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Abstract
Transfer learning schemes based on deep networks which have been trained on huge image corpora offer state-of-the-art

technologies in computer vision. Here, supervised and semi-supervised approaches constitute efficient technologies which

work well with comparably small data sets. Yet, such applications are currently restricted to application domains where

suitable deep network models are readily available. In this contribution, we address an important application area in the

domain of biotechnology, the automatic analysis of CHO-K1 suspension growth in microfluidic single-cell cultivation,

where data characteristics are very dissimilar to existing domains and trained deep networks cannot easily be adapted by

classical transfer learning. We propose a novel transfer learning scheme which expands a recently introduced Twin-VAE

architecture, which is trained on realistic and synthetic data, and we modify its specialized training procedure to the

transfer learning domain. In the specific domain, often only few to no labels exist and annotations are costly. We

investigate a novel transfer learning strategy, which incorporates a simultaneous retraining on natural and synthetic data

using an invariant shared representation as well as suitable target variables, while it learns to handle unseen data from a

different microscopy technology. We show the superiority of the variation of our Twin-VAE architecture over the state-of-

the-art transfer learning methodology in image processing as well as classical image processing technologies, which

persists, even with strongly shortened training times and leads to satisfactory results in this domain. The source code is

available at https://github.com/dstallmann/transfer_learning_twinvae, works cross-platform, is open-source and free (MIT

licensed) software. We make the data sets available at https://pub.uni-bielefeld.de/record/2960030.
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1 Introduction

Systematic single-cell studies of live cell imaging from

microfluidic single-cell cultivation (MSCC) works with

high spatial and temporal resolution of cellular behavior.

So far, analysis of images like these has mostly been

performed manually or is assisted by technological aiding

systems, yet requiring human experts and therefore

extensive human labor to create annotations of images;

clearly, this procedure is not feasible in many cases, and it

creates the need for different, more affordable and auto-

mated computer vision solutions [24].

The current state of the art for computer vision tasks and

image processing that does not require human labor are

convolutional deep neural networks [8]. These are also

used extensively in the biomedical domain [18]. Espe-

cially, approaches to track cells in images [15] have been

an ongoing field of study in recent years. However, opti-

misation for this task has proven to be a very cumbersome

challenge which remains prone to errors.

The proposed benchmark suite [26] allows comparing

different imaging technologies and extrapolation of the

strengths and limitations of diverse methods for cell

tracking, none of which are deemed as final solution for
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this task, even those with added interaction by bioimage

analysis experts [1] or distributed work of manual

labeling [7].

In this contribution, we address a challenging task in

biomedical image analysis by means of specific and

adapted transfer learning technologies. Related work in this

field includes Brent et al. [2] which used transfer learning

to predict microscope images between different imaging

technologies, however without sufficient incorporation of

the vast diversity of cell imagery and characteristics. The

approach by Falk et al. [5] provides one of the few tool-

boxes for cell tracking, albeit adherent, rather than sus-

pension cells. It allows transfer learning based on given

models and novel data, whereby data set enrichment

technologies limit the number of required samples.

In contrast to already reported single-cell cultivation

studies [4] and [12], where adherent growing cell lines are

the focus of investigation, we address the scenario of more

complex suspension cells, with their circular basic shape

but ever-changing contour due to vesicle secretion and

additional challenges like cell movement and floating

within the experiment chamber, which renders analysis

tools of adherent cells deficient. These cells growing in

suspension comes with different and challenging obstacles

to achieve automation of analysis, which will be described

in Sect. 2.

In this work, we want to make use of a network trained

on one microscopic image type and adapt it to provide

sufficiently accurate cell counting for a different micro-

scopy technology, where no trained network exists due to

the lack of annotated data. We particularly focus on miti-

gating human labor for annotations. Our previously intro-

duced deep twin auto-encoder architecture Twin-VAE

[22] is trained on data stemming from one imaging

modality and thereafter transferred to the similar yet dif-

ferent domain of the other microscopy technology. This

training procedure greatly reduces the need for natural,

labeled data, by using synthetic, auxiliary training data, for

which the ground truth is known and which is easy to

obtain in this setting, since the Twin-VAE does not require

the images to be rendered realistically in every regard, such

as morphological details.

In the following, we will first describe the specific

application domain from biotechnology, the underlying

machine learning challenge, and the deep Siamese network

architecture which will be used for transfer learning.

Afterwards, we elaborate the details of the proposed

transfer learning scheme, as well as perform an analysis of

how the unique architecture used affects the transfer

learning procedure. Its performance is evaluated for real-

data sets and using ablation studies, as well as comparison

to state-of-the-art alternatives and baselines. A discussion

concludes the contribution.

The application area in question is a prime example of a

domain, where the state-of-the-art Image processing tech-

niques do not work sufficiently well due to very little

texture and other visual characteristics of the images,

described in Sect. 2. In addition, there exists no Deep

Learning Models which easily and efficiently solve the

task, as shown in [22] by comparing to EfficientNet [23],

and Watershed methods [17] and shown here later by

comparing to BigTransfer [11] and our previous work. The

emergence of more data in such specialized domains like

this makes it important to provide an easy-to-use system

which has a high performance and enables automation of

processes involving this kind of data.

Thus, the contribution and novelty of our work is as

follows:

– We improved performance and lowered computational

complexity (outperforming the original work [22])

– We build an efficient transfer pipeline and showed on

two microscopy datasets empirically that it outper-

formed a variety of methods, including state-of-the-art

image processing.

– By performing extensive ablations studies we gained

insight into which parts of the architecture contains

representations which are beneficial for the transfer

learning ability of the network. Thus, we are contribut-

ing to the debate how deep neural networks represent

information. [9]

2 Materials and methods

2.1 MSCC and live cell imaging data

The image data which is used in this study was obtained

by single-cell cultivation of mammalian suspension cells as

shown before [20]. CHO-K1 cells were cultivated in

polydimethylsiloxane (PDMS)-glass-chips and constantly

provided with nutrients by perfusion of the microfluidic

device. The goal of an automated analysis of such data is

an automated extraction of important parameters of the

observed dynamics, such as cell growth. Since many

important parameters can be estimated based on the num-

ber of cells at a specific time point, the number of cells

constitutes a key quantity and are taken as target labels.

The data used in this work consists of multiple parts,

characterized (1) by the according microscopy technolo-

gies, bright-field microscopy and phase-contrast micro-

scopy, (2) by the type of data, natural or synthetic, i.e. the

original data or data which are generated and added to the

original one within the learning pipeline, as described later,

(3) by existence of a label and (4) the usage of that data for
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training or testing. Example images of both modalities are

shown in Fig. 1.

Table 1 shows an overview statistic of all data sets. The

Nat set contains the aforementioned natural images, Syn

the synthetic ones. The BF tag declares bright-field

microscopy images, consisting of 12 experiment scenarios

with 956 overall images, of which a label (i.e. cell count)

exists for 7.5% of the training images. The PC tag is

denoting phase-contrast microscopy images which consist

of 37 experiment scenarios, accumulating to 3976 used

images with a labeling rate of 6.2% for the training data.

The labels were created by hand in a nearly regular interval

over the experiment scenarios for all natural data sets,

however images were removed beforehand, if they had

more than 30 cells, since the expected outcome of the

cultivation experiment is already determined at this point.

In the upcoming analysis, we focus on the transfer from

the larger data set Nat-PC to the smaller set Nat-BF,

since this is the common way to apply transfer learning.

The phase-contrast imagery also contains more variation of

the biological processes, which makes phase-contrast

microscopy arguably more popular than bright-field

microscopy. Our experiments also contains transfers from

bright-field microscopy to phase-contrast microscopy to

show the robustness of the technique. Figure 2 shows the

distribution of images against the cell counts in them for

Nat-PC. A clear trend towards images with low cell

counts can be seen.

This can be taken into account for optimization of the

transfer learning methodology, since it can be assumed that

data of this type has a similar distribution, particularly in

the light of exponential growth rates and the presence of

failing cultivations. Most of the labeled images from (L-

Te) are used for testing the cell count prediction and the

reconstruction, rather than used during training (L-Tr).

This is done, because we focus on a method that reliably

works on small amounts of labeled data. Further unlabeled

test data (U-Te) is used to evaluate the reconstruction

only, since (L-Te) remains too small to include a broad

overview of the different chamber situations (clumping,

overlapping, escaping etc.) to be confident about the sta-

bility of the performance for a convolutional network.

2.2 Synthetic data

As our task is reliable cell counting for suspension cell

microscopic images and given data is often limited and

with only few manual annotations, retraining a deep neural

network for every new set of data is inadequate and

delivers deficient accuracies for the task. To overcome this

limitation, we transfer a trained model which achieves high

accuracies on its original task to the newly presented task.

Since the learning methodology is semi-supervised, our

formerly introduced Twin-VAE [22] will be used as a basis

to propose a novel transfer learning method to mitigate the

aforementioned complications. Here, synthetic data are

used as an auxiliary training set Syn which is also used for

transfer learning. We evolve on the Siamese architecture,

which inherently solves the task of abstraction from the

synthetic nature of data set enrichtments.

The synthetically generated data are visually simplified

(constant background, ellipsoidal cells) to allow the loss

construction to focus on the regression task rather than the

intricate reconstruction of arbitrary visual cell membranes

and organelles. This is done by drawing cells as ellipsoids,

varying some attributes like their brightness, size and

blurriness of edges. For further detail, see the original

Paper [22]. Reconstructions of real appearances from

synthetic data, while interesting to suggesting inherent

stability, are not of importance for a high accuracy on the

task. Ground truth labels are known for synthetic data,

because it is based on pre-defined geometric style model-

ing, neglecting texture and complex morphology. Thereby,

geometric heterogeneity of this data is simplified compared

to real data, examples of which can be seen in Fig. 3.

Synthetic data allows for creation of a large variety of

independent image samples that are correlated but not

identical to the appearance of natural data. Unlike popular

data set enrichment technologies, the amount of data can

freely be determined since it is independent of the amount

of real data, and representatives of any type of underlying

label can easily be generated. We show that our Twin-

VAE architecture is successfully trained and improved in

accuracy like this in Sect. 2.3.

Table 1 lists the synthetic data as Syn, concatenated by

the microscopy technology category BF or PC accordingly.

The U or L declaration tells if the data is labeled and the

table separates them between training (Tr) and test (Te)

images. The cell distribution in these images was chosen to

Fig. 1 Samples of data from the two microscopy technologies.

Bright-field microscopy (left), phase-contrast microscopy (right). The

data has been preprocessed in the form of chip drift removal and

orientational stabilization (translational and rotational) and a crop to

square the images that allows further cropping by data augmentation

techniques. The cell counting module has to differentiate between the

cells, smudges, chamber and background
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be close to that of the Nat data sets for the sake of

resemblance and because of the criticality of correct cell

counts on low cell count imagery. Synthetic images are

generated with seed consistency, i.e. in such a manner that

ensures reproducibility and can be generated in arbitrary

amounts, however larger amounts of synthetic data will

increase training time nearly linearly, while improving

performance with diminishing returns as will be shown in

Sect. 5. For the sake of computational time, the default

Syn set sizes roughly match the corresponding number of

natural images. However, sets with different amounts have

also been created for accuracy comparisons (Fig. 12). The

background is created by the mean value of the entire

natural training data set showing less than 5 cells to assure

high visibility of empty background and to remove the

smudges that appear in only a few experiment scenarios.

The working resolution, the synthetic data are generated in

is 128 by 128 pixels, matching the resolution of the

architecture’s input size described in Sect. 2.3 and their file

size is about 8 MB per 1000 images.

The virtual generator is highly adjustable, creating

images with a given distribution of cell counts, overlapping

of cells, variations of the brightness of the cell’s inner

organelles, their membrane silhouette and the background.

More complex visual fidelity of natural data such as

ongoing cell divisions can also be mirrored by a combi-

nation of these mechanics, e.g. by creating a small overlap

together with more noisy cell borders. Smudges, as in

Fig. 1, have not been inserted, since they are an interfer-

ence factor and likely only hinder the training process. The

cells’ shape has been simplified to deformed ellipsis to

roughly match the shape of the natural cells. Noise, indi-

vidual luminance per cell, and multiplication with Gaus-

sian filters of random strengths have been added to increase

the variety of cells in the data. We ensure easy adjustability

of the generation mechanism to natural cells in other data

sets, that have different shape characteristics.

Table 1 Overview of data sets

used. The Nat tag indicates

natural data, Syn represents

synthetic data. BF classifies the

bright-field images, PC the

phase-contrast ones. L and U
marks labeled and unlabeled

data and lastly Tr and Te
separate the data into training

and test data

Abbreviation Type Technique Label Usage Size

Nat-BF-L-Tr Natural Bright-field Yes Training 281

Nat-BF-U-Tr Natural Bright-field No Training 2188

Nat-BF-L-Te Natural Bright-field Yes Testing 290

Nat-BF-U-Te Natural Bright-field No Testing 224

Nat-PC-L-Tr Natural PBhase-contrast Yes Training 209

Nat-PC-U-Tr Natural Phase-contrast No Training 2943

Nat-PC-L-Te Natural Phase-contrast Yes Testing 398

Nat-PC-U-Te Natural Phase-contrast No Testing 394

Syn-BF-L-Tr Synthetic Bright-field Yes Training 2469

Syn-BF-L-Te Synthetic Bright-field Yes Testing 514

Syn-PC-L-Tr Synthetic Phase-contrast Yes Training 3152

Syn-PC-L-Te Synthetic Phase-contrast Yes Testing 792

Fig. 2 Visualization of distribution of images by cell count for the

merged data sets Nat-PC-L-Te and Nat-PC-U-Te. We discard

data with higher cells counts than 30, because they are irrelevant for

the cultivation experiments

Fig. 3 Random samples of synthetic data from the sets Syn-BF-L-
Tr and Syn-PC-L-Tr. Sample of bright-field microscopy on the

left and of phase-contrast microscopy on the right. The images are

dimensionless and therefore do not show scale bars. The theoretical

cell sizes are identical to natural data cells, but is of no importance for

the work
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2.3 Network architecture and training

2.3.1 Siamese architecture

We use a novel deep Siamese twin architecture that sepa-

rates the input data for training depending on its origin,

thus circumventing the problem of differences in appear-

ance of synthetic and natural images. This approach

requires that the architecture creates a tightly coupled

shared inner representation of the different data sources to

achieve low training losses and good generalization ability

for semi-supervised setups.

For this, two identical variational autoencoders (VAE)

are created for the two data sets. They share the weights of

their last encoding layer, the first decoding layer and the

small hidden layer in-between (see Fig. 4). VAEs consti-

tute a state-of-the-art solution for generalized few-shot

learning [21] and weight-sharing has been used to reduce

neural network sizes and to improve test performance

beforehand [25].

Specifically, in our setup, one of the VAEs works on

synthetic data only (VAE-syn), while the other one uses

natural data only (VAE-nat). The non-shared outer layers

account for the different visual characteristics of synthetic

and natural data, while the shared inner layers are enforced

to create a common representation of relevant image

characteristics. By adding a two-layer deep fully connected

neural network regression model for the cell counting task,

the architecture works in a supervised manner for data for

which the label are known, based on the shared represen-

tation of the VAEs. Cell detection by regression has been

shown to work well for other (less demanding)

tasks [27, 28]. Our architecture therefore addresses two

objectives simultaneously:

1. Mostly unsupervised encoding and decoding of natural

and synthetic input images using a shared

representation.

2. Supervised counting of the cells for both natural and

synthetic images.

2.3.2 Loss

Given an input image x of pixels, a label (i.e. cell count) l

between 1 and 30 and a type t 2 fn; sg, representing the

fact whether the image is natural or synthetic, we obtain a

reconstruction loss Rec ðxÞ of the VAE, a regression loss

Reg ðx; lÞ of the task at hand, such as cell counting, and a

distributional regularization loss DKL , which aims for a

homogeneous representation of synthetic and real data in

the embedding space of the VAE. We combine these losses

to form our twin loss Twinloss ðx; l; tÞ with weighting fac-

tors Ct
Rec , C

t;l
Reg , and Ct

DKL
, respectively, which allows us

to balance image reconstruction fidelity (Ct
Rec ), regression

performance (Ct;l
Reg ) and distributional stability (Ct

DKL
) and

therefore to maximize the impact of regression errors on

the loss. Furthermore, it allows us to gracefully handle

input images without known cell counts by setting Ct;l
Reg to

zero:

Twinloss ðx; l; tÞ

¼ Ct
Rec � Rec ðxÞ þ Ct;l

Reg � Reg ðx; lÞ þ Ct
DKL

� DKL ðxÞ
ð1Þ

Synthetic
images

Natural 
images

Cell count

Reconstructed
natural images

RegressorRepresentation

Reconstructed
synthetic images

Syn-Encoder 
(outer)

Nat-Encoder 
(outer)

Syn-Decoder
(outer)

Nat-Decoder
(outer)

Shared-
Encoder 
(inner)

Shared-
Decoder
(innter)

128x128 px images
1 channel

128x128 px images
1 channel

4 Conv2d layers
leaky ReLUs + Dropout

1  256 channels

4 Conv2d layers
leaky ReLUs + Dropout

1  256 channels

1 Conv2d layer
leaky ReLUs + Dropout

256  512 channels

Bottleneck
Dropout

512  256  512 features 1 ConvTRS2d layer
BatchNorm2d

512  256 channels

5 ConvTRS2d layers
BatchNorm2d

256  1 channels

2 fully connected layers
Dropout

256  1 features

5 ConvTRS2d layers
BatchNorm2d

256  1 channels

128x128 px images
Sigmoid

1 channel

Prediction
Used for regression

128x128 px images
Sigmoid

1 channel

Inner Layers I
Outer Layers O

Fig. 4 Visualization of the Twin-VAE architecture. The blue

elements handle synthetic data, while the yellow elements handle

natural data. The green elements are shared between the two VAEs

and contain the inner representation of the cell imagery, while the

purple elements result in an estimation of the cell count
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During our experiments, the mean-squared error (MSE)

jjx� dðxÞjj2, where dðxÞ is the reconstruction of the input

image x and jjl� rðxÞjj2, where rðxÞ is the estimated cell

count, yielded the best results respectively, when used as

Rec ðxÞ and Reg ðx; lÞ for training on phase-contrast data,

and as Reg ðx; lÞ for bright-field data. However, for bright-

field data the binary cross entropy (BCE) �l � logðrðxÞÞ þ
ð1� lÞ � logð1� rðxÞÞ turned out to be the superior choice

for Rec ðxÞ and was often resulting in just slightly worse

results than the MSE for phase-contrast data. The DKL is

applied as the Kullback–Leibler divergence (KLD) of the

standard VAE model ([10]) and is obligatory to enforce

generation of latent vectors with sufficient similarity to a

normal distribution. The weighting factors Ct
Rec , C

t;l
Reg , and

Ct
DKL

are carefully chosen for training, punishing incorrect

cell count predictions especially on natural data, while

relaxing the importance of visual reconstruction. Details on

this are provided in the following section.

2.3.3 Neural network structure

The outer, non-shared part of the encoder is composed of

four two-dimensional convolutional layers with kernel size

5 and a stride of 2, initialized with an orthogonal

basis [19]. Inbetween the layers, leaky rectified linear units

(ReLU) with a leakiness of 0.2 are activated, together with

a dropout of 0.1. Channel amounts used for the convolu-

tions are in order: 32, 64, 128 and 256 for the encoders.

The inner, shared part of the encoder consists of an addi-

tional two-dimensional convolutional layer with identical

properties and 512 channels. The layer is followed by the

bottleneck, consisting of three fully connected layers of

sizes 512, 256 and 512 again, each with a dropout of 0.1.

The inner, shared part of the decoder has 256 channels,

contains a two-dimensional transposed convolutional

operator layer with identical kernel size and stride as in the

encoder, and is followed by a batch normalization over a

four-dimensional input and a leaky ReLU with the same

leakiness. The outer, non-shared part of the decoder con-

sists of five layers of kernel sizes 5, 5, 5, 2, 6, following the

convention of a small penultimate followed by a bigger last

layer, keeping the stride of 2 except for the fourth layer

using a stride of 1, the same leaky ReLUs and a sigmoidal

activation function at the end. Additionally, a branch of

fully connected neurons for the regressor consisting of two

layers of sizes 256 and 128 is being fed by the output of the

shared part of the decoder, uses linear layers and a constant

dropout of 0.1.

The architecture is using the Adam optimizer for phase-

contrast microscopy data, and the rectified Adam

(RAdam) [13] optimizer for bright-field data. The

combination of the decoder loss factor CRec ¼ 100, the

regressor loss factor CReg ¼ 3 and the KLD factor CDKL
¼

2 yields the best results for phase-contrast data. For the

BCE, the decoder loss factor is not constant, but decays

over time with a rate of 3� 10�5 per epoch, since the BCE

does not decrease significantly within the training process,

but needs to decrease over time to amplify the importance

of low regression losses Reg ðx; lÞ.
While it seems counter-intuitive that CRec is bigger than

CReg and CDKL
, it is caused by the MSE for pixel data

getting very small on normalized images. KLD is supposed

to stay relatively small. While it is required to enhance the

quality of the distributions, it should not impact the training

of cell predictions and image reconstructions too much by

unfortunate sampling from the latent vector, however it has

to be impactful enough to enforce natural and synthetic

data into similar representations in the inner layers.

Since training is done over thousands of epochs, a soft

weight decay of 1� 10�5 per epoch is added, combined

with a fixed learning rate of 1:3� 10�4. A delayed start for

the regressor is used to allow for pure image reconstruc-

tions to contain meaningful images, ensuring the repre-

sentation of information of existent cells in the

representation before the regressor has to extract that

information. A delay of 100 epochs has been used to

achieve the results presented in Sect. 5.

A batch size of 128 for the phase-contrast images and 64

for the bright-field images works best, and the training runs

for up to 50.000 epochs, unless early stopping conditions

abort it.

2.3.4 Data augmentation

To maximize the use of the limited amounts of natural data,

multiple data augmentation techniques are combined and

applied to the data. Randomly occurring horizontal and

vertical flips, possibly combined with a random crop of the

image of scale 0.9 combined with a resize to its original,

meaning the images get randomly cropped to 115 pixels in

width and height, and then scaled back to 128 pixels.

The crop adds difficulty to the cell detection process by

partially cropping cells out, however it proved helpful as

long as the crop is not too strict and cuts away cells

completely. Then, a 90 degree rotation is applied at random

and a zero-centered noise map is generated and added to

the image with a small amplitude factor. Additionally,

small rotations of 0 to 5 degrees are added before the crop,

to spread cell occurrence even more. The crop will then

mostly remove the undefined parts of the image, that are

created when rotating non-circular images.
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2.4 Image reconstruction

Although our goal is automatic counting of cells, our loss

from Eq. (1) includes a term for image reconstruction. The

reasoning behind this decision is that analysis of the

reconstruction abilities of Twin-VAE is only possible with

this loss. Furthermore, the loss enables us to check if the

learned shared representation is meaningful by checking

the correlation between the visual existence of cells in the

image reconstructions and the actual cell count.

During training of Twin-VAE, the natural input images

are first processed by a specialized encoder, followed by a

shared encoder and decoder of the two twins, and finally

reconstructed by a specialized decoder (see Fig. 4). Syn-

thetic data is handled equivalently. The learned inner rep-

resentation must be shared and similar between the two

types of data for (1) the regression to work as intended and

(2) the cell counting in natural images to benefit from

synthetic data as much as possible. Verification of this is

done by encoding a natural image with the appropriate

encoder but performing the reconstruction with the decoder

that is intended and trained for synthetic images and vice

versa. In the following, we demonstrate exactly this.

In Figs. 5 and 6 we show examples of perfect transla-

tions, where a natural image is encoded and subsequently

decoded as a synthetic image. The cell count is unchanged,

the cell prediction matches the actual existence of cells and

the position and size of cells are also retained, while the

overall appearance is simplified, however Twin-VAE has

learned to remove noise and condense the information

down to what is required and helpful to count cells.

Even when Twin-VAE does not translate an image

perfectly, the reconstruction can be useful to understand

where an error occurs. In Fig. 7 we show an example

where two cells that are very close together are interpreted

and reconstructed as a single cell. As well as translating

images from natural to synthetic-looking, Twin-VAE can

perform the inverse translation from synthetic to natural-

looking as well. We provide an example in Fig. 8.

Fig. 5 Example of a perfect synthetic-looking reconstruction (right)

of a natural image (left) from Nat-PC-L-Te. The cell counts match

exactly and the position as well as size of cells are preserved. While

the smudge on the left is recreated visually, it does not lead the

regressional part of the Twin-VAE to a wrong cell count

Fig. 6 Example of a perfect synthetic-looking reconstruction (right)

of a natural image (left) from Nat-BF-L-Te. The cell counts match

exactly and the position as well as size of cells are preserved. For this

data set, where smudges are more faint, they don’t get reconstructed

usually

Fig. 7 Example of a faulty synthetic reconstruction (right) of a natural

image (left) from Nat-PC-L-Te. The human expert determined the

cell count to be 10, the prediction differs by one. The reconstruction

shows a merge of the top two cells in the bottom-left triple of cells.

The two cells clump together in such a way, that there is almost no

visual indication of a border between them, especially missing the

usual bright boundary around cells that can be seen around the rest of

the cells

Fig. 8 Example of an accurate, natural-looking reconstruction (right)

of a synthetic image (left) from Syn-BF-L-Tr. Cell counts match

exactly, position and size of the cells are preserved. While these

conversions are not mandatory for the transfer process, they ensure

representational consistency on a visually comprehensible level
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2.5 Baselines

We implement two different methods to serve as baselines

for our evaluation.

The first is Twin-VAE which already outperforms

classical baselines like EfficientNet [23] and Water-

shed [17]. We compare our new Transfer Twin-VAE

to Twin-VAE and BigTransfer, commonly shortened to

BiT [11]. Twin-VAE is a previous work of ours upon

which Transfer Twin-VAE and the variation double

Transfer Twin-VAE build. It consists of the same

architecture but is trained upon a single dataset consisting

of natural and synthetic images. Furthermore, less exten-

sive hyperparameter tuning was performed on Twin-VAE

due to longer training times.

The second method we compare to is a transfer learning

pipeline from Kolsenikov et al. called BiT that produces

state-of-the-art classification results on Cifar-100 and

similar datasets in the few shot case (1–10 examples per

class). BiT consists of the classical ResNet [6] architecture

but with very long pre-training times on large image cor-

poras and a custom hyperrule that determines the training

time and learning rate during transfer dependent on the new

dataset size. Since the data augmentation applied during

BiT is not immanently applicable in the cell counting case,

we used the same data augmentation as in our own method.

We tested changes to the hyperrule presented in BiT but

did not find any significant improvements, therefore used

the values provided by the authors.

3 Transfer learning methodology

In this chapter, we will describe various experiments to

determine which transfer methodology is suited best to the

Twin-VAE architecture and the final transfer learning

methodology used.

3.1 Transfer method

When we write about freezing a section of the network

in this work, mathematically, we multiply the gradient

update D of the frozen part of the network f with weights

wf by zero. Hence, frozen weight update refers to the rule

wf ¼ wf þ Dwf � 0 instead of the normal weight update

wf ¼ wf þ Dwf The gradient is still passed through to non-

frozen parts of the network, enabling them to learn. Since

no standard procedure exists in the literature for applying

transfer learning to a Twin-VAE which is trained with

synthetic data augmentation, four different possible

methods of transfer learning are proposed and compared.

These methods are:

Frozen outer layers A popular observation in convolu-

tional networks is that the early layers consist of universal

edge processing masks and the later layers are more spe-

cialized for the task at hand [29]. In a Twin-VAE archi-

tecture, these later layers of a standard convolutional

network correspond to the shared inner layers and the early

convolutional layers correspond to the outer layers of the

Twin-VAE. Based on this analogy, we try to train only the

inner layers of the network. Everything which is not part of

the shared elements of the network pictured in Fig. 4 is not

trained.

Frozen core A common view on VAEs is that the pro-

duced embedding space should be highly sensitive in

regard to the variance in the training set. Since the imaging

method is not changed during normal training the VAE

embedding should not encompass this variable, rather it

should be highly sensitive to cell count and cell position in

the images, which were the main things varied in the

original training set. Since the task of cell counting remains

the same and the only difference between tasks is the

imaging method used, we tried to keep this shared inner

representation frozen during training. Everything that is

part of the shared elements of the network pictured in

Fig. 4 is not trained.

Simultaneous transfer In the third series of tests, we

were not freezing any layers at all. This has the potential

problem of the initial transfer period with high losses

destroying useful information in intermediate layers.

Thawing layers. Last, we experimented to start with

frozen inner or outer layers and gradually unfreeze them

during training. This is done explicitly to prevent the

potential problem described in Simultaneous transfer, but

to still be able to fine-tune these layers appropriately to the

new task.

3.2 Hyperparameter tuning

The original Twin-VAE needed 50 000 epochs to converge

to satisfactory results, which equates to a near 100 h on an

NVIDIA Tesla P-100 16 G. This made hyperparameter

tuning using standard methods computationally costly.

By using transfer learning to converge significantly

faster to similar or even better results, we were able to

conduct more extensive hyperparameter searches. Since a

full grid search over all possible hyperparameters is still

not computationally feasible, instead, an iterative search

was performed by tuning a single hyperparameter finding

the best value and proceeding to the next hyperparameter,

recapturing obscured parameter choices in later repetitions.

The hyperparameters and training options tuned were:
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– Training time,

– Transfer method,

– Image noise ratio,

– Image crop size,

– Relative ratio of KLD loss, regression loss and

reconstruction loss

– Learning rate

– Learning rate schedule

Plots for most of these are provided in Fig. 9.

3.3 Results

We see when tuning the hyperparameters that most of the

parameters show only small improvements to the final

accuracy (1–2 percent), cumulatively the performance of

the network can be significantly improved (5 percent). Our

experiments show that for most hyperparameters, large

performance degradation can be observed if they are poorly

chosen (Fig. 9).

The choice of transmission method revealed which parts

of the network have learned transferable information and

which need to be retrained (Fig. 10). We conclude that,

unlike in a typical convolutional network, the outer layers

need the most retraining. If these layers remained frozen,

the network could not successfully transfer its knowledge

to the new imaging method. Conversely, when the inner

layers remained frozen, the network achieved only 1–2

percent less performance than when everything remained

unfrozen.

This could be due to the rather unique circumstance of

the final task being the same, just on pictures taken with a

different imaging method.

Not freezing any layers achieved the best performance

overall, we attribute this to the postulated effect of the

initial transfer window scrambling information not being

observed.

Another interesting effect observed was that when

trained for very long training times (150 000 epochs) the

network did not show any signs of double descent [16] and

achieved convergence after only 10 000 epochs. Compared

to the non pre-trained network where convergence was

achieved at the earliest after 50 000 epochs, this represents

a speed up of at least 5 times.

4 Twin-VAE during transfer learning

In this section, we systematically investigate the effect the

unique architecture of the Twin-VAE has on the transfer

process. We choose to investigate whether the decoder part

of the network is needed during transfer learning, and

Fig. 9 Comparison of a variety of hyperparameter choices. These choices include: KLD loss factor (top left), rlf loss factor (bottom middle), dlf

loss factor (bottom left), crop size (bottom right), noise factor (top right), length of pre-train (top middle)

Fig. 10 Comparison of test accuracy between different transfer

learning options. The transfer was performed from the datasets Syn-
PC-L-Te, Nat-PC-L-Te transferring to the datasets Syn-BF-L-
Te, and Nat-BF-L-Te. In this application, the simplest option (not

freezing any layers at all) performs the best, while freezing only the

inner layers performs only slightly worse. Freezing the outer layers

greatly impact the ability of the network to adapt to the new imaging

method. Gradual thawing of the frozen layers does not have a large

impact on performance
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whether the synthetic data used for training is needed

during transfer learning. Through this we ask if the Twin-

VAE architecture is only necessary for the pre-training part

and if it can be simplified to a normal convolutional net-

work for transfer learning.

4.1 Decoder

To investigate whether the Decoder is important during

transfer learning, we perform multiple transfer training

runs where we successively lower the reconstruction loss

factor Ct
Rec . Figure 11 shows that the loss factor does not

seem to have any impact on performance. The variance

between runs is small enough to be within normal statis-

tical deviations observed between runs with the same

parameters and can not be clearly attributed to the different

loss factors. Based on this, we conclude that the Decoder

part of the network does not have a positive impact during

the transfer procedure and can be set inactive to speed up

transfer computing time even further.

4.2 Synthetic data

To assess the relevance of the synthetic data during transfer

learning, we vary the ratio of synthetic data to natural data.

In the original paper [22] the ratio of synthetic data to

natural data was maintained at 1:1 to prevent the archi-

tecture from projecting the different data types to distinct

embeddings in the VAE bottleneck. A point of note is that

a large part of the natural data is unlabeled, while the

synthetic data are fully labeled, subsequently the synthetic

data had a large contribution to the training of the

regressor.

During our experiments we vary the ratio of synthetic to

natural data in the range of 0.25–10:1.

Figure 12 suggests that the performance of the network

is negatively affected when the synthetic data ratio is

especially small (\0.5) or large ([5). The optimal ratio

found was 2:1. Since higher amounts of training data

generally lead to better performance, there seems to be a

problem generalizing from the synthetic data to the natural

data.

We suggest that the KLD loss DKL is still able to keep

the distribution of the natural and the synthetic data the

same in cases where the ratio is close enough to 1:1 but for

more extreme ratios the KLD loss DKL alone is insuffi-

cient. To validate this hypothesis we show 3 different

UMAPs [14] in Fig. 13 that depict the distribution of nat-

ural and synthetic data in the embedding layer of the VAE.

Figure 13 shows that the VAE distribution seems to

regard the number of cells in an image as a more important

aspect, the higher the synthetic data ratio. However, it does

not show a separation of synthetic (blue dots) and natural

data (red dots), so it is not clear why the performance of the

model decreases for higher synthetic data ratios. We leave

this for future work.

5 Results and discussion

We present the final results of all methods on the four data

sets Syn-PC-L-Te, Nat-PC-L-Te, Syn-BF-L-Te,

and Nat-BF-L-Te in Table 2. Our Transfer Twin-

VAE consistently outperforms all other methods Twin-

VAE and BiT by a clear margin on the Syn-BF-L-Te,

and Nat-BF-L-Te data sets. On the Syn-PC-L-Te and

Nat-PC-L-Te data sets, where more natural data are

available for training, the stronger initialization by

Transfer Twin-VAE does not have as strong of an

impact. It has a good performance on the dataset with very

little training time, but does not easily achieve the same

performance as Twin-VAE on Nat-PC-L-Te. On the

Syn-PC-L-Te it outperforms all other methods handily,

Fig. 11 Comparison of test accuracy during transfer between different

reconstruction loss factors Ct
DKL

. The transfer was performed from

the datasets Syn-PC-L-Te, Nat-PC-L-Te transferring to the

datasets Syn-BF-L-Te, and Nat-BF-L-Te. All values tried have

little to no effect on the accuracy

Fig. 12 Comparison of test accuracy during transfer between different

synthetic data to natural data ratios. The transfer was performed from

the datasets Syn-PC-L-Te, Nat-PC-L-Te transferring to the

datasets Syn-BF-L-Te, and Nat-BF-L-Te. Synthetic data ratio

below 0.5:1 negatively impact the network’s performance, ratios

above 5:1 also have a negative impact upon performance. The best

performance was achieved with a ratio of 2:1
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this is most likely due to the transfer working even better

on synthetic images than on natural images. Further rea-

sons for Transfer Twin-VAE not performing better

than Twin-VAE on Nat-PC-L-Te could be that the

performance of the initialization on the original dataset is

not as high. To remedy this, we used the Transfer

Twin-VAE transferred to Nat-BF-L-Te and Syn-BF-

L-Te as a starting point to transfer back to Nat-PC-L-

Te and Syn-PC-L-Te, using this configuration we

obtained the best results on Nat-PC-L-Te and Syn-

PC-L-Te, we call this configuration the double

Transfer Twin-VAE.

The most useful long-term information transfer seems to

be happening from better performing microscopy methods

(phase contrast) to worse performing methods (bright

field). In conclusion, a magnitude shorter training times, a

better starting point and some hyperparameter tuning

always outperforms random weight initialization. Interest-

ingly, the resulting transfer performance on the Syn-BF-

L-Te, and Nat-BF-L-Te datasets is better than either

microscopy method alone (60.74 $ 53.20/57.80).

In summary, the factors gained with our best method-

ology double Transfer Twin-VAE are: 19% better

accuracy compared to BiT on the Nat-BF-L-Te dataset,

32% accuracy better accuracy compared to BiT on the

Nat-PC-L-Te dataset. We achieved even higher accu-

racy gains compared to EfficientNet and Watershed. We

gained about 1.1% accuracy compared to our previous

Twin-VAE on the Nat-PC-L-Te dataset and about

7.5% accuracy compared to Twin-VAE on the Nat-BF-

L-Te dataset (Table 2). For a more detailed performance

comparison itemized by cell count see Fig. 14.

6 Conclusion and outlook

In this paper, we present a significant improvement over

the original Twin-VAE by using transfer learning methods

to improve the accuracy and training times of the original

architecture using pre-trained checkpoints of the original

paper. Utilizing these shortened training times, we perform

extensive hyperparameter tuning and improve the accuracy

even further. Furthermore, we research which parts of the

original Twin-VAE architecture are necessary for the

transfer learning case. We determine that the synthetic data

still plays a key role in achieving high performance and can

not be removed without significant performance loss. The

Decoder part of the network does not contribute to

achieving higher accuracies during transfer learning and is

therefore only necessary for pre-training on the original

datasets.

Limitations The transfer procedure only performs well if

the initial starting point has a high performance on the

Fig. 13 Different UMAPs of the embedding dimension of the Twin-

VAE after transfer. On the dataset Syn-PC-L-Te, Nat-PC-L-Te
transferring to the datasets Syn-BF-L-Te, and Nat-BF-L-Te.
Blue dots represent synthetic data, red dots natural data and green

dots natural unlabeled data. The color gradient of the dots represent

the number of cells in the image, where lighter indicates a higher cell

count. In all cases some outliers of red and green dots are found. In

the lowest ratio these outliers seem to be most severe. The direction of

low to high cell count is clearly recognizable in all plots. The high

ratio visualization has the strongest correlation of cell count to

embedding distance
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original dataset. If the starting point has low performance

on the original dataset the transfer procedure might achieve

lower performance than a normally trained network. In

practice this is not a big problem since good starting points

(in our case the Twin� VAEmax�acc) can be chosen easily

based upon their performance on their original dataset.

The Twin-VAE architecture can use synthetic data to

improve performance on natural data, currently this is

limited to ratios of up to 2:1. It would be desirable if the

network could abstract even further and possibly not need

any labels on the natural data at all. Current methods to

increase regularization (Higher DKL , Dropout, Weight

Decay) are not able to force the network to project the

different data types onto the same embedding.

Potential and future work The methods described in this

paper enables the automation and remote surveillance of

various previously tedious and labor-intensive laboratory

experiments. To use its full potential it would be interesting

to implement this method as edge computing on modern

microscopy hardware.

To enable edge computing computational efficiency is

key, here different techniques to prune network weights or

similar methods could be explored to facilitate even faster

computation times.

Other possible future work includes, using active

learning [3] to further refine the algorithm’s predictions

and enable entirely new areas of prediction, such as the

survival probability of an entire cell culture.
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Data availability The datasets generated during and/or analysed dur-

ing the current study are available in the natural and synthetic CHO-

Table 2 Evaluation of all methods on the data sets Syn-PC-L-Te, Nat-PC-L-Te, Syn-BF-L-Te, and Nat-BF-L-Te.

Method Syn MAE # MRE / % # Acc. / % " Nat MAE # MRE / % # Acc. / % " Training time / sec #

PC (phase-contrast microscopy)

Twin-VAE (Nat only) n/a n/a n/a 1.07 20.1 39.8 180000

Twin� VAEmax�acc 0.09 0.68 68.2 0.60 5.92 57.8 400000

Twin� VAEmin�dev 0.14 0.73 62.1 0.59 5.66 57.0 400000

BiT n/a n/a n/a 2.203 n/a 26.13 9000

Transfer Twin-VAE(Nat
only)

n/a n/a n/a 1.01 14.11 44.2 24000

Transfer Twin-VAE 0.15 0.43 85.0 0.66 6.46 53.7 40000

double Transfer Twin-VAE 0.12 0.43 85.0 0.58 5.56 58.7 71000

BF (bright-field microscopy)

Twin-VAE (Nat only) n/a n/a n/a 0.91 13.3 23.4 150000

Twin� VAEmax�acc 0.48 4.27 60.1 0.68 7.60 53.2 310000

Twin� VAEmin�dev 0.52 4.63 58.2 0.63 7.31 51.9 310000

BiT n/a n/a n/a 1.03 n/a 43.1 5400

Transfer Twin-VAE(Nat
only)

n/a n/a n/a 0.72 7.88 51.36 20000

Transfer Twin-VAE 0.40 3.87 66.6 0.52 5.47 60.74 31000

Numbers in bold indicate the best performance on the respective dataset and metric

For each method and data set, we report the mean absolute error (MAE), the mean relative error (MRE), and the accuracy. Ultimately, only the

performance on natural data (Nat) is important, but we also report the performance on synthetic data (Syn) to provide further context. We use an

upward arrow " to indicate that higher is better and a downward arrow # to indicate that lower is better. Training times are reported on an

NVIDIA Tesla P-100 16 G GPU for all models

Fig. 14 The mean relative error (MRE) for BiT, Transfer Twin-
VAE, and Twin� VAEmin�dev on Nat-BF-L-Te on a logarithmic

scale. Horizontal bars indicate the average MRE of their respective

color and method
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K1 time-lapse suspension cell microscopy images (bright-field and

phase-contrast) v2 repository, https://pub.uni-bielefeld.de/record/

2960030.
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