
S. I . : DEEP LEARNING IN MULTIMODAL MEDICAL IMAGING FOR CANCER

DETECTION

Region-based evidential deep learning to quantify uncertainty
and improve robustness of brain tumor segmentation

Hao Li1,2 • Yang Nan1 • Javier Del Ser3,4 • Guang Yang1,5

Received: 10 August 2022 / Accepted: 26 October 2022 / Published online: 17 November 2022
� The Author(s) 2022

Abstract
Despite recent advances in the accuracy of brain tumor segmentation, the results still suffer from low reliability and

robustness. Uncertainty estimation is an efficient solution to this problem, as it provides a measure of confidence in the

segmentation results. The current uncertainty estimation methods based on quantile regression, Bayesian neural network,

ensemble, and Monte Carlo dropout are limited by their high computational cost and inconsistency. In order to overcome

these challenges, Evidential Deep Learning (EDL) was developed in recent work but primarily for natural image classi-

fication and showed inferior segmentation results. In this paper, we proposed a region-based EDL segmentation framework

that can generate reliable uncertainty maps and accurate segmentation results, which is robust to noise and image cor-

ruption. We used the Theory of Evidence to interpret the output of a neural network as evidence values gathered from input

features. Following Subjective Logic, evidence was parameterized as a Dirichlet distribution, and predicted probabilities

were treated as subjective opinions. To evaluate the performance of our model on segmentation and uncertainty estimation,

we conducted quantitative and qualitative experiments on the BraTS 2020 dataset. The results demonstrated the top

performance of the proposed method in quantifying segmentation uncertainty and robustly segmenting tumors. Further-

more, our proposed new framework maintained the advantages of low computational cost and easy implementation and

showed the potential for clinical application.

Keywords Evidential deep learning � Brain tumor segmentation � Uncertainty quantification � Robustness

1 Introduction

Automated brain tumor segmentation promises to provide

more reliable measurements for cancer diagnosis and

assessment, establishing new possibilities for high-

throughput analysis [1]. Segmentation enables clinicians to

determine tumor location, extent, and subtype. Addition-

ally, brain tumor segmentation on longitudinal MRI scans

can facilitate monitoring tumor growth or shrinkage. In

current clinical practice, accurate segmentation of brain

tumor regions is usually done manually by experienced

radiologists, which is time-consuming and labor-intensive.

Furthermore, manual labeling of results may involve

human bias, as they rely on the physician’s experience and

subjective decision-making. On the other hand, automated

segmentation techniques can reduce labor and human bias
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to provide efficient, objective, and reproducible results for

tumor diagnosis and monitoring.

The performance of automated brain tumor segmenta-

tion methods has grown rapidly over the past few years.

This development is due to the growth of annotated data-

sets and the advent of deep learning models that can

leverage large amounts of data [2]. Most methods are based

on fully convolutional neural networks (FCN) [3], like

U-Net [4] and its variants [5] for improving the perfor-

mance of brain tumor segmentation. Recently, Trans-

formers and self-attention, originating from natural

language processing (NLP), have also been applied to

medical image segmentation [6].

Although the segmentation results of deep neural net-

works are reported to be close to or comparable to human

performance [7], their robustness levels are low, and con-

cerns remain with their clinical acceptability [8]. Possible

reasons include the large variability in imaging properties,

such as artifacts and magnetic field strength, as well as the

inherent heterogeneity of brain tumors, which are beyond

the training dataset. Furthermore, human bias in dataset

annotations can cause models also to inherit this bias. One

possible direction to alleviate the reliability problem of

deep neural networks is to use uncertainty estimation. The

uncertainty reflects how confident the network predicts the

class labels. Confidence studies can help identify areas of

data dominated by lack of annotations (epistemic uncer-

tainty) or noisy annotations (aleatoric uncertainty). Addi-

tional information from uncertainty estimation can be used

to quantify segmentation performance or as a post-pro-

cessing step to correct automatic segmentation. Clinically,

uncertainty estimates can feed back potential error regions

to guide or automate corrections or be used for patient-

level segmentation failure detection [1]. Therefore, reliably

quantifying the uncertainty of segmentation performance is

critical in clinical applications.

Popular methods for quantifying uncertainty in neural

networks include quantile regression (QR) [9], Bayesian

neural network (BNN) [10–12], ensemble-based [13],

dropout-based [14–16], and evidential deep learning (EDL)

[17–19]. Simply interpreting the confidence scores of

softmax/sigmoid outputs as event probabilities in a cate-

gorical distribution can lead to overconfident wrong pre-

diction [20, 21]. The classical BNN aims to capture

uncertainty by learning the weight distribution of the net-

work and approximates the integral of parameters by

variational inference or Laplace approximation to estimate

the posterior prediction distribution [18]. However, most

BNNs are challenging to implement and train since model

parameters have to be explicitly modeled as random vari-

ables [22], which lack scalability in both architecture and

data size [12]. Hence, subsequent approaches focused on

being able to reuse the training pipeline and maintain

scalability while providing reasonable uncertainty esti-

mates. To this end, more intuitive and simple methods,

such as learning an ensemble of deterministic networks

[15, 21] and introducing Monte Carlo dropout [13] are

proposed for brain tumor segmentation. On the downside,

ensemble-based methods need to train multiple models

from scratch, which is computationally expensive, and the

introduction of dropouts results in inconsistent outputs

[23].

On the other hand, EDL has been gradually developed in

recent studies, demonstrating more promising and reliable

performance in uncertainty estimation. Based on the

Dempster-Shafer Evidence Theory (DST) [24], EDL uses

the Dirichlet distribution to model the categorical distri-

bution of the output given the input to the network. This

class of methods produces closed-form prediction distri-

butions and outperforms BNNs in adversarial queries and

out-of-distribution uncertainty quantification [18]. Com-

pared to ensemble-based and dropout-based methods, EDL

showed more robust results with lower computational costs

[25]. However, most of the recent works focus on the

natural image classification and segmentation problem,

making the application of EDL in medical image seg-

mentation to be further studied.

In this paper, we propose a region-based EDL network

for reliable brain tumor segmentation, which is robust to

noise and corruption of images. The network learned

classification distribution by minimizing region-based

prediction error under the Dirichlet prior distribution. This

enabled the proposed network to provide accurate seg-

mentation results and reliable uncertainty estimate simul-

taneously, even under noise-corrupted inputs. Our method

improved the mean squared error (MSE) loss used for the

simple natural image classification [17], making it more

suitable for semantic segmentation of medical images. The

main contributions of our work can be summarized as

follows:

• An EDL framework was adopted for accurate brain

tumor segmentation, which can quantify the uncertainty

of segmentation results and improve the reliability and

robustness of segmentation with less computational

complexity compared to ensemble-based and dropout-

based methods.

• A novel training loss was developed based on mini-

mizing the region-based prediction error under the

Dirichlet prior distribution to improve the segmentation

accuracy of EDL. Theoretical properties are fully

provided to guarantee the evidential learning of the

model.

• A new evaluation metric called soft uncertainty-error

overlap (sUEO) was designed for uncertainty
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estimation to assess the model’s ability to localize

segmentation errors more easily.

• The robustness of the segmentation accuracy and

uncertainty quantification of the proposed method is

comparatively evaluated on the BraTS2020 dataset

using image corruption techniques. The effectiveness

and efficiency of the novel loss function were verified.

The rest of the paper is structured as follows: Sect. 2 briefly

introduces EDL and recent development. Section 3 details

our segmentation framework, including EDL and novel

loss functions. Section 4 illustrates the experimental setup

and evaluation metrics, and the results are analysed and

discussed in Sect. 5. The conclusion and future research

directions are given in Sect. 6.

2 Related work

Despite many uncertainty estimation methods mentioned,

our proposed framework resorts to arguably the most cut-

ting-edge methodology, EDL, for this purpose. The rest of

the section presents the principles of EDL (Sect. 2.1) and a

brief overview (Sect. 2.2) of the scarce contributions in

which EDL has been utilized for tumor segmentation.

2.1 Principles of EDL

Evidence Deep Learning (EDL) is based on Dempster-

Shafer Evidence Theory (DST) [24], which is a general-

ization of Bayesian theory to subjective probability. It

assigns belief masses to subsets of a discerning frame,

representing a set of exclusive potential states, such as

possible class labels for a voxel. A belief mass can be

assigned to any subset of the frame. Assigning all belief

masses to the entire frame represents the opinion that the

truth can be any possible state, e.g. any label is equally

likely.

The belief distribution of DST in the discerning

framework can be formalized as a Dirichlet distribution by

Subjective Logic (SL) [26]. For a voxel i, the Dirichlet

distribution Dir aið Þ is parameterized by a vector of

Dirichlet parameters aij for K classes, where j denotes the j-

th class. (The denotations of subscripts i and j hold for the

entire paper.) The neural network collects evidence eij from

the input data, a measure of support that facilitates classi-

fying samples into the class j. The belief mass distribution,

i.e. subjective opinion, in [17] corresponds to a Dirichlet

distribution with parameter aij ¼ eij þ 1.

As a result, it is equivalent to placing a Dirichlet dis-

tribution on the predicted categorical distribution, allowing

a single network to output different predictions. The output

layer of an EDL-based neural network parameterizes a

simplex distribution representing the probability distribu-

tion of class assignments. The softmax/sigmoid classifica-

tion layer is replaced with a ReLU activation layer that

outputs non-negative continuous values, resulting in eij.

The vector of predicted classification probabilities can be

computed by:

p̂ij ¼
aij
Si

; ð1Þ

where Si ¼
PK

j¼1 aij is called the Dirichlet strength. The

class probability vector for voxel i given by pi is modeled

as a random vector drawn from the Dirichlet distribution

[18].

Let yi be the one-hot encoded labels with yik ¼ 1 and

yij ¼ 0 for all j 6¼ k. Treating the Dirichlet distribution

Dir pi j aið Þ as a prior on the multinomial likelihood

Multðyi j piÞ, one can minimize the negative logarithm of

the marginal likelihood:

LML;i ¼ � log

Z YK

j¼1

pij
yij

1

BðaiÞ
YK

j¼1

pij
aij�1dpi

 !

¼
XK

j¼1

yij log Sið Þ � log aij
� �� �

;

ð2Þ

where B is the multinomial beta function [27]. Alterna-

tively, one can minimize the Bayes risk of the cross-en-

tropy loss:

LCE;i ¼
Z

�
XK

j¼1

yij logðpijÞ
" #

1

BðaiÞ
YK

j¼1

pij
aij�1dpi

¼
XK

j¼1

yij w Sið Þ � w aij
� �� �

;

ð3Þ

or the mean squared error:

LMSE;i ¼
Z

kyi � pik2
1

BðaiÞ
YK

j¼1

pij
aij�1dpi

¼
XK

j¼1

yij � p̂ij
� �2þ

p̂ij 1� p̂ij
� �

Si þ 1ð Þ ;

ð4Þ

where w refers to the digamma function [28]. Sensoy et al.

[17] observed that LML;i and LCE;i produced excessively

high belief masses and were less stable than LMSE;i. This
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can be attributed to the fact that these two loss functions

encourage maximizing the correct likelihood.

2.2 Related work of EDL

Sensoy et al. [17] used the MSE loss for natural image

classification. They showed that the loss decreases as the

correct class parameter grows and decreases when the

largest incorrect parameter decays. Furthermore, they

integrated the KL divergence loss to narrow the error class

parameters further. However, the properties of the aggre-

gated loss function were not shown, and the behavior of the

loss was not studied for all parameters. Also, for the image

classification problem, [18] improved the square-norm of

MSE loss to max-norm and achieved higher performance.

Because max-norm minimizes the highest class prediction

error, and square-norm minimizes the total sum of squares,

which is more susceptible to outliers. However, this situ-

ation may not be applicable for tumor segmentation with

severe class imbalance. The TBraTS network [25]

attempted to apply EDL’s CE loss to brain tumor seg-

mentation. In order to improve the segmentation accuracy,

the network output was additionally passed through the

softmax layer to calculate the soft Dice loss, which was

added with the CE loss. However, this increases training

costs and complexity, and an incomplete deployment of the

EDL framework may cause the network to fail to produce

true evidence values.

Different from these methods that employed MSE or CE

loss and show inferior segmentation results, our approach

minimized region-based prediction error (soft Dice loss)

under the Dirichlet prior distribution, which significantly

facilitated the segmentation performance of the EDL

framework. The improvement of EDL in segmentation was

statistically verified in the medical image dataset, paving

the way for the clinical application of the EDL-based

segmentation and uncertainty estimation framework.

3 Method

This section details our approach, a novel region-based

EDL framework for 3D brain tumor segmentation

(Sect. 3.1) and describes how we quantify the uncertainty

(Sect. 3.2).

3.1 Region-based evidential deep learning

For semantic segmentation of medical images, it is

important to consider the accuracy of segmented regions in

addition to standard classification errors. Hence, we pro-

posed a region-based objective to minimize the expected

prediction error in the EDL framework while maintaining

high segmentation accuracy. Unlike Zou et al. [25] who

added the soft Dice (sDice) loss based on the result of

softmax activation to LCE;i, we directly minimized the

Bayes risk of sDice loss:

sDice ¼ 1

K

XK

j¼1

1� 2
P

i yijpijP
i yij

2 þ pij2
; ð5Þ

LDICE ¼
Z

sDice½ � 1

BðaiÞ
YK

j¼1

pij
aij�1dpi

¼ 1

K

XK

j¼1

E 1� 2
P

i yijpijP
i yij

2 þ pij2

� �

¼ 1� 2

K

XK

j¼1

P
i yijE pij

� �

P
i yij

2 þ E pij2
� � :

ð6Þ

By using the identity:

E pij
2

� �
¼ E pij

� �2 þ VarðpijÞ; ð7Þ

the equation can be formulated in an easily

interpretable form:

LDICE ¼ 1� 2

K

XK

j¼1

P
i yijp̂ij

P
i yij

2 þ p̂2ij
|fflfflfflffl{zfflfflfflffl}
sDiceDen

þ
p̂ij 1� p̂ij
� �

Si þ 1ð Þ
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Var

¼ 1� 2

K

XK

j¼1

P
i yij

aij
Si

P
i yij

2 þ aij
Si

	 
2
þ aij Si�aijð Þ

Si
2 Siþ1ð Þ

:

ð8Þ

By factoring out the denominator of sDice (sDiceDen) and

variance (Var), the loss aims to achieve the joint goal of

minimizing the region-based prediction error and variance

of the Dirichlet experiments generated by the neural net-

work for the training set.

In order to ensure an effective EDL framework that

allows the network to learn to generate subjective opinions

from evidence correctly, the loss function needs to have the

following properties.

Hypothesis 1 When the network optimises, the loss

function prioritizes data fitting over variance estimation.

Hypothesis 2 The loss function has a tendency to fit the

data.

Hypothesis 3 The loss function avoids generating evi-

dence for all observations it cannot explain.

These properties of the proposed DICE loss (LDICE) can

be guaranteed by the following theorems, each numbered

one-to-one with the hypothesis. The proofs of all Theorems

are presented in Appendix 1.
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Theorem 1 For any aij � 1, the inequality

sDiceDen[Var is satisfied.

Theorem 2 For a given voxel p with the correct label c,

LDICE decreases when new evidence is added to apc and

increases when evidence is removed from apc.

Theorem 3 For a given voxel p with the correct label c,

LDICE decreases when evidence is removed from all

incorrect Dirichlet parameters apw for all w 6¼ c.

To summarise, Theorems 1 to 3 demonstrate that the

proposed loss function can optimize the neural network to

provide more evidence for the correct class of each voxel

while avoiding misclassification by discarding misleading

evidence. By accumulating evidence, the loss also tends to

reduce the variance of its predictions on the training set, but

only if the additional evidence leads to a better fit to the data.

Furthermore, to further minimize the contribution of

parameters associated with incorrect classes, a KL diver-

gence loss function is introduced to shrink their evidence to

0 as follows:

LKL;i ¼ log
C
PK

j¼1 eaij
	 


C Kð Þ
QK

j¼1 C eaij
� �

0

@

1

A

þ
XK

j¼1

eaij � 1
� �

w eaij
� �

� w
XK

j¼1

eaij

 !" #

;

ð9Þ

where Cð�Þ is the gamma function [28] and eai ¼ yi þ
1� yið Þ

J
ai is the Dirichlet parameters after removal of

the non-misleading evidence. The following theorem

shows a desirable monotonicity property of this regular-

ization loss as a supplementary to [17].

Theorem 4 For a voxel i with the correct label c, LKL;i

increases in aiw for all w 6¼ c.

Theorems 3 and 4 show that the strength of parameters

associated with misleading results is expected to decrease

during training. Since the parameters are all expected to be

minimized, the preferred behavior of the proposed loss

function results in a higher uncertainty of misclassification.

The final loss function is defined as:

LEDL ¼ LDICE þ kLKL;mean; ð10Þ

where LKL;mean is the mean KL divergence loss over all

voxels and k is an annealing coefficient. The KL diver-

gence loss is gradually introduced by k for a stable training

due to its strong regularization effect. The annealing

scheme is set to reach a maximum 1
10

as: k ¼
1
10
min 1; n

100

� �2
where n is the current epoch.

In addition, the weighted sDice loss, LwDICE, is also

proposed to ease the class imbalance between tumor and

background voxels. The weight for each segmentation class

is one minus the ratio of foreground voxels to background

voxels. Since the weights are all positive and class-wise, all

theoretical properties of the loss function still hold.

Furthermore, the parameter of Dirichlet distribution in

our framework is re-defined as:

aij ¼ eij þ 1
� �2

: ð11Þ

Unlike [17] defined the Dirichlet aij ¼ eij þ 1, the alter-

native formula allows the network to output high Dirichlet

parameters more easily. This avoids the defect that it is

almost impossible for the network to express a high degree

of uncertainty for a particular outcome since each outcome

gives a minimal proof of one, i.e. aij � 1.

3.2 Uncertainty quantification

Calculating the predictive entropy (PE) is a common way

to quantify uncertainty. Based on the information theory,

PE uses confidence scores of predictions to calculate the

total uncertainty for a voxel i, which is defined as:

HðpiÞ ¼ �
XK

j¼1

pij logðpijÞ; ð12Þ

where pi is the confidence score vector [29]. In order to

better compare different methods, we normalized the PE by

its maximum possible value as:

HðpiÞ ¼ � 1

logðKÞ
XK

j¼1

pij logðpijÞ: ð13Þ

As a result, the value range of normalized predictive

entropy (NPE) is normalized to [0, 1], where 1 implies the

maximum uncertainty and 0 implies the absolutely confi-

dent prediction.

4 Experiment setup

Experiments on the standard benchmark (BraTS 2020) were

conducted to compare different techniques for uncertainty

quantification and evaluate qualitatively the produced seg-

mentation along with the uncertainty associated with each

voxel.We first present the implementation details (Sect. 4.1)

and then introduce the models (Sect. 4.2) and evaluation

metrics (Sect. 4.3) for comparative experiments.

4.1 Data acquisition and processing

The BraTS 2020 [7, 30, 31] dataset comprises brain MRI

images of various scanners and protocols. The ground truth

(GT) label includes the GD-enhancing tumor (ET),
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peritumoral edema (ED), and necrotic and non-enhancing

tumor core (NCR ? NET). The segmentation masks were

evaluated on three tumor subregions: the ET, the tumor

core (TC = ET ? NCR ? NET), and the whole tumor (WT

= ET ? NCR ? NET ? ED). Four MRI modalities of T1,

T1ce, T2, and T2-FLAIR were co-registered with a size of

240 � 240 � 155. They were then interpolated to 1mm3

and skull-stripped. Since GT labels are only available for

the training set (369 cases), we split the original training set

into a new training set of 236 cases, a validation set of 59

cases, and a test set of 74 cases.

All images are cropped to 160 � 192 � 128 to reduce

computational waste in the background and are then pre-

processed by intensity normalization. During the training,

various data augmentation techniques were applied on-the-

fly as in [32] to artificially increase the dataset size and

minimize the risk of overfitting.

4.2 Model Training and Optimization

We chose the well-validated nnU-Net [33] as our Base

network model and configured as in our previous work

[32, 34]. All softmax/sigmoid layers in the Base network

were replaced with ReLU activation layers as described in

the previous section. For comparison, we used different

loss functions to optimize the network: LCE;i, LMSE;i,

LDICE, and LwDICE. Since the evaluation would be based on

more meaningful tumor subregions, the network was

trained to segment each overlapping subregion separately.

However, we also trained the network for multi-class

segmentation of the basic labels using LDICE of K ¼ 4 for

ablation study.

In addition, we also employed training strategies of

Ensemble [15], Dropout [14], and TBraTS [25], which all

used soft Dice based loss function for fair comparisons. For

Ensemble, we trained five networks with different initial-

ized weights, which has proven to be sufficient in practice

[35]. Dropout layers (factor of 0.5) were added to the

deepest three layers of the Base network to handle high-

level features, which is the most efficient [16].These layers

were also active during inference, and the same images

were passed 10 times to quantify the prediction uncertainty

[14]. Previous research has found that a sampling rate of 10

is adequate for reasonable uncertainty estimation [14].

Moreover, we used the strategy of TBraTS, which com-

bined existing losses for multi-label segmentation.

The adaptive moment estimator (Adam) optimizer was

used to optimize all networks in 200 epochs, with a batch

size of 1 and an initial learning rate of 0.0003. Experiments

were implemented using PyTorch 1.10 on NVIDIA

GeForce RTX 3090 GPUs.

4.3 Evaluation metrics

Our method was evaluated using the independent test set of

BraTS 2020 (74 cases). The segmentation performance was

evaluated using the Dice score, which is defined as:

Dice ¼ 2jX \ Yj
jX j þ jYj ; ð14Þ

where X and Y are sets of GT and prediction. The Dice

score measures spatial overlap between the GT and seg-

mentation results, where a score of 1 indicate a complete

overlap.

In addition, the following metrics were utilized to

evaluate uncertainty estimation: expected calibration error

(ECE) [1], soft uncertainty-error overlap (sUEO), and

BraTS score (BraS) [36]. ECE is defined by the absolute

calibration error between the confidence interval and the

accuracy interval (cm and am, where m is the m-th bin

defined in the interval [0, 1]), weighted by the number of

voxels (nm) in the interval. ECE is given by

ECE ¼
XM

m¼1

nm
N

jcm � amj; ð15Þ

where N and M are the total numbers of voxels and bins,

and the confidence is calculated by one minus the uncer-

tainty. ECE ranges from 0 to 1, where lower values indicate

better calibration. To reduce the effect of the large, confi-

dent, and accurate extracranial regions typically found in

brain tumor MRI, we only considered voxels within the

brain. Improved on the uncertainty-error overlap (UEO)

[1], we proposed the soft uncertainty-error overlap (sUEO)

that directly uses the uncertainty quantities (ui) to measure

the overlap:

sUEO ¼ 2
P

i yiuiP
i yi

2 þ ui2
: ð16Þ

sUEO does not require thresholding the uncertainty map,

which can save time optimizing the threshold over the

validation set. It shows whether a model can precisely

localize segmentation errors. Moreover, the comprehensive

BraS is defined by:

BraS ¼ 1

3
AUCDice þ ð1� AUCFTPÞ
�

þð1� AUCFTNÞ
�
;

ð17Þ
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where AUCDice, AUCFTP, and AUCFTN are area under

three curves: 1) Dice vs. confidence threshold, 2) ratio of

filtered True Positives (FTP) vs. confidence threshold, and

3) ratio of filtered True Negatives (FTN) vs. confidence

threshold. The curves are plotted against the segmentation

filtered by different confidence levels, which only voxels

with confidence greater than the threshold retain. This

metric rewards uncertainty estimates that yield high con-

fidence for correct segmentations or assigns a low confi-

dence level to incorrect segmentations and penalizes

uncertainty measures that result in a higher percentage of

under-confident correct segmentations.

5 Results and discussion

This section first evaluates the performance of the novel

region-based EDL framework for brain tumor segmenta-

tion and uncertainty quantification through experiments on

the original dataset (Sect. 5.1). It then examines its

robustness by applying various image processing tech-

niques to the test image data (Sect. 5.2).

5.1 Segmentation and uncertainty estimation

Our method generated comparable segmentation results

with the GT labels, as visualized in Fig. 1. The quantitative

results of our methods averaged over three tumor subre-

gions are compared in Table 1. Although the proposed

DICE and wDICE loss functions achieved the highest Dice

scores (0.791 and 0.793) among all EDL-based methods,

Ensemble and Dropout methods performed slightly more

accurately in segmentation (0.807 and 0.804). The success

of Ensemble and Dropout was attributed to the variance

reduction by combining predictions prone to various errors.

However, the dominance of the proposed region-based

losses in all EDL frameworks still proved their effective-

ness in improving EDL in segmentation performance.

Compared to CE-based or MSE-based losses, the DICE-

based losses significantlly improved the Dice score by 0.01.

As for the uncertainty estimation, Ensemble and Drop-

out obtained the lowest ECE metrics of 0.009 and 0,010,

which indicated they were well-calibrated. However, our

methods achieved the highest sUEO and BraS of 0.420 and

0.875, showing their ability to more precisely locate errors

and estimate uncertainty. The EDL model optimized by the

proposed wDice loss generated the most accurate uncer-

tainty map to indicate the potential false predictions. On

the other hand, the proposed EDL (DICE) model made the

most reliable uncertainty estimation, maintaining the low-

est error while thresholding along the uncertainty dimen-

sion. The advantages of our region-based EDL methods are

also shown in Fig. 2. The proposed methods had the most

precise uncertainty map consistent with the error map.

Ideally, a learned model only give high uncertainty for a

possible erroneous prediction. Despite the high segmenta-

tion accuracy, both Ensemble and Dropout methods gen-

erated more uncertainty around mask boundaries and other

correct regions, leading to inferior uncertainty estimation

performance in terms of sUEO and BraS. It is also worth

mentioning that EDL models trained to segment each

Fig. 1 Representative visual segmentation results of the proposed region-based EDL method on the BraTS 2020 test set. The labels are

enhancing tumor (yellow), edema (green), and necrotic and non-enhancing tumor (red)

Table 1 Quantitative comparisons of different uncertainty estimation

methods on the BraTS 2020 test set

Method Dice" ECE# sUEO" BraS"

Ensemble 0.807 yz 0.010yz 0.409yz 0.873y
Dropout 0.804yz 0.009 yz 0.412z 0.869yz
EDL (TBraTS) 0.790z 0.019z 0.383z 0.862yz
EDL (CE) 0.783yz 0.038yz 0.325yz 0.829yz
EDL (MSE) 0.783yz 0.038yz 0.325yz 0.829yz
EDL (DICE) 0.791 0.017 0.414z 0.876

EDL (wDICE) 0.793 0.016 0.420 y 0.874

EDL (DICE-M) 0.771yz 0.035yz 0.283yz 0.860yz

y: p-value\ 0.05 compared with EDL (DICE) by paired t-test. z: p-
value \ 0.05 compared with EDL (wDICE) by paired t-test. Bold

numbers are the best results

Neural Computing and Applications (2023) 35:22071–22085 22077

123



22078 Neural Computing and Applications (2023) 35:22071–22085

123



tumor subregion separately outperformed the ones trained

with multi-class labels (DICE-M).

In addition, the inference runtimes of the uncertainty

estimation methods on one sample are reported in Table 2.

Runtimes of all EDL-based methods are lower than the

others. This is because both Ensemble and Dropout use

multiple sampling mechanisms at inference time to obtain

uncertainty estimates.

5.2 Robustness experiment

To verify the robustness of the segmentation model, we

applied several image processing techniques to simulate

the low-quality acquisition that usually happens in actual

practice. We first blurred the four modalities of the MRI

images using a Gaussian filter with sigma = 1.5. Subse-

quently, we re-evaluated the performance of all methods

for segmentation and uncertainty estimation, as shown in

Table 3. We can observe that with the addition of Gaussian

blur, the segmentation performance of all methods dropped

significantly, especially Ensemble and Dropout. Our

method leaped to the highest Dice metric of 0.572 for

blurry images, demonstrating its robustness. By comparing

the segmentation results with the original input and high-

noise input in Fig. 2, it can be seen that the EDL using our

loss function segmented the WT region more accurately

than all other methods. This is due to the evidence

extracted from the data that produced these subjective

opinions.

Furthermore, our method exhibited the most reliable

uncertainty quantification on blurred images compared to

other uncertainty estimation methods. Unlike the uncer-

tainty of the Ensemble and Dropout methods, which only

came from the variance of the prediction, the uncertainty of

the EDL method represented whether the prediction was

supported by sufficient evidence. Therefore, the uncer-

tainty estimates of EDL methods can more correctly indi-

cate possible prediction errors or provide a better rationale

for erroneous predictions, such as learning the wrong evi-

dence or failing to identify the correct features. As shown

in Table 3, all uncertainty evaluation metrics decreased,

except for sUEO for all EDL-based methods. This might

benefit from the robust evidence captured by the EDL

segmentation framework, where the advantage is more

noticeable with larger error regions. The proposed EDL

(DICE) method achieved top performance, especially for

generating reliable uncertainty maps. Besides showing the

robustness of our method, this again demonstrated the

importance of region-based loss for locating semantic

segmentation errors. As shown in the right half of Fig. 2,

bFig. 2 Representative visual results of the whole tumor (WT)

produced by different uncertainty estimation methods on the BraTS

2020 test set. The right half of the figure was evaluated on the test

images blurred by a Gaussian filter of sigma = 1.5

Table 2 Inference runtimes of different uncertainty estimation

methods for one image

Method Runtime (sec)

Ensemble 6.94 ± 0.05

Dropout 63.68 ± 0.17

EDL (TBraTS) 3.32 ± 0.05

EDL (CE) 3.39 ± 0.06

EDL (MSE) 3.41 ± 0.05

EDL (DICE) 3.38 ± 0.03

EDL (wDICE) 3.40 ± 0.02

EDL (DICE-M) 3.23 ± 0.04

Table 3 Quantitative comparisons of different uncertainty estimation methods on preprocessed BraTS 2020 test set. (Bold numbers: best results)

Method Blurred Noisy Gamma corrected

Dice ECE sUEO BraS Dice ECE sUEO BraS Dice ECE sUEO BraS

" # " " " # " " " # " "

Ensemble 0.561yz 0.025 0.408yz 0.772yz 0.751yz 0.024 0.407yz 0.780yz 0.702yz 0.035 0.388yz 0.730yz
Dropout 0.544yz 0.026 0.401yz 0.772yz 0.729yz 0.027yz 0.405yz 0.774yz 0.693yz 0.040y 0.392yz 0.724yz
EDL (TBraTS) 0.546yz 0.025 0.384yz 0.636yz 0.756yz 0.024 0.387yz 0.654yz 0.702yz 0.044yz 0.345yz 0.680yz
EDL (CE) 0.562yz 0.028yz 0.416yz 0.775yz 0.756yz 0.027yz 0.440yz 0.785yz 0.659yz 0.053yz 0.460yz 0.751yz
EDL (MSE) 0.559yz 0.038yz 0.419yz 0.770yz 0.739yz 0.040yz 0.391yz 0.773yz 0.632yz 0.071yz 0.413yz 0.700yz
EDL (DICE) 0.571 0.024 0.458 z 0.796 0.769 0.022 0.447 0.803 0.711 0.033 0.480 z 0.768

EDL (wDICE) 0.572 0.025 0.442y 0.793 0.771 0.023 0.449 0.799 0.707 0.036 0.448y 0.763

EDL (DICE-M) 0.438yz 0.037yz 0.343yz 0.682yz 0.758yz 0.027yz 0.398yz 0.723yz 0.704y 0.037 0.350yz 0.626yz

y: p-value\0.05 compared with EDL (DICE) by paired t-test. z: p-value\0.05 compared with EDL (wDICE) by paired t-test. Bold numbers are

the best results
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the uncertainty map generated by the EDL (DICE) method

is the most relevant to the error map. Unlike other methods

that only generate high uncertainty at the edges of the

predicted mask, the proposed method can indicate potential

error regions inside masks. It is true that regional bound-

aries should a priori undergo higher uncertainty, but this

high uncertainty should not be assumed to be exclusive of

these regions. This is what is favored by our proposed

methods, as they declare high uncertainty in delimiting and

non-delimiting regions of the segmented image. This

demonstrates the potential of our proposed method for

clinical application. Potential error regions fed back by the

model can assist in automatic correction or quality quan-

tification of tumor segmentation.

To enrich the robustness experiment, we further applied

Gaussian noise and Gamma correction to the original input

to simulate the noise and the contrast variability introduced

by imaging or enhancement technique. With the Gaussian

noise of variance = 1.5, the segmentation performance of

all methods was superior to burred ones, as shown in

Table 3. The proposed EDL (wDICE) remained the top in

The proposed EDL (wDICE) method remained the top in

terms of the Dice metric (0.771), followed by the proposed

EDL (DICE) with Dice 0.769. The metrics for uncertainty

estimation resembled blurred input, while the sUEO of

EDL (wDICE) became 0.002 higher than that of EDL

(DICE). However, as for the result after Gamma correction

with gamma = 5, the proposed EDL (DICE) method

excelled in all metrics, which showed its robustness to

unexpected contrast variance.

These observations can also be visually inspected in

Fig. 3. Compared to other methods, our methods provided

more precise uncertainty maps. Ensemble and Dropout

models had trouble handling the boundaries, especially for

Gamma corrected input. The extracranial area is no longer

zero after Gamma correction, which might cause problems

when applying zero-padding. Moreover, their overconfi-

dent prediction using softmax/sigmoid is shown for

Gamma corrected input where the main error regions were

not indicated in the uncertainty map. Non-region-based

EDL methods also showed inaccurate uncertainty maps.

The shortcoming of using MSE loss in EDL to quantify the

uncertainty of medical image segmentation can be seen in

Fig. 3, which was significantly biased by the interference.

6 Conclusions and future research
directions

In this paper, we proposed a region-based EDL framework

to segment brain tumors and quantify their uncertainty

reliably and robustly. We demonstrated that the proposed

region-based loss could generate reliable prediction confi-

dence by gathering evidence in the output image by

demonstrating four theoretical properties. Our method

produced voxel-level uncertainty maps for brain tumor

segmentation, which provided additional information on

segmentation confidence for cancer diagnosis. Extensive

experiments showed that the proposed method is more

robust than previous methods on the BraTS 2020 dataset

and achieves the best performance in segmentation uncer-

tainty estimation. Furthermore, the novel framework

maintained the low computational cost properties of EDL

and can be easily integrated into any neural network.

Unfortunately, the performance of our method was

currently slightly inferior to Ensemble and Dropout meth-

ods in terms of ECE and Dice when segmenting raw

images. Calibration methods such as temperature scaling

can be applied to improve the ECE, while EDL frame-

works with higher segmentation accuracy are worthy of

further study. Moreover, tuning and optimizing the

parameters of EDL to achieve faster inference is a known

problem, especially the suitability of the Dirichlet prior,

that will be addressed in follow-up studies. In addition,

since the predictive uncertainty can be separated into

epistemic and aleatoric uncertainty, future work can also

focus on the inherent value for automated diagnosis that

uncertainty estimation brings when differentiating between

the two sources of uncertainty. The fourth direction is

validating this framework in other diagnostic applications,

possibly favoring the fusion of more multimodal informa-

tion sources. Then, we can assess whether the fusion of

different information modes permits a decrease in the

overall uncertainty of the model estimated by our EDL

segmentation framework.

Appendix A: Proofs of Theorems

This section provides full proofs for Theorems 1 to 4.

bFig. 3 Representative visual results of the whole tumor (WT)

produced by different uncertainty estimation methods on the BraTS

2020 test set. The left half of the figure was evaluated on the test

images added with Gaussian noise of variance = 1.5. The right half was

evaluated on the test images after Gamma correction of gamma = 5
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Proof of Theorem 3 The loss function becomes:
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As a result, LKL;i increases as eaiw/aiw increases.
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