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Abstract
There is an urgent need, accelerated by the COVID-19 pandemic, for methods that allow clinicians and neuroscientists to

remotely evaluate hand movements. This would help detect and monitor degenerative brain disorders that are particularly

prevalent in older adults. With the wide accessibility of computer cameras, a vision-based real-time hand gesture detection

method would facilitate online assessments in home and clinical settings. However, motion blur is one of the most

challenging problems in the fast-moving hands data collection. The objective of this study was to develop a computer

vision-based method that accurately detects older adults’ hand gestures using video data collected in real-life settings. We

invited adults over 50 years old to complete validated hand movement tests (fast finger tapping and hand opening–closing)

at home or in clinic. Data were collected without researcher supervision via a website programme using standard laptop

and desktop cameras. We processed and labelled images, split the data into training, validation and testing, respectively,

and then analysed how well different network structures detected hand gestures. We recruited 1,900 adults (age range

50–90 years) as part of the TAS Test project and developed UTAS7k—a new dataset of 7071 hand gesture images, split 4:1

into clear: motion-blurred images. Our new network, RGRNet, achieved 0.782 mean average precision (mAP) on clear

images, outperforming the state-of-the-art network structure (YOLOV5-P6, mAP 0.776), and mAP 0.771 on blurred

images. A new robust real-time automated network that detects static gestures from a single camera, RGRNet, and a new

database comprising the largest range of individual hands, UTAS7k, both show strong potential for medical and research

applications.
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1 Introduction

In recent years, hand gesture detection has been increas-

ingly explored in human computer interaction research,

including sign language detection, video games and virtual

reality. The rapid development of deep learning [1, 2] has

significantly improved the accuracy of hand gesture

detection; for example, researchers have used 3DCNN

models to accurately classify hand gestures used in Arabic

sign language with 90% accuracy [3].

There is now growing interest in how these technologies

can be applied to medical and neuroscience research

applications as there is an urgent need, accelerated by the

COVID-19 pandemic, for methods that allow remote

evaluation of hand movements. Hand movement assess-

ments play a key part in the detection and monitoring of

brain disorders such as Parkinson’s and stroke. These dis-

orders are particularly prevalent in older adults and usually
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require participants to attend clinics or research institutes

for face-to-face tests. This is problematic for people who

live in rural or remote locations, those with limited

mobility and for the majority of patients and research

participants during the COVID-19 pandemic. With the

wide accessibility of computer cameras, a vision-based

method that can detect hand gestures in real time would

facilitate online assessments in the home and clinical set-

tings, and this would transform the accessibility and effi-

ciency of medical assessments and research studies.

Apraxia is a neurological disorder characterised by

difficulties carrying out precise movements despite the

physical ability to perform them. It is usually due to

impaired brain connections that integrate the planning,

sequencing and motor–sensory integration of movement.

Causes in adults include stroke and neurodegenerative

disorders, such as Alzheimer’s disease and Parkinson’s

disease [4]. We are developing a new online test, the TAS

Test, that analyses hand movement features [5] associated

with ageing and neurodegenerative disorders, in a large

established cohort of older adults. Participants access the

online test using their own laptop or desktop computer via

a website and then follow a series of instructions to record

their hand movements with a webcam. The test is designed

to be completed remotely from the research centre without

any researcher supervision [6]. A robust real-time auto-

mated method is important for clinician and researchers to

monitor whether the participants are following the

instructions and therefore to further evaluate and analyse

the level of apraxia in the hand movement.

However, real-time gesture recognition of fast-moving

hands is challenging for several reasons. First, the validated

hand movements tests, such as finger tapping and whole

hand opening–closing require participants to repeat these

movements ‘as fast as possible’ and this creates motion

blur, especially for home computer cameras that tend to

have a relatively low rate of frames per second (fps).

Second, accurately recognising similar gestures such as

finger and thumb together (closed position) at the start of

the finger tapping cycle or a few centimetres apart (open

position) partway through the finger tapping cycle results

in inherent errors and confusion, which decreases the

detection accuracy. Third, in the home and clinic settings,

the backgrounds are typically cluttered and there are

variations in ambient lighting and distance of the hands to

the camera.

The hand movement tests include repetitive finger tap-

ping (tapping the index finger against the thumb, in the

phase and anti-phase) and repetitive hand opening–closing

(of all the digits). Both are well-validated tests for evalu-

ating human movement function. Figure 1 illustrates how

the anti-phase (or alternate) finger tapping test is

performed; the participants are instructed to switch

between ‘Gesture 1’ and ‘Gesture 2’ quickly and repeat-

edly [7].

The overall aim of this study was to develop a robust

method to detect fast-moving hand gestures in real time.

Our first objective was to develop a large dataset of hand

gestures collected in home environments and clinical set-

tings (with real-life cluttered backgrounds), and split into

clear and motion-blurred images. Our second objective was

to develop an accurate method for discriminating similar

hand gestures in clear and blurred images while remaining

real time and compare the accuracy of this to other

established methods.

In this study, we establish a new dataset, UTAS7k, with

20 per cent of blurred images included. We compare the

detection accuracy of different network structures on hand

gesture classification, where we find multi-scale detection

technique was effective. To develop an optimal network

structure for hand gesture detection, we embedded different

types of neural networks into the detector network. We

implemented an attention-based hand gesture network to

detect the hand gestures performed in the hand movement

tests. We developed a new model, RGRNet, for fast-

moving hand gesture detection, inspired by CSPDarknet-53

[8]. We have implemented the multi-scale detection tech-

nique and embedded one more detection head for the

detection of hands in different sizes. We also adopted

attention layers in the feature extraction blocks to increase

the prediction capability. To further increase the perfor-

mance of detection, data augmentation was employed

during training, including mosaic and left or right flip.

Our experiments revealed that multi-scale detection

techniques help to increase the overall performance of

similar gesture classification. Also, the experimental results

show that our new model, RGRNet improved the accuracy

of similar gesture classification on clear images and per-

forms more robustly on both clear and motion-blurred hand

gesture images.

The key contributions of this research study are as

follows:

Fig. 1 Two images were taken from a video recording of the anti-

phase (alternate) finger tapping test. a Gesture 1 with the right-hand

finger and thumb opposed and the left-hand finger and thumb

separated. b Gesture 2 with the left-hand finger and thumb opposed

and the right-hand finger and thumb separated
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1. We develop a novel model, RGRNet, with attention

and transformer layers to improve the classification

performance on similar gestures and blurred images

extracted from hand movement videos. Our model

achieved near real-time hand gesture detection and

classification with a total processing speed of 18.8ms.

2. We establish UTAS7k, a real-world dataset comprising

more than 7,000 images of similar hand gestures with

cluttered backgrounds and split 4:1 into clear and

motion-blurred images. Then, we provide a compre-

hensive comparison of the classification accuracy of

different network structures on the hand gesture videos

with motion blur and similar gestures and show that

our model, RGRNet, has a better performance than the

state-of-the-art network structure. All of these contri-

butions have strong potential for medical, neuroscience

and computer science research applications.

The organisation of the paper is as follows: in Sect. 2, we

summarise the literature related to our research, including

hand gesture detection methods, object detection algo-

rithms and network structures for object detection. In Sect.

3, we describe our network structure in detail, including the

structure of each block. In Sect. 4, we describe the col-

lection and processing steps to develop UTAS7k, our

dataset of hand gestures. In Sect. 5, we present the exper-

iment methods and results of classification accuracy and

detection speed of our new network, RGRNet, compared to

a range of other popular network structures. Finally, in

Sect. 6, we summarise the findings from our work and

discuss future directions.

2 Related work

2.1 Hand gesture detection methods

Methods to detect hand gestures are generally categorised

into two types: wearable device-based gesture recognition

or computer and vision-based gesture recognition. The first

method typically measures the angle between fingers and

proximal interphalangeal joints to estimate the gestures [9]

although the activity of the muscles in the digits and upper

limb has also been used [10]. A range of wearable devices

have been employed, including data gloves (with embed-

ded sensors), tactile switches, optical goniometers and

resistance sensors to measure the bending of finger joints

[11]. This approach mainly focuses on increasing the

accuracy to pinpoint the position of the hand in the 3D

model. However, the main limitations of the wearable

sensor approach are accessibility, cost and infection. The

clinician or researcher needs to find a robust method of

delivering the sensors to patients or participants with clear

instructions, or bring the participants into the research

laboratory setting. Also, sensors can be very expensive; for

example, commercial wearable data gloves typically cost

in the range of $1000 to $20,000 each [12]. Furthermore,

any multi-user wearable devices will have infection control

issues as there is a need for thorough cleaning between

participants. All of these barriers limit the usefulness of

wearable devices for hand gesture detection in medical and

large scale studies.

The second method, the vision-based method, holds

much more potential for remote or large scale studies as

participants’ hand gestures are captured as image data by

video cameras and then processed and analysed through

computer vision algorithms [13]. Before the popularity of

CNNs in hand gesture recognition, the traditional vision-

based approach focuses on extracting image features and

then using a classifier to differentiate features into different

gestures. Statistical methods were the most widely used.

For example, Lee and Kim [14] first introduced Hidden

Markove Model (HMM) to calculate likelihood of the

detected gestures. Many subsequent efforts have been

made to improve the classification performance, for

example, IOHMM [15] and the combination of HMM and

recurrent neural networks (RNN) [16]. Some work focus on

how to extract features effectively, such as stochastic

context-free grammar (SCFG) [17].

With the development of deep learning and convolu-

tional neural network (CNN), researchers have been

employing CNNs for hand gesture recognition thanks to

their ability to learn visual features from images; hence,

feature extraction is not required [18]. Real-time hand

gesture recognition has benefited greatly from this as many

popular object detection and image classification algo-

rithms have been developed recently. They include incep-

tion V2 for MITI hand dataset [19], SSD for American

Manual Alphabet detection [20], YOLOV3 on a custom

hand gesture dataset [21] and Temporal Segment Networks

(TSN) [22] for IPN Hand dataset [23]. Many of those

approaches have achieved high accuracy, confirming that

vision-based hand gesture detection methods can be a

reliable method for hand gesture detection problems.

Unlike static hand gesture detection, dynamic hand gesture

recognition is more challenging because blurriness

boundaries of the hand gestures [24]. Deep learning-based

methods also show promising results on dynamic gesture

recognition, Kopuklu et al. implemented ResNet-10 and

achieved 77.39% accuracy on nvGesture Dataset [25]. Do

et al. also achieved 96.07% accuracy on a custom dynamic

hand gesture dataset by using a ConvLSTM model [26].

However, previous literature shows limited information

about similar gesture detection and how real-world hand

gesture classification problem were analysed.
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Object detection algorithms used in recent years have

tended to be either two-stage detectors or one-stage

detectors and each has its own advantage: two-stage

detectors are good at improving the accuracy of detection

and one-stage detectors generally have faster detection

speeds. YOLO, which was first introduced by Redmon in

2016 [27], is regarded as one of the most successful one-

stage object detectors and has been widely adopted for real-

time hand gesture detection. For example, Ni et al.

implemented a hand gesture detection system based on

YOLOV2 for hand gesture recognition in scenes with a

cluttered background [28] and Mujahid et al. proposed a

YOLOV3 system for real-time gesture recognition in

detecting hand gestures and then denoted numbers from 1

to 5 [21].

The YOLO object detection model has been updated and

improved constantly. From the first version through to the

latest version, YOLOV5, many techniques such as batch

normalisation, anchor boxes, multi-scale training, feature

pyramid networks for object detection, mosaic data aug-

mentation and model size reduction have been imple-

mented to improve the performance [8, 29–31].

Nevertheless, despite the successes of YOLO, some

researchers have found it lacks capabilities in detecting

small objects such as fingers of the hand or small images of

pedestrians on the road [32].

In summary, the development of vision-based object

detection techniques has dramatically improved both the

accuracy and speed of hand gesture detection, but there

remains a lack of research into real-world challenges. Two

key challenges include how to detect hand gestures in real

time when there is motion blur and how to discriminate

very similar gestures. These challenges are commonplace

in medical and neuroscience applications, especially during

the COVID-19 pandemic, when patients and participants

are increasingly using their own laptop cameras, or clinic

webcams to collect hand data remotely.

2.2 Feature extraction network

So far, the detection of hand gestures in real time has relied

heavily on feature extraction networks as the backbone for

the majority of solutions. Such networks are commonly

used to extract deep features from the images. For example,

ResNet [33] has been widely adopted as a feature extractor

and backbone in many one-stage detectors, including

RetinaNet [34] and SSD [35]. ResNet introduced a shortcut

connection that guaranteed the gradient would not be

vanished. EfficientNet [36] is another popular feature

extraction network and this network used a neural archi-

tecture search method to explore the optimistic model

depth, width and resolution of input images. This provides

a way to adaptively scale the model to optimise the com-

putational cost for different computer vision tasks.

In order to extract more useful features, recent

approaches have employed transformers to pay attention

to the discriminable information in the inputs. Attention

was originally designed as a useful tool in natural lan-

guage processing (NLP), but has shown potential in

wider applications. For computer image classification, it

enables the neural network to learn the relevant infor-

mation of the images for the tasks and increase the

performance [37].

3 Rapid gesture recognition net (RGRNet)

3.1 Network structure

We proposed a novel network structure called ‘Deep

Robust Hand Gesture Network’ (RGRNet), which includes

attention mechanisms and multi-scale detection techniques

to increase the accuracy for detecting fast-moving hands

and for classifying similar gestures. Our proposed network

consists of three blocks as shown in Fig. 2: Block 1 is

designed as the feature extractor, Block 2 is for feature

fusion and Block 3 is for detection.

Block 1 - Feature extractor

Our network structure was designed as a classic one-stage

detector framework. Our feature extractor includes tradi-

tional CSPNet structure [38] and attention blocks. In Block

1, the size of the convolution kernel in front of each CSP

module is 3x3 with a stride equal to 2. This architecture

allows the network to have different sizes of feature maps

from top to the bottom.

Block 2 - Feature fusion

In Block 2, feature pyramid networks (FPN) [39] and

PAnet (PAN) [40] structure were employed. The FPN can

effectively propagate semantic visual information in a

bottom-up manner while PAN would enhance the locali-

sation of discriminable features in the lower layer and link

them to the top layer. The idea to combine the two different

structures would encourage better parameter aggregation

between different layers and a more effective fusion of

visual features.

Block 3 - Detection

Block 3 inherits the output from the feature fusion block,

followed by two layers of convolution. The final outputs of

Block 3 will include: (1) bounding boxes and their confi-

dence scores and (2) a SoftMax layer of N, where N is the

number of gestures.
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Focus layer

The focus layer [31] is the first layer in the feature

extraction network. A 608x608 image after the focus layer

will be sliced into 4 different parts; then, we use 32 con-

volution kernels to convert them into 304�304�32 feature

maps. This technique was also used by Tal et al. [41] who

called it ‘SpaceToDepth’, and stated it allowed the network

to rearrange spatial data into depth. Such a component will

thus help our network to reduce the resolution of the input

images and save computational costs.

Conv layer

The Conv layer is a fundamental building block in our

network. In the Conv layer, the input feature maps will go

through a 3x3 convolution with strike equals 2, followed by

batch normalisation and a SiLU activation function [42].

C3 layer

The C3 layer is a stackable layer in our network, which

consists of CBL and multiple CSP units. In this layer, CBL

refers to convolution, batch normalisation and Leaky ReLU

activation function. In the CSP unit, the input feature map

will go through two CBL blocks and then add the previous

output to its original feature map becoming the output. This

approach ensures that the amount of information under the

feature maps of the image is increased while guaranteeing

that the dimensions of the feature maps are not increased.

This operation will increase the amount of information and

is beneficial to the final classification of the image.

SPP layer

In the SPP layer [8], we use four different types of max-

pooling to fuse the feature maps. They are 1�1, 5�5, 9�9

and 13�13 max-pooling. This block enables the informa-

tion from different sizes of feature maps to be combined.

Upsampling layer

The upsampling layer enables the feature map size to be

increased. In our network, we adopted the nearest neigh-

bour in the upsampling calculation.

Concat layer

The concat layer refers to an operation that combines the

feature maps in different sizes. This layer enable us com-

bine features from different layers and fuse to a new

feature.

Fig. 2 Rapid gesture recognition net (RGRNet)
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3.2 Attention layers

The core element in our architecture is the attention

module, as shown in the green box of Fig. 2. This module

consists of several attention layers, including squeeze-and-

excitation (SE) layer and transformer layer.

Squeeze-and-excitation (SE) layer

The squeeze-and-excitation (SE) layer enhances the ability

of models to learn correlations between visual channels

(R–G–B, H–S–V, etc.). The SE-Block was first proposed in

SENet [43] and showed better performance than ResNet.

Although the SE layer will slightly increase the computa-

tion costs, the performance degradation is within accept-

able limits, and the loss of SENet is not significant in terms

of GFLOPs, the number of parameters and run-time

experiments. The architecture of the SE layer is demon-

strated in Fig. 3a. The SE layer is normally embedded after

a traditional convolution block. Firstly, we use global

average pooling to reduce the dimensionality of the feature

maps from 3D to 1D, this step can also be referred to as

‘squeeze’.

The squeeze operation is calculated as the following

equation :

Zc ¼ Fsq Ucð Þ ¼ 1

H �W

XH

i¼1

XW

j¼1

Uc i; jð Þ ð1Þ

where Fsq refers to the feature map after ‘squeeze’, Uc is

the transformation output from the previous layer, H and

W are height and width, respectively. By using the average

pooling method, all the information contained in this fea-

ture map is averaged. ‘Excitation’ is done by two fully

connected layers. The first fully connected layer will

squeeze the number of channels from C to C/r, where

r refers to the reduction ratio. The second fully connected

layer is adopted to ensure the feature map can be returned

to its original channel size. This attention mechanism

allows the network to focus more on the most informative

channel features and suppress the less important ones.

Transformer layer

The transformer layer is shown in Fig. 3b, which is inspired

by the vision transformer. The vision transformer has

implemented a skip-connection-based network block and

demonstrated having better performance than the state of

the art on image classification tasks [37].

In our model, the transformer consists of multilayer

perception, two normalisation layers and one multi-head

attention. It enables the neural network to extract global

information from image features. By adding attention, the

global relationship and distinctions between five hand

gestures frequently used in the finger tapping and hand

opening tasks can be learned from an input image. In the

transformer layer, the global information is learnt through

the similarity calculation. Vaswani et al. have used Query

and Key-Value pairs to represent the similarity of the

features [44], where the similarity is calculated as:

f Q; kið Þ; i ¼ 1; 2; :::;m ð2Þ

The similarity function f is normalised by applying a

SoftMax operator, followed by calculating the weighted

sum of all the values in V to obtain the attention vector. We

can use the following equation to calculate attention in the

transformer:

Fig. 3 SE layer and transformer

layer
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Attention Q;K;Vð Þ ¼ softmax
QTKffiffiffiffiffi
dk

p
� �

V; ð3Þ

where
1ffiffiffiffiffi
dk

p is a scaling factor. With multi-head, we are able

to perform attention multiple times in parallel (we set 4

heads in our experiment) without sharing parameters. The

fusion of the attention and transformer layers enables our

network to focus on specific areas for solving particular

tasks (hand gesture recognition), rather than evaluating the

whole image.

4 Dataset

4.1 UTAS7k dataset—a new dataset for hand
gesture detection

Subjects and setting

As part of the TAS Test [5] project, we invited adults aged

50 years and older from an established cohort in Tasmania,

Australia (The ISLAND Project) [45] to perform a series of

hand movement tests. The TAS Test project aims to track

movement and cognitive changes associated with ageing

and degenerative brain disorders over a 10-year period.

Ethical approval has been granted for the TAS Test study

by the Human Research Ethics committee at the University

of Tasmania (reference H0021660), and all participants

provide informed online consent.

Hand movement data were collected via TAS Test, an

online programme, that uses a short demonstration video to

instruct participants how to perform each of the hand

movement tests and then records their hand movements as

they complete the test using a standard laptop camera or

desktop webcam (typically with 30 fps). The test is

designed to be completed without any in-person researcher

assistance or supervision.

So far, 1,900 participants aged between 50 and 90 years

have completed a range of hand movement tests, with the

majority completing tests in their own home and some in

the clinical research facility at the University of Tasmania.

Dataset processing

The hand movements video consisted of a sequence of

images (video frames). By stopping at a specific frame in

the sequence of a hand movement video frame, we could

extract a still image. Our model works by detecting a single

frame in the video and then returning the result of the

detection to each frame in the video. In total, more than

20,000 image frames of hand gestures were collected. In

this dataset, we processed and labelled more than 7,071

images for training, validation and testing. Most data

frames were collected through high-definition video (720P)

or full high-definition (1080P) web cameras. Their reso-

lutions are 1280 x 720 pixels and 1920 x 1080 pixels,

respectively. To unify the size of the input image for our

network and accelerate the training speed, we scaled down

the image systematically (via FFmpeg) and scaling down

time is not calculated; however, the average processing

time for 720P video is 7.8ms/frame and 1080P at 9.1ms/

frame. The data were split into 4:1 with 5996 clear images

and 1075 blurred images and this dataset was named

‘UTAS7k’. Table 1 outlines how the UTAS7k dataset

compares to other established hand datasets, and highlights

that it has a far larger population size of individual hands

(n = 1900 participants) than previous datasets (n \ 643

participants). Moreover, we are the only group to have also

included data with motion blur.

4.2 Developing the UTAS7k dataset

4.2.1 Hand gestures

To establish the UTAS7k dataset, 5 different hand gestures

were extracted from the fast finger tapping and hand

opening–closing hand movement tests and called these

‘open’, ‘close’, ‘pinch open’, ‘pinch close’ and ‘flip’ as

shown in Fig. 4.

4.2.2 Motion blur

Quantifying the blurriness of the images is essential for us

to classify and pre-process the training data. Pech-Pacheco

et al. proposed a method to calculate the blurriness of the

images by calculating the standard deviation of a convo-

lution operation after a Laplace mask [51]. The Laplace

mask equation is listed below:

LAP Ið Þ ¼
XM

n

XN

m

L x; yð Þj j; ð4Þ

where L( m, n) is the convolution of the input image I(m,n)

with the mask L and the mask is calculated by the fol-

lowing equation:

L ¼ 1

6

0 � 1 0

�1 4 � 1

0 � 1 0

0

B@

1

CA ð5Þ

Figure 5 shows the blurriness score after calculation; if an

image has a high variance (low blurriness), it means there

are many edges in the image as is commonly seen in a

normal, accurately focused picture. On the other hand, if

the image has a small variance (high blurriness), then there

are fewer edges in the image, which is typical of a motion-

blurred image.
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The variance (blurriness) of 7,071 images was calcu-

lated and classified into two categories: they are clear

(Fuzzy � 50) and blurred images (Fuzzy \ 50),

respectively. Table 2 shows the number of clear images

and blurred images in each dataset.

5 Experiments

5.1 Setup

Presetting In our experiment, the performance of the

models was compared with state-of-the-art network struc-

tures in object detection. The following competitors were

tested: DarkNet-53 [30], GhostNet [52], TinyNet [30],

CSPDarknet-53 [31], MobileNetv3-small[53], Effi-

cientNet-B1 [36] and RGRNet. (Network structure is

shown in Fig. 2.) For fair comparison, all models are

implemented using YOLOv5 framework. We then conduct

an intensive evaluation of our model using multiple metrics

including the number of parameters, as what will be dis-

cussed in the next section.

Data preparation 80 per cent of the data were split for

training and 20 per cent for validation. The testing dataset

was an independent dataset comprising 621 images (of 5

different gestures, 80% clear and 20% motion blurred) that

were not seen by the models before. In the default settings,

we set the training images as image size 640 � 640 pixels.

Training techniques To improve the quality of the train-

ing of all models, several popular data augmentation

techniques were implemented, including translate, scale,

flip from left to right and mosaic augmentation. This pro-

cess would enrich the data which is needed for deep

learning.

Stochastic gradient descent (SGD) was employed as the

optimising function with a decaying learning rate of 0.0005

where the initial learning rate is set as 0.01. Before that, the

training process started with very low learning rate for

warm-up training to help the models gradually adapt to the

data.

Table 1 Table of datasets for hand gesture detection comparison

Datasets Total images Population Hand side Left–right Age recorded Include motion blur

11k Hands [46] 11,076 190 Palm-dorsal Both Yes No

CASIA [47] 5,502 312 Palm Both No No

Bosphorus [48] 4,846 642 Palm Both No No

llTD [49] 2,601 230 Palm Both No No

GPDS150hand [50] 1,500 150 Palm Right No No

UTAS7k (ours) 7,071 1,900 Palm-dorsal Both Yes Yes

Fig. 4 Five hand gestures in the UTAS7k dataset

Fig. 5 Image blurriness calculation. The ‘fuzzy’ score is a number

that quantifies the average quality of the image with Fuzzy � 50

indicating the image is clear, Fuzzy score\50 indicating motion blur

Table 2 Number of images included in the sub-datasets of UTAS7k -

split into the clear dataset, motion-blurred dataset and testing dataset

Dataset Total Clear Motion blur

Clear dataset 5,376 5,376 0

Motion-blurred dataset 6,450 5,376 859

Testing dataset 621 497 124
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5.2 Evaluation metrics

mAP To evaluate whether the detection was successful,

‘IOU’ was used to describe the intersection over union

(IOU) area between ground truth and predicted bounding

boxes. IOU indicates how accurate the bounding boxes are

in terms of localising objects. Normally, a threshold t (in

our experiments, we set t = 0.65) will be assigned to

determine whether the detection is successful, i.e. if the

IOU of a detected bounding box is larger than t then it will

be accepted as a true bounding box; otherwise, it will be

classified as incorrect. mAP@0.5:0.95 was adopted as our

primary evaluation metric for detection accuracy in our

experiments. mAP@0.5:0.95 is the primary evaluation

metric from the MS COCO challenge [54] and denotes the

mAP at different thresholds (from 0.5 to 0.95 in steps of

0.05), which is calculated by the following equation:

mAP@0:5 : 0:95 ¼ ðmAP@0:5 þ mAP@0:55

þ . . .þ mAP@0:95Þ=10
ð6Þ

GigaFLOPS (GFLOPs) We employed Giga floating point

operations per second (GFLOPs) to evaluate the compu-

tational cost. Generally, the more GFLOPs a model has, the

greater the cost of the computer to run the model.

Parameters The number of parameters often determines

the learning capacity of a model, the more parameters a

model has, the more learning capacity it poses. The unit for

this evaluation metric is ‘M’, meaning a million

parameters.

Storage Size The storage size evaluates the amount of

space for the model to be stored in the computer. The unit

for storage size is Megabyte (MB).

Inference speed per image Inference speed per image

evaluate the inference time for the model to process an

image with a 640 � 640 pixel image size. We used mil-

liseconds (ms) as the unit.

5.3 Experimental results

5.3.1 Performance analysis on datasets comprising clear
images of hand gestures

The network comparisons are displayed in Table 3, where

we evaluate different network structures performed on the

testing dataset and the fastest inference speed and highest

accuracy are highlighted. Our network RGRNet had a

mean average precision of 0.782 which was superior to all

other network structures on the clear images of hand ges-

ture dataset. The end-to-end image processing speed at

720P image size is 17.5 ms (57FPS) and 18.8 ms (57FPS)

at 1080P image size, which is still within the range of near

real-time detection (� 30FPS). Although the processing

speed was longer at 9.7ms per image, as a one-stage

detector, the inference time is already within the range of

real-time detection. Adding a multi-scale detection and

attention layer will increase the parameters of the network

considerably. EfficientNet is one of the SOTA convolu-

tional neural networks by setting certain parameter values

to balance the depth, width and input image size of the

convolutional neural network. We applied efficientNet-B1

to our data and found that it can achieve a decent result,

0.757 mAP and GFLOP (6.7) with only 9.98 M parameters.

CSPNet was designed to minimise duplicate gradient

information within the network and reduce the complexity

of the network. In our experiment, CSPDarknet-53 also

shows effectiveness on hand gesture classification by

achieving 0.753 mAP and 7.5 ms image inference speed at

an image size 640�640. We have taken the extra step of

adding in a transformer layer and an SE layer and achieved

0.782 mAP and 9.7 ms inference speed, which is signifi-

cantly higher than our baseline models, MobileNetv3-

Small (0.701), EfficientNet-B1 (0.757) and CSPNet-53

(0.753).

According to the experiment results, we categorised

network structures into three types: medium structures,

large structures and light structures. Large network struc-

tures, such as CSPDarknet-53, EfficientNet-B1 and Dar-

knet-53, had similar detection accuracy on our dataset and

Table 3 Network structure

comparison on testing dataset

(image tested on NVIDIA GTX

1660 SUPER)

Network structure Parameters GFLOPs Storage size Inference speed mAP@0.5:0.95

GhostNet 4.17 M 9.2 7.8 MB 7.4 ms 0.735

CSPDarknet-53 7.27 M 16.9 14.00 MB 7.5 ms 0.753

MobileNetv3-Small 3.55 M 6.3 4.21 MB 3.0 ms 0.701

TinyNet 2.18 M 3.3 5.85 MB 3.1 ms 0.703

Darknet-53 6.99 M 19.0 14.20 MB 7.4 ms 0.755

EfficientNet-B1 9.98 M 6.7 19.40 MB 9.5 ms 0.757

YOLOV5-P6 12.36 M 16.7 25.1 MB 9.5 ms 0.776

RGRNet (ours) 12.54 M 17.0 25.5 MB 9.7 ms 0.782
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their weight sizes ranged from 14MB to 20MB. Medium

network structures usually have a smaller weights size

because some have adopted ghost convolution which

reduces the number of parameters and kernel sizes in the

feature extraction blocks. However, this type of network

usually has lower detection accuracy too. Although we

assumed smaller models would have a faster detection

speed, the image process speed is surprisingly similar for

CSPDarknet-53 on GTX 1660 SUPER GPU, in comparison

with other lighter models. Finally, light network structures,

including TinyNet and MobileNet, showed efficient infer-

ence computation with reasonable detection speed; how-

ever, their performance in terms of mAP is not promising.

5.3.2 Performance analysis on the noisy dataset
comprising clear and blurred images (4:1) of hand
gestures

In this experiment, we included the blurred images in the

motion-blurred dataset to create a dataset with 80% clear

images and 20% blurred images. As shown in Table 4, the

performances of all network structures dropped, we have

also highlighted the highest detection accuracy, lowest

accuracy drop and fastest inference speed in bold text. The

result shows our model still achieved better mAP than the

other baselines.

Overall, we found that complex network structures had a

higher drop in mAP; see Fig. 6. The cause of such drop is

mainly due to the higher number of layers. We can see that,

with more layers and parameters, these models usually

have more learning capacity that encourages the negative

effect of noisy data to be amplified during the learning.

Although the number parameters of our model, RGRNet,

Table 4 Network performance with noisy dataset (image tested on GTX 1660 SUPER)

Network structure mAP without noise mAP with noise mAP dropped Process speed per image

CSPDarknet(YOLOV5) 0.753 0.745 0.008 7.4ms

GhostNet 0.735 0.726 0.009 7.5ms

MobileNetv3 0.701 0.694 0.007 3.0ms

Darknet-53 0.755 0.747 0.008 7.4ms

EfficientNet-B1 0.757 0.745 0.012 9.5ms

TinyNet 0.703 0.701 0.002 3.1ms

CSPDarknet-P6 0.776 0.769 0.007 9.5ms

RGRNet (ours) 0.782 0.771 0.011 9.7ms

Fig. 6 Parameters vs mAP dropped on motion-blurred dataset
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are the greatest among all the models tested, the amount of

accuracy dropped is still only as much as a medium-sized

model.

Why attention layers would work?

In the learning process of the neural network, the network

generates different features to cover different semantic

information. Xie et al. found that more information is

beneficial to the training of the neural network [55]. By

introducing an attention mechanism, our network will learn

how to better capture finger-specific attention information,

thus helping the network to effectively distinguish different

gestures. On the other hand, transformer layers enable deep

neural networks to obtain global information. The trans-

former layer and attention layer used in our network thus

make our network able to learn both the local feature and

the global feature, thereby providing greater effectiveness

on similar hand gesture detection tasks. To analyse the

effectiveness of our attention layers, we have printed out

the attention map in Fig. 7 to highlight the important

regions in the image for the detection of two similar ges-

tures. We can see that after adding the attention layer, our

model focuses on the recognition of the gesture as a whole

in the detection of similar gestures, and takes into account

the fingertip part in the detection of both pinch open and

pinch close gestures. More importantly, we have added an

extra step to analyse how attention layers would impact

detection accuracy in Table 5, in bold text, we have

highlighted that SELayer achieved the highest precision,

recall, mAP@0.5 and mAP@0.5:0.95. Our result shows

attention layers can help improve the performance where

the SE layer performs better than transformer on motion-

blurred dataset, which means learning local features

enables our network to perform better on blurred images.

5.3.3 Similar gesture classification

In our experiment, we have analysed the performance of

different networks to detect the two similar gestures on the

clear dataset, ‘pinch open’ and ‘pinch close’; see Fig. 8. In

Table 6, we show how different network structures per-

formed on classifying 5 different gestures in the UTAS7k

dataset, where ‘all classes’ evaluates the average detection

accuracy for all gestures. In general, all models perform

well on classifying ‘open’ gestures and have relatively

lower detection accuracies on ‘pinch open’ gestures.

We also found that in many cases, most of the neural

networks had mistaken ‘pinch close’ for ‘pinch open’. As

the result, there is a higher detection accuracy for ‘pinch

close’ than for ‘pinch open’, but generally this accuracy

Fig. 7 Attention map for the

models to predict similar

gestures (pinch open and pinch

close gestures)

Table 5 Comparison of how different attention mechanisms performed on the noisy dataset (80% clear and 20% blurred images) (image tested

on GTX 1660 SUPER) classification accuracy of similar gestures

Network structure Precision Recall mAP 0.5 mAP 0.5:0.95

YOLOV5-P6 0.915 0.902 0.887 0.761

YOLOV5-P6?Transformer 0.921 0.9 0.891 0.759

YOLOV5-P6 ?SE layer 0.927 0.914 0.903 0.765
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would not be reliable enough for most medical and neu-

roscience research applications as a balance error rate of

these two gestures is desirable.

We can also see that adding the transformer block not

only increases the overall gesture detection performance

but also significantly increases the model’s detection effi-

ciency for the ‘pinch open’ gesture, which reduces the

probability of the model misclassifying similar gestures.

Moreover, results show that adding attention layers

increase the total mAP for similar gestures and decreased

the mAP difference between similar gestures, which also

indicates that the model is more balanced in detecting

similar gestures and minimise the possibility of

misclassification.

6 Conclusions and future work

In this paper, we have implemented a novel network

structure, RGRNet, for accurately classifying similar hand

gestures and for motion-blurred image detection. Although

previous methods had achieved real-time hand gesture

detection, there had not been any focus on real-world fast-

moving hand gesture detection in the home and clinical

settings with cluttered backgrounds and ambient lighting,

nor on hand detection when motion blur is present or when

similar gestures are present in those blurred images. We

have also developed UTAS7k, a new dataset of 7071

images (videos) with the widest variety of individual hands

from 1,900 older adults and including 4: 1 clear:motion-

blurred images.

We compared the detection performance of different

network structures on classifying similar gesture and

motion-blurred gestures, where we found multiple scale

detection is effective. More importantly, our method

RGRNet achieved optimising results on both similar ges-

ture and motion-blurred gesture classification. Our assess-

ment of a range of networks, including our new network,

on these images makes a significant research contribution

with a range of real-life applications. Our new dataset

UTAS7k provides an important resource for the study of

motion blur on hand gesture detection.

In this paper, we have shown attention mechanism is

effective in classifying motion-blurred hand gestures and

similar gestures. We have only used one attention module,

the squeeze-and-excitation block, in our experiments, and

it remains to be seen whether other attention modules will

give better performance. We have used several strategies to

improve the accuracy of the model and have succeeded in

improving the classification accuracy for similar gestures.

Essentially, we are sacrificing a portion of the speed of

detection to improve performance accuracy, but still

maintain real-time efficiency. Moreover, the implementa-

tion of the transformer block requires additional computing

resources in the training process.

The proposed network can be embedded into a user–

computer interface for clinical and neuroscience applica-

tions. It can be used for detecting different hand gestures in

the hand movement tests performed by older adults, which

Fig. 8 Visualisation result from

CSPDarknet-53 and our

network, RGRNet. Note that

CSPDarknet-53 incorrectly

detects the fingers as ‘pinch

open’ when the gesture is ‘pinch

close’, see supplementary video

1

Table 6 Comparison of how

accurately different networks

detect UTAS7k gestures (image

tested on GTX 1660 SUPER)

Network structure All classes Open Close Flip Pinch open Pinch close

GhostNet 0.735 0.851 0.770 0.769 0.511 0.775

CSPDarknet-53 0.753 0.876 0.788 0.796 0.541 0.761

MobileNetv3-small 0.701 0.774 0.714 0.714 0.57 0.73

TinyNet 0.703 0.800 0.825 0.711 0.542 0.739

Darknet-53 0.755 0.858 0.766 0.774 0.612 0.766

EfficientNet-B1 0.757 0.857 0.773 0.785 0.599 0.772

YOLOV5-P6 0.776 0.863 0.796 0.769 0.627 0.827

RGRNet (ours) 0.782 0.861 0.783 0.763 0.685 0.820
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increase the robustness of the data collection process. For

future work, we will improve our model with a de-blurring

attention mechanism and analyse how high resolution

images would impact the inference speed of hand gesture

detection. We will also investigate how complex back-

ground such as human skin-like background would impact

the performance of hand gesture detection.

Supplementary information We have also included a

video file named ‘Supplementary Video 1’ as the accom-

panying supplementary file, this file illustrates how our

model detect all five gestures in UTAS7k in real time.

Supplementary Information The online version contains

supplementary material available at https://doi.org/10.1007/s00521-

022-08090-8.
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