arithm operation is less than or equal to - 1. As an illus-

tration, the constrain of LFI becomes LFI� 8 when Xfixed
equals 0.00390625. It can be observed from the above

inequality equations that the output limit of the logarithmic

operation that makes the expression meaningful is–1

because the length of integer bits should be equal or greater

than 0 (LFI� 0). This paper introduces an adaptive quan-

tization (ADQ) method that flexibly determines the integer

and fraction bits’ length to solve this issue. The bits length

of integer in fixed-point number Xfixed is defined by the

following equation,

Fig. 3 Convolution operation with GEMM. The output dimension of GEMM is determined by the number of filters and the width of feature

maps, M � fk M � fn � fn � fk

Table 3 Number of additions

and multiplications for tiny

YOLO3’s GEMM

Convolution Filters Addition Multiplication

Layer 1 16 16� ð3� 3� 3� 1Þ 16� 416� 416� 3� 3� 3

Layer 2 32 32� ð3� 3� 16� 1Þ 32� 208� 208� 3� 3� 16

Layer 3 64 64� ð3� 3� 32� 1Þ 64� 104� 104� 3� 3� 32

Layer 4 128 128� ð3� 3� 64� 1Þ 128� 52� 52� 3� 3� 64

Layer 5 256 256� ð3� 3� 128� 1Þ 256� 26� 26� 3� 3� 128

Layer 6 512 512� ð3� 3� 256� 1Þ 512� 13� 13� 3� 3� 256

Layer 7 1024 1024� ð3� 3� 512� 1Þ 1024� 13� 13� 3� 3� 512

Layer 8 256 256� ð1� 1� 1024� 1Þ 256� 13� 13� 1� 1� 1024

Layer 9 512 512� ð3� 3� 256� 1Þ 512� 13� 13� 3� 3� 256

Layer 10 255 255� ð1� 1� 512� 1Þ 255� 13� 13� 1� 1� 512

Layer 11 128 128� ð1� 1� 256� 1Þ 128� 13� 13� 1� 1� 256

Layer 12 256 256� ð3� 3� 384� 1Þ 256� 26� 26� 3� 3� 384

Layer 13 255 255� ð1� 1� 256� 1Þ 255� 26� 26� 1� 1� 256

Total 3694 8841794 2782480896

Neural Computing and Applications (2023) 35:11013–11041 11019

123

LFI ¼
floor log2

Xfixed

2�1 � 21�Lb

� �� �

if Xfixed� r

floor log2ð�XfixedÞ½ � þ 1 if Xfixed	 � 0:5
0 others

8
>><

>>:

ð3Þ

where r ¼ 2�1 � 21�Lb . Since the dynamic range of Lb
satisfies Lb� 2, it can be deducted that r� 0. The symbol

floor½�� represents the floor function that provides the lar-

gest integer less than or equal to the input.

3.2 Binary addition with sign-bit check

When adding two fixed-point integers, the fundamental

idea is to ensure that the addend’s radix point aligns with

that of the augend. An incorrect alignment between addend

and augend will result in an erroneous calculation. Align-

ing two binaries with varying LFI will produce different bit

lengths for both the integer and fraction component of the

addend and augend. A sign extension method can be

applied to circumvent the issue of inconsistent bit length

between addend and augend. The specific implementation

of sign extension is to add ‘‘1’’ before the sign bit of a

negative number and ‘‘0’’ before the positive number sign

bit. As negative numbers are stored in memory in the form

of two’s complement, the sign extension will not change

the negative numbers. Similarly, extending ‘‘0’’ before a

positive number has no impact on its value. It should be

noted that the carrier generated in front of the sign bit will

have an impact on the addition results between addend and

augend. Suppose that two fixed-point numbers represented

by Q L
ðaÞ
FI
� LðaÞ

FR

	

and Q L

ðbÞ
FI
� LðbÞ

FR

	

are added, and the

length of the integer and fraction bits of the addition result

are determined by the maximum integer and fraction bit

length of addend and augend,

L
ðcÞ
FI
¼ max L

ðaÞ
FI
; L
ðbÞ
FI

	

ð4Þ

L
ðcÞ
FR
¼ max L

ðaÞ
FR

; L
ðbÞ
FR

	

ð5Þ

where maxð�Þ is the function that searches for the maxi-

mum value from its elements. L
ðcÞ
FI

and L
ðcÞ
FR

are the bits

length of integer and fraction part attained from addition

operation. For instance, the addition result between two

16-bit fixed-point numbers represented by Q(0.15), Q(2.13)

will be expressed as Q(2.15) format. Since the length of 18

bits Q(2.15) is inconsistent with that of 16 bits, the least

significant two bits are usually discarded, and the addition

result is practically represented by the Q(2.13) format.

The issue of bit overflow frequently occurs in binary

addition, leading to inaccurate representations of addition

results. The carryout of sign bits (most significant bit:

Fig. 4 Challenges of

neuromorphic processor’s

design with traditional

quantization method. The

quantization can shorten the bit

length of weights by a few bits,

thereby decreasing the memory

utilization

11020 Neural Computing and Applications (2023) 35:11013–11041

123

MSB) is closely associated with the location of the radix

point. In other words, retaining or discarding the overflow

bit modifies the length of integer and fraction bits in fixed-

point numbers. As we know, adding two numbers with

different sign bits will not induce the overflow problem.

Therefore, the first step in judging whether overflow occurs

in the addition of two fixed-point numbers is to determine

whether the two numbers’ sign bits are consistent. Gener-

ally, overflow happens when the sign bit of two numbers is

the same but the sign bit of the addend or augend differs

from the MSB of the addition result. As shown in Fig. 5a,

we propose a sign-bit check approach to solve the overflow

issue.

In this case, the overflow bit is added before the MSB of

the addition result, and the value of the overflow bit is

consistent with the sign bit of the addend or augend. It is

essential to increase the LFI since an extra bit is added

before the radix point, LFI ¼ LFI þ 1. The pseudo-codes

for the overflow check can be found in Algorithm 1.

However, the overflow bits can be discarded directly if the

addend or augend sign is the same as the MSB of the

addition result. Because the fixed-point numbers are stored

in the two’s complement format, it is unnecessary to keep

all the sign bit before the radix point. The LFI also has a

close relationship with the number of the discarded sign

bit. As shown in Fig. 5b, two additional sign bits can be

discarded, and the following 16-bit binaries can be pre-

served to represent the addition result, which can effec-

tively enhance the representation solution. In this case,

only one bit needs to be reserved, and the other two bits can

be removed, and the LFI is zero, LFI ¼ LFI � 2. Algorithm

1 shows the pseudo-codes of binary addition with overflow

check technique.

Neural Computing and Applications (2023) 35:11013–11041 11021

123

In brief, the addition of two 32-bit floating-point num-

bers can be accomplished using the procedures below. (1)

Quantized the 32-bit floating-point numbers to the 16-bit

fixed-point numbers and align the radix point between

addend and augend; (2) Extend the sign bit for the number

with a small LFI and fill zeros to the empty bits for the

number with large LFI; (3) Implement the bit-to-bit addi-

tion between addend and augend. (4) Overflow check and

integer or fraction bit length adjustment for the addition

result. Appendix provides the pseudo codes of binary

addition for fixed-point representations. Figure 6 illustrates

the addition example of floating-point numbers

(�0.746783, �2.89037) implemented by adaptive quanti-

zation method.

According to the approach mentioned above, the 32-bit

floating-point numbers are quantized as the following 16-bit

fixed-point numbers:�0:746783 �!Qð0:15Þ
1010000001101001,

and �2:89037 �!Qð2:13Þ
1010001110000010. The scaling fac-

tors of Q(0.15) and Q(2.13) are 215 and 213 representation

formats, respectively. Therefore, the above binary numbers

are evaluated by shifting the radix point 15 bits and 13 bits,

respectively, toward the left from the rightmost:

, and

. Based on

Eqs. (4), and (5), the addition result of the above fixed-point

numbers can be described by Q(2.15), which produces an

18-bit fixed-point number. Hence, extending the bits for the

addend and augend of the MSB or least significant bit (LSB)

is needed. The sign extension technique is generally utilized

to fill the sign bit to the MSB while zeros are usually added to

the LSB (or leave the LSB empty).

According to the overflow check principle mentioned

above, the overflow bit can be discarded since the sign bit

of the addition result is consistent with the addend and

augend. As shown in Fig. 6, the addition result is expressed

as 100.010111001110001 if the overflow bit is discarded.

In summary, the addition result is represented with Q(2.13)

format as 1000101110011100 (scaling factor: 213),

reserving 16-bit data length (the last two bits are

discarded). The following equation can be employed to

verify the correctness of the addition result, �0:746783þ

ð�2:89037Þ ¼ �3:637153 �!Qð2:13Þ �29796 ¼ 10001011

100111002 . This binary number can be converted to the

fixed-point number by dividing the scaling factor (213),

, where

the decimal binary can be represented by the fixed-

point number, 100:01011100111002 ¼ �3:63720703125

� �3:637153.

Fig. 6 Addition example of fixed-point numbers with adaptive quantization. The abbreviations ‘‘SE’’, ‘‘RP’’, and ‘‘OV’’ represent the sign

extension bit, radix point, and overflow bit, respectively

Fig. 5 Example of sign-bit

check and bit selection.

a Addition with overflow; b 16-

bit binaries selection

11022 Neural Computing and Applications (2023) 35:11013–11041

123

3.3 Binary multiplication with bit roundoff

In contrast to addition, multiplication does not need the

alignment of the radix point; rather, the proper use of sign

extension is vital to fixed-point multiplication. In addition,

identifying the sign bit of the product is a crucial step in

establishing the accuracy of fixed-point multiplication.

There is no difference between binary multiplication and

decimal multiplication except for the sign bit multiplica-

tion (MSB). The two’s complement format represents the

partial product for the sign bit multiplication if the multi-

plier sign is ‘‘1’’. In other words, the partial product is

represented by the two’s complement format if the multi-

plier is negative. Firstly, the binary multiplication calcu-

lates the partial product, followed by the addition of all the

partial products to determine the final product. The integer

and fraction bit length of multiplication results between

Q L
ðaÞ
FI
� LðaÞ

FR

	

and Q L

ðbÞ
FI
� LðbÞ

FR

	

are determined by

L
ðdÞ
FI
¼ L

ðaÞ
FI
þ L

ðbÞ
FI
þ 1 and L

ðdÞ
FR
¼ L

ðaÞ
FR
þ L

ðbÞ
FR

, where L
ðdÞ
FI

and L
ðdÞ
FR are the integer and fraction bits length of multi-

plication results. Evidently, the product of Q L
ðdÞ
FI
:L
ðdÞ
FR

	

is

represented by Nmul bits,

Nmul ¼ L
ðaÞ
FI
þ L

ðbÞ
FI|fflfflfflfflfflffl{zfflfflfflfflfflffl}

integer bits

þ L
ðaÞ
FR
þ L

ðbÞ
FR|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

fraction bits

þ 2|{z}
sign bits

ð6Þ

In brief, the length of the product has three parts: the

number of integer bits, fraction bits, and sign bits. Given

that each signed fixed-point number has a sign bit, the last

component of the above equation includes two sign bits. In

practice, the multiplication between two N-bit numbers

generates a 2N � 1 bits product. However, the Eq. 6 indi-

cates that the bit number of products between two N-bit

fixed-point values are 2N where two identical sign bit (with

1-bit sign extension) are included. Consequently, it is

necessary to discard a sign bit by shifting the radix point

one bit to the left.

Since the bit length of fixed-point multiplication

between two N-bit fixed-point binaries is 2N, roundoff

error inevitably governs the accuracy of the product.

Therefore, it is vital to retain the significant bits and discard

the non-dominant bits to increase the accuracy of convo-

lution operations. To reduce the impact of roundoff errors

on object detection, we propose the bit roundoff approach

to discover the optimal bit sequence for a product. The bit

roundoff strategy aims to enhance the opportunity of

selecting more significant bits and removing redundant

sign bits. It is worth mentioning that the bit roundoff is also

associated with the LFI on account of the position change

of the sign bit during the bit selection. The LFI with bit

roundoff is defined as LrFI ¼ LFI � Ndiscard, where LrFI is

the updated integer bit length with bit roundoff method,

and Ndiscard is the number of discarded bits during bit

roundoff calculation. As shown in Fig. 7, the bit length of

the product between two 4-bit binaries is 8-bit.

Different locations of the multiplier or multiplicand’s

radix point result in the selection of distinct binary

sequences. If the radix point of the multiplicand is fixed in

the middle of the binary sequence (Q(1.2)) and the radix

point of the multiplier is adjusted to Q(1.2), Q(2.1), and

Q(3.0) in turn, different product sequences will be

obtained, 0100Qð0:3Þ 1100Qð1:2Þ � 1111Qð1:2Þ, 0100Qð0:3Þ
 1100Qð1:2Þ � 1111Qð2:1Þ, and 0100Qð1:2Þ 1100Qð1:2Þ�
1111Qð3:0Þ. As introduced before, the LFI ¼ 3; 4; 5 for the

multiplication between Q(1.2) and Q(1.2), Q(1.2) and

Q(2.1), and Q(1.2) and Q(3.0), respectively. As shown in

Fig. 7, the Ndiscard is 3, 4, and 4 for each computation,

accordingly. Therefore, the products can be represented by

Q(0.3), Q(0.3) and Q(1.2) representation formats if 4-bit

memory is available to store the product. It is necessary to

fill the product with zeros starting from the last bit if there

are insufficient binaries to represent the product result due

to sign bit discard. As an illustration, 1-bit with zero

should be filled in the last bit of the product if 5-bit

memory is available. The details of fixed-point multipli-

cation will be explained using the same numbers as fixed-

point number addition (�0.746783 � �2.89037). For

example, the multiplication between 1010000001101001

and 1010001110000010 generates a 31-bit binary

sequence; hence, all partial products will be extended to

32 bits using sign extension bits. Algorithm 2 shows the

pseudo codes of bit roundoff for the multiplication of

fixed-point numbers.

Fig. 7 Bits selection with bit roundoff strategy

Neural Computing and Applications (2023) 35:11013–11041 11023

123

The details of fixed-point multiplication will be

explained using the same integers (�0.746783 �
�2.89037) as an example. As shown in Table 4, since the

multiplication between 1010000001101001 and

1010001110000010 generates a 31-bit binary sequence, all

partial products are extended to 32 bits using sign exten-

sion bits.

It is worth mentioning that the two’s complement format

represents the partial product for the row of 16� because

the multiplier is negative. In other words, the product

between the MSB of the multiplier and each bit of multi-

plicand is converted to two’s complement format,

.

The leftmost two bits of the product are sign bits, and the

residual sign bit (leftmost bit) can be eliminated by left-

shifting the product one bit. Therefore, the multiplication

result between 1010000001101001 and 01011111100

10111 is 01000101000100101010000010100100. The

multiplication between Q(0.15) and Q(2.13) can be repre-

sented by Q(3.28). On account of the product’s left shift,

the LFR gains an extra bit while the LFI losses one bit.

Therefore, the multiplication result can be expressed by

Q(2.29). The rightmost 16 bits can be omitted if there is no

overflow among the addition of partial product, and the

multiplication result is 0100010100010010Qð2:13Þ.

In summary, the multiplication of fixed-point numbers

can be accomplished by the following steps: (1) Fill the

empty bits of partial product with zeros. Since the bit

position of the valid partial product begins from the cor-

responding multiplier position, it is required to fill the

partial product’s empty bits with zeros; (2) Calculate the

partial product using the ‘‘and’’ bitwise operation and

extend the sign bit; (3) Convert the binary representation to

the format of two’s complement. If the multiplier is neg-

ative, the partial product between the sign bit of the mul-

tiplier and each bit of multiplicand should be represented in

two’s complement format; (4) Sign extension. A 32-bit

partial product is generated for the multiplication between

two 16-bit fixed-point numbers. The bit length of the par-

tial product is 16-bit. Therefore, it is essential to fill the

11024 Neural Computing and Applications (2023) 35:11013–11041

123

remaining bits with the sign extension approach; (5)

Compute the sum of all partial products and shift the

product 1-bit to the left. The function mulFixed in

Algorithm 3 illustrates details about binary multiplication

of fixed-point representation.

Neural Computing and Applications (2023) 35:11013–11041 11025

123

Likewise, the following procedures can be deployed to

validate the correctness of the above-described approach:

(1) multiplication with floating-point numbers:

�0:746783��2:89037 ¼ 2:15847917971; (2) conversion

from floating-point to fixed-point numbers:

2:15847917971 �!Qð2:13Þ
17682; (3) binary conversion:

17682 ¼ 01000101000100102. Hence, the product repre-

sented by a 16-bit fixed-point number between

1010000001101001 and 0101111110010111 is

0100010100010010. The binary 0100010100010010Qð2:13Þ
can be converted to the decimal number as 010001010

0010010Qð2:13Þ ! 2:158447265625 � 2:15847917971. The

Table 4 Multiplication example of 16-bit fixed-point numbers

Multiplicand

Multiplier

1� 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2� 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3� 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4� 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5� 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6� 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7� 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8� 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0

9� 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0

10� 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0

11� 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12� 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13� 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14� 1 1 1 1 0 1 0 0 0 0 0 0 1 1 0 1

15� 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16� 0 0 1 0 1 1 1 1 1 1 0 0 1 0 1 1

product 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1

Multiplicand 1 0 1 0 0 0 0 0 0 1 1 0 1 0 0 1

Multiplier 1 0 1 0 0 0 1 1 1 0 0 0 0 0 1 0

1� 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2� 0 1 0 0 0 0 0 0 1 1 0 1 0 0 1 -

3� 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - -

4� 0 0 0 0 0 0 0 0 0 0 0 0 0 - - -

5� 0 0 0 0 0 0 0 0 0 0 0 0 - - - -

6� 0 0 0 0 0 0 0 0 0 0 0 - - - - -

7� 0 0 0 0 0 0 0 0 0 0 - - - - - -

8� 0 0 1 1 0 1 0 0 1 - - - - - - -

9� 0 1 1 0 1 0 0 1 - - - - - - - -

10� 1 1 0 1 0 0 1 - - - - - - - - -

11� 0 0 0 0 0 0 - - - - - - - - - -

12� 0 0 0 0 0 - - - - - - - - - - -

13� 0 0 0 0 - - - - - - - - - - - -

14� 0 0 1 - - - - - - - - - - - - -

15� 0 0 - - - - - - - - - - - - - -

16� 1 - - - - - - - - - - - - - - -

product 0 1 0 1 0 0 0 0 0 1 0 1 0 0 1 0

11026 Neural Computing and Applications (2023) 35:11013–11041

123

conversion errors still exist even if the adaptive quantiza-

tion approach is utilized.

4 Results and discussion

4.1 Algorithm verification

Figure 8 provides a comprehensive statistical analysis of

the adaptive quantization for tiny YOLO3’s weights. The

tiny YOLO3 has 8858734 weights, with maximum and

minimum values of 400.63385009765625 and

�17.461894989013672, respectively. It shows that a total

number of 8850306 weights are represented by Q(0.15)

format, which accounts for 99.9% of the weights in tiny

YOLO3.

Evaluation of Conversion Errors The GEMM performs

the convolution operation of tiny YOLO3 between feature

maps and weights. Therefore, evaluating the conversion

errors of these feature maps and weights is crucial.

According to the dimension of feature maps in each con-

volution layer shown in Table 2, the percentage of Q-for-

mat representation for feature maps in each convolutional

layer and weights are evaluated in this section. The detailed

calculation method is illustrated in Algorithm 5. The

density of feature maps (from layer 1 to layer 13) and

weights are described in Fig. 9, which shows that most of

the feature maps and weights are located in the range of -

1–1 (accounts for 60 – 90%).

In other words, the majority of feature maps and weights

can be represented by Q(0.15) using adaptive quantization

conversion. A small amount of data is represented by

Q(1.14) and Q(4.11) formats. Totally, 20723456 feature

maps and 8858734 weights (around 30 million parameters)

are employed to evaluate the conversion between 32-bit

floating-point to 16-bit fixed-point numbers with the

adaptive quantization approach. The conversion error rate

(error for each element in the corresponding convolutional

layer) is utilized to assess the conversion error from 32-bit

floating-point to 16-bit fixed-point numbers with the

adaptive quantization algorithm. The conversion error rate

(f) is defined as follows,

f ¼ 1

n
kXfixed � Xfloatk2 ¼

1

n

ffi
Xn

i¼0

x
ðiÞ
fixed � x

ðiÞ
float

	

s 2

ð7Þ

where n is the number of floating-point representations

converted by the adaptive quantization approach. Symbol

k � k2 indicates the Euclidean norm. x
ðiÞ
fixed

2 Xfixed and

Fig. 8 Parameters analysis of 16-bit fixed-point representation format in tiny YOLO3

Neural Computing and Applications (2023) 35:11013–11041 11027

123

x
ðiÞ
float

2 Xfloat are the fixed-point and floating-point

numbers, respectively. If the length of the integer bit is

sufficiently enough, the range of the fixed-point number’s

representation expands at the expense of resolution. Con-

verting from floating-point to fixed-point values with a

high resolution or wide dynamic range will always result in

rounding errors. Therefore, it is imperative to adopt adap-

tive quantization to explore the optimal representation for

fixed-point numbers. To better highlight the comparison

results, the conversion error rates are transformed by log10

arithmetic operation, f �! log10ðfÞ. It is worth noting that

the longer the hist bar, the smaller the conversion error

rates. The conversion error rates of adaptive quantization

are much smaller than any other Q-format representations

for feature maps and weights of tiny YOLO3.

To further explore a suitable representation format of

weights and feature maps for neuromorphic processor

design, Fig. 10 depicts the optimal and suboptimal LFI for

all weights and feature maps. The experimental results

prove that the adaptive quantization on 16-bit fixed-point

numbers exhibits a minimum conversion error rate, and it

can be considered an optimal representation for 32-bit

floating-point numbers. Besides, the suboptimal solution

represented by Q(6.9) has a relatively low accumulated

error rate for all feature maps and weights of tiny YOLO3.

In addition, the accumulated errors of convolution

results for each filter are calculated to evaluate the arith-

metic errors of adaptive quantization on 16-bit fixed-point

numbers. As mentioned before, since the number of con-

volutions is M � fk in each layer, the total number of

convolutions for accumulated error evaluation is 6164275.

Furthermore, it shows that the relatively low conversion

error rate of weights and feature maps is concentrated

toward LFI ¼ 6 without using adaptive quantization. The

convolution results for all different representation formats

are demonstrated to search for the optimal representation

format of tiny YOLO3. The optimal and suboptimal rep-

resentation formats for all feature maps and weights are

summarized in Fig. 10, which demonstrates that the

adaptive quantization possesses optimal performance for

the conversion from 32-bit floating-point to 16-bit fixed-

point numbers. Figure 11 shows the error rate of GEMM

operation with adaptive quantization, which demonstrates

that the representation format with adaptive quantization

presents a low computation error rate.

Moreover, Fig. 12 provides the accumulated conversion

error rate with different representation formats for feature

maps and weights in different layers, illustrating that the

representation format with adaptive quantization and

Q(6.9) exhibits optimal and suboptimal solutions,

Fig. 9 Density of feature maps (from layer 1 to layer 13) and parameters in tiny YOLO3

11028 Neural Computing and Applications (2023) 35:11013–11041

123

respectively.Figure 13 presents the recognition results of

tiny YOLO3 with different representation formats.

The experimental result shown in Fig. 13a, b, c, d, l, m,

n, o, and p illustrate that the objects cannot be detected

with the representation of Q(0.15), Q(1.14), Q(2.13),

Q(3.12), Q(11.4), Q(12.3), Q(13.2), Q(14.1), and Q(15.0),

respectively. It can be observed that parts of the objects

(compared with floating-point recognition result in

Fig. 13r) are detected in Fig. 13e, f, j, and k. The repre-

sentation formats with Q(6.9), Q(7.8), and Q(8.7) shows

correct detection results. There is no doubt that the repre-

sentation with adaptive quantization shows readily

acceptable detection results (refer to Fig. 13q). The

experimental results show that the adaptive quantization

algorithm not only has the minimum conversion error rate

and minimum convolution error in tiny YOLO3 but also

offers the same detection result as the 32-bit floating-point

numbers by using the 16-bit fixed-point representation

format.

In addition, as shown in Fig. 14, the statistic of recog-

nition results indicates that the conversion error dominates

the recognition results with the decrease of LFI, and the

rounding error becomes more and more significant with the

decrease of LFI.

Numbers represented by large LFI can cover a wide

representation range and have small conversion error while

numbers represented by small LFI has a high resolution and

small roundoff error in convolution computation. There-

fore, investigating an effective method to balance the LFI
is essential in designing a neuromorphic processor.

Although the errors represented by Q(6.9), Q(7.8), and

Q(8.7) are larger than those represented by adaptive

quantization, they can also be utilized as alternatives to

convert the floating-point numbers to fixed-point numbers

in the neuromorphic processor design.

Evaluation of Optimal Representation Format for Tiny

YOLO3 The Microsoft common objects in context (MS

COCO) 2014 and 2017 validation datasets are employed to

search for the optimal representation format of tiny

YOLO3. During the training process, 35504 samples are

extracted from COCO-2014 to train the neural network.

Therefore, 5000 remaining samples are selected from

COCO-2014 to avoid utilizing training data for verification

of the neural network’s performance. Similarly, the COCO-

2017 dataset contains an additional 5000 samples available

for tiny YOLO3’s performance evaluation. Since the tiny

YOLO3’s training is based on the 32-bit floating-point

representation format, the first task is to explore the max-

imum weight distribution in each layer. The tiny YOLO3

Fig. 10 Optimal representation formats of weights and feature maps in tiny YOLO3

Neural Computing and Applications (2023) 35:11013–11041 11029

123

consists of 13 convolution layers and a total of 8845488

32-bit floating-point parameters.

The distribution of feature maps corresponding to dif-

ferent input data varies diversely. Therefore, this paper

explores an average reference integer to determine the

fixed-point representation format for tiny YOLO3. The

benchmark COCO-2014 (5000 samples) and COCO-2017

(5000 samples) validation datasets are selected to investi-

gate the optimal representation format of tiny YOLO3. The

feature maps in different layers are compared one by one to

search for the maximum elements. The feature maps’

density distribution is obtained using the kernel density

estimation (KDE) approach. The experimental result shows

that the maximum density distribution of feature maps with

two different databases in each neural network layer is

almost identical. The maximum feature maps are

86.405121 and 88.912598 with the COCO-2014 and

COCO-2017 datasets, respectively. It can be inferred that

the largest feature map is represented by the form of

Q(7.8). Although the format of Q(7.8) can cover all the

feature maps of the tiny YOLO3, the density of Q(7.8) is

relatively low. In addition, the DNNs’ precision repre-

sented by fixed-point format is determined by the fractional

part’s roundoff error and the integer part’s overflow error.

Thus, if the fixed-point representation can not cover all the

feature maps using average or minimum fixed-point rep-

resentation formats, the overflow error of the integer part

will be generated. On the contrary, using the largest fixed-

point format to cover all the numbers will introduce the

fractional part’s roundoff error. Q(7.8) can be utilized as

the fixed-point representation format of tiny YOLO3, but it

can only be served as a suboptimal solution. The com-

prehensive distribution of maximum feature maps with

both COCO-2014 and COCO-2017 datasets is illustrated in

Fig. 15.

The two databases, COCO-2014 and COCO-2017,

deliver the optimal reference integers for adaptive quanti-

zation(49.50958 and 49.58947) equivalently, and both

integers can be represented by the fixed-point format of

Q(6.9). From the above analysis results, it can be con-

cluded that the optimal fixed-point representation format of

tiny YOLO3 is Q(6.9).

Performance Analysis of tiny YOLO3 The mean average

precision (mAP) is one of the standard criteria to evaluate

the performance of DNNs. This experiment will compare

the tiny YOLO3’s performance with the optimal 16-bit

fixed-point representation (Q(6.9)) and the 32-bit floating-

point representation format. Its high accuracy benefits from

32-bit floating-point representation. However, it requires

complicated circuit control and interface connections

Fig. 11 Error comparison of GEMM with different LFI formats

11030 Neural Computing and Applications (2023) 35:11013–11041

123

among different layers to realize a multi-layer neuromor-

phic processor-oriented design. The fixed-point quantiza-

tion technique affords a reliable solution for the tiny

YOLO3’s hardware optimization to reduce memory uti-

lization and circuit complexity. Similarly, the COCO-2014

and COCO-2017 datasets are deployed to assess tiny

YOLO3’s performance with Q(6.9) fixed-point represen-

tation format. Figure 16 illustrates the mAP of tiny

YOLO3 using the Q(6.9) and 32-bit floating-point repre-

sentation formats, which demonstrates that the Q(6.9) and

32-bit floating-points show almost the same mAP at each

IoU threshold (floating-point: [32.48, 36.40]@0.5 and

(Q(6.9): [32.46, 36.28]@0.5).

In addition, the mAP differences between the Q(6.9) and

32-bit floating-point representation formats are in the range

of ½�0:003; 0:002�. The above result is adequate to validate

that the Q(6.9) representation format has the equivalent

mAP as the 32-bit floating-point representation form in the

tiny YOLO3’s performance evaluation. Meanwhile, the

16-bit fixed-point representation format can save half of the

memory space and dramatically reduce the circuit design to

realize its multi-layer neuromorphic processor.

4.2 Hardware verification

A hybrid multiplication module is designed to validate the

hardware cost of the proposed method. Specifically, as

shown in Fig. 17, weights and the feature maps represented

by floating-point representation format are converted into

integer binaries (XW
INT ! XW

B , XF
INT ! XF

B) according to

Algorithm 4, and their corresponding integer bit length

(LWFI, LFFI) are determined using Eq. 3.

The proposed hybrid Q-format multiplication module

embraces both the integer bit length and the N-bit fixed-

point binaries as the inputs. The magnitude of the variable

N is designated by application requirement, and it can be

16-bit, 8-bit, or other values. The input bit length of LWFI
and LFFI can be solved by log2ðNÞ if N is known. In this

section, we develop a hybrid Q-format multiplication

module that can accommodate varying bit lengths via the

usage of a bit roundoff technique. Developing a uniform-

length representation format for the multiplication module

is crucial since most of the current neuromorphic proces-

sors deploy highly parallel general-purpose processing

elements to emulate complicated DNNs’ models, as illus-

trated in Table 1. The product’s bit length of the multi-

plication module developed in this study is the same as the

Fig. 12 Maximum, average and minimum error rate comparison of GEMM with different LFI

Neural Computing and Applications (2023) 35:11013–11041 11031

123

input bit length of the weights and feature maps, which are

both N bits. As described in Sect. 3.3, since the multipli-

cation of N-bit fixed-point binaries yields a 2N bits in

length, the proposed module employs log2ð2NÞ to deduce

the bit length of the product’s LFI (Lout
FI). The redundant

extended sign bits can be eliminated without impacting the

computation accuracy attributable to the bit roundoff block

embedded into the multiplication module.

The post-synthesis of the proposed multiplication mod-

ule utilizes Fujitsu 55 nm complementary metal-oxide

semiconductor (CMOS) technology. Figure 18 depicts a

post-synthesis simulation of hybrid Q-format multiplica-

tion, wherein the simulation’s operating frequency and

voltage are 100 MHz and 1.2 V, respectively.

As shown in Table 4, the signed binary product between

160hA069 and 160hA382 is 320b00100010100010010101

000001010010 ! 320h22895052. Since the multiplication

results between Q(0.15) and Q(2.13) can be represented by

Q(3.28), both ‘‘0’’s at the MSB of 320h22895052 are signed

bits. By shifting one bit to the left, the redundant sign bit

can be removed, thereby increasing the number’s resolu-

tion, as an illustration, 320b00.10001010001001010

1000001010010 320b0.10001010001001010100000

10100100. Selecting the first 16-bit as the product yields

160h4512. Since there is only 1-bit sign extension, the

fixed-point representation format for Q(2.13) and Q(2.13)

only demands to shift one bit to the left while the radix

point is located after the fifth bit, as explained in the fol-

lowing expression, 160hA069Qð2:13Þ � 160hA382Qð2:13Þ

(a) LFI = 0 (b) LFI = 1 (c) LFI = 2 (d) LFI = 3

(e) LFI = 4 (f) LFI = 5 (g) LFI = 6 (h) LFI = 7

(i) LFI = 8 (j) LFI = 9 (k) LFI = 10 (l) LFI = 11

(m) LFI = 12 (n) LFI = 13 (o) LFI = 14 (p) LFI = 15

(q) LFI = ADQ (r) 32-bit

Fig. 13 Recognition results with

different LFI representation

formats

11032 Neural Computing and Applications (2023) 35:11013–11041

123

Fig. 14 Statistic of recognition results with different representation formats

Fig. 15 Maximum feature maps

distribution of tiny YOLO3

evaluating with COCO-2014

and COCO-2017 datasets

Neural Computing and Applications (2023) 35:11013–11041 11033

123

320b001000.10100010010101000001010010Qð5:26Þ
320b01000.101000100101010000010100100Qð4:27Þ

160h4512Qð4:11Þ (160b01000.10100010010, Lout
FI ¼ 4). It

typically exhibits multiple extended sign bits in the product

of relatively small fractional multiplication, as shown in

Fig. 18 (160h0A32 � 160h0F13). Precisely, the product of

160h0A32 and 160h0F13 is 320b0.000000010011001101011

1110110110, and the fixed-point representation format

(refer to Sect. 3.3) for the multiplication between Q(0.15)

and Q(0.15) is Q(1.30). Left-shifting the product binaries

by one bit and extracting the first 16 bits yield

160h0A32Qð0:15Þ � 160h0F13Qð0:15Þ = 160h0133 (160b0.000

0000100110011, Lout
FI ¼ 0). The multiplication of the same

binaries with different fixed-point representation formats,

Q(3.12) and Q(3.12) generates the product represented by

Q(7.24), i.e., 320b00000000.100110011010111110110110.

Likewise, shifting the binaries by six bits to the left and

extracting the first 16 bits induce 160h0A32Qð3:12Þ �
160h0F13Qð3:12Þ = 160h4CD7 (160b0.100110011010111,

Lout
FI ¼ 0). Similarly, the multiplication between 160h2069

and 160h6F82 can be derived as the following expressions,

160h2069Qð0:15Þ � 160h6F82Qð0:15Þ = 160h1C3B

(160b0.001110000111011, Lout
FI ¼ 0) and 160h2069Qð1:14Þ �

160h6F82Qð1:14Þ = 160h70EF (160b0.111000011101111,

Lout
FI ¼ 0).

In the simulation, we synthesize five distinct types of

multiplication to verify the module’s hardware cost,

including 32-bit � 32-bit, 16-bit � 16-bit, 8-bit � 8-bit, 4-

bit � 4-bit, and 2-bit � 2-bit multiplication. Table 5

illustrates the post-synthesis results of the hybrid

Fig. 16 Evaluation results of

mAP with COCO dataset.

diff(Q(6.9), Float) indicates the

mAP difference between Q(6.9)

fixed-point and floating-point

representation formats

Fig. 17 Hardware simulation

flow with a hybrid

multiplication module

11034 Neural Computing and Applications (2023) 35:11013–11041

123

multiplication module’s power consumption (dynamic

power and static power), area, and delay.

Figure 19 gives a detailed analysis regarding the post-

synthesis results. Specifically, as shown in Fig. 19a–e, the

internal power dominates the whole module power con-

sumption which is 58.9%, 59.6%, 58.6%, 58.9%, and

63.7% for 32-bit � 32-bit, 16-bit � 16-bit, 8-bit � 8-bit, 4-

bit � 4-bit, and 2-bit � 2-bit multiplication, accordingly.

Comparatively, the ratios of leakage power and switching

power for various sorts of multiplication are in the range of

1.1�5.5% and 30.8�40.1%, correspondingly. 32-bit � 32-

bit multiplication consumes 3.37, 21.27, 51.74, and 191.2

times more area than 16-bit � 16-bit, 8-bit � 8-bit, 4-bit �
4-bit, and 2-bit � 2-bit multiplication, respectively. Fig-

ure 19f offers a normalized area comparison among vari-

ous multiplications. 32-bit multiplication module

(maximum power and area: 1805.5 lW and 658441 lm2),

as shown in Fig. 19g and h, totally requires 4.454 times,

32.63 times, 97.27 times, and 627.6 times as much energy

as 16-bit, 8-bit, 4-bit, and 2-bit multiplication modules,

respectively. The path between the LFI output registers and

their pins causes a maximum delay of 65.31 ps for all types

of multiplication modules (refer to Fig. 19i).

Table 6 further contrasts the 8-bit hybrid Q-format

multiplication (HQM) module with the benchmark multi-

plier in terms of power, delay, area, and power-delay

product (PDP).

The power consumption range of benchmark multipliers

is [0.2 mW, 164.8 mW], which is [3.614, 2978.062] times

more than the HQM’s power consumption. The delay of

the benchmark multipliers ranges from [0.62 ns, 16.69 ns],

which is [9.493 to 255.55] times greater than the latency of

our proposed multiplication module. Due to the adoption of

different CMOS technologies, the synthesized area of

HQM is [2.207, 97.705] times greater than those of the

existing multipliers [316.81 lm2, 14024 lm2]. Despite the

increase in the circuit area, the PDP of the HQM is reduced

by a factor of nearly [62.533, 56112.725] times compared

to benchmark multipliers. In summary, the hybrid multi-

plier module proposed in this work offers considerably

lower power consumption and latency characteristics than

conventional multipliers.

Table 5 Post-synthesis results

of hybrid multiplication module

for different types of

multiplication

Multiplication Power [lW] Area [lm2] Delay [ps]

Internal Switching Leakage

32-bit � 32-bit 1063.1 723.2949 19.0669 658441 65.31

16-bit � 16-bit 241.6986 158.0145 5.6827 195377 65.31

8-bit � 8-bit 32.4415 21.8551 1.0417 30954 65.31

4-bit � 4-bit 10.9410 7.1692 0.4504385 12726 65.31

2-bit � 2-bit 1.8339 0.8851732 0.1579009 3444 65.31

Fig. 18 Post-synthesis simulation of hybrid Q-format multiplication

Neural Computing and Applications (2023) 35:11013–11041 11035

123

5 Conclusion

In this paper, a neuromorphic processor-oriented hybrid

multiplication strategy with an adaptive quantization

method is proposed for the convolution operation of tiny

YOLO3. The length of integer bits and the fraction bits of

16-bit fixed-point representations are adaptively deter-

mined based on the range of 32-bit floating-point numbers,

overflow condition, and length of roundoff bits. The

experimental result illustrates that the adaptive quantiza-

tion on weights and feature maps maintains the same object

detection accuracy while effectively reducing conversion

Table 6 Comparison of 8-bit

hybrid Q-format multiplication

module with benchmark

multipliers

Technology Multiplier Power (mW) Delay (ns) Area (lm2) PDP (ns � mW)

180 nm LOBO [53] 2.62 16.69 14024 43.7278

45 nm R4ABM2 [54] 164.8 0.62 667.9 102.176

32 nm Mitch-x [55] 0.2 1.13 389 0.226

45 nm ABM1-12 [56] 4.215 0.75 3054 3.16125

65 nm RAD1024 [57] 63 3.219 2412 202.797

45 nm RoBA [58] 3.422 0.65 2624 2.2243

65 nm DRUM6 [59] 0.296 1.91 649.4 0.56536

45 nm AL-LOA [60] 68.55 0.68 316.81 46.614

55 nm Ours (HQM) 0.055338 0.06531 30954 0.0036141

Fig. 19 Post-synthesis result of hybrid Q-format multiplication module

11036 Neural Computing and Applications (2023) 35:11013–11041

123

and roundoff errors from 16-bit fixed-point to 32-bit

floating-point representations. In addition, the optimal

representation formats (Q(6.9)) of 16-bit fixed-point values

have been achieved as a reference for the neuromorphic

processor design. Moreover, a hybrid multiplication mod-

ule with low power consumption and low latency is also

designed, laying a solid foundation for the development of

neuromorphic processors.

Appendix: pseudo codes for simulation

Algorithm 4 provides the pseudo-codes for the conversion

from fixed-point number to binary.

Neural Computing and Applications (2023) 35:11013–11041 11037

123

Algorithm 5 presents the pseudo-codes (float 2 fixed) for

the conversion from 32-bit floating-point to 16-bit fixed-

point numbers.

11038 Neural Computing and Applications (2023) 35:11013–11041

123

Algorithm 6 offers the pseudo-codes for implementing

the binary addition of fixed-point representation format.

Neural Computing and Applications (2023) 35:11013–11041 11039

123

Acknowledgements This work was supported in part by JSPS

KAKENHI under Grant JP21K17719, and in part by New Energy and

Industrial Technology Development Organization (NEDO) and

Center for Innovative Integrated Electronic Systems(CIES)

consortium.

Data availability The datasets generated and analyzed during the

current study are available from the corresponding author on rea-

sonable request.

Declarations

Conflict of interest The authors declare that they have no conflict of

interest with respect to the research, authorship and/or publication of

this article.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Mead C (1990) Neuromorphic electronic systems. Proc IEEE

78(10):1629–1636

2. Yang S, Wang J, Deng B, Azghadi MR, Linares-Barranco B

(2021) Neuromorphic context-dependent learning framework

with fault-tolerant spike routing. IEEE Trans Neural Netw Learn

Syst. https://doi.org/10.1109/TNNLS.2021.3084250

3. Schuman CD, Kulkarni SR, Parsa M, Mitchell JP, Kay B (2022)

Opportunities for neuromorphic computing algorithms and

applications. Nat Comput Sci 2(1):10–19

4. Yang S, Gao T, Wang J, Deng B, Azghadi MR, Lei T, Linares-

Barranco B (2022) SAM: a unified self-adaptive multicompart-

mental spiking neuron model for learning With working memory.

Front Neurosci 16(850945):1–22

5. Shaban A, Bezugam SS, Suri M (2021) An adaptive threshold

neuron for recurrent spiking neural networks with nanodevice

hardware implementation. Nat Commun 12(1):1–11

6. Yang S, Wang H, Hao X, Li H, Wei X, Deng B, Loparo KA

(2022) BiCoSS: toward large-scale cognition brain with multi-

granular neuromorphic architecture. IEEE Trans Neural Netw

Learn Syst 33(7):2801–2815

7. Shastri BJ, Tait AN, Ferreira de Lima T, Pernice WH, Bhaskaran

H, Wright CD, Prucnal PR (2021) Photonics for artificial intel-

ligence and neuromorphic computing. Nat Photonics

15(2):102–114

8. Li E, Wu X, Chen Q, Wu S, He L, Yu R, Hu Y, Chen H, Guo T

(2021) Nanoscale channel organic ferroelectric synaptic transistor

array for high recognition accuracy neuromorphic computing.

Nano Energy 85(106010):1–9

9. Yang S, Deng B, Wang J, Li H, Lu M, Che Y, Wei X, Loparo KA

(2019) Scalable digital neuromorphic architecture for large-scale

biophysically meaningful neural network with multi-

compartment neurons. IEEE Trans Neural Netw Learn Syst

31(1):148–162

10. Li T, Ma Y, Endoh T (2020) A systematic study of tiny YOLO3

inference: toward compact brainware processor with less memory

and logic gate. IEEE Access 8:142931–142955

11. Deng L, Li G, Han S, Shi L, Xie Y (2020) Model compression

and hardware acceleration for neural networks: a comprehensive

survey. Proc IEEE 108(4):485–532

12. Venkataramani S, Sun X, Wang N, Chen CY, Choi J, Kang,

Gopalakrishnan K et al. (2020) Efficient AI system design with

cross-layer approximate computing. In: Proceedings of the IEEE,

vol. 108, no. 12, pp 2232-2250

13. Sze V, Chen Y-H, Yang T-J, Emer JS (2017) Efficient processing

of deep neural networks: a tutorial and survey. Proc IEEE

105(12):2295–2329

14. Natsui M, Suzuki D, Tamakoshi A, Watanabe T, Honjo H, Koike

H, Nasuno T, Ma Y et al (2019) A 47.14- l W 200-MHz MOS/

MTJ-hybrid nonvolatile microcontroller unit embedding STT-

MRAM and FPGA for IoT applications. IEEE J Solid-State

Circuits 54(11):2991–3004

15. Merolla PA, Arthur JV, Alvarez-Icaza R, Cassidy AS, Sawada J,

Akopyan F, Jackson BL, Imam N, Guo C, Nakamura Y, Brezzo

B, Vo I, Esser SK, Appuswamy R, Taba B, Amir A, Flickner MD,

Risk WP, Manohar R, Modha DS (2014) A million spiking-

neuron integrated circuit with a scalable communication network

and interface. Science 345(6197):668–673

16. Pei J, Deng L, Song S, Zhao M, Zhang Y, Wu S, Wang G, Zou Z,

Wu Z, He W et al (2019) Towards artificial general intelligence

with hybrid Tianjic chip architecture. Nature 572(7767):106–111

17. Davies M, Srinivasa N, Lin T-H, Chinya G, Cao Y, Choday SH,

Dimou G, Joshi P, Imam N, Jain S et al (2018) Loihi: a neuro-

morphic many core processor with on-chip learning. IEEE Micro

38(1):82–99

18. Davies M et al (2021) Taking neuromorphic computing to the

next level with Loihi2. In: Intel Labs’ Loihi 2 Neuromorphic

Research Chip and the Lava Software Framework. Technology

Brief, Intel, pp 1–7

19. Benjamin BV, Gao P, McQuinn E, Choudhary S, Chandrasekaran

AR, Bussat J, Alvarez-Icaza R, Arthur JV, Merolla PA, Boahen K

(2014) Neurogrid: a mixed-analog-digital multichip system for

large-scale neural simulations. Proc IEEE 102(5):699–716

20. Li T, Ma Y, Shen H, Endoh T (2020) FPGA implementation of

real-time pedestrian detection using normalization-based valida-

tion of adaptive features clustering. IEEE Trans Veh Technol

69(9):9330–9341

21. Yuan X, Huang G, Shi K (2020) Improved adaptive path fol-

lowing control system for autonomous vehicle in different

velocities. IEEE Trans Intell Transp Syst 21(8):3247–3256

22. Liu Y-T, Lin Y-Y, Wu S-L, Chuang C-H, Lin C-T (2015) Brain

dynamics in predicting driving fatigue using a recurrent self-

evolving fuzzy neural network. IEEE Trans Neural Netw Learn

Syst 27(2):347–360

23. Mao B, Kawamoto Y, Kato N (2020) AI-based joint optimization

of QoS and security for 6G energy harvesting internet of things.

IEEE Internet Things J 21:452

24. Wong KK, Fortino G, Abbott D (2020) Deep learning-based

cardiovascular image diagnosis: a promising challenge. Futur

Gener Comput Syst 110:802–811

25. Liang F, Yu W, Liu X, Griffith D, Golmie N (2020) Toward

edge-based deep learning in industrial internet of things. IEEE

Internet Things J 7(5):4329–4341

26. Figurnov M, Ibraimova A, Vetrov DP, Kohli P (2016) Perfo-

ratedCNNs: acceleration through elimination of redundant con-

volutions. In: Advances in Neural Information Processing

Systems, pp. 947-955

11040 Neural Computing and Applications (2023) 35:11013–11041

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TNNLS.2021.3084250

27. Dutt S, Dash S, Nandi S, Trivedi G (2019) Analysis, modeling

and optimization of equal segment based approximate adders.

IEEE Trans Comput 68(3):314–330

28. Liu C, Han J, Lombardi F (2015) An analytical framework for

evaluating the error characteristics of approximate adders. IEEE

Trans Comput 64(5):1268–1281

29. Zhu N, Goh WL, Zhang W, Yeo KS, Kong ZH (2009) Design of

low-power high-speed truncation-error-tolerant adder and its

application in digital signal processing. J Trans Very Large Scale

Integr (VLSI) Syst 18(8):1225–1229

30. Deng L, Li G, Han S, Shi L, Xie Y (2020) Model compression

and hardware acceleration for neural networks: a comprehensive

survey. Proc IEEE 108(4):485–532

31. Han S, Mao H, Dally WJ (2016) Deep compression: compressing

deep neural networks with pruning, trained quantization and

Huffman coding. In: International conference on learning repre-

sentations (ICLR), San Juan, Puerto Rico

32. Blalock D, Ortiz JJG, Frankle J, Guttag J (2020) What is the state

of neural network pruning? arXiv:2003.03033

33. Srinivas S, Babu RV (2015) Data-free parameter pruning for deep

neural networks. arXiv preprint arXiv:1507.06149

34. Liu C, Wu H (2019) Channel pruning based on mean gradient for

accelerating convolutional neural networks. Signal Process

156:84–91

35. Chen Z, Xu T-B, Du C, Liu C-L, He H (2020) Dynamical channel

pruning by conditional accuracy change for deep neural net-

works. IEEE Trans Neural Netw Learn Syst 32(2):799–813

36. Yang H, Tang M, Wen W, Yan F, Hu D, Li A, Li, H, Chen Y

(2020) Learning low-rank deep neural networks via singular

vector orthogonality regularization and singular value sparsifi-

cation. In: Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition workshops, pp. 678–679

37. Ba J, Caruana R (2014) Do deep nets really need to be deep? In:

Advances in neural information processing systems,

pp. 2654–2662

38. Buciluǎ C, Caruana R, Niculescu-Mizil A (2006) Model com-

pression. In: Proceedings of the 12th ACM SIGKDD interna-

tional conference on knowledge discovery and data mining,

pp. 535–541

39. Hinton G, Vinyals O, Dean J (2015) Distilling the knowledge in a

neural network. arXiv preprint arXiv:1503.02531

40. Furlanello T, Lipton ZC, Tschannen M, Itti L, Anandkumar A

(2018) Born again neural networks. arXiv
preprintarXiv:1805.04770

41. Romero A, Ballas N, Kahou SE, Chassang A, Gatta C, Bengio Y

(2014) Fitnets: hints for thin deep nets. arXiv preprint
arXiv:1412.6550

42. Hubara I, Courbariaux M, Soudry D, El-Yaniv R, Bengio Y

(2017) Quantized neural networks: training neural networks with

low precision weights and activations. J Mach Learn Res

18(1):6869–6898

43. Jung S, Son C, Lee S, Son J, Han J-J, Kwak Y, Hwang SJ, Choi C

(2019) Learning to quantize deep networks by optimizing quan-

tization intervals with task loss. In: Proceedings of the IEEE

conference on computer vision and pattern recognition (CVPR),

Long Beach, United States, pp. 4350–4359

44. Zhang X, Liu S, Zhang R, Liu C, Huang D, Zhou S, Guo J, Guo

Q, Du Z, Zhi T et al. (2020) Fixed-point back-propagation

training. In: Proceedings of the IEEE/CVF conference on com-

puter vision and pattern recognition, pp 2330–2338

45. Gupta S, Agrawal A, Gopalakrishnan K, Narayanan P (2015)

Deep learning with limited numerical precision. In: International

conference on machine learning (ICML), Lille, France,

pp 1737–1746

46. Zhou Y, Moosavi-Dezfooli S.M, Cheung N-M, Frossard P (2017)

Adaptive quantization for deep neural network. arXiv preprint
arXiv:1712.01048

47. Zhu X, Zhou W, Li H (2018) Adaptive layerwise quantization for

deep neural network compression. In: 2018 IEEE international

conference on multimedia and expo (ICME), San Diego, CA,

USA, pp 1–6

48. Kwon D, Lim S, Bae J-H, Lee S-T, Kim H, Kim C-H, Park B-G,

Lee J-H (2018) Adaptive weight quantization method for non-

linear synaptic devices. IEEE Trans Electron Devices

66(1):395–401

49. Yin S, Seo J-S (2019) A 2.6 Tops/w 16-bit fixed-point convo-

lutional neural network learning processor in 65-nm CMOS.

IEEE Solid-State Circuits Lett 3:13–16

50. Lindstrom P (2014) Fixed-rate compressed floating-point arrays.

IEEE Trans Visual Comput Graph 20(12):2674–2683

51. Rastegari M, Ordonez V, Redmon J, Farhadi A (2016) XNOR-

Net: Imagenet classification using binary convolutional neural

networks,’’ In: European Conference on Computer Vision,

Springer, Amsterdam, The Netherlands, pp 525–542

52. Courbariaux M, Bengio Y, David J-P (2015) Binaryconnect:

training deep neural networks with binary weights during prop-

agations. In: Advances in neural information processing systems,

pp 3123–3131

53. Ratko P, Bulić P (2020) On the design of logarithmic multiplier

using radix-4 booth encoding. IEEE Access 8:64578–64590

54. Liu W, Qian L, Wang C, Jiang H, Han J, Lombardi F (2017)

Design of approximate radix-4 booth multipliers for error-tolerant

computing. IEEE Trans Comput 66(8):1435–1441

55. Kim MS, Del Barrio AA, Oliveira LT, Hermida R, Bagherzadeh

N (2018) Efficient Mitchell’s approximate log multipliers for

convolutional neural networks. IEEE Trans Comput

68(5):660–675

56. Waris H, Wang C, Liu W (2020) Hybrid low radix encoding-

based approximate booth multipliers. IEEE Trans Circuits Syst II

Express Briefs 67(12):3367–3371

57. Leon V, Zervakis G, Soudris D, Pekmestzi K (2017) Approxi-

mate hybrid high radix encoding for energy-efficient inexact

multipliers. IEEE Trans Very Large Scale Integr (VLSI) Syst

26(3):421–430

58. Zendegani R, Kamal M, Bahadori M, Afzali-Kusha A, Pedram M

(2016) RoBA multiplier: a rounding-based approximate multi-

plier for high-speed yet energy-efficient digital signal processing.

IEEE Trans Very Large Scale Integr (VLSI) Syst 25(2):393–401

59. Hashemi S, Bahar RI, Reda S (2015) DRUM: a dynamic range

unbiased multiplier for approximate applications. In: 2015 IEEE/

ACM International conference on computer-aided design

(ICCAD), pp 418-425

60. Liu W, Xu J, Wang D, Wang C, Montuschi P, Lombardi F (2018)

Design and evaluation of approximate logarithmic multipliers for

low power error-tolerant applications. IEEE Trans Circuits Syst I

Regul Pap 65(9):2856–2868

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2023) 35:11013–11041 11041

123

http://arxiv.org/abs/2003.03033
http://arxiv.org/abs/1507.06149

	Neuromorphic processor-oriented hybrid Q-format multiplication with adaptive quantization for tiny YOLO3
	Abstract
	Introduction
	Convolution of tiny YOLO3
	Hybrid Q-format multiplication with adaptive quantization proposal
	Adaptive quantization for tiny YOLO3
	Binary addition with sign-bit check
	Binary multiplication with bit roundoff

	Results and discussion
	Algorithm verification
	Hardware verification

	Conclusion
	Appendix: pseudo codes for simulation
	Data availability
	References

