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Abstract
Reinforcement learning (RL) has become widely adopted in robot control. Despite many successes, one major persisting

problem can be very low data efficiency. One solution is interactive feedback, which has been shown to speed up RL

considerably. As a result, there is an abundance of different strategies, which are, however, primarily tested on discrete

grid-world and small scale optimal control scenarios. In the literature, there is no consensus about which feedback

frequency is optimal or at which time the feedback is most beneficial. To resolve these discrepancies we isolate and

quantify the effect of feedback frequency in robotic tasks with continuous state and action spaces. The experiments

encompass inverse kinematics learning for robotic manipulator arms of different complexity. We show that seemingly

contradictory reported phenomena occur at different complexity levels. Furthermore, our results suggest that no single

ideal feedback frequency exists. Rather that feedback frequency should be changed as the agent’s proficiency in the task

increases.

Keywords Interactive reinforcement learning � Human-aligned reinforcement learning � Guided exploration �
Intrinsic feedback homology

1 Introduction

Reinforcement Learning (RL) has become widely used in

modern robotic technologies. One reason is the compelling

simplicity and generality of the framework. In short, the

behavior an agent is expected to learn is encoded by a

reward function. Through interaction with the

environment, the agent will learn to maximize the reward

by performing actions that have proven to be beneficial.

However, this seeming simplicity has many pitfalls and

subtleties. One common shortcoming of most algorithms is

the very low data efficiency: complex problems might

require millions of agent-environment interactions to be

solved [1].

One strategy to accelerate this procedure is interactive

reinforcement learning (IRL) [2]. Interaction augments the

sources of information provided to the learning agents by

teacher feedback, which can be a human or another type of

agent [3]. In the latter case, it is also known as the agents

teaching agents subfield of transfer learning [4]. There are

numerous alternatives to implement IRL as described by

Arzate Cruz and Igarashi [2]. A graphical overview is

provided in Fig. 1. Firstly, the teacher feedback can be

classified into critique (binary), scalar values, action advice

and guidance. Further, this feedback can be used to modify

different aspects of the learning model, i.e., the reward

function (reward shaping [5]), the policy (policy-shaping
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[6]), the exploration process (guided exploration process

[7]), and the value function (augmented value function).

The literature on interactive reinforcement learning is

extensive, such that many combinations shown in Fig. 1

have been explored already. One consistent result is that

interaction in any form can perform better than vanilla RL

agents. However, it is still unclear how much the different

aspects contribute to overall performance gains or how

different feedback strategies can be combined, and in

which proportions, to optimize users’ experience, agents’

task performance, or both.

IRL algorithms are mainly developed with human

teachers in mind. Empirical evidence indicates that

people are strongly biased to use evaluative feedback

communicatively rather than as reinforcement [8, 9]. In

other words, humans use evaluative feedback as com-

munication as a policy-shaping strategy rather than

reward shaping. Arguably, this type of feedback favors

IRL strategies based on policy shaping and guided

exploration, because it would make the interaction both

more engaging for the teacher and more effective for the

learning agent [6, 9, 10]. Results from Ho et al. [8],

showing that people consistently use feedback commu-

nicatively even when interacting with reward-maximizing

agents, further support this claim. Moreover, using

feedback signals as rewards and punishments when

interacting with reward-maximizing RL agents can lead

to reward hacking [11]. Reward hacking is a conse-

quence of misspecified reward functions, which lead to

undesired behaviors, such as when action sequences

leading to the reward from the human are repeated at the

expense of learning to complete the task more generally.

Despite efforts to improve the study of interaction on RL

agents with human teachers, we believe there is still much

to be learned using simulated teachers and oracles as

suggested by Bignold et al. [12]. Moreover, human feed-

back varies in accuracy, availability, concept drift, reward

bias, cognitive bias, knowledge level, latency, etc. [12],

which makes it very challenging to isolate the effects of

different interaction strategies in reinforcement learning

agents. Fortunately, pre-trained agents or hard-coded

heuristics can be used as feedback sources without

requiring modifications to the learning algorithms. These

types of ‘teachers’ are primarily used in theoretical

research since it allows for better controllable and more

easily implementable experiments.

Different strategies have been compared regarding pol-

icy-shaping, such as early advising, alternating or

stochastic advising, importance advising, and mistake

correction. Mistake correction consistently outperformed

the other methods, both in discrete [13, 14] and continuous

state and action spaces [13]. Taylor et al. [13] also noted

that mistake correction is more robust to changes in feed-

back quality than alternate advising. In addition, mistake

correction and predictive advising are most robust to

changes in the state representation between teacher and

agent. However, as noted by Cruz et al. [14], mistake

correction in policy shaping would be the most difficult

strategy to implement in real-world scenarios with human

teachers since it requires the teacher to detect the mistake,

revert it, and suggest a better alternative action.

A more straightforward way is using mistake correction

for guided exploration. Here, the teacher must detect and

revert the error but not necessarily suggest a better action.

In addition, despite its popularity, we believe that policy-

shaping strategies might hinder the learning of robust

policies by reducing exploration, which leads to good

performance primarily in the neighborhood of the behav-

iors demonstrated by the teacher [15]. Limiting the

exploration in this manner can result in poor performance

in other areas of the state space not or rarely encountered

during training [15].

In the literature on feedback-guided exploration, Stahl-

hut et al. [7, 16] found that mistake correction does not help

to increase the learning speed in simple tasks but only starts

to have a measurable effect as the task complexity

increases. It was also observed that higher feedback fre-

quencies lead to more robust agents, i.e., that the average

agents’ performance for the same hyperparameters has a

smaller standard deviation across different random seeds.

Moreover, feedback can offset the detrimental effect of

poorly tuned hyperparameters as a byproduct of this

increased robustness. This effect becomes stronger as

feedback frequency increases, regardless of the complexity

of the problem. Stahlhut et al. also speculate that interac-

tion has a more significant impact during early learning. In

addition, they hypothesize that feedback may be indis-

pensable to achieve sufficient performance in very complex

tasks, in agreement with Suay and Chernova’s hypothesis

[15].

Fig. 1 Summary of alternative implementations of interactive rein-

forcement learning. Adapted from [2]
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Millán-Arias et al. [17] further investigated the effect of

feedback frequency used to guide the exploration process.

They observed that too much feedback might lead to

delayed onset of learning. Despite that, the performance of

highly interactive agents converges at the same time as the

performance of less interactive ones. In addition, they

speculate that too much binary advice, even if 100% cor-

rect, can be counterproductive and slow down learning,

particularly in noisy environments. They conclude that

intermediate interaction frequencies are optimal.

Summarizing previous findings, there are strikingly

contradictory accounts of the optimal choice of feedback

frequencies. At the same time, some authors suggest that

more feedback is better [7, 16], while others indicate that

the cost of high feedback frequencies does not justify the

gains [12]. In contrast, others advocate for intermediate

feedback frequencies and report even detrimental effects of

frequent feedback [17]. It was also suggested that the

feedback frequency should not be stationary but adjusted as

the agents’ proficiency increases during training [7, 16, 18].

We assume that the reason for the disagreement is a lack

of knowledge about the differential effects of varying

feedback frequencies at different levels of agent profi-

ciency and task complexity. Consolidating these previous

findings without further experimentation is complicated

since most results only show cumulated reward or sequence

length. Moreover, effect sizes, average performance, and

statistical analyses are not reported in most cases. Also, the

complexity of the setup might make it impossible to isolate

the effects of the different parameters used [18]. In addi-

tion, the most common testbeds in IRL research are grid

worlds and other low-dimensional discrete state and action

spaces. Whereas the small size of these testbeds allows for

short experiments, we believe results obtained in those

testbeds might not generalize well to more complex prob-

lems with real-world implications [2].

Thus, in this paper, we aim to isolate and quantify the

effect of feedback frequency on learning performance for

different task complexities and agent proficiencies, to

shed some light on seemingly contradictory results. As

testbeds, we use robotic tasks of varying complexity and

continuous action and state spaces. We focus on feedback

as mistake correction to guide the exploration process

since it does not demand expert knowledge of the task. In

our experiments, we reproduce various seemingly con-

tradictory findings about the optimal choice of interaction

frequencies and relate them to a differential effect of the

teacher interaction on task complexity. We also show that

optimal feedback frequencies typically exhibit temporal

drifts, making it difficult to recommend a single range of

feedback frequencies for any task. We instead conclude,

in line with previous suggestions [7, 16, 18], that an

adaptive interaction regime, which changes with the

agents’ proficiency, is likely optimal. Finally, we discuss

a simple heuristic for choosing a close-to-optimal tem-

poral trajectory for the interaction rate.

2 Methods

This section details all experimental and analysis methods

used in the paper.

2.1 Environment

Inspired by Stahlhut et al. [7, 16], we study the effect of

feedback frequency as exploration guidance in an inverse

kinematic learning task. The environment dynamics were

implemented by the forward kinematics models of the

NAO and KUKA (LBR iiwa 14 R820) robots.

For the NAO robot, the forward kinematics model

described by Kofinas et al. [19] was used. Two conditions

for the NAO robot were defined: a 2 degrees of freedom

(DoFs), and a 4 DoFs condition. For the 2 DoFs configu-

ration, the elbow and shoulder roll were actuated. In the

4 DoFs condition, all four joints are used, i.e., shoulder

pitch, shoulder roll, elbow yaw and elbow roll.

The KUKA LBR iiwa 14 R820 kinematics were simu-

lated with the model described by Busson et al. [20]. For

the KUKA arm, three conditions were studied, i.e., 2 DoFs,

4 DoFs, and 7 DoFs conditions. For the 2 DoFs configu-

ration, joints 2 and 4 were actuated while keeping the other

joints in their respective zero-position. For the 4 DoFs

configuration, the first four joints were actuated while

keeping the other joints in their respective zero-position,

and all 7 joints were actuated in the 7 DoFs condition.

The 2 DoFs models of the NAO and KUKA are used to

study the role of feedback frequency in two-dimensional

task spaces. In addition, The 4 DoFs and 7 DoFs condi-

tions of NAO and KUKA are examples of more complex

three-dimensional task spaces.

2.2 Task and reward

All experiments aim to generate controllers that can reach

arbitrary goal zones in task space while controlling the

robot arms in joint space. A sparse reward function is used,

i.e., reaching the goal zone leads to a reward of 1. All other

actions result in a reward of 0. Such a reward function

allows us to isolate the effect of feedback and analyze the

learning dynamics more easily. Moreover, adding other

rewards signals, such as punishment signals, might have a

detrimental effect on learning speed [21, 22], which makes

both analysis and design of the reward function difficult.

The Goal Zone Radius (GZR) for both NAO configu-

rations is 17.5 and 150 mm for the KUKA arm conditions.
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2.3 Interactive RL setup

We use the Continuous Actor-Critic Learning Automaton

(CACLA) [23] as the underlying reinforcement learning

framework. The agent has an Ask Likelihood (L) param-

eter, representing the likelihood of the agent asking/re-

ceiving guidance from the teacher. The teacher judges the

agent’s last action based on the Euclidean distance between

the end-effector and the goal. However, the feedback to the

agent is binary, and it is only used to guide the exploration

process and not as an additional reward or to shape the

policy directly. In particular, if the last action increases the

distance to the goal, it is considered a mistake. When the

teacher reports a mistake, the agent undoes the action and

explores a new one, after which the cycle is repeated. This

process is illustrated in Fig. 2.

The stochastic feedback strategy used here is a good

analogy for teachers taking breaks when providing feed-

back. Although this type of feedback is easy to automate, it

might not always be correct. For instance, in the presence

of obstacles or complex task spaces, it might be required

first to move away from the goal position to reach it. Thus,

L cannot be equal to 1. To prevent the agent from poten-

tially getting stuck, we keep the maximum value of 0.99

used by Stahlhut et al. [7, 16].

2.4 State and action spaces

The state space S for all conditions consists of the corre-

sponding joint positions (proprioception) and the Cartesian

coordinates of the target position (exteroception). For all

conditions, the action space is limited to the maximal

allowed joint displacement per time step of p=10. I.e.

A ¼ ½�p=10; p=10�DoF
.

2.5 The controller

The Actor and Critic are implemented with two separate

multilayer perceptrons (MLPs). The networks share the

same input vector. However, the networks are tuned sep-

arately using hyperparameter optimization as described in

Sect. 2.9. Thus, the learning rate, number of hidden layers

and outputs, may differ between the Actor and the Critic.

All input and output values are scaled to the range ½�1; 1�.
The activation function for the output units is linear. The

networks were implemented in PyTorch 1.10.0 and trained

using Adam [24].

2.6 Episodes

Based on both the maximum range of motion of the joints

and the maximal action size, the smallest number of steps

needed to traverse the entire task space was computed as

follows:

Stepsmin ¼
Rangemax

Actionmax

Stepsmin was then used to define the episode length

Stepsmax as 3� Stepsmin rounded to the next tenth.

The minimum number of goals zones Gmin to cover the

entire workspace was used to determine the number of

episodes Ntrain per epoch. Gmin was calculated using opti-

mal disc (2D task space) or ball (3D task space) packing in

the task space volume. Ntrain results from 10� Gmin roun-

ded to the second leading digit. Table 1 shows a summary

of the episode parameters conditions.

2.7 Performance metrics

The following metrics were used to quantify the effect of

feedback frequency. Lower values indicate better

performance:

Fig. 2 Diagram representing the basic RL setup, with the interactive

components colored in red

Table 1 Boundary conditions for the episodes. Stepsmin: min. # of

steps to cover the task space, Stepsmax: max. # of steps the agent can

take to reach the target, Gmin: min. # of goals to cover the task space

and Ntrain: # of episodes per epoch

NAO KUKA

2 DoFs 4 DoFs 2 DoFs 4 DoFs 7 DoFs

GZR 17.5 mm 17.5 mm 150 mm 150 mm 150 mm

Stepsmin 6 13 19 19 19

Stepsmax 20 40 60 60 60

Gmin 22 224 38 261 261

Ntrain 220 2200 380 2600 2600
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• Positioning error: mean Euclidean distance to the target

divided by the target radius.

• Failure rate: percentage of missed targets during

evaluation, which is equivalent to

Failure rate ¼ 1� average cumulative reward:

The performance learning curves are analyzed with respect

to the cumulative steps instead of epochs since it better

reflects the total amount of interaction with the environ-

ment. The slope of the failure rate is used as an indicator of

the improvement speed.

We furthermore consider thresholded performance pro-

files. Note that for visual clarity, the error bars represent the

standard error of the mean and not a confidence interval.

Here, the steps of the L agent reaching the corresponding

failure rate threshold first are used as reference. Then the

best failure rate up to this step count is compared across

different L values. For this analysis, we used a two-sided

Wilcoxon rank sum test with respect to the L ¼ 0:0 con-

dition. This temporal threshold strategy copes better when

dealing with conditions that cannot achieve an arbitrary

performance threshold than the time to threshold [25]

strategy.

2.8 Datasets

Following similar practices as in supervised learning, three

datasets were used: a training, a validation, and a test set.

Both the training set and test set are of the same size Ntrain,

while the validation set is 1/5 the size of the training set,

see Table 1. The datasets consist of pairs of initial positions

for the agent and the target. These positions are generated

randomly from a uniform distribution in joint space. The

targets are represented in Cartesian coordinates and result

from feeding random joint configurations into the forward

kinematics model of the corresponding robotic arm. Target

coordinates that lie within the goal zone of the corre-

sponding initial position are rejected. One epoch is defined

as training for all pairs in the training set once.

2.9 Hyperparameter optimization

Hyperopt [26] was used to determine the best hyperpa-

rameters out of 100 hyperparameter sets for each experi-

mental condition. Preliminary tests showed signs of

significant performance improvement by the 10th (2 DoFs)

or 20th (4 DoFs and 7 DoFs) epoch. Thus, during hyper-

parameter selection, the 2 DoFs conditions agents were

trained for 10 epochs while the 4 DoFs and 7 DoFs con-

ditions were trained for 20 epochs. In all cases, we used the

corresponding training set. The best hyperparameters set

was selected based on the lowest positioning error in the

validation set at the respective final epoch.

Prior tests showed that optimizing for the lowest posi-

tioning error or fastest convergence speed leads to similar

results. In real-world scenarios, it is arguably more

important to have the robotic arm performing the defined

task precisely – with minimal possible error – than learn to

perform quickly but with low repeatability or precision.

Thus, here the hyperparameters were optimized for the

lowest positioning error.

The hyperparameter search can be done at least in two

manners: 1) optimizing the hyperparameters for each Ask

Likelihood (L) value independently, or 2) optimizing the

hyperparameters only for L ¼ 0:0 and evaluating the per-

formance for increasing values of L. The latter was

selected for two reasons. Firstly, hyperparameter opti-

mization is computationally expensive. Secondly, this

strategy allows for quantifying the gain of using a partic-

ular feedback frequency in an existing system of vanilla RL

(L ¼ 0:0).

Table 2 summarizes the hyperparameters and opti-

mization boundaries. The last five hyperparameters corre-

sponding to the neural network configuration are optimized

independently for the Actor and Critic, but share the same

ranges.

2.10 Training and testing

The agents are trained on the same training set used for the

hyperparameter optimization, but this time the agents’

performance is evaluated on the test set. All agents are

trained for a fixed number of epochs. Eleven agent versions

for each condition were trained, including the baseline

agents for L ¼ 0:0 (non-interactive) and ten other agents

sets with L values increasing in increments of 0.1, with the

Table 2 List of hyperparameters to be optimized and their interval of

possible values

Hyperparameter Range

Actor learning rate [10�4; 10�2]

Critic learning rate [10�4; 10�2]

Exploration rate [0.2, 0.9]

Discount factor [0.75, 1.0]

Zeta [10�4; 10�1:3]

Initial variance [1.0, 3.0]

# of hidden layers 1, 2 or 3

# of neurons on 1st layer [10, 100] step of 10

# of Neurons on 2nd layer [5, 100] step of 5

# of Neurons on 3rd layer [5, 100] step of 5

Activation function ReLu, SeLu, or Softplus
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last agent having L ¼ 0:99 (fully interactive). The L values

do not change during training. During testing, no learning

occurs, no interaction is possible, and no undo action is

performed. Statistics are taken over 20 randomly initialized

agents for each task and each L value.

3 Results

In the following section, we present the temporal evolution

of the failure rate on the test sets for all experimental

conditions. The failure rate value at each point is the

average over the 20 randomly initialized agents.

In addition, for each experimental condition, we com-

pare the failure rate for different L values at various

threshold levels to assess the optimal L value at different

stages in training.

3.1 NAO 2 DoFs Experiment

Figure 3a shows the performance evolution for the NAO

2 DoFs condition. The circles indicate the best failure rate

value achieved during training for each L value. The fail-

ure rate continuously improves with higher L values, even

reaching perfect performance in late training for L� 0:7,

whereas the performance for low L starts to diverge around

104 steps. The failure rate curves’ rate of improvement is

comparable for all L values during the first few epochs.

Figure 3b shows the thresholded failure rate perfor-

mances in the NAO 2 DoFs condition. The cumulative step

counts corresponding to the thresholds are marked by blue

arrows in Fig. 3a. At the first threshold levels, there is a

trend toward a significant lower failure rate as L values

increase. However, the behavior is dynamic, and no single

L value remains the best through training. Within the tested

time horizon, the final performance favors the highest L

values.

3.2 NAO 4 DoFs experiment

Figure 4a shows the performance evolution for NAO

4 DoFs condition. Values up to L ¼ 0:7 convergence to a

similar value. In contrast, the best performance of higher L

is reached earlier, after which the failure rates start to

diverge slowly.

The improvement speed is initially faster for higher L

values before they start to diverge.

Figure 4b shows the corresponding time thresholded

failure rate analysis. Here the highest effect on the failure

rates is observed in the first half of training at very high L

values. In the later phase of training, at the 5% threshold,

the optimal L shifts toward medium and high L values.

Finally, a significant benefit is mostly absent for the

strictest threshold of 3% and beyond. However, for

L� 0:9, the effect is significantly detrimental, as indicated

by the red markers in Fig. 4b.

3.3 KUKA 2 DoFs experiment

Figure 5a shows the performance evolution for the KUKA

2 DoFs condition. The overall failure rate in this condition

is relatively high. However, a similar trend to that of the

NAO 2 DoFs condition can be observed, i.e., the failure

rate continuously improves with a higher L value. In

a

b

Fig. 3 a Failure rate evolution for the NAO 2 DoFs experiment in

log scale. The circle indicates the best performance for the

corresponding L value for the whole training. The blue arrows show

the number of environment steps needed for the fastest L agents to

reach 10, 5, 2 and 0:3% failure rate. b Time thresholded failure rates
for the NAO 2 DoFs condition. Statistical significance with respect to

the L ¼ 0:0 condition was computed using a two-sided Wilcoxon

rank sum test. The u show significance with respect to L ¼ 0:0 at

p\0:05, while the w show significance with respect to L ¼ 0:0 at

p\0:001
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contrast, the performance for low L values starts to diverge

after the respective best performance is reached.

The improvement speed for low to medium L agents is

initially higher. Whereas the improvement speed for higher

L values is slightly lower, it is maintained almost con-

stantly throughout the tested time horizon.

Figure 5b shows the time thresholded failure rate for the

KUKA 2 DoFs condition. Unlike in both NAO conditions,

here, early in training, the interaction does not yield any

benefits. Interaction is even significantly detrimental for

very high L values. Only toward the end of training does

interaction significantly reduce the failure rate.

3.4 KUKA 4 DoFs experiment

Figure 6a shows the performance evolution for the KUKA

4 DoFs condition. Again, the overall failure rate in this

condition is relatively high. In contrast to all other exper-

imental conditions, all L values lead to a monotonically

improving failure rate. Lower L values initially show a

faster rate of improvement but slow down as learning

progresses. In contrast, very high L values display a lower

rate of improvement, which is, however, almost constant

throughout the tested time horizon.

Figure 6b shows the time thresholded failure rate for the

KUKA 4 DoFs condition. Early in training, interaction

a

b

Fig. 4 a Failure rate evolution for the NAO 4 DoFs experiment

shown in log scale. The circle indicates the best performance for the

corresponding L value. The blue arrows show the number of

environment steps needed for the fastest L agents to reach 50, 25

10, 5 and 3% failure rate. b Time thresholded Failure rates for NAO
4 DoFs. Statistical significance was computed using a two-sided

Wilcoxon rank sum test. The u show significance with respect to

L ¼ 0:0 at p\0:05, while the w show significance with respect to

L ¼ 0:0 at p\0:001. Red markers indicate significantly detrimental

effects

a

b

Fig. 5 a Failure rate evolution for the KUKA 2 DoFs experiment

shown in log scale. The circle indicates the best performance for the

corresponding L value. The blue arrows show the number of

environment steps needed for the fastest L agents to reach 50, 40,

30 and 20% failure rate. b Time thresholded failure rates for the

KUKA 2 DoFs condition. Statistical significance was computed using

a two-sided Wilcoxon rank sum test. The u show significance with

respect to L ¼ 0:0 at p\0:05, while the w show significance with

respect to L ¼ 0:0 at p\0:001. Red markers indicate significantly

detrimental effects
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leads to a significant reduction in failure rate primarily for

intermediate L values. In contrast, the highest L values

have a significantly detrimental effect on performance

throughout the tested time horizon. However, from the

data, it cannot be judged what the very long-term behavior

of the agents will be since the performance has not

converged.

3.5 KUKA 7 DoFs experiment

Figure 7a shows the performance evolution for the KUKA

7 DoFs condition. As for the 2 DoFs conditions, low to

medium L agents reach a local optimum around 2� 106

steps, after which the performance temporarily deterio-

rates. However, in contrast to the 2 DoFs conditions, the

performance continues to improve beyond the initial local

optimum. Higher L agents have a lower rate of improve-

ment but do not experience any divergent behavior, at least

within the tested time horizon.

Figure 7b shows the time thresholded failure rate for the

KUKA 7 DoFs condition. Similarly, as in the previous

KUKA conditions, low to medium L values lead to sig-

nificantly better performance early in training. In contrast,

very high L values lead to significantly worse failure rates.

The detrimental effect becomes stronger the higher the L

value. Only for longer training horizons do high L values

a

b

Fig. 6 a Failure rate evolution for the KUKA 4 DoFs experiment

shown in log scale. The circle indicates the best performance for the

corresponding L value. The blue arrows show the number of

environment steps needed for the fastest L agents to reach 70%,

50%, 30%, 20%, and 15% failure rate. b Time thresholded failure
rates for the KUKA 4 DoFs condition. Statistical significance was

computed using a two-sided Wilcoxon rank sum test. The u show

significance with respect to L ¼ 0:0 at p\0:05, while the w show

significance with respect to L ¼ 0:0 at p\0:001. Red markers

indicate a significantly detrimental effects

a

b

Fig. 7 a Failure rate evolution for the KUKA 7 DoFs experiment

shown in log scale. The circle indicates the best performance for the

corresponding L value. The blue arrows show the number of

environment steps needed for the fastest L agents to reach 75, 50,

25, 10 and 5% failure rate. b Time thresholded failure rates for the

KUKA 7 DoFs condition. Statistical significance was computed using

a two-sided Wilcoxon rank sum test. The u show significance with

respect to L ¼ 0:0 at p\0:05, while the w show significance with

respect to L ¼ 0:0 at p\0:001. Red markers indicate a significantly

detrimental effects
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start to become significantly beneficial, albeit not optimal.

The long-term behavior cannot be clearly judged here since

the performance has not converged.

Table 3 shows a combined summary of the statistical

analyses of the effects on the failure rate thresholds for all

tested robotic tasks and L values. The effect size reported

is the difference of means.

4 Discussion

Our thorough investigation of the Ask Likelihood’s effect

on the evolution of the failure rate over time allows us to

make more nuanced statements on task-dependent effects

of the interaction rate than previously reported. Further-

more, our experiments can unify seemingly contradictory

statements on the best choice of L. In summary, across the

different experimental conditions, we make three main

observations: 1) policy robustness, 2) optimal long-term L,

and 3) optimal L trajectory.

Table 3 Effect Size for different values of L across robot tasks, computed as difference of means.

Failure

Rate

Ask Likelihood

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

NAO

2 DoFs

10 �16:55F �18:45F �24:18F �17:73F �21:43F �22:86F �19:98F �20:25F �19:98F �19:86F

5 – �6:34� �9:70F �9:14F �9:86F �9:39F �8:95F �8:64F �8:30F �6:16�

2 – – �4:39� �3:43� �3:70� – �3:20� – – –

0.3 – – �3:18� �3:18� �3:41� �3:64F �3:27� �3:45� �3:70� �3:93F

best – – �3:27� �3:68F �4:00F �4:05F �4:16F �4:16F �4:16F �4:16F

NAO

4 DoFs

50 �28:51F – �32:84F �31:23F �33:80F �37:29F �34:5F �40:82F �41:78F �49:75F

25 �28:61F �24:42F �36:00F �36:01F �36:94F �36:09F �40:06F �48:10F �48:43F �40:36F

10 �4:46� – �6:45F �5:87F �6:96F �4:86� �4:65� �4:75� �3:97� �5:71F

5 – – �1:24� – �2:07� �1:86� �1:21� �1:51� �1:31� –

3 – – – – – – �1:34� – 0:60� 1:88�

best – – – – – – – – 1:92F 3:19F

KUKA

2 DoFs

50 – – – – – 5:83� 6:74F 9:74F 9:05F 11:20F

40 – �5:86� – – – – – – 5:97� 7:43�

30 – – – – – – – 8:36F 7:46F 8:68F

20 – �4:26� �5:26� �4:59� – – – 6:20F 8:18F 9:71F

best – �4:93� �5:22� �3:99� �4:32� – – �3:14� �4:20� �3:66�

KUKA

4 DoFs

70 – – – �20:78F �23:34F �26:56F – – – 11:40F

50 �6:68� �19:67F �24:42F �28:04F �25:79F �28:63F �11:38F �7:19� – 22:68F

30 �11:05� – �8:87� �11:76� �9:46� – – – – 35:71F

20 – – – – – – – 6:60� 12:35F 24:30F

15 – – – – – – – 2:47� 3:25� 5:12F

best – – – – – 2:31� – – – 2:11�

KUKA

7 DoFs

75 �12:23F �12:76F �9:33F �7:02F �6:42F – – 5:12F 8:01F 8:80F

50 �24:79F �31:95F �31:89F �27:76F �28:21F �10:08� – 13:71F 20:35F 21:39F

25 �14:47F �14:08F �17:21F �16:28F �16:41F – 18:76F 47:02F 58:95F 61:16F

10 – �3:33� �3:18� – – – 10:48F 34:77F 74:01F 80:70F

5 – �3:76F �5:23F �6:19F �6:40F �6:14F �6:18F �5:23F �2:27� 7:16F

best �2:77� �4:35F �5:66F �6:30F �6:88F �6:17F �6:19F �5:93F �4:04F �1:82�

Statistical significance was determined by a two-sided Wilcoxon rank sum test. The � show significance with respect to L ¼ 0:0 at p\0:05,
while the F show significance with respect to L ¼ 0:0 at p\0:001. Bold markers indicate significantly detrimental effects
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(1) Policy robustness: With the exception of the KUKA

4 DoFs condition, low L agents are prone to suffer from

performance divergence after reaching an initial local

optimum. High L agents in the same condition do not show

this behavior—see the KUKA 7 DoFs, NAO 2 DoFs, and

KUKA 2 DoFs conditions.

The divergence could be caused by the limited time

horizon of the hyperparameter optimization. In all cases

where divergence occurs, it sets in after the number of

epochs used for the optimization. In this case, high L

agents not suffering from divergence would be in line with

Stahlhut et al. [7, 16], who report that high L values lead to

more robust policies and are less sensitive to optimally

tuned hyperparameters.

However, we note that the seemingly fast divergence is

in part attributed to the log-log scale of the figures: the

number of steps at which the agents stay close to their local

optimum is relatively large compared to the initially fast

convergence. An alternative explanation is that this diver-

gence happens regularly but is rarely observed or reported

since the training is stopped automatically when initial

convergence is reached (early stopping). The reason for

this divergence could be the phenomenon called capacity

loss, which was only recently described. Lyle et al. [27]

show that agents can lose the ability to adjust their value

function approximator in light of new prediction errors.

Capacity loss is attributed to a state representation collapse

in the function approximators. This collapse seems most

prevalent in temporal difference learning algorithms, using

neural networks as function approximators, and sparse and

non-stationary rewards.

An exciting question is whether high L agents are more

robust to capacity loss. However, this investigation is

beyond the scope of this paper.

(2) Optimal long-term L: High L values are mostly

beneficial in the long run, except for the NAO 4 DoFs

condition. In all other conditions, high L agents reach

either the best or comparable to the best performance

observed for other L values, albeit at later stages in

training.

This observation agrees with Stahlhut et al. [7, 16], who

report increasing performance with increasing interaction

frequency. However, in the NAO 2 DoFs case, there is

only a small benefit of the highest L value over the others

in the long run. Thus, the gain can be considered not very

large, in accordance with Bignold et al. [12], who argue

that the increased effort of very high frequent interaction

does not justify the small performance gains.

(3) Optimal L trajectory: During training within one

experimental condition, the best choice of L depends on the

proficiency level and typically changes over time. For

instance, in the NAO 4 DoFs experiment, the optimal L

changes from intermediate values in early training to low

values in late training. However, this pattern does not

generalize across tasks. E.g., the optimal L changes from

intermediate to high values in the NAO 2 DoFs condition,

in contrast to the NAO 4 DoFs experiment.

This observation can encompass the following findings:

• early feedback is beneficial [18], as seen in all but the

KUKA 2 DoFs condition,

• intermediate feedback frequencies are optimal [17], as

seen in the NAO 2 DoFs and KUKA 7 DoFs conditions

across most of the training,

• and that too much early feedback leads to a delayed

onset of learning [17], as seen in all 3 KUKA

conditions.

Furthermore, the shift of optimal L values during training

leads us also to conclude that the interaction rate should be

changed adaptively for optimal performance, as also sug-

gested by Cruz et al. [18] and Stahlhut et al. [7, 16].

As a proof of concept, we trained agents on the KUKA

2 DoFs task, starting with L ¼ 0:0, switching to L ¼ 0:5 at

epoch 14, and finally to L ¼ 0:99 at epoch 18. Figure 8

shows that it is possible to achieve the early convergence of

the low L agents in this task, combined with the long-term

refinement of high L agents. The switch of L induces a

short-term performance deterioration. However, measuring

the performance as the area under the curve, the adaptive

strategy is superior to the fixed L agents.

An important question is how to choose the optimal

adaptive L-strategy without having to train agents for

various L-values before. Whereas it seems to be a good

rule of thumb to switch to high L in late training, the

optimal values in early training are very diverse. Here, low

Fig. 8 Adaptive failure rate in the KUKA 2 DoFs task. The initial

L ¼ 0:0 is changed to L ¼ 0:5 at epoch 14 and L ¼ 0:99 at epoch 18.

The 50% opacity black and yellow curves show the original

performance for fixed L ¼ 0:0 and L ¼ 0:99, compare Fig. 5a. The

adaptive agents show both features of fast early training and long-

term convergence of the fixed L agents
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L values are optimal for the KUKA 2 DoFs condition,

intermediate for KUKA 4 DoFs, KUKA 7 DoFs, and NAO

2 DoFs, or high values for the NAO 4 DoFs, spanning a

range of L ¼ 0:2 to L ¼ 0:8 across experiments.

We hypothesize that the optimal L in early training is

influenced by how much the teacher simplifies the task.

Expressly, if the task for high L values becomes too easy in

comparison to the L ¼ 0:0 task, the agent might fail to

generalize and explore too little. Note that the agent

effectively faces the L ¼ 0:0 situation during evaluation

since it is not receiving feedback then. Specifically, con-

sider a fully interactive agent. Here, the teacher will rarely

allow actions that increase the distance of the end effector

to the goal. This scenario simplifies the task during training

but also entails that sub-optimal state-action pairs are sel-

dom encountered. Note that this situation primarily applies

to mistake-correcting teachers as used in this article.

We quantify the reduction in task complexity by L as

the average failure rate of a newly initialized agent on the

training set with an interaction frequency L, but without

policy updates. All failure rates for L 6¼ 0 are normalized

to the performance of the baseline L ¼ 0 agent. Each value

is averaged over 20 randomly initialized agents. We

compare the relative task complexities with the best choi-

ces of L at similar stages in early training. For this, we use

the failure rate thresholds of 50% for KUKA 7 DoFs and

KUKA 4 DoFs, 40% for KUKA 2 DoFs, 25% for NAO

4 DoFs, and 5% for NAO 2 DoFs (see Figs. 3b, 4b, 5b, 6b,

7b). Note that it is not feasible to use the same value for all

experiments since the initial performance across experi-

ments varies between �50% and �90%.

Figure 9 shows the relative task complexity for all

experiments and L values, along with the best choices of L

at the mentioned thresholds and the significantly detri-

mental choices. Indeed, L values that lead to relatively low

task complexities are prone to have a detrimental effect. In

contrast, the most beneficial choices of early L values are

those that lead to a relative task complexity between �
0:78 to � 0:95. Thus, drawing an initial L from that range

for each task makes it considerably more likely to choose

the initially optimal L value than naively sampling from

the range of L ¼ 0:2 to L ¼ 0:8.

Based on this observation, we argue against the claims

that either high, intermediate, or low L values are optimal

in early training. Instead, optimality seems to be better

predicted by the task complexity reduction induced by L.

5 Conclusion

In this study, we conducted a thorough extension of pre-

vious research investigating the effect of feedback fre-

quency on agent performance in continuous action and

state spaces. The main contribution is the discovery that

task complexity and performance threshold influence the

interpretation of the best interaction rate with a teacher.

Moreover, no single best solution exists across task

conditions.

Our results instead suggest that the optimal interaction

rate changes over time and that the task complexity

determines the specific optimal trajectory for L. These

observations allow us to consolidate previously contradic-

tory claims on the optimal interaction frequency. Further-

more, we described a heuristic to choose the initial

feedback frequency based on a measure of the relative task

complexity changes induced by the teacher’s feedback on

an untrained agent.

Future work: A future goal is to probe the described

heuristic further to predict the optimal trajectory before –

and potentially adjust it during – training. Such a strategy

has the potential to increase data efficiency significantly.

Drawing such conclusions across an even more compre-

hensive range of tasks requires more extensive experi-

mentation with more tasks of different complexity.

It is also necessary to determine the deeper cause of

seemingly differential effects of task complexity reduction

by teacher interaction and the relation to potential capacity

loss in the agents’ neural network function appropriators.

Finally, it will be helpful to quantify the interaction of

the feedback frequency effects with other factors, such as

fixed feedback budgets and advice quality, to go toward

applicable scenarios with realistic human feedback.

Funding Open Access funding provided by the Projekt DEAL (Open

access agreement for Germany). Research funding by the M-RoCK –

Human–Machine Interaction Modeling for Continuous Improvement

of Robot Behavior project funded by the Federal Ministry of Edu-

cation and Research with grant no. 01IW21002.

Fig. 9 Relative task complexity reduction induced by feedback

frequencies for all experiments. Interaction has a differential effect on
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(compare Figs. 3b to 7b, second failure rate thresholds). Red symbols
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threshold
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