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Abstract
We present an approach that uses a deep learning model, in particular, a MultiLayer Perceptron, for estimating the missing

values of a variable in multivariate time series data. We focus on filling a long continuous gap (e.g., multiple months of

missing daily observations) rather than on individual randomly missing observations. Our proposed gap filling algorithm

uses an automated method for determining the optimal MLP model architecture, thus allowing for optimal prediction

performance for the given time series. We tested our approach by filling gaps of various lengths (three months to three

years) in three environmental datasets with different time series characteristics, namely daily groundwater levels, daily soil

moisture, and hourly Net Ecosystem Exchange. We compared the accuracy of the gap-filled values obtained with our

approach to the widely used R-based time series gap filling methods ImputeTS and mtsdi. The results indicate that using

an MLP for filling a large gap leads to better results, especially when the data behave nonlinearly. Thus, our approach

enables the use of datasets that have a large gap in one variable, which is common in many long-term environmental

monitoring observations.

Keywords Missing value imputation � Environmental data � Machine learning � Hyperparameter optimization �
Derivative-free optimization � Surrogate models

1 Introduction and literature review

Time series data are recorded in diverse application areas

ranging from earth sciences to healthcare, finance, traffic,

etc. Time series often have missing values (gaps) due to,

for example, sensor failures, collection errors, or lack of

resources [1–4]. However, often complete time series

datasets are required for analysis or when these data are

used as inputs to numerical models. For environmental

science applications, such time series gaps could coincide

with crucial times where hydrological or biogeochemical

fluxes or rates are high. As an example, high stream stage

conditions or fluctuations in temperature can promote

carbon and nutrient cycling in hyporheic zone environ-

ments [5, 6]. Thus, it becomes crucial to impute missing

time series values with highly accurate estimates. There are

two categories of time series missing value imputation

methods, namely multivariate and univariate methods

[7, 8]. The first class estimates missing values by exploiting

relationships between variables. The second class solely

relies on available observations of the time series whose

gaps must be filled. In this paper, we study a special case

where a large number of consecutive values are missing in

a single variable of a multivariate time series.

Many different methods have been used to deal with

different characteristics of missing values. For example, for

small gaps in univariate time series (individual missing
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values), the last observation before the gap can be carried

forward or the next observation after the gap backward to

estimate missing values. Other approaches, which are

implemented in ImputeTS [9] provide linear, spline

interpolation, or Kalman smoothing methods. Machine

learning-based algorithms have also been studied for gap

filling purposes. For example, [10] estimated missing val-

ues in univariate CO2 concentrations and air temperature

data. This approach, however, is not able to take advantage

of multidimensional data.

For the imputation of missing values in the multivariate

case, the K-nearest neighbor method has been successfully

applied for imputing data in the field of medical science

[11]. However, this and other such applications have been

limited to imputation problems where values are missing

only at random. Recently, recurrent neural networks

[12, 13] and generative adversarial networks [14, 15] have

been used for imputing values in health-care and public air

quality datasets. These studies focused exclusively on the

performance and accuracy of the proposed approaches for

filling individual randomly missing values.

MLPs have also been successfully used for imputing

missing time series values across areas of differing com-

plexity and applications. For example, [16, 17] showed that

time delayed deep neural network models can impute

missing values in univariate hourly traffic volumes. The

referenced works focus on filling relatively short gaps (up

to 168 data points) and a genetic algorithm was employed

for optimizing the hyperparameters of the used gap filling

methods. [18] used an MLP to fill missing values in 16

meteorological drivers and three key ecosystem fluxes in

the regional Australian and New Zealand flux tower net-

work. The authors analyzed the performance of gap filling

methods by manually changing the lags (the number of

historical time steps used for making the next time step

prediction). To estimate the missing flux values, they used

multiple meteorological drivers such as air temperature,

wind speed, soil water content, ground heat flux, and net

radiation. The architecture of their MLP was determined by

using a grid search method provided in scikit-learn [19]. In

another study, [20] focused on filling the gaps in methane

flux measurements using multiple input variables including

net ecosystem exchange (NEE) of CO2, latent heat flux,

sensible heat flux, global radiation, outgoing long wave

radiation, air temperature, soil temperature, relative

humidity, vapor pressure deficit, friction velocity, air

pressure, and water table height. They used an MLP with

two hidden layers and determined the number of nodes by

using a three-fold cross-validation method.

Unlike the referenced studies, the main contribution of

our work is a method for filling a long continuous gap (e.g.,

multiple continuous months of missing daily observations)

in a single variable of a multivariate time series dataset.

Another key difference between the previous studies and our

research is the size of the datasets used. Our focus is on

smaller datasets that have fewer variables than the cited

works. Usually, these types of datasets are hard to use and

tend to be discarded in analysis and modeling efforts. Our

approach would enable greater use of time series datasets

that havemulti-year gaps in a variable, which are common in

many long-term environmental monitoring observations. In

contrast to prior approaches using MLPs, our proposed gap

fillingmethod optimizes theMLPmodel architecture and the

length of the lag with an efficient method that is based on

surrogate models. Our method requires fewer resources

because it is automated and uses adaptive sampling rather

than evolutionary or trial-and-error approaches.

In this paper, we present a gap filling approach that is

based on the concept of Time-Delayed Deep Neural Net-

works (TDNN) [21] with the goal of filling a long con-

tinuous gap in one variable of a multivariate time series.

The concept of TDNN is suitable for handling temporal

time series that are a characteristic feature of environ-

mental datasets. This research extends our previous work

[22] in which we used deep neural networks to predict

groundwater levels for multiple years into the future using

supporting variables such as temperature, precipitation, and

river flux data. In the cited work, we optimized the network

architectures with an automated hyperparameter tuning

method, which we adopt and modify in the present work to

enable gap filling. We assume that the target time series

variable has one large gap and that the supporting variables

that explain the target variable are fully observed. Our

previous work showed that MLPs are successful in making

accurate predictions, and therefore, we use an MLP for gap

filling in the present study. Our research will have an

impact on application areas where gap-free long-term

observations are particularly useful.

The remainder of this paper is organized as follows.

Section 2 provides a brief description of MLP models and

hyperparameter optimization (HPO) used for gap filling.

Section 3 presents the results of our numerical study in

which we compare the performance of our proposed

method with ImputeTS [9] and mtsdi [23] for filling gaps

of various lengths (three months to three years) of three

different environmental datasets. Finally, Sect. 4 concludes

the paper and provides future research directions.

2 Multilayer perceptrons
and hyperparameter optimization for gap
filling

In this section, we provide brief descriptions of MLPs and

the hyperparameter optimization method used to determine

its architecture.
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2.1 Multilayer perceptron (MLP)

Deep neural networks are known to have the ability to

approximate nonlinear functions well. In this paper, we use

MLPs with nonlinear activation functions for regression

purposes to map input to output features. An MLP is a

feed-forward artificial neural network. A generic MLP

consists of an input layer, at least one hidden layer, and an

output layer with each layer containing multiple nodes.

Each node in the input and output layers corresponds to an

input feature and target variable, respectively. In order to

construct an input layer that encodes temporal information,

we structure each input such that it contains multiple time

steps. We define the amount of historical information in an

input as lag l. Thus, with T time periods, an input is defined

as fxt�l; . . .; xt�1; xtg, where t ¼ lþ 1; . . .; T . Our goal is to

predict the value at the next time step, and thus the output

layer has only a single node, which corresponds to the

target variable Y that needs to be gap-filled. With this

architecture, the MLP is trained by minimizing over a set

of weights and biases using a predefined loss function, such

as a root-mean-squared error or other metric that reflects

how well the MLP approximates the data. The root-mean-

squared error is the square root of the average difference

between the actual (ground truth) and predicted values. In

the first step of this training, linear combinations of input

nodes with initial weights are constructed. Each linear

combination is passed to all nodes in the first hidden layer.

An activation function in the nodes receives this value and

returns a transformed value. The transformed values from

all nodes in the first hidden layer are given to the nodes in

the second hidden layer for further transformation. This

process repeats until the output layer returns the final

transformed value. The loss function to be minimized

reflects the error between the transformed output values

and the true values. By iteratively adjusting the weights

and biases associated with each node, the loss function is

minimized. We use the Rectified Linear Unit (ReLU)

activation function, f ð�Þ ¼ maxð0; �Þ [24], which allows us

to approximate nonlinear functions. Our training objective

function (loss) is the mean squared error (MSE). The

iterative optimization of the weights and biases is per-

formed with the Adam optimizer [25], which is a type of

backpropagation algorithm based on gradient descent and

the chain rule [26].

Other essential hyperparameters that influence the per-

formance of the MLP, such as the batch size (size of bat-

ched samples in the gradient update), the number of epochs

(number of iterations used in training), the dropout

rate [27], the number of hidden layers and nodes in each

layer, and the lag value l, are determined by the automated

optimization method described in the next section. We

assume that the learning and decay rates of the stochastic

gradient descent method used for training the MLP are

known and fixed. For further details about MLPs, we refer

the reader to [28].

2.2 Optimization of MLP architectures for gap
filling

In order to improve the predictive performance of MLPs

(and deep learning models in general), the hyperparameters

(model architecture) should be carefully chosen [29]. Dif-

ferent hyperparameter optimization (HPO) methods have

been developed and used in the literature, including ran-

dom search [30], a combination of grid search and trial and

error [31], Bayesian optimization [32], and genetic

algorithms [33].

In this work, we adapt the HPO method proposed

in [22], which interprets the training of a given architecture

as an expensive black-box function evaluation of the

architecture’s performance. Thus, the goal is to find the

best hyperparameters within as few trials as possible by

employing computationally efficient methods. To this end,

surrogate models (in particular radial basis functions and

Gaussian process models) are used to map the hyperpa-

rameters to their respective performance. An initial

experimental design with n0 different hyperparameter sets

is created for which the performance is evaluated by

training the respective models. This initial design is used to

create the computationally cheap surrogate models. In each

iteration of the optimization, an auxiliary optimization

problem is solved on the computationally fast to evaluate

surrogate model to determine the next hyperparameters to

be tried. The surrogate model is updated each time a new

hyperparameter set has been evaluated (see Fig. 1 and

Reference [22] for more algorithmic details).

In order to adapt the HPO algorithm described in [22]

for our gap filling purposes, we only have to change the

way we split the training and validation datasets by taking

into account the fact that some data are missing. Since we

include the lag (the number of historical time steps for

predicting the value at the next time step) in our list of

MLP hyperparameters to be optimized, we have to create a

lagged table of the data for each set of hyperparameters we

want to evaluate.

We denote the observation matrix with N variables and

time length S as X ¼ ðx1; x2; . . .; xSÞT 2 RS�N , where xs ¼
ðx1s ; x2s ; . . .; xNs Þ 2 RN is an observation vector at time

s; 1� s� S. Each xds is an observation of the dth variable,

where d ¼ 1; . . .;N. We assume that the first column in the

matrix X corresponds to the target vector Y that contains

missing values, and the remaining columns are the sup-

porting variables. In the following, we denote xds ¼ NaN if
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the value is missing. For example, assume we have nine

observations (S ¼ 9), one target variable, and two sup-

porting variables (N ¼ 3), then the observation matrix and

target value vector are, respectively,

X =

1 2 3⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 x1
1 x2

1 x3
1

2 x1
2 x2

2 x3
2

3 x1
3 x2

3 x3
3

4 x1
4 x2

4 x3
4

5 NaN x2
5 x3

5
6 NaN x2

6 x3
6

7 x1
7 x2

7 x3
7

8 x1
8 x2

8 x3
8

9 x1
9 x2

9 x3
9

, Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 x1
1

2 x1
2

3 x1
3

4 x1
4

5 NaN
6 NaN
7 x1

7
8 x1

8
9 x1

9

.

Here, the values for x15 and x
1
6 are missing and the goal is

to estimate their values using an optimized MLP. Then, the

lagged table for, e.g., lag l ¼ 1 becomes

After the lagged tables have been constructed, we

determine if they contain any missing values (NaN). Any

row that contains at least one NaN entry in the input or

output can be removed because the rows in the lagged

table are independent. Thus, for the above example, we

obtain the following reduced inputs and outputs

Once the reduced lagged input and output are obtained,

they are divided into training and validation datasets. For

any architecture, the reduced lagged training dataset is used

to train the corresponding neural network model. Since this

training is done by stochastic gradient descent (and thus the

final trained model can be interpreted as the realization of a

stochastic process), we train the model M times, each with

a different random number seed. Each of the M trained

models is validated against the reduced lagged validation

dataset, and the architecture’s performance is calculated as

the sample average over all M values.

Finally, we impute the missing values sequentially

starting from the first missing value to the last missing

value, using the previous estimated missing value to impute

the next missing value. In the small example above, we

impute the first missing value x15 and denote it as x̂15 by

using ðx13; x23; x33; x14; x24; x34Þ. Then, the next missing value

(x16) is estimated based on x̂15, i.e., ðx14; x24; x34; x̂15; x25; x35Þ. In
this way, all missing values are estimated.

3 Numerical experiments

In this section, we demonstrate that our proposed method

for gap filling of multivariate time series data is general

enough to be used in different applications that have

varying observation frequencies and data characteristics.

We describe three time series datasets for which we assume

that the target variable has one large gap that must be filled.

These time series include observed groundwater levels,

simulated soil moisture, and derived net ecosystem

exchange from flux tower measurements. Below, we pro-

vide details of the setup of the numerical experiments and

alternative gap filling algorithms that we use for

comparison.

Input =

1 2 3 4 5 6⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

1 x1
1 x2

1 x3
1 x1

2 x2
2 x3

2
2 x1

2 x2
2 x3

2 x1
3 x2

3 x3
3

3 x1
3 x2

3 x3
3 x1

4 x2
4 x3

4
4 x1

4 x2
4 x3

4 NaN x2
5 x3

5
5 NaN x2

5 x3
5 NaN x2

6 x3
6

6 NaN x2
6 x3

6 x1
7 x2

7 x3
7

7 x1
7 x2

7 x3
7 x1

8 x2
8 x3

8

, Output =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

1 x1
3

2 x1
4

3 NaN
4 NaN
5 x1

7
6 x1

8
7 x1

9

.

Reduced Input =

1 2 3 4 5 6⎛
⎝

⎞
⎠

1 x11 x21 x31 x12 x22 x32
2 x12 x22 x32 x13 x23 x33
7 x17 x27 x37 x18 x28 x38

,Reduced Output =

⎛
⎝

⎞
⎠

1 x13
2 x14
7 x19

.
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3.1 Description of the datasets

3.1.1 Measured groundwater levels

Our first dataset contained groundwater level time series

measured in a groundwater monitoring well in Butte

County in California (CA), United States. The monitoring

well1 is 200 m deep from the surface, and provides the

groundwater elevation above the mean sea level at daily

time resolution. We obtained the data from the California

Natural Resources Agency. Our goal was to gap fill the

time series of groundwater levels using measurements of

the supporting variables - temperature, precipitation and

river discharge. The nearest discharge monitoring station

(Butte Creek Durham) measures the daily discharge rate at

the Butte Creek about 8 km from the well2. Temperature

and precipitation data were obtained from the Chico

weather station located 7 km from the well site3. The

dataset used in the study consisted of approximately eight

years (2010-2018) of daily observations. For a more

detailed description of the dataset and the data sources, we

refer the reader to [22, 34]. Figure 2 shows the time series

plots for all variables.

3.1.2 Simulated soil moisture

Our second dataset was created with the HYDRUS-1D

model [35, 36], a soil hydrologic simulation model. The

HYDRUS-1D model is a modular, freely-available, state-

of-the-art, and widely used soil hydrologic model with

many advanced and coupled water and reactive chemical

transport features including equivalent continuum and dual

permeability modeling approaches for preferential flow and

transport. In particular, the model simulates water, heat and

solute transport in variably saturated and saturated porous

media. The model has been extensively applied for mod-

eling across scales—from laboratory cores to watersheds

[37, 38].

Here, we used the HYDRUS-1D model to simulate a

representative soil column in the Butte County in Califor-

nia to determine the changes in soil moisture profiles over

approximately seven years (2011-2018). As a result, our

target variable was the daily total water content (TWC) in

the upper 80 cm of the simulated soil column. The net

amount of water entering the soil column from the top

(vTop) and the groundwater recharge were used as the

supporting variables for calculations. Figure 3 shows the

time series plots for all variables. Because simulation

models usually do not lead to missing values, we use it here

as an ideal case study to investigate the general applica-

bility of our MLP-based gap filling approach.

3.1.3 Net ecosystem exchange data

Our third example application was the most recently pro-

duced FLUXNET dataset, that is FLUXNET2015 dataset.

It includes data on CO2, water, energy exchange, and other

meteorological and biological measurements [39, 40]. The

eddy-covariance method is used to allow for the non-de-

structive estimation of fluxes between atmosphere and

biosphere for a single site to global scale. FLUXNET

datasets have been used in a wide range of research areas

ranging from soil microbiology to validation of large-scale

earth system models.

The target and supporting variables for the Morgan

Monroe State Forest site, Indiana, United States for 16

years (1999-2014) [41] are described in Table 1 and the

time series are illustrated in Fig. 4. Note that none of the

variables in the studied date range have missing values.

In all three case studies, the supporting variables had

been identified with the help of domain science experts, but

filter methods, recursive feature elimination, or sensitivity

analyses [34] may prove useful to further downselect the

most important features. For all test cases, temporal

information such as the time of day, the day, and the month

Fig. 1 Steps of the surrogate

model algorithm used to tune

the MLP hyperparameters. For

further details, see [22]

1 22N01E28J001M, California Natural Resources Agency, Periodic

Groundwater Level Measurements, https://data.cnra.ca.gov/dataset/

periodic-groundwater-level-measurements.
2 California Data Exchange Center, Butte Creek Durham station,

https://cdec.water.ca.gov/webgis/?appid=cdecstation &sta=BCD.
3 California Data Exchange Center, Chico Station, https://cdec.water.

ca.gov/webgis/?appid=cdecstation &sta=CHI.
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of the year the measurements were taken were also inclu-

ded as additional supporting variables. Also, all values of

each feature were rescaled with the min-max normaliza-

tion, i.e., for each variable xi, to transform all variables to

have the same scale. We found the minimum value ximin

and the maximum value ximax, and we rescaled the values

according to ~xi ¼ xi�xi
min

ximax�xi
min

.

3.2 Setup of numerical experiments

3.2.1 HPO details

We implemented the HPO algorithm for gap filling

described in Sect. 2.2 in python (version 3.7) using

PyTorch (version 1.4.0) [42]. All experiments were run on

Fig. 2 Time series plots for the groundwater level imputation test case. Shown are (top to bottom) the daily groundwater levels (GW),

temperature (Temp), precipitation (Rain), and log-transformed riverflux

Fig. 3 Time series plots for the soil moisture imputation test case. Shown are (top to bottom) the daily total water content (TWC), the net amount

of water entering the soil column from the top (vTop), and the groundwater recharge
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Ubuntu 16.04 with Intelr Xeon(R) CPU E3-1245 v6 @

3.70GHz � 8, and 31.2 GB memory. We used the same

parameter settings as in [22] and we optimized over the

following hyperparameters and their ranges:

• Batch size 2 f10; 15; . . .; 195; 200g,
• Epochs 2 f50; 100; . . .; 450; 500g,
• Layers 2 f1; 2; . . .; 5; 6g,
• Number of hidden nodes 2 f5; 10; . . .; 45; 50g,
• Dropout rate 2 f0:0; 0:1; . . .; 0:4; 0:5g,
• Lags 2 f30; 35; . . .; 360; 365g.
The optimization hyperparameters and their possible val-

ues were the same for all three test cases. Note that all

parameters were mapped to consecutive integers for the

optimization, and there is a finite number of possible

combinations (architectures). With the provided options,

there are 7,588,800 possible MLP architectures, and it is

computationally intractable to train that many networks,

thus motivating the use of automated HPO.

We assumed that each hidden network layer has the

same number of hidden nodes and the same dropout rate.

We use the MSE as performance measure in tuning the

hyperparameters and we split the data into 85% training

data and 15% validation data.

In the HPO algorithm, we set n0 ¼ 10 as the initial

experimental design size (we used 10 different hyperpa-

rameter sets and we trained the models for each to obtain

the model performance, which we use to initialize the

surrogate model). We stopped the algorithm after n ¼ 50

hyperparameter sets had been tried. In order to take into

account the stochasticity that arises from using the

stochastic gradient descent method for training the models,

we computed the hyperparameter performance as the

sample average over multiple training trials. For example,

Table 1 Target and supporting variables with description of FLUXNET2015 dataset

Variable Units Description

Target

variable

NEE_VUT_USTAR50 lmolCO2/

m2s

Net Ecosystem Exchange, using Variable Ustar Threshold (VUT) for each year, from 50

percentile of USTAR threshold

Supporting

variables

TA_F �C Air temperature

VPD_F hecto

Pascals

Vapor Pressure Deficit

SW_IN_F Watt/m2 Shortwave radiation, incoming

Fig. 4 Time series plots for the net ecosystem exchange test case. Shown are (top to bottom) the hourly Net Ecosystem Exchange

(NEE_VUT_USTAR50), Air Temperature (TA_F), Vapor Pressure Deficit (VPD_F), and incoming shortwave radiation (SW_IN_F)
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for the daily groundwater level application and the

HYDRUS-1D application, we trained the model for each

hyperparameter set five times using the same training

dataset, and the performance was defined as the average

MSE over those trials. Due to the computational expense

associated with training the MLP models for the FLUX-

NET data (because of the large amount of training data),

we computed the performance only over one training trial

for each hyperparameter set.

3.2.2 Description of gaps in time series data

In order to test our developed gap filling method, we cre-

ated an artificial continuous gap in the target time series.

We studied different instances in which the gaps have

varying lengths and are located at different times of the

year. By using artificial gaps, we have the ability to com-

pare the gap-filled values to the true held-out observations

as well as analyze and compare the performance of dif-

ferent gap filling methods. In all three test cases, the sup-

porting variables did not have gaps.

For the groundwater application, we created gaps of

three, six and twelve months of daily observations. For

each case, we used 12 different problem instances in which

we removed the data of different months of the year, which

allowed us to analyze a possible dependence of the per-

formance of the gap filling methods on the trend charac-

teristics of the missing data. For example, for the three

month gap, we assumed that groundwater levels were

missing (i) from January through March 2012, (ii) from

February through April 2012, (iii) from March through

May 2012, etc. For the HYDRUS-1D application, we

assumed that the total water content values were missing

for 12 and 15 months, respectively. For the 12-month gap,

we assumed that the total water content values were

missing (i) from January 2013 through December 2013, (ii)

from February 2013 through January 2014, and (iii) from

March 2013 through February 2014. For the 15 months

gap, we considered 9 cases where the missing values were

staring from the months of April, May, till December.

Finally, for the hourly FLUXNET data, we considered

between 2,159 hours (3 months) and 35,063 hours (36

months) of missing values in the Net Ecosystem Exchange

data (NEE_VUT_USTAR50).

3.2.3 Gap filling algorithms used in the numerical
comparison

We compared our proposed gap filling method with state-

of-the-art imputation packages, including ImputeTS [9]

and mtsdi [23]. ImputeTS is a univariate time series

missing value imputation package implemented in R. We

used the na.seadec function with an interpolation

algorithm. The na.seadec function imputes missing

values with deseasonalized time series data and adds the

seasonality again. It has the option to identify the number

of observations before the seasonal pattern repeats. How-

ever, in our applications, this feature did not yield satis-

factory results, and thus we manually set the daily time

series frequency, i.e., the frequency of 365. mtsdi is an

expectation-maximization algorithm-based multivariate

time series missing value imputation package in R. We

used the default settings, i.e., the mnimput function with

the spline method, and we set the spline smooth control to

7. With mtsdi, we included indicator variables such as the

month, week, and day.

3.3 Results and discussion

In this section we provide a description of the outcomes of

our numerical experiments for all three use cases. We

present results in the form of tables and illustrations of the

gap filled time series.

3.3.1 Groundwater level predictions

Tables 2, 3, and 4 present a comparison of the root-mean-

squared error (RMSE), mean absolute error (MAE), and

mean absolute percentage error (MAPE) computed

between the predicted values and the true (held-out) values

for the groundwater use cases with three, six, and twelve

months of missing daily data values, respectively. Shown

are the three metrics for our proposed MLP-based gap

filling method, ImputeTS, and mtsdi. The RMSE and

MAE are given in meters (m), and the MAPE is given in

percentage. The lower tables show the optimal hyperpa-

rameters that were identified with HPO and led to the MLP

outcomes.

For three months of missing daily observations (top

section of Table 2), our results show that the best results

were achieved by different methods depending on the date

range for which the data are missing. For example, for the

three months that span November 2012-January 2013 (see

also Fig. 5), the groundwater levels show a linear growth.

All gap filling methods captured this increasing trend

and ImputeTS yielded the best performance in terms of

the three comparison metrics. This is due to the fact that

ImputeTS uses na.seadec with an interpolation

algorithm. In other words, ImputeTS performed season-

ally decomposed missing value imputation by linear

interpolation which yielded excellent agreement with the

held-out data for the missing data segment that had linear

behavior. Also the MLP-based gap filling methods were

able to capture the linear trend, but the predictions were not

as accurate.mtsdi introduced strong oscillations around the
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overall growing trend. Moreover, mtsdi performed overall

the worst for all date ranges for the three month test case.

In contrast, Figs. 6 and 7 show scenarios where the data

are behaving nonlinearly. In Fig. 6, the interpolation used

by imputeTS failed to capture the trend and produced an

almost flat prediction. Both MLP-based methods captured

the nonlinear trend in the missing data better, yet the

deviation over the last � 3 weeks was larger. mtsdi made

again predictions with large oscillations around the true

data, and for the last 6 weeks of missing data, it deviated

significantly from the truth. In Fig. 7,mtsdi shows again an

oscillating pattern, whereas imputeTS underestimated the

groundwater level. The MLP solutions are closest to real-

ity. Regarding the optimal MLP architectures that corre-

spond to the best solutions, Table 2 shows that there are

only few differences. Most optimal architectures have only

1 layer and 40-45 nodes in that layer, often with a relatively

large number of training epochs and no dropout. Similarly,

the number of lags used to make predictions are 240 days

or more, indicating the importance of at least 8 months

worth of data points to make accurate predictions for the

gap filling. We can also see that there are a few architec-

tures that are more complex with more layers but that

achieve a somewhat similar solution quality as the smaller

Table 2 (a) RMSE, MAE, and MAPE values for the different gap filling methods for three months of missing values in daily groundwater levels.

(b) Optimal hyperparameters ([batch size, # epochs, # layers, # nodes per layer, dropout rate, # lags]) for both RBF- and GP-based HPO

Missing date range (yyyy-mm-dd) #obs RMSE, MAE, MAPE

From To MLP RBF MLP GP ImputeTS mtsdi

(a)

2012-01-01 2012-03-31 91 0.34, 0.28, 0.69 0.38, 0.29, 0.70 0.58, 0.46, 1.12 1.25, 1.02, 2.50

2012-02-01 2012-04-30 90 0.45, 0.32, 0.75 0.56, 0.43, 1.04 0.48, 0.36, 0.88 1.14, 0.85, 2.03

2012-03-01 2012-05-31 92 0.54, 0.41, 0.99 0.61, 0.50, 1.20 1.00, 0.78, 1.87 1.35, 1.05, 2.54

2012-04-01 2012-06-30 91 0.56, 0.43, 1.06 0.62, 0.49, 1.22 0.66, 0.51, 1.25 1.38, 1.11, 2.73

2012-05-01 2012-07-31 92 0.61, 0.51, 1.33 0.62, 0.52, 1.36 0.63, 0.50, 1.32 1.16, 0.99, 2.62

2012-06-01 2012-08-31 92 0.42, 0.32, 0.87 0.41, 0.33, 0.90 0.38, 0.32, 0.86 1.60, 1.50, 4.12

2012-07-01 2012-09-30 92 0.26, 0.22, 0.61 0.33, 0.26, 0.73 0.29, 0.24, 0.67 1.74, 1.71, 4.74

2012-08-01 2012-10-31 92 0.35, 0.27, 0.73 0.35, 0.27, 0.74 0.47, 0.40, 1.12 1.56, 1.47, 4.08

2012-09-01 2012-11-30 91 0.49, 0.39, 1.04 0.80, 0.62, 1.62 0.28, 0.22, 0.60 1.03, 0.87, 2.37

2012-10-01 2012-12-31 92 0.80, 0.71, 1.85 0.93, 0.86, 2.23 0.25, 0.20, 0.52 0.74, 0.61, 1.59

2012-11-01 2013-01-31 92 0.74, 0.70, 1.77 0.75, 0.73, 1.83 0.23, 0.19, 0.49 0.79, 0.68, 1.72

2012-12-01 2013-02-28 90 0.69, 0.63, 1.54 0.67, 0.56, 1.36 0.55, 0.47, 1.16 0.97, 0.86, 2.10

Missing date range (yyyy-mm-dd) #obs Hyperparameters

From To MLP RBF MLP GP

(b)

2012-01-01 2012-03-31 91 145, 150, 1, 45, 0, 330 190, 450, 4, 50, 0, 270

2012-02-01 2012-04-30 90 120, 400, 1, 25, 0, 250 95, 450, 3, 40, 0, 210

2012-03-01 2012-05-31 92 195, 400, 1, 45, 0, 250 170, 350, 2, 20, 0, 290

2012-04-01 2012-06-30 91 175, 450, 1, 40, 0, 240 70, 500, 1, 25, 0, 345

2012-05-01 2012-07-31 92 130, 450, 4, 45, 0, 330 170, 350, 1, 30, 0, 240

2012-06-01 2012-08-31 92 170, 250, 1, 45, 0, 265 70, 500, 1, 25, 0, 345

2012-07-01 2012-09-30 92 170, 250, 1, 45, 0, 265 70, 500, 1, 25, 0, 345

2012-08-01 2012-10-31 92 170, 250, 1, 45, 0, 265 70, 500, 1, 25, 0, 345

2012-09-01 2012-11-30 91 125, 400, 2, 45, 0, 230 50, 150, 4, 50, 0, 290

2012-10-01 2012-12-31 92 170, 250, 1, 45, 0, 265 70, 500, 1, 25, 0, 345

2012-11-01 2013-01-31 92 170, 250, 1, 45, 0, 265 70, 500, 1, 25, 0, 345

2012-12-01 2013-02-28 90 135, 450, 3, 45, 0, 305 110, 200, 1, 10, 0, 255

Bold numbers indicate the best value for a given problem instance. The column ‘‘#obs’’ indicates the number of missing observations.‘‘MLP

RBF’’ and ‘‘MLP GP’’ indicate the methods using the MLP with the RBF and GP surrogate during HPO, respectively
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architectures (e.g., missing date range 2012-01-01 to

2012-03-31). This indicates that different architectures may

lead to similar results. In this case, choosing the smaller

architecture may be beneficial because they tend to train

faster.

The results for the case where six months of daily

observations were missing are summarized in Table 3.

Except for two cases (missing values from July 2012 to

December 2012 and from August 2012 to January 2013),

our proposed approach with either RBF or GP made more

accurate predictions than imputeTS and mtsdi in terms of

the comparison metrics. Similarly to the three-month

missing data case, architectures of different complexities

can lead to similar performance, e.g., missing date range

2012-03-01 to 2012-08-31. The optimal values for the

number of lags shows again that more than 200 days are

needed to make good gap-filling predictions. This indicates

that information about the ups and downs of groundwater

levels over the course of several months are needed for

good gap filling performance.

Figure 8 shows a comparison between all methods with

missing values ranging from November 2012 to April

2013.

Table 3 (a) RMSE, MAE, and MAPE values for the different gap filling methods for six months of missing values in daily groundwater levels.

(b) Optimal hyperparameters ([batch size, # epochs, # layers, # nodes per layer, dropout rate, # lags]) for both RBF- and GP-based HPO

Missing date range (yyyy-mm-dd) #obs RMSE, MAE, MAPE

From To MLP RBF MLP GP ImputeTS mtsdi

(a)

2012-01-01 2012-06-30 181 0.54, 0.42, 1.04 0.48, 0.37, 0.90 0.62, 0.46, 1.13 1.21, 0.96, 2.37

2012-02-01 2012-07-31 181 0.44, 0.36, 0.91 0.45, 0.37, 0.94 0.60, 0.42, 1.04 1.12, 0.89, 2.26

2012-03-01 2012-08-31 183 0.46, 0.37, 0.94 0.47, 0.38, 0.98 0.82, 0.58, 1.45 1.31, 1.12, 2.93

2012-04-01 2012-09-30 182 0.48, 0.40, 1.05 0.91, 0.75, 2.00 0.55, 0.44, 1.15 1.50, 1.36, 3.62

2012-05-01 2012-10-31 183 0.57, 0.42, 1.12 0.60, 0.46, 1.23 1.05, 0.95, 2.58 1.63, 1.49, 4.07

2012-06-01 2012-11-30 182 0.54, 0.40, 1.07 0.70, 0.60, 1.63 0.76, 0.65, 1.80 1.64, 1.48, 4.06

2012-07-01 2012-12-31 183 0.80, 0.69, 1.81 0.77, 0.65, 1.71 0.70, 0.61, 1.66 1.43, 1.23, 3.37

2012-08-01 2013-01-31 183 0.64, 0.53, 1.36 0.55, 0.45, 1.16 0.53, 0.46, 1.22 1.17, 0.98, 2.65

2012-09-01 2013-02-28 180 0.44, 0.37, 0.93 1.12, 1.02, 2.57 0.45, 0.38, 0.95 0.94, 0.82, 2.11

2012-10-01 2013-03-31 181 0.59, 0.51, 1.27 1.03, 0.98, 2.44 1.17, 1.08, 2.68 1.19, 1.00, 2.50

2012-11-01 2013-04-30 180 0.85, 0.80, 2.00 0.78, 0.72, 1.77 1.67, 1.46, 3.57 1.61, 1.40, 3.44

2012-12-01 2013-05-31 181 0.78, 0.61, 1.55 0.81, 0.62, 1.58 1.09, 0.93, 2.28 1.63, 1.42, 3.52

Missing date range (yyyy-mm-dd) #obs Hyperparameters

From To MLP RBF MLP GP

(b)

2012-01-01 2012-06-30 181 145, 400, 5, 45, 0, 265 185, 450, 1, 40, 0, 250

2012-02-01 2012-07-31 181 140, 400, 2, 45, 0, 310 50, 200, 3, 40, 0, 310

2012-03-01 2012-08-31 183 190, 500, 1, 50, 0, 325 190, 450, 4, 50, 0, 270

2012-04-01 2012-09-30 182 155, 400, 2, 45, 0, 245 200, 400, 4, 45, 0, 285

2012-05-01 2012-10-31 183 195, 450, 1, 40, 0, 335 50, 250, 1, 45, 0, 320

2012-06-01 2012-11-30 182 90, 400, 1, 45, 0, 310 145, 500, 4, 20, 0, 245

2012-07-01 2012-12-31 183 85, 250, 1, 45, 0, 305 70, 500, 1, 25, 0, 345

2012-08-01 2013-01-31 183 195, 450, 1, 35, 0, 260 160, 400, 1, 35, 0, 245

2012-09-01 2013-02-28 180 65, 450, 4, 45, 0, 215 60, 400, 4, 25, 0, 285

2012-10-01 2013-03-31 181 195, 450, 1, 30, 0, 230 155, 400, 2, 35, 0, 305

2012-11-01 2013-04-30 180 120, 300, 1, 25, 0, 275 60, 250, 4, 50, 0, 255

2012-12-01 2013-05-31 181 145, 400, 5, 45, 0, 265 80, 150, 2, 35, 0, 255

Bold numbers indicate the best value for a given problem instance. The column ‘‘#obs’’ indicates the number of missing observations.‘‘MLP

RBF’’ and ‘‘MLP GP’’ indicate the methods using the MLP with the RBF and GP surrogate during HPO, respectively
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We can see that our proposed method captured the high

peak better than the other methods and imputeTS made

again a fairly flat prediction. Similarly to the cases of three

months of continuous gaps, mtsdi provided the lowest

accuracy. Note that the increased size of the continuous

gap allowed for a larger probability that seasonality effects

will be included in the missing value ranges.

The results for the case where 12 months of daily

observations were missing are summarized in Table 4. For

all test cases, the MLP was able to fill the gaps better than

ImputeTS and mtsdi. For most cases, the performance of

ImputeTS and mtsdi does not come close to MLP. From

the optimal architectures (lower table) we can see again

that different model complexities can lead to similar

results, e.g. missing values from 2012-10-01 to 2013-09-

30. Whether the possibility of small improvements is worth

a significantly larger amount of training time depends in

the end on the user and their insights on how these small

differences will effect follow-on analyses. Similarly to the

previous cases, the lag should comprise at least several

months worth of data for achieving good MLP

performance.

Figure 9 shows that the MLP-based gap filling method

captured the nonlinearities in the missing data significantly

Table 4 (a) RMSE, MAE, and MAPE values for the different gap filling methods for twelve months of missing values in daily groundwater

levels. (b) Optimal hyperparameters ([batch size, # epochs, # layers, # nodes per layer, dropout rate, # lags]) for both RBF- and GP-based HPO

Missing date range (yyyy-mm-dd) #obs RMSE, MAE, MAPE

From To MLP RBF MLP GP ImputeTS mtsdi

(a)

2012-01-01 2012-12-31 366 0.91, 0.75, 1.95 0.68, 0.55, 1.42 1.03, 0.90, 2.37 1.52, 1.30, 3.42

2012-02-01 2013-01-31 366 0.71, 0.56, 1.44 0.74, 0.62, 1.59 1.13, 0.96, 2.54 1.32, 1.11, 2.93

2012-03-01 2013-02-28 365 0.74, 0.61, 1.54 0.71, 0.57, 1.50 0.77, 0.66, 1.71 1.26, 1.06, 2.79

2012-04-01 2013-03-31 365 0.82, 0.70, 1.78 0.73, 0.58, 1.53 0.91, 0.78, 2.05 1.28, 1.11, 2.88

2012-05-01 2013-04-30 365 0.71, 0.53, 1.40 1.10, 0.92, 2.45 1.35, 1.13, 2.87 1.35, 1.17, 3.02

2012-06-01 2013-05-31 365 0.64, 0.50, 1.29 0.62, 0.47, 1.24 1.05, 0.81, 2.05 1.36, 1.17, 3.06

2012-07-01 2013-06-30 365 0.76, 0.62, 1.62 0.78, 0.65, 1.70 1.09, 0.83, 2.09 1.31, 1.12, 2.92

2012-08-01 2013-07-31 365 0.86, 0.70, 1.84 0.92, 0.82, 2.12 1.15, 0.89, 2.23 1.25, 1.05, 2.73

2012-09-01 2013-08-31 365 0.85, 0.75, 1.97 0.95, 0.86, 2.24 1.01, 0.83, 2.11 1.20, 1.01, 2.60

2012-10-01 2013-09-30 365 0.88, 0.79, 2.07 0.88, 0.81, 2.11 1.17, 1.08, 2.81 1.19, 0.98, 2.54

2012-11-01 2013-10-31 365 0.82, 0.73, 1.93 0.85, 0.72, 1.92 0.87, 0.70, 1.81 1.19, 0.97, 2.49

2012-12-01 2013-11-30 365 0.81, 0.67, 1.80 1.02, 0.82, 2.22 0.84, 0.71, 1.83 1.17, 0.93, 2.40

Missing date range (yyyy-mm-dd) #obs Hyperparameters

From To MLP RBF MLP GP

(b)

2012-01-01 2012-12-31 366 80, 500, 2, 35, 0, 355 70, 500, 1, 25, 0, 345

2012-02-01 2013-01-31 366 155, 450,4, 45,0, 350 70, 500,1, 25,0, 345

2012-03-01 2013-02-28 365 160, 350,1, 40,0, 305 70, 300,2, 15,0, 260

2012-04-01 2013-03-31 365 85, 450,1, 40,0, 320 120, 400,4, 25,0, 270

2012-05-01 2013-04-30 365 185, 450,1, 45,0, 255 185, 100,2, 45,0, 270

2012-06-01 2013-05-31 365 185, 450,1, 45,0, 255 140, 500,1, 15,0, 235

2012-07-01 2013-06-30 365 185, 450,1, 45,0, 255 85, 400,5, 25,0, 240

2012-08-01 2013-07-31 365 110, 400,1, 45,0, 260 170, 300,2, 40,0, 315

2012-09-01 2013-08-31 365 145, 450,5, 40,0, 265 170, 300,2, 40,0, 315

2012-10-01 2013-09-30 365 145, 450,5, 40,0, 265 140, 300,1, 45,0, 260

2012-11-01 2013-10-31 365 145, 450,5, 40,0, 265 195, 500,5, 35,0, 255

2012-12-01 2013-11-30 365 185, 450,1, 45,0, 255 70, 500,1, 25,0, 345

Bold numbers indicate the best value for a given problem instance. The column ‘‘#obs’’ indicates the number of missing observations.‘‘MLP

RBF’’ and ‘‘MLP GP’’ indicate the methods using the MLP with the RBF and GP surrogate during HPO, respectively
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better than mtsdi (which introduced strong oscillations and

did not capture the extrema of the missing values) and

imputeTS (which failed to capture the winter data

(November 2012-April 2013) and appeared like a piece-

wise linear approximation of the missing data). The MLP-

based imputation method showed stronger deviations from

the true data for the last � 1.5 months of gap filling, which

is possibly due to the fact that our method estimates the

missing values sequentially based on the previously

estimated values, and thus it is possible that errors started

to accumulate.

Comparing the optimal architectures across Tables 2, 3,

and 4 shows that the optimal hyperparameters for the MLP

depended on the date range for which the data were

missing, and thus the same hyperparameters may not be

optimal for all date ranges making tuning necessary. Some

‘‘preferences’’ toward architectures with only one layer and

lags larger than 200 exist, indicating that the search range

over these hyperparameter could potentially be decreased.

Fig. 5 Daily groundwater level imputation for three months of

missing daily measurement data (November 2012 - January 2013).

The top figure shows the missing time series in the context of

available data, and the bottom figure shows a zoom onto the missing

period. The missing data have a linear trend which is captured by

imputeTS and the MLP-based methods

Fig. 6 Daily Groundwater level imputation for three months of

missing daily measurement data (February 2012–April 2012). The top

figure shows the missing time series in context of available data, and

the bottom figure shows a zoom onto the missing period. The missing

data have a nonlinear trend and non-interpolating methods like our

MLP approach perform better for these instances
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However, a detailed sensitivity analysis of the MLP per-

formance with respect to the hyperparameters and their

search ranges is beyond the scope of this paper. The MLP

performance in terms of RMSE, MAE, and MAPE for a

specific architecture was impacted by the data that were

missing. For example, in Table 2, we see that the same

optimal hyperparameters were obtained for the date ranges

June 2012-August 2012, July 2012-September 2012,

August 2012-October 2012, October 2012-December 2012,

and November 2012-January 2013 when using either the

RBF or the GP during hyperparameter tuning, respectively.

However, the corresponding RMSE metrics ranged

between 0.26 and 0.8 for RBF, and between 0.33 and 0.93

for the GP. We observe a similar behavior for the cases of

six and twelve months of missing data.

3.3.2 Total water content predictions

Tables 5 and 6 show the results of our data imputation for

the TWC simulated with HYDRUS-1D. Shown are the

Fig. 7 Daily Groundwater level imputation for three months of

missing daily measurement data (March 2012–May 2012). The top

figure shows the missing time series in context of available data, and

the bottom figure shows a zoom onto the missing period. The missing

data have a nonlinear trend and non-interpolating methods like our

MLP approach perform better for these instances

Fig. 8 Daily Groundwater level imputation for six months of missing daily measurement data (November 2012–April 2013). The top

figure shows the missing time series in context of available data, and the bottom figure shows a zoom onto the missing period
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RMSE, MAE, amd MAPE values between the true and

estimated values obtained with the different gap filling

methods for the 12- and 15-month cases. The optimal

hyperparameters for the MLP-based approaches are also

shown. Our MLP-based gap filling method achieved better

performance than ImputeTS for all three of the tested

12-month date ranges, but it was outperformed by mtsdi

for two of the test cases. Notably, for the two cases where

mtsdi outperformed the MLP, the largest indicator for

MLP performance is the number of lags, which were sig-

nificantly larger for the two outperformed cases. This may

indicate that a too large lag may be detrimental to pre-

dictive performance. Compared to the groundwater level

time series, the TWC time series has several pronounced

small scale features (peaks and troughs) in addition to

larger scale trends. Basing predictions on a larger amount

of data may not be the best course of action for TWC. In

fact, we observe the same pattern (small lags lead to good

performance, large lags lead to bad performance) also in

the 15-month missing data case in Table 6. Again, the

MLP-based gap filling method outperformed imputeTS for

all instances, but it was outperformed by mtsdi for most

cases. The two instances for which the MLP performed

better than mtsdi had a small lag (30 and 120,

respectively).

Figure 10 shows the true simulated TWC values and the

values as estimated by the gap filling methods for a

12-month case.

We can see that all methods had difficulties capturing

the true data, and our proposed method and imputeTS did

a better job than mtsdi at capturing the first seven months

of missing data, but then both methods generated larger

errors during the remaining five months. In contrast, mtsdi

did not capture the trend in the data of the first seven

months well, but the resulting RMSE is smaller overall

regardless.

Figure 11 shows the results for the gap September

2013-November 2014 (a case in which the MLP-based

method performed better than the other methods).

We can see that the MLP that used the RBF in the HPO

led to predictions that almost perfectly matched the true

data. mtsdi appeared to be able to capture some of the

trends in the data, in particular the large peaks with higher

frequency oscillations, but it failed to approximate the

‘‘less rugged’’ and lower values well. We can also observe

from Fig. 11 how important the choice of hyperparameters

is for the MLP. The MLP using the GP during HPO did not

perform nearly as well as the MLP that used the RBF

during HPO. The main differences between both archi-

tectures were in the batch size (50 vs. 70), the number of

nodes per layer (50 vs. 25), and the number of lags (30 vs.

345). On the other hand, in Fig. 10, the GP-based and RBF-

based MLP predictions were approximately equal, and for

this case the optimal architectures differed only with

respect to the number of nodes per layer (45 vs. 25), with

the larger architecture (RBF solution) being marginally

better than the GP-based solution. Thus, we can recognize

the importance of HPO when using DL models and the

sensitivity of the MLP’s performance with regard to the

architecture.

Fig. 9 Daily Groundwater level imputation for twelve months of

missing daily measurement data (June 2012–May 2013). The top

figure shows the missing time series in context of available data, and

the bottom figure shows a zoom onto the missing period. Although all

imputation methods try to capture the nonlinearities, the MLP-based

imputation agrees best with the true values
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3.3.3 FLUXNET predictions

Table 7 shows the results for the FLUXNET2015 dataset.

Note that we show the symmetric mean absolute percent-

age error (SMAPE) rather than MAPE because the true

target variable, NEE VUT USTAR50, includes values

close to zero. Because the number of available observations

was large, we stress-tested the performance of the gap

filling methods for very large continuous data gaps, using

between 2,159 (3 months) and 35,063 (36 months) missing

observations. The results show that the MLP-based gap

filling method attained generally better performance than

imputeTS and mtsdi. Unlike the previous two case stud-

ies, the optimal hyperparameters do not show a pattern in

terms of the best MLP performance. In fact, the three

metrics (RMSE, MAE, and SMAPE) are fairly similar for

MLP RBF and MLP GP, but the corresponding architec-

tures differ a lot. For example, for the case where 2,159

observations were missing, the difference in RMSEs was

only 0.02, but the MLP GP used an additional hidden layer

and a significantly larger number of lags than the MLP

RBF. Thus, for the FLUXNET use case, there may be

nonlinear interactions between hyperparameters present,

and thus multiple different architectures are able to achieve

similar performance. A detailed study of these hyperpa-

rameter interactions and performance sensitivities is,

however, out of the scope of this paper.

Figure 12 shows the results for filling the 8,759 missing

value gap of NEE_VUT_USTAR50 with the different

methods. The top panel shows the true and the estimated

values of NEE_VUT_USTAR50 in the context of the

longer time series, the middle panel zooms in on the filled

gap, and the lower panels show scatter plots of the true

values versus the predicted values. If the methods were

able to exactly repredict the missing values, all points

would lie on the diagonal. The bottom panel of Fig. 12

clearly shows that imputeTS completely failed to capture

the variability in the data and it’s predictions are almost a

constant value. The MLP-based methods on the other hand

made predictions that were close to the true values (points

lie close to the diagonal). The point cloud obtained with

mtsdi shows a larger variability around the diagonal, and

for this use case mtsdi made less reliable predictions.

Figure 13 plots the results for the case when 17,543

observations are missing. Again, imputeTS failed to

capture the trend in the data completely. mtsdi captured

the seasonal trend but it failed to accurately predict the

large and small values. Our proposed MLP-based imputa-

tion methods estimated the high and low values signifi-

cantly better. This is also reflected in the scatter plots

which show that the point clouds of our proposed method

lie closer to the diagonal than those of imputeTS and

mtsdi.

3.3.4 Discussion

The three gap filling case studies showed that there was no

one single method that performed best for all problems and

all instances. We found that for the two examples with real

observation data (as opposed to simulation-created data),

our proposed gap filling method tended to outperform both

ImputeTS and mtsdi in terms of RMSE, MAE and MAPE

Table 5 (a) RMSE, MAE, and MAPE for the different gap filling methods for 12 months of missing values in daily TWC. (b) Optimal

hyperparameters ([batch size, # epochs, # layers, # nodes per layer, dropout rate, # lags]) for both RBF- and GP-based HPO

Missing date range (yyyy-mm-dd) #obs RMSE, MAE, MAPE

From To MLP RBF MLP GP ImputeTS mtsdi

(a)

2013-01-01 2013-12-31 365 0.008, 0.007, 2.651 0.012, 0.008, 3.302 0.031, 0.025, 10.006 0.016, 0.013, 5.299

2013-02-01 2014-01-31 365 0.025, 0.019, 7.607 0.023, 0.018, 7.303 0.045, 0.041, 16.860 0.018, 0.015, 6.543

2013-03-01 2014-02-28 365 0.023, 0.017, 6.784 0.023, 0.017, 6.857 0.031, 0.022, 8.686 0.019, 0.016, 6.702

Missing date range (yyyy-mm-dd) #obs Hyperparameters

From To MLP RBF MLP GP

(b)

2013-01-01 2013-12-31 365 50, 500, 1, 50, 0, 45 55, 300, 6, 50, 0, 55

2013-02-01 2014-01-31 365 60, 500, 1, 35, 0, 355 70, 500, 1, 25, 0, 345

2013-03-01 2014-02-28 365 70, 500, 1, 45, 0, 345 70, 500, 1, 25, 0, 345

Bold numbers indicate the best value for a given problem instance. The column ‘‘#obs’’ indicates the number of missing observations.‘‘MLP

RBF’’ and ‘‘MLP GP’’ indicate the methods using the MLP with the RBF and GP model during HPO, respectively
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(or SMAPE) in particular when the gaps were large. As

described in the previous subsections, ImputeTS per-

formed well when the missing data can be approximated by

a somewhat (piecewise) linear function. However, for the

FLUXNET2015 data, ImputeTS failed, which may be due

to the amount of missing data, or perhaps due to the high

frequency oscillations in the data. mtsdi performed better

than our method for the simulated total water content data

in terms of our metrics, although it did not seem to capture

much of the details of the lowest values or the dynamics in

the data. Figure 11 shows that mtsdi seemed to capture the

large faster oscillating peaks quite well, but for the slower

changes of TWC, it appeared to use a mean value instead

of capturing the slower variabilities in the data.

Although our proposed imputation approach performed

generally well and often outperformed the other methods,

its computing time requirement was significantly larger

than that of imputeTS and mtsdi. This is due to the

hyperparameter optimization trying many different sets of

hyperparameters and each training is computationally

nontrivial. On the other hand, if the values to be gap filled

behave nonlinearly, and if high prediction accuracy is

desired, we recommend using the DL-based approach due

to the limitations of the other methods in these cases. In

practice, one would not conduct a detailed study as pre-

sented here with artificially created gaps, but rather opti-

mize and train the MLP once for the time series to be gap

filled. One way to speed up the DL approach is to either

parallelize the repetitions of the training if compute

resources are available or to reduce the number of repeti-

tions. However, the latter option may lead to models that

are less reliable in terms of predictive performance. In the

FLUXNET test cases, we used only one training repetition

(instead of five as done with the two other use cases). The

MLP-based gap filling method always performed signifi-

cantly better than the other two methods, indicating that it

Table 6 (a) RMSE, MAE, and MAPE for the different gap filling methods for 15 months of missing values in daily TWC. (b) Optimal

hyperparameters ([batch size, # epochs, # layers, # nodes per layer, dropout rate, # lags]) for both RBF- and GP-based HPO

Missing date range (yyyy-mm-dd) #obs RMSE, MAE, MAPE

From To MLP RBF MLP GP ImputeTS mtsdi

(a)

2013-04-01 2014-06-30 456 0.020, 0.015, 6.074 0.021, 0.016, 6.239 0.029, 0.020, 7.334 0.017, 0.015, 5.834

2013-05-01 2014-07-31 457 0.024, 0.017, 6.678 0.020, 0.015, 5.791 0.028, 0.019, 6.914 0.018, 0.016, 6.553

2013-06-01 2014-08-31 457 0.023, 0.017, 6.575 0.021, 0.015, 5.780 0.028, 0.018, 6.926 0.019, 0.017, 6.912

2013-07-01 2014-09-30 457 0.024, 0.017, 6.824 0.021, 0.015, 6.097 0.028, 0.021, 8.332 0.020, 0.017, 7.300

2013-08-01 2014-10-31 457 0.024, 0.018, 7.096 0.021, 0.016, 6.348 0.027, 0.019, 7.169 0.020, 0.017, 7.167

2013-09-01 2014-11-30 456 0.005, 0.003, 1.31 0.024, 0.019, 7.430 0.030, 0.021, 8.100 0.018, 0.015, 6.245

2013-10-01 2014-12-31 457 0.028, 0.022, 8.366 0.028, 0.020, 8.055 0.039, 0.030, 11.822 0.023, 0.017, 6.32

2013-11-01 2015-01-31 457 0.029, 0.022, 8.518 0.027, 0.019, 7.560 0.050, 0.041, 15.037 0.023, 0.017, 6.230

2013-12-01 2015-02-28 455 0.014, 0.010, 3.613 0.020, 0.016, 5.882 0.031, 0.022, 7.822 0.023, 0.017, 6.196

Missing date range (yyyy-mm-dd) #obs Hyperparameters

From To MLP RBF MLP GP

(b)

2013-04-01 2014-06-30 456 50, 500, 1, 45, 0, 345 70, 500, 1, 25, 0, 345

2013-05-01 2014-07-31 457 195, 450, 1, 40, 0, 335 70, 500, 1, 25, 0, 345

2013-06-01 2014-08-31 457 195, 450, 1, 40, 0, 335 70, 500, 1, 25, 0, 345

2013-07-01 2014-09-30 457 195, 450, 1, 40, 0, 335 70, 500, 1, 25, 0, 345

2013-08-01 2014-10-31 457 195, 450, 1, 40, 0, 335 70, 500, 1, 25, 0, 345

2013-09-01 2014-11-30 456 50, 500, 1, 50, 0, 30 70, 500, 1, 25, 0, 345

2013-10-01 2014-12-31 457 195, 450, 1, 40, 0, 335 70, 500, 1, 25, 0, 345

2013-11-01 2015-01-31 457 195, 450, 1, 40, 0, 335 70, 500, 1, 25, 0, 345

2013-12-01 2015-02-28 455 50, 450, 1, 45, 0, 120 70, 500, 1, 25, 0, 345

Bold numbers indicate the best value for a given problem instance. The column ‘‘#obs’’ indicates the number of missing observations.‘‘MLP

RBF’’ and ‘‘MLP GP’’ indicate the methods using the MLP with the RBF and GP model during HPO, respectively
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was not simply a ‘‘lucky’’ draw. At the same time, we saw

that different architectures were able to perform similarly

well for this case, indicating that there could be regions in

the hyperparameter search space where the objective

function is flat and thus finding good hyperparameters and

well-performing MLPs may be easier.

Many environmental datasets contain functional rela-

tionships between data features. However, many time ser-

ies imputation methods (including the methods ImputeTS

and mtsdi discussed in this paper) do not take advantage of

this additional information and they use only statistical

information contained in the time series data. In other

words, they are purely data-driven approaches. Unlike

these approaches, our proposed DL method can be exten-

ded to include any known physical relationships and con-

straints in addition to the statistical information. For

example, in the HYDRUS-1D case, we know that there is a

mass conservation constraint present between the features

and it is possible to include this constraint, e.g., by adding a

penalty term to the objective function.

In our study, we compared the different methods based

on their RMSE, MAE, and MAPE (or SMAPE)

Fig. 10 Comparison of gap filling methods for daily TWC with missing values between March 2013 and February 2014. The top figure shows the

missing time series in context of available data, and the bottom figure shows a zoom onto the missing period

Fig. 11 Comparison of gap filling methods for daily TWC with missing values between September 2013 and November 2014. The top

figure shows the missing time series in context of available data, and the bottom figure shows a zoom onto the missing period
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Table 7 (a) RMSE, MAE, and SMAPE for different gap filling methods for hourly FLUXNET dataset. (b) Optimal hyperparameters ([batch size,

# epochs, # layers, # nodes per layer, dropout rate, # lags]) for both RBF- and GP-based HPO

Missing date range (yyyy-mm-dd) #obs RMSE, MAE, SMAPE

From To MLP RBF MLP GP ImputeTS mtsdi

(a)

2007-01-01 2007-03-31 2,159 0.98, 0.7, 44.58 0.96, 0.68, 41.98 1.62, 1.40, 47.42 4.83, 3.51, 65.61

2007-01-01 2007-12-31 8,759 2.72, 1.68, 29.85 2.68, 1.73, 30.75 7.92, 4.82, 69.10 5.17, 3.80, 51.10

2007-01-01 2008-12-31 17,543 2.86, 1.77, 34.59 2.96, 1.89, 56.29 8.13, 4.79, 57.69 5.14, 3.76, 49.85

2007-01-01 2010-12-31 35,063 2.75, 1.68, 28.58 2.94, 1.84, 33.35 8.66, 5.17, 55.44 5.60, 4.03, 52.05

Missing date range (yyyy-mm-dd) #obs Hyperparameters

From To MLP RBF MLP GP

(b)

2007-01-01 2007-03-31 2,159 190, 450, 2, 45, 0, 50 180, 100, 3, 40, 0, 240

2007-01-01 2007-12-31 8,759 55, 400, 4, 40, 0, 30 150, 200, 1, 35, 0, 355

2007-01-01 2008-12-31 17,543 60, 350, 5, 45, 0, 90 55, 200, 2, 35, 0, 185

2007-01-01 2010-12-31 35,063 60, 350, 5, 45, 0, 90 70, 500, 1, 25, 0, 345

Bold numbers indicate the best value for a given problem instance. The column ‘‘#obs’’ indicates the number of missing observations.‘‘MLP

RBF’’ and ‘‘MLP GP’’ indicate the methods using the MLP with the RBF and GP model during HPO, respectively

Fig. 12 Hourly NEE_VUT_USTAR50 (FLUXNET) imputation com-

parison: missing value range is January 1, 2007 to December 31,

2007. The top panel shows the true and the predicted values in the

context of the longer time series. The middle panel shows a zoom

onto the filled gap. The bottom panels show scatter plots for each

method (ideally, prediction and true data are identical and points

would lie on the diagonal)

9088 Neural Computing and Applications (2023) 35:9071–9091

123



performance. Although these measures are widely used,

they do not reflect the individual errors well. For example,

in the daily TWC imputation comparison shown in Fig. 10,

one could argue that the proposed MLP-based methods

produce fairly accurate and better predictions than mtsdi

for 50% of the missing values, but they accumulate larger

errors for the remaining values. On the other hand, mtsdi

does not match most of the data well, but its almost flat

prediction accrues overall a lower error. Thus, it is possible

that optimizing for another performance measure may lead

to better outcomes for the MLP methods.

4 Summary and conclusions

In this paper, we proposed a time series missing value

imputation method that uses DL models. Our focus was on

time series imputation problems where a long continuous

gap was present in one variable, and where all other sup-

porting variables are fully observed. Our proposed method

uses an MLP whose architecture is tuned with a derivative-

free surrogate model based optimization approach. To this

end, we modified the hyperparameter optimization

approach proposed in [22] in order to facilitate the impu-

tation of missing values in time series.

After training the MLP, we imputed the missing values

sequentially from the first missing value to the last missing

value, basing predictions on previous predictions as we go

along. Our sequential estimation of missing values allowed

us to fill long-term gaps. We chose MLPs as DL models

because they have previously shown good performance for

time series data and because the time needed to optimize

the model is significantly shorter than for other types of DL

models (see [22]). Generally, however, any feedforward

artificial neural network can be used within our proposed

method such as convolutional neural networks [43–45].

We performed numerical experiments with three dif-

ferent test cases in which we created artificial gaps which

allowed us to assess the quality of the gap filled values. We

used two test cases with observed values and one test case

with simulated data. The numerical results showed that for

many problem instances, our proposed approach was able

to fill the gaps with highly accurate values and it was able

to capture trends and dynamics in the data better than other

Fig. 13 Hourly NEE_VUT_USTAR50 imputation comparison: miss-

ing value range is January 1, 2007 to December 31, 2008. The top

panel shows the true and the predicted values in the context of the

longer time series. The middle panel shows a zoom onto the filled

gap. The bottom panels show scatter plots for each method (ideally,

prediction and true data are identical and points would lie on the

diagonal)
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data-driven methods such as ImputeTS and mtsdi. Using

the RBF as surrogate model during HPO appeared to yield

more stable performance than using the GP. Therefore, we

recommend using our proposed approach with the RBF

surrogate during HPO.

The numerical results also showed that the optimal MLP

hyperparameters depended on which data were missing

(gap size and location in the time series). Therefore,

hyperparameter optimization is essential before using any

ML model to impute the missing values.

The results of this paper can lay the foundation for

studying new approaches for filling long gaps in time

series. Although the proposed method was able to fill large

gaps with seasonal trends well, including capturing large

and small values, it sometimes failed to correctly estimate

the missing values toward the end of the data gap, indi-

cating a potential for accumulation of errors as we inform

predictions with previously predicted values. A ‘‘backward

imputation approach’’ might be helpful to alleviate this

drawback. In this approach, we could modify the MLP

inputs such that we start imputing data from the end of the

gap backwards in time. Combining both forward and

backward imputation may allow us to reap the benefits of

both.

Our study focused on time series that have one large

gap. However, we expect the method to perform reason-

ably well when we have multiple large gaps in the time

series. Since the inputs to the MLP are designed such that

they are independent and the HPO is general, we expect

that filling multiple gaps with this method is straight-for-

ward. For time series with a mix of large and small gaps, a

combination of our DL model-based method and other

methods that are aimed at filling small gaps can be used.

Incorporation of physics constraints in the DL model pre-

dictions has the potential to improve prediction accuracy.

Moreover, if values are missing in several variables of the

multivariate time series, it may be possible to modify the

proposed approach for this scenario. This is a future

research topic.

This paper studied the time-series imputation with the

MLP which is the most basic feedforward neural network.

It would also be interesting to study the proposed time-

series imputation approach with other advanced feedfor-

ward neural networks such as convolutional neural network

[45] and AR-NET [46] as well as recently developed

forecasting software such as NeuralProphet [47].
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