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Abstract
This paper presents a new approach to retrieve and further integrate tabular datasets (collections of rows and columns)

using union and join operations. In this work, both processes were carried out using a similarity measure based on

contextual word embeddings, which allows finding semantically similar tables and overcome the recall problem of lexical

approaches based on string similarity. This work is the first attempt to use contextual word embeddings in the whole

pipeline of table search and integration, including for the first time their use in the join operation. A comprehensive

analysis of their performance was carried out on both retrieving and integrating tabular datasets, comparing them with

context-free models. Column headings and cell values were used as contextual information and their impact on each task

was evaluated. The results revealed that contextual models significantly outperform context-free models and a traditional

weighting schema in ad hoc table retrieval. In the data integration task, contextual models also improved the results on

union operation compared to context-free approaches.

Keywords Tabular data � Contextual word embedding � Information search � Data integration � Open data

1 Introduction

The goal of data science is to move from raw data to

knowledge through different steps, including data integra-

tion, wrangling, analysis, and visualisation. Importantly,

data integration comprises more than 80% of the effort for

a data scientist [1] due to its complex nature. This task

involves several types of transformations (e.g. cleansing,

combination or normalisation) that uses operations (e.g.

join or union) to offer a unified view of a set of

heterogeneous data from different sources. In such a sce-

nario, it is essential for data scientists to have tools to

support the integration process.

Data integration is even more complex within an open

data scenario, since the data to be consumed are not known

a priori and more effort is required to retrieve and under-

stand them. Moreover, most open data available on the

Web are published in open data portals as tabular data (i.e.

CSV files). Tabular data is a common way of storing,

classifying and disseminating information. Although

tables are widely used, it is difficult to extract and

manipulate automatically their content. Using previously

unknown tabular open data is therefore a time-consuming

task for data scientists, who have to properly understand

the data (e.g. finding out their relationships) before

retrieving other data that are potentially useful for

integration.

This paper presents an application of neural network

language models to support data scientists in finding
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relationships between data in order to retrieve and integrate

relevant tabular data. The method proposed involves two

steps. In the first one, the objective is to retrieve tabular

datasets1 that have similar columns and are therefore more

likely to be integrated. Once this set of similar tables is

obtained, the second step aims to determine which specific

columns should be involved in the final integration process.

The present study is focused on union and join operators,

since they are specially relevant for data integration,

facilitating the consumption of data from disparate sources

[2]. It is interesting to note that considering these operators

provides the basis for including others widely used in data

integration, such as filtering and sorting.

To carry out the retrieval and integration processes, a

(semantic) similarity measure between tabular data has

been defined. This measure leverages contextual word

embeddings [3] to compute the similarity between

tables using column headings and cell contents. Word

embeddings is a technique that allows mapping words or

phrases to vectors of real numbers, capturing semantic

regularities in vector spaces. When comparing two terms,

word embeddings overcome the problems of lexical

approaches based on string similarity: terms such as ‘‘city’’

and ‘‘location’’ could be considered as being very different

in terms of string matching, but in a word embedding space

these two terms may be closely related and considered as

highly similar.

Traditional word embeddings provide the same vector

representation for a word regardless of the context in which

it occurs. Unlike these static embeddings, recent contextual

models capture the different meanings of a word, providing

different vector representations depending on the sur-

rounding context. For instance, in the case of tabular data,

the column header ‘‘place’’ should have a different repre-

sentation if it is surrounded by the words ‘‘athlete’’ and

‘‘time’’ (it refers to the position in the final ranking), or if it

appears next to ‘‘coordinates’’ and ‘‘postal code’’ (in which

case it refers to a location). Another example is the

occurrence of ‘‘Francis Bacon’’ in the cell content. The

vector representation would be different if it appears in a

column with ‘‘Jackson Pollock’’ and ‘‘Pablo Picasso’’

(Francis Bacon the artist), or with ‘‘Thomas Malet’’ and

‘‘Samuel Eyre’’ (Francis Bacon the statesman).

Incorporating context into word embeddings has led to

significant improvements in virtually every Natural Lan-

guage Processing (NLP) task, representing the current

state-of-the-art in the area. Recently, these models are also

been applied to table retrieval and, to a lesser extent, to

tabular data integration. This work presents the first attempt

to provide a pipeline for tabular data search and integration

including contextual word embeddings in all its phases.

The main objectives of this paper are:

• To conduct a comprehensive analysis of the perfor-

mance of neural networks-based contextual word

embeddings in the task of retrieving and integrating

(union and join operations) tabular data.

• To compare the performance between contextual and

context-free models to determine the impact of context

in these tasks.

The rest of the article is structured as follows: Sect. 2

presents previous works in the field of table retrieval and

integration using word embeddings; Sect. 3 describes the

main features of contextual models; Sect. 4 shows the

procedures and measures proposed to implement the

retrieval and integration processes; Sect. 5 reports the

evaluation carried out; Sect. 6 discusses the main outcomes

of the experiments; conclusions and future work are pre-

sented in Sect. 7.

2 Related work

This section summarises existing work in the area of

table retrieval and integration, with a focus on systems that

make use of word embeddings.

The goal of table retrieval (or table search) is to answer

a search query with a ranked list of tables that are con-

sidered as relevant to that query [4]. It is an important task

on its own, but also a fundamental step in table integration

[5].

Depending on the type of query, table retrieval may be

classified as keyword-based or table-based search [5]. In

the former, a set of keywords form the query, as is the case

with traditional search engines such as Google. In the lat-

ter, the query is also a table, and the goal is to compute a

similarity score between the input and candidate tables.

The work in [6] is an example of a keyword-based

table retrieval system that uses table metadata to create its

vector representation, using a TF-IDF model to further

retrieve relevant tables.

Since in the present work the goal is to integrate tabular

data, tables are used as queries to retrieve related tables that

are suitable candidates for further integration, performing a

table-based search on the dataset. For this reason, the

remainder of this section focuses on this category. The

approaches presented differ mainly in what information

from tables is used to calculate the similarity between them

(table title, table entities, column headings or cell values),

in the formal representation of the data, and in the simi-

larity measures used.

An early approach was presented by Ahmadov et al. [7],

which only used named entities (e.g. people, organisations,
1 The proposal can be extended to any tabular format, although only

CSV files were used in the experiments.
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and locations) and column headings. More recent approa-

ches relied on semantic spaces to represent tabular data,

applying vector similarity measures to calculate the rele-

vance between tables [8]. In this vein, Zhang and Balog [4]

combined two semantic vector spaces: one based on a

knowledge base (DBpedia) and the other using pre-trained

word embeddings (Word2vec). They used all the infor-

mation available in the tables for the retrieval task (e.g.

title, caption, headings, and entities).

The work in [9] also used Word2vec as the source for

semantic vectors. The information of the table was sepa-

rated in four semantic spaces: description (title and cap-

tion), schema (column headings), records (table rows), and

facets (table columns). Then, different neural network

architectures were applied to each semantic space,

including recurrent convolutional neural network (de-

scription), multilayer perceptron (schema), and 3D con-

volutional neural network (records and facets).

To retrieve tables compatible with an input table, Nar-

gesian et al. [10] tried to estimate if the table contents

belonged to the same domain. They applied three statistical

models: intersecting values between two columns, seman-

tic similarity between values mapping the columns to

classes in an ontology, and using word embeddings to

measure similarity between textual values.

All the word embedding models mentioned above are

non-contextual. The works presented in the following

paragraphs use contextual word embeddings for table-

based search. In [11] a survey on contextual embeddings is

presented.

In [12], the authors used a pre-trained version of BERT

[13], leveraging different information available in the

table (both textual and numerical) to provide BERT with

context: title, caption, column headings, and cell values.

An important difference between the present work and that

of Chen et al. [12] is the purpose of the table retrieval task.

In their case, it was a goal in itself, while in this work it is a

step prior to integration. Another difference, is that we

implement two different relevance measures, depending on

whether the final goal is to integrate tables by means of join

or union operations. Finally, another novelty in this paper

is the experimentation with a fine-tuned contextual lan-

guage model. Although there are recent proposals of con-

textual word embedding models trained on tabular data

[14, 15], they are focused on answering natural language

questions from tables, but do not address the retrieval and

integration of this type of data.

Focusing on table retrieval, in [16] tables were consid-

ered as 2D images, and data were then handle by traditional

neural approaches to image processing (e.g. CNNs).

Another image-based neural representation approach was

presented in [17], where an image-based method was

combined with a graph-based approach in order to get the

best out of each one. The authors proposed to use WordNet

structure as a graph, in such a way that cell texts (tokens)

from the table were represented by their synsets in Word-

Net. With this information, they built a graph that captured

lexical similarities between text cells. However, with this

approach it is not possible to represent contextual and

distributional relations between data.

The aforementioned approaches considered tables as a

whole. In the present work, the goal of data integration

requires a more fine grained representation, working at

column level, where each one is represented as a vector, as

described in Sect. 4.

An alternative to represent tabular data is the use of

graph-based approaches. The work in [18] represented data

from relational databases as a graph with three types of

nodes: data (token), column id (header) and record id (file

name). A sentence was derived from these relations and a

contextual vector was obtained for these sentences.

The representation model for tabular data in [19] is

similar to that presented here, where each column is

encoded by a transformer model. They focused only on the

representation of data, whereas in the present work BERT

is fine-tuned with tabular data and further applied to

table retrieval and integration.

Moving forward in the data integration pipeline, once a

set of similar tables has been retrieved, the next step is to

determine whether it is possible to extend the query

table with compatible rows (union) or new columns (join)

[5].

Row extension is mainly done in relational tables, in

which there is a core column with the key concepts of the

table and the remaining columns contain the attributes.

This way, the row extension task is similar to concept

expansion, where an initial set of entities has to be com-

pleted with additional entities [5]. Previous approaches to

row extension have used some sort of similarity between

tables to find their compatibility. For example, Wang et al.

[20] introduced concept names as input, together with seed

entities to prevent lexical ambiguity. As far as the authors

know, only the work by Deng et al. [21] previously used

word embeddings (Word2vec) in this task.

In the area of column extension (also known as attribute

discovery), the approach presented in [22] was based on a

database that included frequency statistics of attributes and

co-occurring attribute pairs in a large table corpus (5.4

million unique attribute names). In this task, the authors of

[23] took advantage of table captions and similarity

between tables. These two studies were focused only on

column headings and were not aimed to carry out join

operations between tables. The approach proposed in [24]

was based on Wikipedia tables. The relatedness between

tables was estimated based on the link intersections of

Wikipedia pages.
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On the basis of previous work, the present study is the

first attempt to widely use and analyse the impact of con-

textual word embeddings in the task of tabular data inte-

gration. The following section describes the particularities

of these vector representations and how they differ from

traditional context-free word embeddings.

3 Contextual word embeddings

Word embeddings are dense vectors that represent the

meaning of a word as a point in a semantic space. These

continuous representations can be used in downstream NLP

tasks, such as text classification and question answering.

They represent the distributional meaning of words, that is,

the meaning that a word assumes in a specific text

regardless of the meaning it may have in the dictionary.

Thus, similar representations are learnt from words

appearing in similar contexts.

The dimensionality of word embedding vectors usually

ranges from 50 to 1000 dimensions, much lower than that

of traditional sparse semantic vectors. This reduction in

dimensions is based on generalisations that capture the

semantic relations between words based on the context

they appear. Examples of this type of word representations

are Word2vec [25] and Glove [26].

These word embedding techniques build a global

vocabulary using unique words in the documents, assigning

a single representation for each word and ignoring that they

can have different meanings or senses in different contexts.

They are considered as static representations unable to

capture the different senses of a word. On the other hand,

recent contextual word embeddings [13] are able to capture

the different meanings of polysemous words, since each

vector represents not a word but a sense. In this way, each

word is represented with different word embeddings, one

for each context in which the word can occur. During the

training process, contextual word embeddings are gener-

ated taking into consideration the surrounding words, that

is, the sequence of words in the sentence or text span in

which a word appears. Examples of these type of repre-

sentation are ELMo [27], ULMFit [28] and BERT [13],

among others.

In the experiments presented in Sect. 5, BERT and its

variant RoBERTa [29] were used as representative of these

contextual models. BERT stands for Bidirectional Encoder

Representations from Transformers. Bidirectional means

that BERT learns information from both left and right side

of a word’s context during the training phase. It uses the

now ubiquitous transformer architecture [30] allowing

transfer learning in NLP tasks, i.e. the BERT model orig-

inally trained on a dataset (the pre-trained model) can be

used to perform similar tasks on another dataset (the fine-

tuned model).

In this way, BERT, which was pre-trained on a large

corpus of unlabelled text (including the entire Wikipedia

and Book Corpus), can be fine-tuned for a wide range of

NLP tasks. Current NLP state-of-the-art systems leverage

the semantic relationships identified by transformers as a

starting point to solve a problem rather than building a

model from scratch, further training the model (fine-tuning)

on relatively smaller datasets for specific tasks.

Finally, another remarkable difference between these

contextual models and its static predecessors is the use of

subword units instead of full words to represent the

vocabulary of the problem. Word embeddings are built on

the specific set of tokens available in the corpus used to

create the vectors. When an out-of-vocabulary word occurs

in a new text, word-based models provide no representation

for it in the semantic space and thus the token is considered

as unknown. In order to handle the large vocabularies

common in natural language corpora, BERT uses the

WordPiece subword segmentation algorithm [31]. In it, the

vocabulary is initialised with individual characters in the

language and then the most frequent combinations of

symbols in the vocabulary are iteratively added to the

vocabulary. Thus, subwords have their own representation

in semantic space, and previously unknown words can be

assigned a representation by combining the vectors of their

underlying subword units.

Regarding RoBERTa, this model provides a variant of

BERT where the pre-training phase was optimised with

changes in the choice of hyperparameters, the objective

task, and the use of bigger batch sizes and longer text

sequences. Besides that, RoBERTa uses a different seg-

mentation algorithm, Byte-Pair Encoding (BPE) [32], a

hybrid between character-level and word-level representa-

tions that relies on subwords units extracted by performing

statistical analysis of the training corpus. This changes led

to improving the results of BERT in different NLP tasks,

such as natural language understanding and question

answering.

4 Retrieval and integration of tabular data

This section formally describes how table retrieval and

integration are carried out using word embeddings.2 In the

case of integration, the operators considered in this work

for handling input tabular data are union and join from

relational algebra. For the sake of simplicity, in this article

these operators are borrowed from SQL, the well-known

2 The source code is available at: https://github.com/d-tomas/data-

integration.
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implementation of relational algebra and a recognised

standard for querying and handling tabular data:

• Union operator is denoted by [ symbol in relational

algebra. Given two tabular datasets (A and B), union

operator aims to get a unique dataset that contains rows

that are in A or in B (denoted as A [ B). A and B must

have the same columns (number, order, and datatype) to

be computed. Also, each column of each dataset must

refer to the same concept to be meaningful.

• Join operator is denoted by ffl symbol in relational

algebra. Given two tabular datasets A and B, join

operator aims to get a unique dataset that includes every

column from A and B (denoted as A ffl B) and contains

rows that fulfil a matching condition (applied to values

of some columns).

Figure 1 summarises the workflow and the components of

the system proposed. To determine the most relevant

tables for a search, and whether union or join operations

can be performed, the system proposed relies on word

embeddings to calculate the semantic similarity of two

tabular datasets. This similarity mechanism takes as an

input a set of tabular data and compares with each other all

the columns of the tables, obtaining a similarity measure

for each pair of columns belonging to different tables. To

calculate this similarity two elements are taken into

account: name of the columns (headings) and their content

for each row (cell values).

This information is pre-processed and normalised by

splitting CamelCase and hyphenated words (very common

in column headings), removing punctuation, and convert-

ing text to lowercase. After that, the word embedding

model is used to extract two vectors for each column: one

represents the name of the column and the other the cell

values of that column. In those situations where the name

of the column includes more than one word, vectors rep-

resenting each word are averaged to get a single vector.

Averaging word embeddings is one of the most popular

methods for combining embedding vectors, outperforming

more complex techniques especially in out-of-domain

scenarios [33]. The same strategy is applied to cell values,

where the final vector is the result of calculating the mean

between vectors of each value.

As in previous works, cosine similarity is used to

compute the distance between vectors in the embedding

space [25]:

simðv1; v2Þ ¼
v1v2

kv1kkv2k

¼
Pn

i¼1 v1iv2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðv1iÞ

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðv2iÞ
2

q ;
ð1Þ

where v1 and v2 represent the word embedding vectors of

the name of the columns or the content of the column for

each row, and simðv1; v2Þ is a float value in the range

½�1; 1�, where �1 means no similarity and 1 means max-

imum similarity between the vectors considered. Negative

cosine values are possible because word embedding vectors

can contain negative elements. Nevertheless, in all the

experiments carried out the cosine similarity obtained was

always a positive value. This result is consistent with

previous research suggesting that word vectors are not

balanced around the origin in the semantic space, showing

fewer negative cosine similarities than expected from

points in a random n-sphere [34].

In the case of static word embeddings, if the model does

not provide coverage for column headings or its content

(i.e. their tokens are not in the vocabulary of the model),

the Levenshtein distance [35] is used as a backup strategy

to ensure that the system always returns a similarity value

between columns. This string metric is based on the

number of single-character edits (insertions, deletions or

substitutions) required to change one string into the other.

For each two columns compared, a similarity value of

the column headings and a similarity value of their content

is obtained. A linear combination of these two values is

performed to obtain the final score simC of two columns c1
and c2:

simCðc1; c2Þ ¼a � simðc1n; c2nÞ
þ ð1� aÞ � simðc1c; c2cÞ;

ð2Þ

where simðc1n; c2nÞ is the cosine similarity of the names of

the columns, simðc1c; c2cÞ is the cosine similarity of their

contents, and a is a parameter in the range [0, 1] that

weights the relevance of these two scores in the final result.

For the table retrieval task, two different objectives have

been defined depending on whether the goal is to further

union the tables or join them. In the evaluation carried out

in Sect. 5, the task of finding the best tables for union and

join operations is assimilated to the task of ad hoc table-

based retrieval: answering a search query with a ranked list

of tables [21], where the search query is not a sequence of

keywords but a table itself [36]. It is thus necessary to

define a ranking function that sorts tables according to the

goal, so that most relevant results appear early in the list

retrieved.

If the goal is retrieving tables for union operation, the

ranking criterion established tries to prioritise tables with a

large number of highly similar columns, which are hence

good candidates for union. Thus, given a set of tables T, the

similarity simTUðt1; t2Þ for every pair t1; t2 2 T is com-

puted as:
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simTUðt1; t2Þ ¼
Pi� n;j�m

i¼1;j¼1 simCðc1i; c2jÞ
kC1kkC2k

; ð3Þ

where C1 ¼ fc11; c12:::; c1ng and C2 ¼ fc21; c22:::; c2mg are

the set of columns of t1 and t2, respectively. Therefore, the

similarity between two tables is computed as the average

similarity between their columns (simC).

In the same vein, it is necessary to define a ranking

function to retrieve tabular data for the join operation. In

this case, the similarity between two tables is computed as:

simTJðt1; t2Þ ¼ max
i� n;j�m

fsimCðc1i; c2jÞg: ð4Þ

This formula weights two tables based on the pair of col-

umns with the highest simC similarity, since for join

operations the goal is to find tables containing columns that

can be matched with a high probability (i.e. key columns to

perform join) while the remaining columns may not match.

In the integration pipeline, once the relevant tables have

been retrieved, the system has to indicate which specific

columns are candidates to be combined using the union or

join operations. To decide whether the operation of union

can be applied on two columns, a similarity threshold is

established at which it is considered that the operation can

be carried out. Thus, union can be applied to every pair of

columns over this threshold. Similarly, the join is per-

formed by establishing a threshold to decide if the opera-

tion can be applied on two columns. The impact of these

threshold values in the performance of the system is also

analysed in the evaluation section.

5 Evaluation

This section describes the evaluation carried out, which

covers the following aspects of contextual word embed-

dings: (i) their performance in the task of retrieving rele-

vant tables for union and join operations (Sect. 5.1), (ii)

their performance in identifying columns from two

tables that can be combined in union operations (Sect. 5.2),

and finally (iii) same as before but with respect to join

operations (Sect. 5.3).

The dataset used in these experiments was developed by

Nargesian et al. [10] and it is publicly available. It was

originally intended for table union search, but in the fol-

lowing experiments it has been adapted to also evaluate

join operations. This dataset consists of more than 5000

tables in CSV format extracted from USA, Canada, and

UK open data portals, providing a ground truth that iden-

tifies which columns of a table match the columns of

another table. The dataset was built starting with 32 base

tables manually aligned to identify matching columns. The

final set was created by first issuing a projection on a

random subset of columns of a base table, and then a

selection with some limit and offset on the projected table.

These tables contain the column headings and the cor-

responding cell values, comprising text, numeric, and date

values. Although word embedding models are specially

suitable for textual data, they also provide coverage for

columns containing other data types. First, the names of the

columns are textual data, even if their contents are numbers

or dates. Thus, the system can always return a similarity

value based on the column names. Secondly, even if only

the content of the columns is considered, the word

Fig. 1 Components and workflow for the union and join operations
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embedding models still provide coverage for many

numeric values that are represented in the embedding

space. For instance, the fastText model described below

provides coverage for 99.90% of the numbers ranging from

0 to 10,000. This implies that any numeric value used to

represent days, months or years has a vector representation

in this model. Moreover, in the case of contextual models,

the use of BPE and WordPiece subword segmentation

algorithms always provides a vector representation for any

numeric or data value found in text.

To perform the experiments, a subset of 1,000

tables was randomly selected. Every table in this subset

was used as a query to the system and compared with all

the other tables in the subset. This led to a total of 499,500

pairs of tables. For each pair, all their columns were

compared with each other, obtaining 3,249,440 column

comparisons, an average of 6.5 comparisons for each pair

of tables.

The experiments carried out in the next sections test the

performance of two pre-trained non-contextual word

embedding models (Word2vec and fastText), two pre-

trained contextual models (BERT and RoBERTa) and one

task-specific (fine-tuned) contextual model (WikiTables):

• Word2vec: embedding vectors pre-trained on part of

Google News dataset, comprising about 100 billion

words [25]. The model contains 300-dimensional

vectors for 3 million words and phrases, although in

the experiments presented here only words were

considered.

• fastText: embedding vectors pre-trained on Wikipedia

2017, UMBC webbase corpus and statmt.org news

dataset, comprising about 16 billion words [37]. As in

the previous case, vectors have 300 dimensions.

• BERT: the version of the model evaluated is BERT-

base, containing 12 layers (transformer blocks), 12

attention heads, and 110 million parameters. The

resulting vectors are composed of 768 dimensions [13].

• RoBERTa: the version evaluated is RoBERTa-base,

containing 12 layers, 12 attention heads, 125 million

parameters, and producing vectors of 768 dimensions

[29].

• WikiTables: task-specific model obtained by fine-tun-

ing BERT-base on the Wikipedia table corpus, which

contains 1.6 million Wikipedia relational tables [38].

As mentioned before, the pre-trained BERT model can be

fine-tuned with just one additional output layer to create

state-of-the-art models for a wide range of NLP tasks

without substantial task-specific architecture modifications.

To build the WikiTables model, the Wikipedia table corpus

was pre-processed splitting CamelCase and hyphenated

words, removing punctuation, and converting text to low-

ercase. For every table in this corpus, all the column

headings were extracted and treated as an input document

to fine-tune BERT. A second model was created for the cell

values. In this case, the content of column was considered

as an input document to train the model. Thus, two separate

word embedding models are used to calculate the similarity

between column headings and cell values. As in BERT-

base, vectors have 768 dimensions.

The implementation of Word2vec and fastText was

carried out with the Gensim library.3 The contextual

models were implemented using the Transformers library

developed by Huggingface.4

5.1 Table retrieval

This section describes the evaluation of the embedding

models in retrieving the most relevant tables for a given

one. As described in Sect. 4, two different objectives have

been defined depending on whether the goal is to further

union the tables (Sect. 5.1.1) or join them (Sect. 5.1.2).

The precision of the models (fraction of relevant

instances among retrieved instances) was measured on the

top-k tables retrieved at different k values, a procedure

widely used in information retrieval systems on the web

[39]. More specifically P@1, P@10, and P@50 where

computed, corresponding to the proportion of relevant

results obtained in the first table retrieved, in the top 10

tables, and in the top 50 tables respectively. These

thresholds are in accordance with web-scale information

retrieval systems, where thousands of relevant documents

are available but no user is interested in reading all of them.

The 1,000 queries selected for the experiments were ran-

domly split into 10 subsets, carrying out 10 runs to cal-

culate the average precision, standard deviation, and two-

tailed independent t-test (q\0:01) of the results obtained.

5.1.1 Union retrieval

The goal of this task is to retrieve the most appropriate

tables to perform union operations for a given table. The

ranking criterion was described in Eq. 3.

In the experiments presented, a ranked table is consid-

ered to be relevant if it contains at least one column that

could be aligned with another column of the query table in

a union operation, as specified in the ground truth provided

in [10]. Although the union retrieval similarity function in

Eq. 3 prioritise tables with a large number of highly similar

columns, the criterion established here takes into account

that having just one similar column can be enough for the

subsequent union operation. According to this criterion, out

3 https://radimrehurek.com/gensim/.
4 https://github.com/huggingface/transformers/.
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of 499,500 table pairs, 22,824 were considered as relevant

(4.6% of the total).

In addition to the word embedding models described at

the beginning of this section, a baseline was defined using

BM25 [40], a classical ranking function widely employed

by search engines to estimate the relevance of documents

to a given search query. The implementation of this base-

line was done using Apache Lucene.5

Each embedding model was evaluated using different

values of a (from 0 to 1 inclusive, in 0.1 increments), as

described in Eq. 2, to analyse the influence of the column

headings and the cell values in the performance of the

system. In the case of BM25, three different queries were

employed in Apache Lucene to simulate the ranking

experiment done with the embedding vectors: a query that

uses only cell values (equivalent to a ¼ 0:0), a query that

uses only names of the columns (equivalent to a ¼ 1:0),

and a query considering both (equivalent to a ¼ 0:5).

Table 1 shows P@10 for the two non-contextual models

(Word2vec and fastText) and the three contextual models

(BERT, RoBERTa and WikiTables). In this experiment,

BM25 scored 0.8245 (a ¼ 0:0), 0.8349 (a ¼ 0:5) and

0.8612 (a ¼ 1:0).

The results are encouraging in terms of performance of

contextual models. The best precision for non-contextual

models was obtained by fastText (0.9276, a ¼ 0:3). This

result improves 7.71% the best performance of BM25

(0.8612, a ¼ 1:0). On the other hand, the best contextual

model was BERT, with 0.9737 precision (a ¼ 0:3). The

result improves 5% the best non-contextual model and 13%

the baseline. According to t-test, these differences are

statistically significant. The best result by RoBERTa was

0.9363 (a ¼ 0:1) and the best for WikiTables was 0.9691

(a ¼ 0:5). In the later, the difference with BERT was not

statistically significant. Performance of WikiTables is the

most stable regarding variations in the parameter a, with a

standard deviation r = 0.0175, followed by BERT

(r ¼ 0:0195). At the other end of the scale is RoBERTa,

with a sharp drop in performance in the a range [0.3, 0.4]

and a standard deviation r ¼ 0:0585.

P@1 puts the focus on how precise the system is in

returning a relevant table at the first position of the ranking.

Figure 2a shows that all three contextual models surpassed

the context-free models and the baseline, being these

results statistically significant. The best performing model

was WikiTables (0.9965, a ¼ 0:4), showing high reliability

in this task. This model improves 12% and 23% the best

results obtained by fastText (0.8888, a ¼ 0:4) and

Word2vec (0.8129, a ¼ 0:4), respectively.

Figure 2b shows the results for P@50. The performance

of WikiTables (0.7230, a ¼ 0:6) and BERT (0.7139,

a ¼ 0:2) was very similar, with no statistically significant

difference. On the contrary, the difference with fastText

(0.6932, a ¼ 0:4), the best non-contextual model, is sta-

tistically significant. The performance achieved was sys-

tematically lower for every model than that obtained with

P@10 as expected, since increasing the number of

tables retrieved also increases the likelihood of including

false positives. The performance of BM25 (0.6874,

a ¼ 1:0) is remarkable in this experiment, achieving better

results than non-contextual models and close to contextual

ones.

The work in [10] also addressed the task of union

retrieval in the same dataset used in this section. In their

case, the authors tried to maximise the performance on

their own definition of ‘‘unionability’’ (involving all the

unionable columns of a table), whereas the goal in the

current work is to address both union and join operations

where tables have at least one matching column in com-

mon. Although these differences make the performance of

the systems not directly comparable, their results are shown

here as a reference: their system obtained a P@10 value

around 0.8 with an approach based on non-contextual word

embeddings, which improved to 0.95 when combined with

semantic information from YAGO.6 In Table 1, the highest

result obtained by BERT (a ¼ 0:3) was 0.9737.

To further investigate similarity scores, the mean simi-

larity between tables assigned by different models and a
values were computed. Figure 3a shows that RoBERTa

assigns significantly high similarity scores, averaging

0.9554 for all a values. On the other extreme is Word2vec,

with an average similarity of 0.3259.

This result also reveals that mean similarity is higher on

average for lower a values, that is, when more weight is

given to cell values than to column headings. This implies

that computing the embedding vectors from many different

tokens (i.e. all the values of a column) increases the

average similarity between tables, although not equally for

all models. The model with the highest variability is BERT,

with a difference of 0.2858 points between the highest

(0.8030, a ¼ 0:0) and the lowest (0.5172, a ¼ 1:0) mean.

The most stable model is WikiTables, with a difference of

0.0310 points between the highest and lowest mean.

Figure 3b shows in more detail the central tendency and

dispersion of similarity values assigned by BERT. The box

plots indicate that increasing a also increases the disper-

sion, as indicated by the difference between the maximum

and minimum values (outliers are excluded in the figure).

Therefore, weighting cell values over column headings not

only increases the similarity score, but also reduces vari-

ability. Intuitively, this may lead BERT to a loss of per-

formance for low a values, since many of the tables obtain

5 https://lucene.apache.org/. 6 https://yago-knowledge.org/.
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close similarity scores (as reflected by the low variability).

However, the performance of BERT in Table 1 and Fig. 2

apparently shows no correlation with the mean similarity in

Fig. 3a based on a. In the case of P@10, the Spearman

correlation coefficient rs between performance and average

similarity is 0.3, which can be considered as a weak

correlation.

5.1.2 Join retrieval

The objective in this experiment is to retrieve the most

relevant tables to perform join operations. The ranking

function for this task is defined in Eq. 4.

The ground truth used in the union retrieval experiment

only identifies on which columns the union operation can

be applied. The way in which the previous dataset was

obtained has been leveraged here to also evaluate the

models in join retrieval. As mentioned above, tables were

obtained by projection and selection of 32 original

tables manually aligned. On this basis, the criterion to

identify whether two tables from the dataset can be joined

is to verify if they were both obtained from the same

original table (one of the 32 mentioned before), and if they

have at least one column in common with the same name.

Meeting these conditions ensures that the tables can be

joined by that column. On the other hand, the original

ground truth identifies what columns can be matched

Table 1 Mean (M) and standard

deviation (SD) of P@10 for

word embedding models in

union retrieval

a Word2vec fastText BERT RoBERTa WikiTables

M SD M SD M SD M SD M SD

0.0 0.8322 0.0249 0.8664 0.0192 0:9149� 0.0145 0.8212 0.0243 0:9174� 0.0109

0.1 0.8895 0.0166 0.9146 0.0117 0:9616� 0.0110 0:9363� 0.0157 0:9472� 0.0069

0.2 0.9055 0.0118 0.9249 0.0084 0:9704� 0.0117 0.9277 0.0167 0:9618� 0.0048

0.3 0.9089 0.0089 0.9276 0.0074 0:9737� 0.0122 0.9175 0.0212 0:9647� 0.0069

0.4 0.9084 0.0110 0.9249 0.0105 0:9726� 0.0131 0.8623 0.0224 0:9684� 0.0084

0.5 0.9076 0.0111 0.9217 0.0106 0:9705� 0.0110 0.8520 0.0213 0:9691� 0.0081

0.6 0.9035 0.0121 0.9155 0.0121 0:9657� 0.0118 0.8456 0.0196 0:9695� 0.0099

0.7 0.8974 0.0143 0.9082 0.0144 0:9592� 0.0113 0.8301 0.0220 0:9681� 0.0100

0.8 0.8927 0.0147 0.9032 0.0154 0:9529� 0.0123 0.8225 0.0197 0:9640� 0.0109

0.9 0.8851 0.0149 0.8967 0.0150 0:9383� 0.0164 0.8130 0.0167 0:9545� 0.0127

1.0 0.8266 0.0246 0.8393 0.0213 0:9235� 0.0188 0.7701 0.0177 0:9248� 0.0120

The best result for each a value is bold-faced

* Indicates statistically significant improvement (q\0:01) of the contextual model with respect to the best

non-contextual model for the corresponding a value
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Fig. 2 P@1 (a) and P@50 (b) for BM25 and word embedding models in union retrieval
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between tables. Thus, two tables cannot be joined if they do

not have any columns in common based on this ground

truth. For the pairs of tables that do not fulfil any of these

conditions, it cannot be guaranteed whether they can be

joined or not, so they were discarded in the evaluation.

According to this criteria, out of 499,500 pairs of tables,

15,137 can be joined, 475,651 cannot, and 8,712 are

uncertain (and are therefore discarded in the evaluation).

Since column headings are chosen as a basis to deter-

mine whether two columns can be joined, to conduct an

unbiased assessment models were evaluated using a ¼ 0:0,

avoiding the use of headings as an evidence to perform the

join operation.

Table 2 shows the performance of the baseline and word

embedding models at the same cut-off thresholds defined in

union retrieval experiments (P@1, P@10 and P@50).

Results follow a similar pattern to those obtained in the

experiments for union retrieval. BM25 had again a low

performance at P@1 (0.2959). BERT (0.8258) and Wiki-

Tables (0.8250) had a similar performance and the

difference is not statistically significant. BERT improves

8% fastText, 15% Word2vec, and 180% BM25. All these

differences are statistically significant.

P@10 shows WikiTables (0.7711) and BERT (0.7663)

as the best performing models. The difference between

them is not statistically significant. The former improves

fastText by 9% and Word2vec by 22%. The performance

of BM25 is remarkable (0.7623), very close to that of the

contextual models, which was not the case in the union

retrieval experiments. Since this baseline relies on lexical

similarity, good results reflect that there are pairs of

tables whose cell values overlap in columns that were

considered as candidates for join. This is not an unexpected

result, as the criteria for determining tables that could be

joined did not impose that candidate columns had to be

primary keys. However, tables in the dataset that meet this

condition seems limited, as the performance of BM25

drops significantly at P@50, indicating that lexical simi-

larity decreases (less content in common) as the number of

tables returned increases.
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Table 2 Mean (M) and standard

deviation (SD) of P@1, P@10,

and P@50 for BM25 and word

embedding models (a ¼ 0:0) in
join retrieval

Model P@1 P@10 P@50

M SD M SD M SD

BM25 0.2959 0.0434 0.7623 0.0376 0.4873 0.0224

Word2vec 0.6141 0.0568 0.6320 0.0324 0.4908 0.0239

fastText 0.7656 0.0508 0.7051 0.0308 0.5431 0.0255

BERT 0.8258* 0.0311 0.7663* 0.0357 0.5699 0.0239

RoBERTa 0.8144* 0.0317 0.7625* 0.0403 0.5579 0.0247

WikiTables 0.8250* 0.0335 0.7711* 0.0364 0.5893* 0.0266

The best result for each cut-off threshold is bold-faced

*Indicates statistically significant improvement (q\0:01) of the contextual model with respect to the best

non-contextual model for the corresponding metric
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WikiTables (0.5893) and BERT (0.5699) obtained the

best results at P@50 (no statistically significant difference

between them). WikiTables improves 9% the best non-

contextual model and 21% the baseline. The difference was

statistically significant in both cases.

These results show that, as in the union retrieval task, for

the join retrieval task contextual models significantly out-

perform non-contextual models and the baseline

established.

5.2 Union operation

This experiment evaluates the performance of the models

in identifying columns from two tables that can be com-

bined in union operations. A similarity threshold is set to

decide if the operation can be carried out.

The ground truth provided in [10] identifies, for each

pair of tables, to which columns the union operation can be

applied. Of the pairs of tables on which union retrieval was

evaluated, only those pairs with at least one matching

column in the ground truth were considered. This resulted

in 303,548 comparisons between columns (test samples), of

which 132,622 (43.69%) can be combined through union

operation and 170,926 (56.31%) cannot.

The performance of the models has been evaluated in

terms of precision, recall and F1-score (harmonic mean of

precision and recall) for different similarity thresholds,

ranging from 0.1 to 1.0 in 0.1 steps. Each model was

evaluated by selecting the best performing a value for

P@10 in the union retrieval experiment (see Table 1).

Table 3 summarises the results for the best performing

thresholds in terms of F1-score. The best precision was

achieved by fastText (0.6386), followed by

WikiTables (the difference was not statistically signifi-

cant). The result can be explained by the higher similarity

that contextual models assign on average to the columns

compared, as shown in Fig. 3a. Therefore, many of them lie

above the threshold and are considered as candidates for

union, producing more false positives than context-free

models and a subsequent loss of precision.

RoBERTa was the best model by far in terms of recall

(0.9885). This model assigns on average the highest simi-

larity to every pair of columns, and thus most of them were

above the threshold. This also results in low precision

(0.4346) and the worst F1-score of all the models evalu-

ated. WikiTables outperformed the best non-contextual

model (Word2vec) and the difference was statistically

significant.

Regarding F1-score, the best result was obtained by

WikiTables (0.7308), followed by fastText (no statistically

significant). The former can be considered as the most

balanced model for the union operation. At the other

extreme, BERT and RoBERTa obtained lower perfor-

mance than non-contextual models.

5.3 Join operation

In this experiment, the goal is to evaluate the ability of the

models to identify pairs of columns from different

tables that can be joined. Again, a threshold was estab-

lished to take this decision.

The evaluation is focused on tables that can be joined

given the criteria described in Sect. 5.1.2. Recall that there

were 15,137 pairs of tables that could be joined. This

subset results in 214,997 column pairs, where 103,414

(48,1%) can be joined following the criteria (they have the

same column name) and 111,583 (51,9%) cannot. The

dataset is well balanced in terms of the number of positive

(can be joined) and negative samples (cannot).

As with join retrieval experiment, models were tested

using a ¼ 0:0 to conduct an unbiased evaluation. Their

performance was measured in terms of precision, recall and

F1-score for different thresholds, ranging from 0.4 to 1.0 in

0.05 steps. The lower limit (0.4) was set by taking into

account the minimum average similarity obtained by any of

the models (0.4335 by Word2vec).

Table 3 Mean (M) and standard

deviation (SD) of Precision,

Recall and F1-score for union

operation taking the best a and

threshold values

Model a Threshold Precision Recall F1-score

M SD M SD M SD

Word2vec 0.3 0.8 0.6125 0.0028 0.8574 0.0042 0.7146 0.0039

fastText 0.3 0.9 0.6386 0.0042 0.8289 0.0036 0.7214 0.0042

BERT 0.3 0.9 0.6267 0.0076 0.7630 0.0035 0.6882 0.0045

RoBERTa 0.1 0.9 0.4346 0.0057 0.9885* 0.0022 0.6038 0.0041

WikiTables 0.6 0.8 0.6284 0.0066 0.8730* 0.0050 0.7308 0.0023

The best result for each metric is bold-faced

*Indicates statistically significant improvement (q\0:01) of the contextual model with respect to the best

non-contextual model for the corresponding metric
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Figure 4 shows the F1-score for the five word embed-

ding models analysed. The highest performance was

achieved by Word2vec (threshold = 0.9), 0.8013 F1-score

(0.7159 precision, 0.9098 recall), followed by fastText

(threshold = 0.95), 0.7943 F1-score (0.7166 precision,

0.8910 recall). BERT obtained the highest score of con-

textual models (threshold = 0.9), 0.7842 F1-score (0.6795

precision, 0.9273 recall). Nevertheless, the difference

between these three models was not statistically significant.

Given a model, the F1-score obtained is almost the same

for all the threshold that fall below the average similarity

presented in Fig. 3a. In those circumstances most column

pairs will be candidate to join, obtaining a recall close to 1

but a low precision. The F1-score improves as the threshold

increases (less false positives), dropping significantly at

1.0, where only columns with 100% similarity are joined.

The worst results were obtained by RoBERTa, with an

almost constant F1-score around 0.65 that drops sharply to

0.44 at 1.0 threshold. Again, the high similarity assigned by

RoBERTa on average provides high recall but low preci-

sion, which affects the final F1-score.

6 Discussion

This work has presented the first attempt to use contextual

word embeddings in all the phases of the table retrieval and

integration process. The evaluation carried out has anal-

ysed the performance of different word embedding models

and contextual information in four different tasks.

In union retrieval, contextual models outperformed

context-free models and BM25. Contextual models proved

to be extremely precise in retrieving a relevant table in the

first position of the ranking (P@1). Interestingly, BM25

performed better than Word2vec and fastText for P@50,

and close to contextual models when only the column

headings were considered. The conclusion that can be

drawn from this result is that, as we move away from the

top ranked tables, word embedding models tend to attribute

high similarity scores to tables that are not really that

similar, even though some of their columns may be close in

the semantic vector space. Meanwhile, BM25 is more strict

in calculating the similarity (considers only the lexical

similarity of column headings), improving accuracy at the

expense of recall.

This experiment revealed that precision of word

embedding models dropped when only cell values or only

column headings were considered. This points out that both

information is complementary and should be taken into

account, even to a small degree, since the differences are

also significant at a = 0.1 and a = 0.9.

BERT and WikiTables obtained similar results in union

retrieval, with no significant difference between them. Both

performed significantly better than non-contextual models,

BM25 and RoBERTa. WikiTables was the most stable in

terms of performance as a function of a. This makes it

more suitable for the task as it is more robust to variations

in model parameters.

In join retrieval, BERT and WikiTables again performed

best in the task, with no significant difference between

them, outperforming non-contextual models and the base-

line. This time, RoBERTa obtained similar results to the

other contextual models. Overall, the performance was

lower than in union retrieval, but are still competitive for

their use in an integration pipeline. This drop in perfor-

mance can be partially explained by the way in which the

dataset was obtained, forcing to test the models using only

cell values to make a fair assessment. As stated above, in

union retrieval it was found that the contribution of both

cell values and column headings was critical to the final

performance. For this reason, it is expected that evaluating

with a dataset that does not imply this limitation could lead

to improvements in the final performance for all models.

The best results in terms of F1-score for union operation

were obtained by WikiTables and fastTest (no statistically

significant difference between them), surpassing all the

other models. The former obtained significant better recall

but less precision, although this difference was not signif-

icant. Again, WikiTables could be considered the most

balanced option for this task.

Join operation results reveal that contextual models do

not offer an advantage over non-contextual models in this

task. As mentioned before, this result may be partly con-

ditioned by the setup of the experiment, as only informa-

tion from cell values was taken into account. In the case of

BERT (see Fig. 3b) this led to high similarity on average

and low dispersion, which makes it difficult to identify

pairs of columns that stand out from the rest, which is the
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ultimate goal of this task. RoBERTa was the most extreme

case, as it assigned the highest similarity values on average

(see Fig. 3a). In union operation, the recall of RoBERTa

for the best threshold setting (0.9) was 0.9885, at the

expense of a low precision (0.4346). Similar results were

obtained for join: 0.9977 recall and 0.4804 precision for

0.95 threshold. This means that almost every pair of col-

umns was assigned a similarity score over these thresholds,

and was thus considered as good candidate for union/join,

obtaining high recall but low precision.

7 Conclusions and future work

Data integration has been a relevant topic in information

sciences for many years. The current advances in machine

learning, and more specifically in the area of deep learning,

has led to new ways to address this task.

This paper has presented a novel approach to the

application of contextual word embeddings to data inte-

gration. These language models have achieved state-of-the-

art results in many NLP tasks where the focus is unstruc-

tured data (i.e. raw text). However, in recent times these

models have been used also to better understand structured

data, and more specifically tabular information.

The novelty of this work has been the proposal of a

solution to both union and join operations based on con-

textual word embeddings. The process consists of two

phases: first, the most relevant tables for the corresponding

operation are retrieved; secondly, candidate columns for

union or join are identified.

Four different tasks have been proposed and analysed:

union retrieval, join retrieval, union operation, and join

operation. Each task has been evaluated using three con-

textual models, two non-contextual models, and a classic

ranking function baseline for the two retrieval tasks. In

these four tasks, the use of column headings and cell values

have been studied for their impact in performance. Results

revealed that all models benefited from the combination of

both types of information, although models performed

better when more weight was given to cell values.

Regarding the performance of the contextual models,

BERT and its fine-tuned version WikiTables showed more

stability and better performance than RoBERTa throughout

all the experiments. In both union and join table retrieval,

contextual models significantly outperformed non-contex-

tual models. BERT was the best model for union retrieval

(P@10 = 0.9737), and WikiTables for join retrieval (P@10

= 0.7711), although the difference was not statistically

significant in the latter.

WikiTables obtained the best results in the union oper-

ation experiment, achieving a significant improvement with

respect to other contextual models. In this task, there were

mixed results, with fastText and Word2vec surpassing

BERT and RoBERTa in terms of F1-score. Join operation

results revealed no significant difference between static

models and BERT. The criterion of selecting only the

column with the highest similarity in each table to calculate

candidate columns was not effective. Performance is

strongly affected when models assign a high similarity

value on average with a low dispersion, and this issue was

more prevalent in contextual models, as shown in Fig. 3a.

Different criteria should be explored in future work to

improve performance in join operation.

This paper mainly focused in establishing the approach

to data integration and analysing performance of contextual

models in different dimensions (information used, perfor-

mance of models, and role of context). As a future work, it

is also planned to use vectors generated by the models to

train a machine learning algorithm, and then include it in a

final pipeline that automatically infers the best parameters

(a and thresholds) for the data integration task at hand.
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