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Abstract
Crowd counting has received increasing attention due to its important roles in multiple fields, such as social security,

commercial applications, epidemic prevention and control. To this end, we explore two critical issues that seriously affect

the performance of crowd counting including nonuniform crowd density distribution and cross-domain problems. Aiming

at the nonuniform crowd density distribution issue, we propose a density rectifying network (DRNet) that consists of

several dual-layer pyramid fusion modules (DPFM) and a density rectification map (DRmap) auxiliary learning module.

The proposed DPFM is embedded into DRNet to integrate multi-scale crowd density features through dual-layer pyramid

fusion. The devised DRmap auxiliary learning module further rectifies the incorrect crowd density estimation by adaptively

weighting the initial crowd density maps. With respect to the cross-domain issue, we develop a domain adaptation method

of randomly cutting mixed dual-domain images, which learns domain-invariance features and decreases the domain gap

between the source domain and the target domain from global and local perspectives. Experimental results indicate that the

devised DRNet achieves the best mean absolute error (MAE) and competitive mean squared error (MSE) compared with

other excellent methods on four benchmark datasets. Additionally, a series of cross-domain experiments are conducted to

demonstrate the effectiveness of the proposed domain adaption method. Significantly, when the A and B parts of the

Shanghaitech dataset are the source domain and target domain respectively, the proposed domain adaption method

decreases the MAE of DRNet by 47:6%.

Keywords Crowd counting � DRmap auxiliary learning � Density rectifying � Domain adaption

1 Introduction

In the past few years, an increasing number of researchers

have devoted themselves to crowd counting fields. Crowd

counting aims to estimate the number of crowds and the

crowd density value of arbitrary pixel position for the input

images. Due to the higher adaptability and practicability of

the crowd counting methods, they are widely applied in

various scenarios including social security, commercial

programme and so on. For instance, the spread of COVID-

19 caused by large-scale crowd concentration can be

avoided through real-time monitoring crowds. Further-

more, crowd counting methods can be used to manage the

layout of shopping malls by analyzing the spatial distri-

bution of crowds. The requirements in the above-men-

tioned application scenarios have promoted the further

development of the crowd counting technologies.
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Recently, with the prevalence of convolutional neural

networks (CNNs) [1], large quantities of CNN-based

approaches [2–9] have been proposed to address various

problems in crowd counting fields. Though these methods

improve the performance of crowd counting tasks to some

extent, several inherent challenges remain, such as

nonuniform density distribution and domain adaption. The

former seriously affects the counting accuracy of the crowd

counting networks in regions of various density levels,

while the latter reflects the performance of the trained

counting models in actual application scenarios. Therefore,

we are deeply involved with the above two issues in this

paper.

As for the nonuniform crowd density distribution

problem, it is known that the larger the image depth is, the

fewer pixels are occupied by the crowds, resulting in a

high-density crowd distribution, and vice versa. Figure 1

shows the crowd density maps predicted by different net-

works in different density areas, which reveals that the

baseline network used in this paper has relatively large

estimation errors in both high-density and low-density

areas. To solve nonuniform density distribution problem,

Liu et al. [10] apply a FasterCNN-based detection network

to detect crowds in sparse scenes while adopting a

regression network to estimate crowd density in dense

scenes, and adaptively weight the outputs of the detection

network and regression network. Gao et al. [11] design a

spatial-level attention module to perceive crowd density

changes in input images by extracting global context

information. These works alleviate the above problems to a

certain extent from the perspective of network model

design, but ignore the important fact that image depth is the

direct factor resulting in nonuniform crowd density distri-

bution problem.

Domain adaption is the second issue that we concentrate

on, which affects the generalization performance of the

counting model in unseen scenarios. To our knowledge,

there are many differences among different datasets

including crowd density distributions, background types,

and scene styles, which are collectively referred to as

domain gaps. Due to the existence of the domain gap, the

model well-trained in the source domain behaves badly in

the target domain. Wang et al. [2] firstly propose a syn-

thetic crowd dataset, and transform the synthetic images to

real-world images by SE Cycle GAN. Gao et al. [12]

employ adversarial learning to discriminate the origin

(source domain or target domain) of the feature maps in the

network, and reduce the domain gap of the feature space.

These methods reduce the domain gap from a global per-

spective. However, they neglect to learn domain invariant

features from a local perspective, such as learning different

feature distributions in an image. To date, no one has

addressed the cross-domain problem of crowd counting

from both global and local perspectives.

To cope with the nonuniform crowd density distribution

issue, we present a density rectification network (DRNet)

as shown in Fig. 2. Different from previous methods

[10, 11] that focus on the design of the network structure,

we propose a density rectification map (DRmap) and an

efficient algorithm for generating the ground truth DRmap.

The devised DRmap is closely related to the image depth

and head spacing, and the larger the pixel value in DRmap

is, the greater the density of the crowd at the corresponding

location. We introduce the density rectification auxiliary

task into the network to generate a DRmap for weighting

the predicted crowd density map, which aims to obtain

more accurate crowd density estimations in different den-

sity areas. In addition to adding auxiliary tasks to correct

the density estimation deviation, we also develop a dual-

layer pyramid fusion module (DPFM) from the point of

view of promoting feature fusion. We embed the designed

DPFM module into the network as shown in Fig. 2, and

carry out a dual-layer fusion of crowd density features of

different scales, which promotes DRNet to generate high-

quality crowd density maps. For the purpose of reducing

the domain gap between different crowd scenes, we put

forward a novel domain adaption method of randomly

cutting mixed dual-domain images as shown in Fig. 4. We

first leverage the model well-trained on the source domain

to generate pseudo-labels for the target domain training set,

and mix the source and target domain training data. In a

training batch, we randomly cut a part of the target domain

image and paste it into the source domain image, and the

(a) (b)

295192

36 1210

(c) (d)

194 293

36

235 344

33 11951330

Fig. 1 a and b represent the input crowd image and the ground truth

density map. c and d indicate the density map output from the

baseline(without DRmap and DPFM) and DRNet, respectively. The

red boxes denote the crowd regions in different density levels. The

number marked in red reveals the crowd number in the red box, and

the white number presents the overall crowd count of the entire image
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labels are also operated accordingly. Finally, we utilize the

source domain and target domain data that are well-mixed

in both a batch and a single image to train the network. The

devised domain adaption method not only learns the

domain invariant features between the source domain and

the target domain from a global perspective, but also learns

the different feature distributions of the source domain and

the target domain on a single image from a local point of

view. In general, the main contributions in this paper are

summarized as follows:

1. We propose a density rectification map (DRmap) and

an efficient algorithm to generate the ground truth

DRmap. Based on the proposed DRmap, we design a

DRmap auxiliary learning task to rectify the incorrect

density estimations of the initial crowd density map in

various density areas.

2. We develop a dual-layer pyramid fusion module

(DPFM) to carry out a dual-layer fusion of crowd

density features of different scales, which contributes

to generating more accurate crowd density maps.

3. We put forward a domain adaption method of

randomly cutting mixed dual-domain images to reduce

the domain gap. Experimental results on different

source domains and target domains demonstrate the

effectiveness of the proposed domain adaptation

method.

The remainder of this paper contains four sections. Firstly,

we briefly introduce some classic counting networks and

domain adaptation methods in the related work

section. Then, we describe the technical details of the

proposed method including the generation principle of

DRmap, the structure of DPFM, and the implementation

process of the proposed domain adaptation method.

Moreover, we conduct several comparison experiments and

ablation studies in the experiment section. Finally, we

summarize this paper in the conclusion section.

2 Related work

Under the exploration of researchers, plenty of valuable

crowd counting related works have emerged, which can be

roughly divided into two categories, crowd counting net-

works and cross-domain methods. The former mainly

includes network structure design, multi-task method

research, multi-view fusion, drone counting and so on,

which aim to improve the model performance in the test

set. The latter introduces several representative domain

adaptation approaches that make the network obtain better

generalization ability in some unseen scenes.

2.1 Crowd counting networks

In the past five years, the design of network models has

been a popular research direction in crowd counting fields,

and a series of sophisticated network structures have been

proposed to achieve state-of-the-art performance including

single-column networks [5, 13, 14], multi-column net-

works [15–18] and multi-level fusion networks [19–21].

C

DPFM

VGG Block

3×3convolution

1×1convolution

Up sampling

Down sampling

C

Multiplication

Concatenate

DRmap

Density map

Input image

Fig. 2 The overall network architecture of the proposed DRNet. The

Multiplication symbol specifically refers to pixel-by-pixel multipli-

cation, and the Concatenate symbol denotes the fusion of feature

maps in the channel dimension. For a given input image, the network

outputs the corresponding DRmap and the corrected crowd density

map
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Amirgholipour et al. [13] first detect the head size and

generate hyperparameters (HPs) about the head size

through a fuzzy inference system. After that, they train a

single-column network with HPs to adaptively generate a

crowd density map. Liu et al. [22] put forward a self-su-

pervised task through sub-image crowd ranking, and

combine labeled and unlabeled data to train a VGG-based

single-column counting network model. Liu et al. [14]

incorporate a multi-scale contextual information extraction

module into a single-column network to solve the per-

spective distortion problem. Wang et al. [5] present a novel

single-column scale-invariance network that contains sev-

eral scale-invariance transformation layers with dense

connections to overcome large density shifts. Zhang et al.

[15] are almost the first to construct a multi-column net-

work to extract multi-scale crowd features. Cheng et al.

[18] come up with a statistical network to minimize the

mutual information of the multi-column network, which

decreases the scale correlation of the acquired multi-scale

crowd features. Sam et al. [19] nominate a bottom-up and

top-down combination network, which adjusts the low-

level features of the bottom-up network by the feedback of

the top-down network to fix the dense crowd counting

problem. Liu et al. [21] present a progressively refined

density map network stacking multiple fully convolutional

networks recursively, and leverage the output of the pre-

vious network as input. With the development of regular-

ization technology, multi-task learning methods [23–26]

are widely used in current crowd counting networks. To

deal with high appearance similarity and perspective

change issues, Gao et al. [23] construct a multi-task

architecture named PCCNet that contains density classifi-

cation, density estimation, foreground segmentation and

perspective change perception. Zhao et al. [25] attempt to

design a variety of auxiliary tasks to optimize the backbone

network such as crowd segmentation, depth prediction and

count regression, which indirectly solves scale variations,

background clutter and crowd occlusions problems. Con-

sidering that the processed crowd images may come from

multiple cameras with different angles, many multi-view-

based networks [27, 28] have been put forward to fuse

multiple input crowd images. For the input crowd images

from multiple perspectives, Zhang et al. [27] propose two

multi-view fusion schemes to output scene-level density

maps. The first method is to extract features from multiple

perspective images to generate density maps. After affine

transformation, the density maps are projected to a hori-

zontal surface, and then the transformed density maps are

channel-cascaded to generate scene-level density maps.

The second approach extracts features from the input

multi-view images and performs affine transformation.

Then the features are concatenated to generate a scene-

level density map. Due to the massive deployment of

vision applications on drone platforms, researchers begin to

explore crowd counting networks [29, 30] based on drones.

Wen et al. [30] firstly present a large-scale drone-captured

dataset named DroneCrowd that contains 33,600 frames

with 4.8 million annotated heads. Then, they design a

space-time neighbor aware network to predict crowd den-

sity and localization.

2.2 Cross-domain approaches

The domain adaption methods are used to improve the

performance of unfamiliar scenes that the model has not

learned during the training process, which are widely

applied in existing computer vision tasks [31–34]. Bai et al.

[31] introduce an unsupervised multi-source domain

adaption person re-identification method consisting of a

rectification domain-specific batch normalization module

and a multi-domain information fusion module, decreasing

the domain gap between different source datasets. Faraki

et al. [32] recommend a novel cross-domain triplet loss

function to learn semantically meaningful representations

to improve the performance of face recognition tasks in

unknown scenes. He et al. [34] first offer an image style

translation method to reduce the image gap in different

domains, and then propose two collaborative learning

strategies for learning domain-invariant features in

semantic segmentation tasks.

Zhang et al. [35] first pay attention to cross-domain

issues in the field of crowd counting, who try to fine-tune

the network by selecting images of the target domain

similar to the source domain. Based on the Grand Theft

Auto V game, Wang et al. [2] generate a synthetic crowd

dataset called GCC, and utilize SE CycleGAN to transform

synthetic images into target domain style images to train

the model. Taking into account that the converted images

lack detailed texture in [2], Gao et al. [12] adopt adver-

sarial learning to discriminate the origin (source domain or

target domain) of the feature map of each layer in the

network, and reduce the domain distance of the feature

space. Hossain et al. [36] divide the counting network into

an encoder and a decoder, and employ training set images

to train the network. For specific application scenarios, the

encoder parameters are fixed, and a target domain image is

exploited to fine-tune the decoder parameters. Similar to

[12], Li et al. [37] leverage the discriminator to distinguish

whether the generated crowd density map comes from the

source domain or the target domain to address domain

adaption problem. Han et al. [38] propose a semantic

consistency cross-domain method, which introduces

adversarial learning to determine whether the extracted

features are from the source domain or the target domain.

Wang et al. [3] present a neuron linear transformation

method to handle cross-domain crowd counting tasks.
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Firstly, the traditional supervised learning method is used

to learn the source domain model parameters, and then a

small amount of labeled target data is used to learn the

multiplication factor and bias of the source domain model.

Finally, the parameters of these neurons in the target

domain are updated through linear transformation. Based

on the assumption that adjacent frames have the same

crowd distribution, He et al. [39] construct a video-based

unsupervised crowd counting cross-domain method by

minimizing the density isomorphism reconstruction error

and maximizing the estimation-reconstruction consistency

between adjacent frames. As the backgrounds in different

scenes vary significantly, Liu et al. [40] apply a point-

derived crowd counting segmentation method to separate

the crowd and the background, and design a Crowd Region

Transfer module to extract domain-invariant features

beyond background distractions. Inspired by the above

excellent works, we devote ourselves to rectifying the

incorrect density estimation and decreasing the domain gap

between different crowd scenes for crowd counting.

3 Proposed method

In this paper, we focus on dealing with the nonuniform

crowd density distribution problem and cross-domain

crowd counting issue. In the case of nonuniform crowd

density distribution problem, we bring forward a density

rectifying network called DRNet as shown in Fig. 2. The

first thirteen convolutional layers divided into five blocks

by the pooling layer in VGG [41] serve as the backbone to

extract abundant crowd features. Then, we employ the

designed DPFM module as described in Fig. 3 to perform

dual-layer pyramid fusion of the extracted multi-scale

crowd density features, aiming to make full use of the

crowd features extracted by the backbone network. Finally,

the initial density map is weighted by the DRmap produced

by the DRmap auxiliary learning task, which can rectify

the incorrect density estimation due to nonuniform crowd

distribution. Furthermore, we come up with a novel domain

adaption approach to reduce the domain gap between dif-

ferent crowd scenes as depicted in Fig. 4, and more

detailed descriptions are shown as follows.

3.1 DRmap auxiliary learning task

Nonuniform crowd density distribution is a difficult prob-

lem in the field of crowd counting. A test example of the

baseline network (without DRmap and DPFM) in Fig. 1

presents that the test error in high-density and low-density

areas reaches 22.4 and 8:3%. Therefore, it is necessary to

correct the density map estimation of different density

areas.

Inspired by the principle of camera imaging, we all

know that the larger the image depth is, the smaller the

head size and the closer the distance between the heads,

resulting in a highly dense crowd distribution and vice

versa. The image depth information needs to be annotated

by a special camera, while the distance between the heads

can be calculated from the existing head annotations. For

the purpose of decreasing the cost of labeling, we propose

DRmap based on the distance between the crowd heads to

rectify the error density estimation, and the ground truth

DRmap generation algorithm is as follows.

For a given image I containing N annotated heads, we

calculate the distances Di from an arbitrary head point

ðxi; yiÞ to the head points of all others where

Di ¼ fDi
1;D

i
2; � � �Di

i�1;D
i
iþ1; � � �Di

Ng, and sort the distance

values in Di in ascending order. The initial head spacing

Pðxi; yiÞ in position ðxi; yiÞ is defined as Eq. 1, where we set

q as a constant 5 according to the ablation experiments

results in Sect. 4.3.3.

Pðxi; yiÞ ¼
1

q

Xq

j¼1

Di
j ð1Þ

Due to the randomness of the crowd distribution and the

perspective phenomenon of the camera lens, the minority

head spacing values obtained by Eq. 1 are too large or too

Conv_1 Conv_3(1)

Conv_1 Conv_3(3)

Conv_1 Conv_3(5)

Conv_1 Conv_3(7)

C Conv_1

Conv_1

Fig. 3 The internal details presentation in the proposed DPFM

module where the blue curve represents upsampling. Conv_1 means

the 1�1 convolution, and Conv_3(3) denotes the 3�3 dilated

convolution with a dilation rate of 3. � and � indicate pixel-wise

addition and concatenation in channel dimension, respectively
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small. We use the 3r criterion to eliminate outliers in P and

get the normal head spacing P
^
by Eq. 2, where Ave and r

denote the mean and variance in P.

P
^
ðxi; yiÞ ¼

Pðxi; yiÞ if jPðxi; yiÞ � Avej\3r;

0 otherwise

�
ð2Þ

As the distribution of the labeled head points in the crowd

image I is discrete, the head spacing matrix P
^
obtained by

Eqs. 1 and 2 is composed of a series of discrete points.

Considering that discrete points are difficult to use for

training the network, we need to make the discrete matrix P
^

continuous. Inspired by the Biharmonic spline interpolation

function introduced in [42], it can calculate the function

value of the interpolation point at any position with high

precision. We utilize the Biharmonic spline interpolation in

two dimensions [42] to interpolate between the discrete

points of the head spacing matrix P
^
, so a continuous head

spacing matrix Q is acquired. The Biharmonic Green

Function /2ðxÞ used in the interpolation process of the

Biharmonic spline interpolation function is defined as

Eq. 3.

/2ðxÞ ¼ jxj2ðln jxj � 1Þ ð3Þ

According to the above analysis that head spacing is

approximately negatively correlated with crowd density,

we get the DRmap R by formula (4), where K indicates the

correction coefficient, and the selection of K is further

discussed in the experiment section.

Rðxi; yiÞ ¼ K 1� Qðxi; yiÞ �MinQ

MaxQ�MinQ

� �
ð4Þ

The ground truth DRmap generated by the above algorithm

is used to learn the density rectifying auxiliary task for

rectifying the initial crowd density map. For the input

crowd image I, the initial density map F1ðx1; IÞ and the

density correction map F2ðx2; IÞ are generated through the

density map generation network F1ðx1Þ and the density

correction network F2ðx2Þ, respectively. Then, we adopt

the DRmap to rectify the initial density map and produce

the refined density map by pixel-wise multiplication as

shown in formula (5). FðxÞ denotes the rectified density

map output by DRNet, and � represents the multiplication

of the corresponding elements.

Fðx; IÞ ¼ F1ðx1; IÞ � F2ðx2; IÞ ð5Þ

Through pixel-by-pixel weighting, we assign greater

weights to areas with higher crowd density, and lower

weights to areas with lower crowd density. Therefore, the

DRmap auxiliary learning task we design can rectify the

wrong crowd density estimations in different crowd density

areas.

3.2 Dual-layer pyramid fusion module

Density map regression is a pixel-level low-level visual

task that is very sensitive to image resolution. Although the

introduction of the pooling layer in the network will

increase the nonlinearity of the model, it will inevitably

lose a lot of detailed information. Furthermore, we know

that a large number of dense crowds are concentrated in a

small area of the image and contain relatively limited

crowd information compared with the sparse crowds due to

the nonuniform crowd density distribution. The pooling

layer makes the detailed information in high-density areas

further lost, resulting in erroneous crowd density estima-

tion. Figure 1 reveals the test results output from the

baseline network, where the estimation error in the high-

density area is much larger than that in the low-density

area. Therefore, we put forward the DPFM module

depicted in Fig. 3 to remedy the impact of limited crowd

Fig. 4 The overall flowchart of the proposed cross-domain method. S and T denote source domain and target domain, respectively. The green box

represents the selected mixed regions in source and target domain. ST reveals the domain mixed by S and T as well as TS
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information from the point of feature fusion, especially in

high-density areas.

For the multi-scale crowd density feature f1 and f2 input

into the DPFM module, we first fuse them by a feature

pyramid fusion strategy. The small-size crowd density

feature f1 is up-sampled to the same size as the large-size

feature map f2 by the bilinear interpolation function B, and

then the feature maps are directly fused by pixel-by-pixel

addition. Different from the simple pyramid fusion in [43],

for the purpose of further refining the fused multi-scale

crowd density features, we design a multi-branch structure

M where each branch contains dilated convolutions with

different dilation rates. The receptive field structure com-

posed of the multi-branch network is roughly distributed in

a pyramid, which can finely refine the previous fused multi-

scale crowd density features. Finally, we obtain the classy

multi-scale crowd density features f through dual-layer

pyramid fusion as shown in formula (6), which contributes

to the network estimating accurate crowd density maps in

different density regions.

f ¼ Mðf2 þ Bðf1ÞÞ ð6Þ

3.3 Domain adaption method

The methods introduced in Sects. 3.1 and 3.2 enable the

crowd counting network to achieve lower counting errors

on the training set and test set with similar feature distri-

butions. However, the well-trained crowd counting model

ultimately needs to be implemented and deployed to actual

application scenarios. Due to the existence of the domain

gap between the real application scenario (target domain)

and the existing dataset (source domain), the generalization

ability of the model is significantly reduced in unseen

scenarios. To achieve better performance in the target

domain, relabeling the target domain dataset to retrain the

model is an intuitive method. Many practical factors make

the above idea burdensome to realize, such as the polytropy

of the application scenarios and the expensive data labeling

costs. Inspired by the Cutmix algorithm [44] for object

detection and classification tasks, which improves the

performance of the model on the source domain through

regional dropout operations, we propose a domain adaption

method named randomly cutting mixed dual-domain ima-

ges as shown in Fig. 4.

We define the source domain and the target domain as S

and T, respectively. Training set images in S are defined as

SI ¼ fSIig
N
i¼1 containing N annotated images, and the cor-

responding ground truth density maps set is defined as

SD ¼ fSDi g
N
i¼1. Training set images in T without labels are

defined as TI ¼ fTI
j g

M
j¼1. For a given arbitrary initial

counting network F , we adopt source domain data SI and

SD to optimize the model parameter x and obtain an

optimal model FðxÞ. Based on the well-trained model on

S, we generate the pseudo-truth density maps TD ¼
fTD

j g
M
j¼1 corresponding to the training set images TI in T as

shown in formula (7).

TD ¼ F ðx; TIÞ ð7Þ

We mix all of source domain images SI and target domain

images TI with pseudo-labels to train the network, which

can extract domain invariant features from a global per-

spective. However, the domain invariant features learned

from this global perspective are relatively rough, as there is

a large domain gap in a single image between different

domains. Therefore, we leverage the following method to

further learn domain-invariance features from a local point

of view. Assume that a training batch contains a source

domain image SIi with ground truth SDi and a target domain

image TI
j with pseudo-truth label TD

j . We randomly cut a

subregion SI�C
i and TI�C

j in the upper left corner of SIi and

TI
j , the size of which is not more than half of the original

image. The corresponding label is also cut at the same

position in SDi and TD
j to get subregion SD�C

i and TD�C
j . The

sub-regions TI�C
j and TD�C

j cut from T are pasted to the

corresponding positions of SIi and SDi . Then, we obtain SIT
and SDT mixed with T in a single image as shown in Eq. 8.

SIT ¼ SIi � SI�C
i þ TI�C

j

SDT ¼ SDi � SD�C
i þ TD�C

j

(
ð8Þ

Similar to the above operation, we paste the sub-regions

SI�C
i and SD�C

i obtained from S to the corresponding

positions of TI
j and TD

j respectively. Then, we get the target

domain data TI
S and TD

S mixed with S in an image as

depicted in formula (9).

TI
S ¼ TI

j � TI�C
j þ SI�C

i

TD
S ¼ TD

j � TD�C
j þ SD�C

i

(
ð9Þ

The mixed SIT and TI
S enable the network to learn different

feature distributions from multiple domains in a single

image, which make the model extract domain-invariance

crowd features from a local perspective. In general, our

cross-domain method trains the network to learn domain-

invariant features by mixing source domain and target

domain data at the dataset level and the single image level

to reduce the domain gap.

3.4 Training details

We train the proposed DRNet with a multi-task learning

strategy, and the detailed descriptions of training details
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such as ground truth density map generation, data aug-

mentation methods, and loss functions are as follows.

3.4.1 Ground truth

As crowd head label is a series of isolated coordinates and

contains limited information, the network trained with

point coordinates is difficult to converge. Therefore, we

generate a ground truth density map CGT containing more

crowd density information based on the coordinates of the

head points fpigni¼1 as shown in formula (10).

CGTðpÞ ¼
Xn

i¼1

dðp� piÞ � GrðpÞ ð10Þ

The delta function dðp� piÞ denotes a head in position pi,

while Gr represents a Gaussian kernel function with vari-

ance r. We obtain a continuous ground truth density map

CGT through the convolution operation � between the

Gaussian kernel function and the crowd head coordinate

points.

3.4.2 Data augmentation

We firstly adopt a sliding window method to crop nine

patches of 1/4 size of the original image to expand the

dataset. In addition, we further increase the diversity of the

image by adding Gaussian noise to the image, randomly

adjusting the order of the three channels of the RGB image,

gamma correction and randomly converting the RGB

image to the gray image.

3.4.3 Loss functions

Both the density map regression task and the DRmap

auxiliary regression task utilize the Euclidean distance loss

function to train the network, which are respectively

defined as Lden and Ldep as shown in the formula (11) and

(12), where N represents the number of pixels of the input

image I.

Lden ¼
1

N

XN

i¼1

ðFðx; IÞi � Ci
GTÞ2 ð11Þ

Ldep ¼
1

N

XN

i¼1

ðF2ðx2; IÞi � RiÞ2 ð12Þ

In addition, for the purpose of suppressing background

interference, we use the head edge map proposed by Peng

et al. [45] to supervise the network to generate discrimi-

native crowd features. The head edge loss Le is defined as

(13),

Le ¼
1

N

XN

i¼1

�ðEi logðF3ðx3; IÞiÞ

þ ð1� EiÞ logð1� F3ðx3; IÞiÞÞ
ð13Þ

where E and F3ðx3; IÞ represent ground truth head edges

and predicted head edges, respectively. Considering that

Euclidean loss may cause the density map to be blurred, we

also use Structural Similarity (SSIM) loss Ls to train the

network from the perspective of luminance, contrast and

structure, which is defined as Eq. 14.

Ls ¼ 1�
ð2lxly þ C1Þð2rxy þ C2Þ

ðl2x þ l2y þ C1Þðr2x þ r2y þ C2Þ

 !
ð14Þ

lx and ly indicate the mean of the ground truth density map

CGT and predicted density map Fðx; IÞ, while rx and ry
denote the corresponding variance. C1 and C2 are both

close to 0, preventing the denominator from being 0.

Finally, the overall loss function L of the network is the

linear weighted sum of the above loss as shown in (15).

L ¼ Lden þ k1Ldep þ k2Le þ k3Ls ð15Þ

Based on the principle that each loss value is in the same

order of magnitude, we set k1, k2 and k3 to 1, 0.1 and

0.0001.

4 Experiments

In the experiment section, we first train and test the pro-

posed DRNet on multiple datasets such as Shanghaitech

[15], UCF-QNRF [46], JHU-CROWD?? [47] and

NWPU-Crowd [48], and compare with other state-of-the-

art algorithms to present the superiority of the designed

DRNet. Then, we verify the effectiveness of each compo-

nent in DRNet in the ablation experiment section, and

select the most appropriate density correction coefficient K

and hyperparameter q. Finally, we demonstrate the effec-

tiveness and universality of our domain adaption method

on different source and target domains.

4.1 Evaluation metric

All of the experiments are based on the PyTorch deep

learning framework, and NVIDIA GeForce RTX 2080 Ti is

used for model training acceleration. We adopt the mean

absolute error (MAE) and mean squared error (MSE) to

evaluate the performance of the proposed algorithm, which

are defined as formula (16) and (17).
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MAE ¼ 1

NI

XNI

i¼1

jYi � Yi
^
j ð16Þ

MSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NI

XNI

i¼1

jYi � Yi
^
j
2

vuut ð17Þ

NI represents the number of the test images. Yi and Yi
^

indicate the ground truth crowd numbers and the corre-

sponding estimated crowd numbers, respectively. MAE

measures the accuracy of the algorithm, while MSE reveals

the robustness of the algorithm. The smaller the MAE

value and the MSE value, the better the algorithm.

4.2 Experimental results on different datasets

We compare the performance of the proposed DRNet with

other advanced algorithms in Shanghaitech, UCF-QNRF,

JHU-CROWD?? and NWPU-Crowd datasets. Further-

more, we analyze the reasons that our method achieves

superior results.

4.2.1 Results on Shanghaitech dataset

The Shanghaitech dataset is proposed by Zhang et al. [15],

which contains 1198 images and 330,165 labeled crowd

heads. The dataset is divided into two parts named Part_A

(SHA) and Part_B (SHB). All of the images on SHA are

randomly picked from the Internet, of which 300 are uti-

lized for training and 182 are used for testing. The image

resolution on SHA is diverse and the crowd count in a

single image ranges from 482 to 3139. The average crowd

number on SHA is about 501. Compared with other

excellent algorithms, the proposed DRNet achieves the best

MAE and competitive MSE on the SHA dataset as shown

in Table 1. Figure 5 shows some estimated crowd density

maps processed by our method in SHA test set. The images

on the SHB dataset are taken with a camera in the bustling

streets of Shanghai, among which 400 images are adopted

for training and 316 are used for testing. The resolution of

images are fixed at 768 � 1024 pixels with an average

crowd number of 123. The crowd count in a single image

changes between 9 and 578. Table 1 indicates that our

algorithm achieves the lowest MAE and MSE compared

with the state-of-the-art methods on the SHB dataset.

Figure 7 presents some estimated crowd density maps

output from our method on the SHB test set.

To verify the performance of our algorithm at different

density levels, we divide the SHA and SHB datasets into 5

different density levels according to the number of people.

Figure 6 reveals that the proposed DRNet performs well on

all density levels. The crowd density in SHA is relatively

large and the difference in density distribution is large,

while the crowd density in SHB is small and the difference

in density distribution is little. The proposed DRmap

enables the network to adapt to different density changes

by rectifying the density map. Therefore, the proposed

DRNet achieves great performance on both SHA and SHB.

Table 1 Performance comparisons of different methods on Shang-

haitech dataset

Method SHA SHB

MAE MSE MAE MSE

MCNN [15] 110.2 173.2 26.4 41.3

IG-CNN [49] 72.5 118.2 13.6 21.1

ADCrowdNet [50] 63.2 98.9 8.2 15.7

BAYESIAN? [51] 62.8 101.8 7.7 12.7

S-DCNet [52] 58.3 95.0 6.7 10.7

SPN?L2SM [53] 64.2 98.4 7.2 11.1

PGCNet [54] 57.0 86.0 8.8 13.7

AMSNet [9] 56.7 93.4 6.7 10.2

Liu et al. [55] 61.59 98.36 7.02 11.00

Yang et al. [4] 61.2 96.9 8.1 11.6

Jiang et al. [56] 57.78 90.13 – –

SDANet [57] 63.6 101.8 7.8 10.2

DUBNet [58] 64.6 106.8 7.7 12.5

Wan et al. [59] 61.3 95.4 7.3 11.7

HPANet [60] 60.7 92.8 7.9 13.5

DMDCNet [61] 63.6 106.2 8.0 12.4

DRNet(Ours) 54.9 97.3 6.5 10.2

Bold values represent the best results

ET:416

ET:516

ET:366

GT:417

GT:514

GT:363

Fig. 5 The exhibition of the ground truth density maps and estimated

density maps generated by the devised DRNet on the SHA dataset.

The first column denotes input crowd images. The second column and

the third column present estimated density maps and ground truth

density maps, respectively. GT and ET represent ground truth crowd

numbers and estimated crowd numbers
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4.2.2 Results on UCF-QNRF dataset

Idress et al. [46] come up with the UCF-QNRF (QNRF)

dataset where the images are captured from Flickr, Web

Search and Hajj footage. The images from Hajj contain

various positions, perspectives, angles and times, while the

search keywords leveraged in Flickr and the Web include

crowd, hajj, spectator crowd, pilgrimage, protest and so on.

The unqualified images will be discarded, such as low

resolution, low-density crowd, blurred images and images

with watermark. 14 annotators and 4 verifiers spend a total

of 2,000 human-hours annotating these images. There are

1535 images with 1, 251, 462 labeled heads on the QNRF

dataset, and the average size of the images are 2013 �
2902 pixels. The maximum number of people and the

minimum number of people on QNRF are 12,865 and 49,

and the median and average are 425 and 815.4, respec-

tively. The experimental results in Table 2 denote that our

algorithm achieves the best MAE and MSE on QNRF

compared with other superior approaches.

We believe that the following reasons contribute to the

above excellent results. The image resolution on QNRF is

high, and a single image contains more marked head

points, which is conducive to generate a more accurate

ground truth DRmap for training DRNet. In addition, the

designed DPFM module enhances the crowd features in

different density areas through dual-level feature fusion,

and promotes the network to generate more accurate den-

sity maps. Figure 8 depicts some estimated crowd density

maps output from our method on the QNRF test set.

4.2.3 Results on JHU-CROWD11 dataset

The JHU-CROWD?? (JHU) dataset is put forward by

Sindagi et al. [47], and the images are downloaded on the

Internet through searching different keywords such as

crowd, crowd?outdoor, crowd?conference and

crowd?station. There are 4372 images on JHU with a total

of 1,515,005 marked heads. The average crowd number in

each iamge is about 346. The JHU dataset provides both

image-level and head-level annotations. The head label

includes the position of the head point, the occlusion level

Fig. 6 The ground truth crowd counts and the estimated crowd counts output from DRNet on SHA and SHB. GT represents the ground truth,

while ET indicates the estimated value. Image Group denotes different crowd density levels

Table 2 Performance comparisons of different methods on UCF-

QNRF dataset

Method MAE MSE

MCNN [15] 315 508

Idrees [46] 132 191

BAYESIAN? [51] 88.7 154.8

S-DCNet [52] 104.4 176.1

SPN?L2SM [53] 104.7 173.6

AMSNet [9] 101.8 163.2

CAN [14] 107 183

Liu et al. [55] 86.6 152.2

Jiang et al. [56] 91.59 159.71

DUBNet [58] 105.6 180.5

Wan et al. [59] 84.3 147.5

HPANet [60] 107.7 188.5

DMDCNet [61] 108 189

DRNet(Ours) 82.1 140.3

Bold values represent the best results

3560 Neural Computing and Applications (2023) 35:3551–3569

123



of the head point (no occlusion, partial occlusion, full

occlusion), blur level (blur, no blur) and head size, while

the image-level annotation contains scene tags (mall,

gathering, street, stadium, rally, protest, railway station)

and weather tags (rain, snow, fog). The 4372 images on

JHU are divided into a training set, validation set and test

ET:1018 GT:1018

ET:1973

ET:808

GT:1974

GT:811

Fig. 8 The exhibition of the

ground truth density maps and

estimated density maps

generated by DRNet on UCF-

QNRF dataset. The first column

denotes input crowd images.

The second column and the

third column present estimated

density maps and ground truth

density maps, respectively. GT

and ET represent ground truth

crowd numbers and estimated

crowd numbers

GT:169ET:170

ET:29

ET:146

GT:28

GT:145

Fig. 7 The exhibition of the

ground truth density maps and

estimated density maps

generated by the proposed

DRNet on the SHB dataset. The

first column denotes input

crowd images. The second

column and the third column

present estimated density maps

and ground truth density maps,

respectively. GT and ET

represent ground truth crowd

numbers and estimated crowd

numbers
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set. The training set has 2272 images, including 636 low-

density images (0–50), 1307 medium-density images

(51–500) and 329 high-density images (500?). There are

76 rain images, 102 snow images and 81 fog images in the

training set. The validation set has a total of 500 images,

separated into 163 low-density images, 274 medium-den-

sity images and 64 high-density images. Moreover, there

are 20 rain images, 21 snow images and 23 fog images in

the validation set. The test set has 1600 images, containing

429 low density images, 931 medium density images and

240 high density images. The weather category includes 49

rain images, 78 snow images and 64 fog images.

Tables 3 and 4 reveal that our method achieves the best

MAE and MSE compared with other state-of-the-art

methods on the JHU validation set and test set. In partic-

ular, the proposed DRNet achieves the best performance in

multiple subcategories, such as low, medium, high and

weather. In general, our network has achieved excellent

performance in different density levels and various outdoor

weather based on the proposed DPFM feature fusion

Table 3 Performance comparisons of different methods on the JHU-CROWD?? (val set) dataset

Method Overall Low Medium High Weather

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

MCNN [15] 160.6 377.7 90.6 202.9 125.3 259.5 494.9 856.0 241.1 532.2

CMTL [62] 138.1 379.5 50.2 129.2 88.1 170.7 583.1 986.5 165.0 312.9

CSRNet [63] 72.2 249.9 22.2 40.0 49.0 99.5 302.5 669.5 83.0 168.7

SANet [64] 82.1 272.6 13.6 26.8 50.4 78.0 397.8 749.2 72.2 126.7

CAN [14] 89.5 239.3 34.2 69.5 65.6 115.3 336.4 619.7 101.8 179.3

SFCN [2] 62.9 247.5 11.8 19.8 39.3 73.4 297.4 679.4 52.3 93.6

DSSI-Net [65] 116.6 317.4 50.3 85.9 82.4 164.5 436.6 814.0 155.7 314.8

MBTTBF [66] 73.8 256.8 23.3 48.5 53.2 119.9 294.5 674.5 88.2 200.8

CG-DRCN-CC-VGG16

[47]

67.9 262.1 17.1 44.7 40.8 71.2 317.4 719.8 63.5 116.6

CG-DRCN-CC-Res101 [47] 57.6 244.4 11.7 24.8 35.2 57.5 273.9 676.8 54.0 106.8

DRNet(Ours) 50.5 203.7 8.5 14.9 31.0 50.7 243.9 563.6 39.4 78.6

Bold values represent the best results

Overall represents all of the images in the val set that contains four sub-categories such as low, medium, high and weather

Table 4 Performance comparisons of different methods on the JHU-CROWD?? (test set) dataset

Method Overall Low Medium High Weather

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

MCNN [15] 188.9 483.4 97.1 192.3 121.4 191.3 618.6 1166.7 330.6 852.1

CMTL [62] 157.8 490.4 58.5 136.4 81.7 144.7 635.3 1225.3 261.6 816.0

CSRNet [63] 85.9 309.2 27.1 64.9 43.9 71.2 356.2 784.4 141.4 640.1

SANet [64] 91.1 320.4 17.3 37.9 46.8 69.1 397.9 817.7 154.2 685.7

CAN [14] 100.1 314.0 37.6 78.8 56.4 86.2 384.2 789.0 155.4 617.0

SFCN [2] 77.5 297.6 16.5 55.7 38.1 59.8 341.8 758.8 122.8 606.3

DSSI-Net [65] 133.5 416.5 53.6 112.8 70.3 108.6 525.5 1047.4 229.1 760.3

MBTTBF [66] 81.8 299.1 19.2 58.5 41.6 66.0 352.2 760.4 138.7 631.6

CG-DRCN-CC-VGG16

[47]

82.3 328.0 19.5 58.7 38.4 62.7 367.3 837.5 138.6 654.0

CG-DRCN-CC-Res101

[47]

71.0 278.6 14.0 42.8 35.0 53.7 314.7 712.3 120.0 580.8

DRNet(Ours) 61.7 260.1 11.3 32.5 31.2 55.0 272.5 664.1 96.1 579.9

Bold values represent the best results

Overall denotes the sum total of the images in the test set that contains four sub-categories such as low, medium, high, and weather
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ET:4196

ET:625

GT:4191

GT:624

ET:61

ET:2129

GT:60

GT:2127

Fig. 9 The exhibition of the

ground truth density maps and

estimated density maps

generated by DRNet on JHU-

CROWD?? dataset. The first

column denotes input crowd

images. The first two rows are

from the validation set, and the

rest are from the test set. The

second column and the third

column present estimated

density maps and ground truth

density maps, respectively. GT

and ET represent ground truth

crowd numbers and estimated

crowd numbers

Table 5 Performance comparisons of different methods on NWPU-Crowd dataset

Method Validation set Test set

Overall Overall Scene level (only MAE) Luminance (only MAE)

MAE MSE MAE MSE Avg S0 � S4 Avg L0 � L2

MCNN [15] 218.53 700.61 232.5 714.6 1171.9 356.0/72.1/103.5/509.5/4818.2 220.9 472.9/230.1/181.6

SANet [64] 171.16 471.51 190.6 491.4 716.3 432.0/65.0/104.2/385.1/2595.4 153.8 254.2/192.3/169.7

Reg?det net [10] 245.8 700.3 264.9 759.0 1242.5 443.0/125.5/140.5/461.5/5036.6 313.6 464.2/267.4/209.1

PCC-net-light [23] 141.37 630.72 167.4 566.2 944.9 85.3/25.6/80.4/424.2/4108.9 141.2 253.1/167.9/144.9

C3F-VGG [67] 105.79 504.39 127.0 439.6 666.9 140.9/26.5/58.0/307.1/2801.8 127.9 296.1/125.3/91.3

CSRNet [63] 104.89 433.48 121.2 387.8 522.7 176.0/35.8/59.8/285.8/2055.8 112.0 232.4/121.0/95.5

PCC-Net-VGG [23] 100.77 573.19 112.3 457.0 777.6 103.9/13.7/42.0/259.5/3469.1 111.0 251.3/111.0/82.6

CANet [14] 93.58 489.90 106.3 386.5 612.2 82.6/14.7/46.6/269.7/2647.0 102.1 222.1/104.9/82.3

SCAR [11] 81.57 397.92 110.0 495.3 718.3 122.9/16.7/46.0/241.7/3164.3 102.3 223.7/112.7/73.9

BL [51] 93.64 470.38 105.4 454.2 750.5 66.5/8.7/41.2/249.9/3386.4 115.8 293.4/102.7/68.0

SFCN [2] 95.46 608.32 105.7 424.1 712.7 54.2/14.8/44.4/249.6/3200.5 106.8 245.9/103.4/78.8

DRNet(Ours) 81.4 512.0 86.8 351.2 513.6 80.4/10.1/37.0/217.5/2223.2 85.0 187.1/84.5/69.5

Bold values represent the best results

Overall represents the entire validation set or test set. Avg. indicates the average of different sub-category levels
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module and the DRmap auxiliary learning task. Several

density maps output by DRNet on the JHU-CROWD??

validation set and test set are shown in Fig. 9. The pro-

posed DRNet outputs accurate density estimation in crowd

scenes of different density levels.

4.2.4 Results on NWPU-Crowd dataset

The NWPU-Crowd dataset is constructed and annotated by

Wang et al. [48], where crowd images are sourced from

camera shots and Internet downloads. For the former, more

than 2,000 images are taken in some typical crowd scenes

including tourist places, pedestrian streets, campuses,

shopping malls, squares, museums and platforms. To col-

lect images with denser crowds, Wang et al. [48] search the

Internet for different keywords such as spring festival

travel, crowded seas, job fairs and crowding through the

Baidu, Bing and Sogou search engines. The NWPU-Crowd

dataset contains 5,109 labeled images with a total of

2,133,375 labeled people heads. The average resolution of

the images is 2191� 3209 pixels, and the number of

people in a single image is in [0, 20033]. Different from

other datasets, the NWPU-Crowd dataset contains 351

negative samples with texture features similar to crowds in

congested scenes, such as migrating animal communities,

sculptures and terracotta warriors, which improves the

adaptability of the model in practical application scenarios.

The NWPU-Crowd dataset is divided into three parts: 3109

for training, 500 for validation and 1500 for testing. The

test set images do not contain annotations, but researchers

can obtain the test results through the online evaluation

benchmark website.

The experimental results in Table 5 indicate that our

method achieves close counting errors on the NWPU-

Crowd validation set and test set, which confirm the good

generalization ability of the proposed DRNet. Compared

with other algorithms in Table 5, the proposed DRNet

achieves competitive performance at the entire dataset

level and multiple sub-category levels such as different

density scene levels (S0� S4) and different luminance

levels (L0�L2), further revealing the robustness of the

proposed DRNet in different crowd scenes. In addition,

Fig. 10 shows some examples of density map output by the

proposed DRNet aimed at crowd images occluded by

ET:193 GT:190

ET:805

ET:783

GT:815

GT:773

Fig. 10 The exhibition of the

ground truth density maps and

estimated density maps

generated by the proposed

DRNet on NWPU-Crowd

dataset. The first column

denotes input crowd images.

The second column and the

third column present estimated

density maps and ground truth

density maps, respectively. GT

and ET represent ground truth

crowd numbers and estimated

crowd numbers

Table 6 Performance comparisons of different network architectures

on SHA dataset

Method MAE MSE

W/O DRmap?DPFM 66.7 105.1

W/O DRmap 60.8 105.9

W/O DPFM 60.1 100.5

DRNet(Ours) 54.9 97.3

Bold values represent the best results
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desks, chairs and umbrellas, which demonstrates that the

DRmap auxiliary learning contributes to generating accu-

rate density maps in heavily occluded scenes.

4.3 Ablation experiments

In the ablation experiments section, we first verify the

effectiveness of the proposed DRmap and DPFM. Then, we

select the optimal correction coefficient K and hyperpa-

rameter q in DRmap through comparative experiments.

Finally, we compare the effects of the feature pyramid

fusion module (FPN) [43] and the proposed DPFM module

on model performance.

4.3.1 Network architecture

We remove each component in DRNet consecutively to

demonstrate the effectiveness of the proposed DRmap and

DPFM. As shown in Table 6, ‘‘W/O DRmap?DPFM’’

represents the baseline network that removes DRmap and

DPFM. ‘‘W/O DRmap’’ means that DRNet removes the

DRmap density correction auxiliary task, while ‘‘W/O

DPFM ’’ denotes that DPFM module is removed from

DRNet.

The experimental results in Table 6 indicate that the

designed DRmap and DPFM decreases the counting errors

of the baseline network by 9:8% and 8:8%, respectively.

The proposed DRNet includes both DRmap and DPFM,

which improves the baseline network by 17:6%. The above

experimental results fully prove that the proposed DRmap

and DPFM are effective in improving the counting per-

formance of the model.

GT:1006 ET:1071 ET:1017

(a) (b) (c) (d)

Fig. 11 Validation of DRmap auxiliary learning in occlusion scenes

Table 7 Performance comparisons of DRNet with different correction

coefficient on SHA dataset

Correction coefficient MAE MSE

K¼ 1 56.9 102.9

K¼ 2 54.9 97.3

K¼ 3 56.0 98.4

K¼ 4 58.2 103.9

K¼ 5 58.6 102.0

Bold values represent the best results

Table 8 Performance compar-

isons of DRNet with different

hyperparameters q on SHA

dataset

Hyperparameter MAE MSE

q¼ 3 57.3 101.2

q¼ 5 54.9 97.3

q¼ 7 55.9 100.2

q¼ 9 56.1 100.5

Bold values represent the best

results
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Fig. 12 Effects of DPFM module and FPN module on model

performance
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To verify the effectiveness of DRmap auxiliary learning

in severely occluded scenes, we adopt the trained DRNet

model and ‘‘W/O DRmap’’ model to estimate the crowd

density maps of occluded scene images as shown in

Fig. 11. Figure 11 a is the input image, where crowd heads

are heavily occluded by hats, and heads in distant dense

crowd areas occlude each other. Figure 11 b denotes the

ground-truth density map, while Fig. 11c and d are esti-

mated density maps generated by the ‘‘W/O DRmap’’

model and DRNet model, respectively. Compared with

Fig. 11c, the counting error of Fig. 11d is reduced by 54,

and the density map distribution is closer to the ground-

truth density map. The density map comparison in Fig. 11

reveals that the proposed DRmap auxiliary learning

enables the model to accurately estimate crowd density

maps in images of heavily occluded scenes.

4.3.2 The correction coefficient of DRmap

The correction coefficient in DRmap is a key parameter

that affects the counting performance of the network. If the

correction value is too large, it is easy to overestimate the

crowd density, and vice versa. We leverage the DRmaps

generated by different correction coefficients to rectify the

initial density map generated by the network. As shown in

Table 7, the experimental results reveal that the network

obtains the lowest MAE as the correction coefficient K is

set to 2. Therefore, we finally select K ¼ 2 as the correc-

tion coefficient in the proposed DRmap.

4.3.3 The hyperparameter q in DRmap

As introduced in Sect. 3.1, we propose a DRmap based on

the distance between the crowd heads to rectify counting

errors in different density regions. In Sect. 3.1, the initial

crowd head distances are calculated by Eq. 1. To analyze

the effects of different hyperparameters q in Eq. 1, we

conduct several ablation experiments on SHA dataset as

shown in Table 8. The hyperparameter q in formula (1) is

set to 3, 5, 7, and 9 for generating the corresponding ground

truth DRmap. Then, the proposed density rectification

network (DRNet) is trained separately with different

ground truth DRmaps. The experimental results in Table 8

show that DRNet achieves the lowest MAE and MSE when

the q is set to 5. To obtain better counting performance,

hyperparameter q is selected as 5 in formula (1).

4.3.4 Comparison of FPN and DPFM module

To further demonstrate the effectiveness of the DPFM

module, we conduct several ablation experiments as shown

in Fig. 12. The FPN model and DPFM model represent

deploying the FPN module [43] and DPFM module on the

VGG baseline network, respectively. The FPN?DRmap

model denotes that the FPN module [43] and DRmap

auxiliary learning task are deployed on the VGG baseline

network, while the DPFM?DRmap model means that the

proposed DPFM module and DRmap auxiliary learning

task are applied on the VGG baseline network.

Table 9 Cross-domain

experiment comparisons among

SHA, SHB, and QNRF

Method DA SHA ! SHB SHA ! QNRF SHB ! SHA SHB ! QNRF

MAE MSE MAE MSE MAE MSE MAE MSE

D-ConvNet-v1 [68] 7 49.1 99.2 – – 140.4 226.1 – –

CACC [40] 4 – – – – 115.6 199.5 –

MCNN [15] 7 130.7 161.9 396.9 584.1 213.5 315.5 415.5 676.6

MCNN?Our 4 53.5 86.4 263.6 406.3 154.8 230.1 299.9 488.3

DRNet 7 27.9 42.7 132.8 244.6 111.5 202.4 203.9 355.5

DRNet?Our 4 14.6 32.9 124.1 219.8 101.6 179.6 199.9 371.6

Method DA QNRF ! SHA QNRF ! SHB

MAE MSE MAE MSE

MCNN [15] 7 149.6 221.9 72.6 102.4

MCNN?Our 4 136.6 217 42.7 65.7

DRNet 7 65.8 98.9 10.7 18.6

DRNet?Our 4 58.9 94.6 9.3 15.1

Bold values represent the best results

DA represents the domain adaptation method. The left-end of the arrow denotes the source domain, and the

right-end reveals the target domain
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The experimental results in Fig. 12 reveal that the

DPFM model decreases the MAE and MSE by 2.9 and 1.0

based on the FPN model. Compared with the

FPN?DRmap model, the MAE and MSE of

DPFM?DRmap model are reduced by 4.2 and 6.1. The

comparison of the above experimental results confirms that

the proposed DPFM module can reduce the counting error

more effectively than the FPN module [43].

4.4 Cross-domain research

The study of cross-domain issue is a significant work,

which can relieve the domain gap between different crowd

scenarios and speed up the landing process of crowd

counting. To evaluate our proposed domain adaption

method more objectively, we choose three datasets with

large differences in scenarios and small gaps in image

numbers to conduct cross-domain experiments including

SHA, SHB, and QNRF. We first conduct cross-domain

comparison experiments based on DRNet proposed in this

paper. As shown in Table 9, ‘‘DRNet ’’ denotes that DRNet

is trained on the source domain and directly tested on the

target domain, while ‘‘DRNet?Our’’ means that we train

DRNet on both the source and target domains using our

domain adaption approach. When SHA is selected as the

source domain and the target domain is SHB or QNRF, the

proposed domain adaption method reduces the MAE of

DRNet on SHB and QNRF by 13.3 and 8.7. Then, SHB is

served as the source domain, the domain adaption method

decreases the MAE of DRNet on SHA and QNRF by 9.9

and 4.0. After that, we choose QNRF as the source domain,

the MAE of DRNet on SHA and SHB is reduced by 6.9 and

1.4 when leveraging our domain adaptation method.

Moreover, we compare our method with other superior

cross-domain methods as shown in Table 9. The experi-

mental results show that our domain adaption approach

obtains the best cross-domain performance compared with

others.

Considering that the designed DRNet contains a VGG

pre-trained model, we also verify the effectiveness of the

proposed domain adaption method on networks that do not

include any pre-training models, such as MCNN [15]. As

depicted in Table 9, ‘‘MCNN’’ reveals that the well-trained

MCNN model on the source domain is directly tested on

the target domain, while ‘‘MCNN?Our’’ represents that we

combine the source domain and the target domain images

to train MCNN by adopting our domain adaption algo-

rithm. Firstly, SHA is selected as the source domain and we

accept SHB and QNRF as the target domain, the proposed

domain adaption algorithm decreases the MAE of the

MCNN in SHB and QNRF by 77.2 and 133.6. Further-

more, SHB is chosen as the source domain, and the domain

adaption method reduces the MAE of MCNN on SHA and

QNRF by 58.7 and 115.6. Moreover, QNRF is selected as

the source domain, the MAE of MCNN on SHA and SHB

are reduced by 13 and 29.9 by utilizing our domain

adaption method, respectively. The above experimental

results indicate that the cross-domain method we put for-

ward can effectively relieve the domain gap between dif-

ferent source domains and target domains, and improve the

performance of the model in unknown scenarios. In addi-

tion, the experimental results further reveal that our domain

adaption is more effective in networks that do not include

any pre-training model such as MCNN. The main reason

for our analysis is that the VGG pre-training model has

learned much knowledge from the object detection field,

while MCNN has not previously learned information other

than the source domain. The proposed domain adaption

method encourages the network to learn abundant domain

invariant features, improving the cross-domain

performance.

5 Conclusion

In this paper, we propose a density rectifying network

(DRNet) and a domain adaption method to address

nonuniform density distribution and cross-domain issues.

The proposed DRNet contains several DPFM modules that

carry out a dual-layer fusion of crowd density features of

different scales for generating high quality density maps.

The devised DRmap auxiliary learning task further rectifies

the incorrect density estimation by adaptively weighting

the initial crowd density maps pixel-by-pixel. To deal with

the cross-domain problem, the proposed domain adaption

method learns domain invariant features between the

source domain and the target domain by randomly cutting

mixed dual-domain images from global and local per-

spectives. Experimental results prove that the devised

DRNet achieves the lowest MAE and superior MSE

compared with other excellent algorithms on multiple

mainstream datasets including Shanghaitech, UCF-QNRF,

JHU-CROWD?? and NWPU-Crowd. In addition, we

conduct several cross-domain experiments on different

source domains and target domains. Experimental results

demonstrate that the proposed domain adaption method is

effective in improving the cross-domain performance of

the models and obtains the best MAE and MSE on the

target domain compared with other approaches.

Acknowledgements This work is supported by the National Natural

Science Foundation of China under grant No.62133013 and sponsored

by the CAAI-Huawei MindSpore Open Fund.

Availability of data and materials The datasets generated during and/

or analyzed during the current study are available from the corre-

sponding author on reasonable request.

Neural Computing and Applications (2023) 35:3551–3569 3567

123



Declarations

Conflict of interest The authors declared that they have no conflicts of

interest in this article.

References

1. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based

learning applied to document recognition. Proc IEEE

86(11):2278–2324

2. Wang Q, Gao J, Lin W, Yuan Y (2019) Learning from synthetic

data for crowd counting in the wild. In: Proceedings of the IEEE

conference on computer vision and pattern recognition,

pp 8198–8207

3. Wang Q, Han T, Gao J, Yuan Y (2021) Neuron linear transfor-

mation: modeling the domain shift for crowd counting. IEEE

Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.

2021.3051

4. Yang Y, Li G, Wu Z, Su L, Huang Q, Sebe N (2020) Reverse

perspective network for perspective-aware object counting. In:

Proceedings of the IEEE conference on computer vision and

pattern recognition, pp 4374–4383 (2020)

5. Wang M, Cai H, Zhou J, Gong M (2021) Interlayer and intralayer

scale aggregation for scale-invariant crowd counting. Neuro-

computing 441:128–137

6. Peng S, Wang L, Yin B, Li Y, Xia Y, Hao X (2021) Adaptive

weighted crowd receptive field network for crowd counting.

Pattern Anal Appl 24(2):805–817

7. Sam DB, Sajjan NN, Maurya H, Babu RV (2019) Almost unsu-

pervised learning for dense crowd counting. In: Proceedings of

the AAAI conference on artificial intelligence, pp 8868–8875

8. Sindagi VA, Yasarla R, Babu DS, Babu RV, Patel VM (2020)

Learning to count in the crowd from limited labeled data. In:

Proceedings of the european conference on computer vision,

pp 212–229

9. Hu Y, Jiang X, Liu X, Zhang B, Han J, Cao X, Doermann D

(2020) Nas-count: counting-by-density with neural architecture

search. In: Proceedings of the european conference on computer

vision, pp 747–766

10. Liu J, Gao C, Meng D, Hauptmann AG (2018) Decidenet:

counting varying density crowds through attention guided

detection and density estimation. In: Proceedings of the IEEE

conference on computer vision and pattern recognition,

pp 5197–5206 (2018)

11. Gao J, Wang Q, Yuan Y (2019) Scar:spatial-/channel-wise

attention regression networks for crowd counting. Neurocom-

puting 363:1–8

12. Gao J, Yuan Y, Wang Q (2021) Feature-aware adaptation and

density alignment for crowd counting in video surveillance. IEEE

Trans Cybernetics 51(10):4822–4833

13. Amirgholipour, S., He, X., Jia, W., Wang, D., Zeibots M (2018)

A-CCNN: adaptive CCNN for density estimation and crowd

counting. In: Proceedings of the IEEE international conference on

image processing, pp 948–952. IEEE

14. Liu W, Salzmann M, Fua P (2019) Context-aware crowd count-

ing. In: Proceedings of the IEEE conference on computer vision

and pattern recognition, pp 5099–5108

15. Zhang Y, Zhou D, Chen S, Gao S, Ma Y (2016) Single-image

crowd counting via multi-column convolutional neural network.

In: Proceedings of the IEEE conference on computer vision and

pattern recognition, pp 589–597

16. Babu Sam D, Surya S, Venkatesh Babu R (2017) Switching

convolutional neural network for crowd counting. In: Proceedings

of the IEEE conference on computer vision and pattern recog-

nition, pp 5744–5752

17. Sindagi VA, Patel VM (2017) Generating high-quality crowd

density maps using contextual pyramid cnns. In: Proceedings of

the IEEE international conference on computer vision,

pp 1861–1870

18. Cheng Z-Q, Li J-X, Dai Q, Wu X, He J-Y, Hauptmann AG (2019)

Improving the learning of multi-column convolutional neural

network for crowd counting. In: Proceedings of the 27th ACM

international conference on multimedia, pp 1897–1906

19. Sam DB, Babu RV (2018) Top-down feedback for crowd

counting convolutional neural network. In: Proceedings of the

AAAI conference on artificial intelligence, pp 7323–7330

20. Jiang X, Xiao Z, Zhang B, Zhen X, Cao X, Doermann D, Shao L

(2019) Crowd counting and density estimation by trellis encoder-

decoder networks. In: Proceedings of the IEEE conference on

computer vision and pattern recognition, pp 6133–6142

21. Liu Y, Wen Q, Chen H, Liu W, Qin J, Han G, He S (2020) Crowd

counting via cross-stage refinement networks. IEEE Trans Image

Process 29:6800–6812

22. Liu X, Van De Weijer J, Bagdanov AD (2019) Exploiting unla-

beled data in cnns by self-supervised learning to rank. IEEE

Trans Pattern Anal Machine Intell 41(8):1862–1878

23. Gao J, Wang Q, Li X (2019) Pcc net: perspective crowd counting

via spatial convolutional network. IEEE Trans Circuits Syst

Video Technol 30(10):3486–3498

24. Shi Z, Zhang L, Sun Y, Ye Y (2018) Multiscale multitask deep

netvlad for crowd counting. IEEE Trans Industrial Inform

14(11):4953–4962

25. Zhao M, Zhang J, Zhang C, Zhang W (2019) Leveraging

heterogeneous auxiliary tasks to assist crowd counting. In: Pro-

ceedings of the IEEE conference on computer vision and pattern

recognition, pp 12736–12745

26. Jiang X, Zhang L, Zhang T, Lv P, Zhou B, Pang Y, Xu M, Xu C

(2020) Density-aware multi-task learning for crowd counting.

IEEE Trans Multimed 23:443–453

27. Zhang Q, Chan AB (2019) Wide-area crowd counting via ground-

plane density maps and multi-view fusion cnns. In: Proceedings

of the IEEE conference on computer vision and pattern recog-

nition, pp 8297–8306

28. Zhang Q, Lin W, Chan AB (2021) Cross-view cross-scene multi-

view crowd counting. In: Proceedings of the IEEE conference on

computer vision and pattern recognition, pp 557–567

29. Peng T, Li Q, Zhu P (2020) Rgb-t crowd counting from drone: a

benchmark and mmccn network. In: Proceedings of the Asian

conference on computer vision, pp 497–513

30. Wen L, Du D, Zhu P, Hu Q, Wang Q, Bo L, Lyu S (2021)

Detection, tracking, and counting meets drones in crowds: a

benchmark. In: Proceedings of the IEEE conference on computer

vision and pattern recognition, pp 7812–7821

31. Bai Z, Wang Z, Wang J, Hu D, Ding E (2021) Unsupervised

multi-source domain adaptation for person re-identification. In:

Proceedings of the IEEE conference on computer vision and

pattern recognition, pp 12914–12923

32. Faraki M, Yu X, Tsai Y-H, Suh Y, Chandraker M (2021) Cross-

domain similarity learning for face recognition in unseen

domains. In: Proceedings of the IEEE conference on computer

vision and pattern recognition, pp 15292–15301

33. Fu Y, Zhang M, Xu X, Cao Z, Ma C, Ji Y, Zuo K, Lu H (2021)

Partial feature selection and alignment for multi-source domain

adaptation. In: Proceedings of the IEEE conference on computer

vision and pattern recognition, pp 16654–16663

34. He J, Jia X, Chen S, Liu J (2021) Multi-source domain adaptation

with collaborative learning for semantic segmentation. In: Pro-
ceedings of the IEEE conference on computer vision and pattern

recognition, pp 11008–11017

3568 Neural Computing and Applications (2023) 35:3551–3569

123

https://doi.org/10.1109/TNNLS.2021.3051
https://doi.org/10.1109/TNNLS.2021.3051


35. Zhang C, Li H, Wang X, Yang X (2015) Cross-scene crowd

counting via deep convolutional neural networks. In: Proceedings

of the IEEE conference on computer vision and pattern recog-

nition, pp 833–841

36. Hossain MA, Kumar M, Hosseinzadeh M, Chanda O, Wang Y

(2019) One-shot scene-specific crowd counting. In: Proceedings

of the British machine vision conference, pp 1–11

37. Li W, Yongbo L, Xiangyang X (2019) Coda: Counting objects

via scale-aware adversarial density adaption. In: Proceedings of

the International conference on multimedia and expo, pp 193–198

38. Han T, Gao J, Yuan Y, Wang Q (2020) Focus on semantic

consistency for cross-domain crowd understanding. In: ICASSP

2020-2020 IEEE international conference on acoustics, speech

and signal processing (ICASSP), pp 1848–1852 . IEEE

39. He Y, Ma Z, Wei X, Hong X, Ke W, Gong Y (2021) Error-aware

density isomorphism reconstruction for unsupervised cross-do-

main crowd counting. In: Proceedings of the AAAI conference on

artificial intelligence, pp 1540–1548

40. Liu Y, Xu D, Ren S, Wu H, Cai H, He S (2021) Fine-grained

domain adaptive crowd counting via point-derived segmentation.

arXiv preprint arXiv:2108.02980

41. Simonyan K, Zisserman A (2014) Very deep convolutional net-

works for large-scale image recognition. arXiv preprint arXiv:

1409.1556

42. Sandwell DT (1987) Biharmonic spline interpolation of geos-3

and seasat altimeter data. Geophys Res Lett 14(2):139–142

43. Lin T-Y, Dollár P, Girshick R, He K, Hariharan B, Belongie S

(2017) Feature pyramid networks for object detection. In: Pro-

ceedings of the IEEE conference on computer vision and pattern

recognition, pp 2117–2125

44. Yun S, Han D, Oh SJ, Chun S, Choe J, Yoo Y (2019) Cutmix:

Regularization strategy to train strong classifiers with localizable

features. In: Proceedings of the IEEE international conference on

computer vision, pp 6023–6032

45. Peng S, Yin B, Hao X, Yang Q, Kumar A, Wang L (2021) Depth

and edge auxiliary learning for still image crowd density esti-

mation. Pattern Anal Appl 24(4):1777–1792

46. Idrees H, Tayyab M, Athrey K, Zhang D, Al-Maadeed S, Rajpoot

N, Shah M (2018) Composition loss for counting, density map

estimation and localization in dense crowds. In: Proceedings of

the European conference on computer vision, pp 532–546

47. Sindagi V, Yasarla R, Patel VM (2022) Jhu-crowd??: Large-

scale crowd counting dataset and a benchmark method. IEEE

Trans Pattern Anal Machine Intell 44(5):2594–2609

48. Wang Q, Gao J, Lin W, Li X (2020) Nwpu-crowd: a large-scale

benchmark for crowd counting and localization. IEEE Trans

Pattern Anal Machine intell 43(6):2141–2149

49. Sam DB, Sajjan NN, Babu RV, Srinivasan M (2018) Divide and

grow: capturing huge diversity in crowd images with incremen-

tally growing cnn. In: Proceedings of the IEEE conference on

computer vision and pattern recognition, pp 3618–3626

50. Liu N, Long Y, Zou C, Niu Q, Pan L, Wu H (2019) Adcrowdnet:

an attention-injective deformable convolutional network for

crowd understanding. In: Proceedings of the IEEE conference on

computer vision and pattern recognition, pp 3225–3234

51. Ma Z, Wei X, Hong X, Gong Y (2019) Bayesian loss for crowd

count estimation with point supervision. In: Proceedings of the

IEEE International conference on computer vision, pp 6142–6151

52. Xiong H, Lu H, Liu C, Liu L, Cao Z, Shen C (2019) From open

set to closed set: counting objects by spatial divide-and-conquer.

In: Proceedings of the IEEE international conference on com-

puter vision, pp 8362–8371

53. Xu C, Qiu K, Fu J, Bai S, Xu Y, Bai X (2019) Learn to scale:

generating multipolar normalized density maps for crowd

counting. In: Proceedings of the IEEE international conference on

computer vision, pp 8382–8390

54. Yan Z, Yuan Y, Zuo W, Tan X, Wang Y, Wen S, Ding E (2019)

Perspective-guided convolution networks for crowd counting. In:

Proceedings of the IEEE international conference on computer

vision, pp 952–961

55. Liu X, Yang J, Ding W, Wang T, Wang Z, Xiong J (2020)

Adaptive mixture regression network with local counting map for

crowd counting. In: Proceedings of the European conference on

computer vision, pp 241–257

56. Jiang X, Zhang L, Xu M, Zhang T, Lv P, Zhou B, Yang X, Pang

Y (2020) Attention scaling for crowd counting. In: Proceedings of

the IEEE Conference on computer vision and pattern recognition,

pp 4706–4715

57. Miao Y, Lin Z, Ding G, Han J (2020) Shallow feature based

dense attention network for crowd counting. In: Proceedings of

the AAAI conference on artificial intelligence, pp 11765–11772

58. Oh M-h, Olsen P, Ramamurthy KN (2020) Crowd counting with

decomposed uncertainty. In: Proceedings of the AAAI conference

on artificial intelligence, pp 11799–11806

59. Wan J, Liu Z, Chan AB (2021) A generalized loss function for

crowd counting and localization. In: Proceedings of the IEEE

conference on computer vision and pattern recognition,

pp 1974–1983

60. Zhang S, Zhang X, Li H, He H, Song D, Wang L (2022) Hier-

archical pyramid attentive network with spatial separable con-

volution for crowd counting. Eng Appl Artif Intell 108:1–10

61. Yan L, Zhang L, Zheng X, Li F (2022) Deeper multi-column

dilated convolutional network for congested crowd understand-

ing. Neural Comput Appl 34(2):1407–1422

62. Sindagi VA, Patel VM (2017) Cnn-based cascaded multi-task

learning of high-level prior and density estimation for crowd

counting. In: Proceedings of the IEEE international conference on

advanced video and signal based surveillance, pp 1–6

63. Li Y, Zhang X, Chen D (2018) Csrnet: Dilated convolutional

neural networks for understanding the highly congested scenes.

In: Proceedings of the IEEE conference on computer vision and

pattern recognition, pp 1091–1100

64. Cao X, Wang Z, Zhao Y, Su F (2018) Scale aggregation network

for accurate and efficient crowd counting. In: Proceedings of the

European conference on computer vision, pp 734–750

65. Liu L, Qiu Z, Li G, Liu S, Ouyang W, Lin L (2019) Crowd

counting with deep structured scale integration network. In:

Proceedings of the IEEE international conference on computer

vision, pp 1774–1783

66. Sindagi VA, Patel VM (2019) Multi-level bottom-top and top-

bottom feature fusion for crowd counting. In: Proceedings of the

IEEE/CVF international conference on computer vision,

pp 1002–1012

67. Gao J, Lin W, Zhao B, Wang D, Gao C, Wen J (2019) C^3

framework: An open-source pytorch code for crowd counting.

arXiv preprint arXiv:1907.02724

68. Shi Z, Zhang L, Liu Y, Cao X, Ye Y, Cheng MM, Zheng G

(2018) Crowd counting with deep negative correlation learning.

In: Proceedings of the IEEE conference on computer vision and

pattern recognition, pp 5382–5390

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article

under a publishing agreement with the author(s) or other rightsh-

older(s); author self-archiving of the accepted manuscript version of

this article is solely governed by the terms of such publishing

agreement and applicable law.

Neural Computing and Applications (2023) 35:3551–3569 3569

123

http://arxiv.org/abs/2108.02980
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1907.02724

	Exploring density rectification and domain adaption method for crowd counting
	Abstract
	Introduction
	Related work
	Crowd counting networks
	Cross-domain approaches

	Proposed method
	DRmap auxiliary learning task
	Dual-layer pyramid fusion module
	Domain adaption method
	Training details
	Ground truth
	Data augmentation
	 Loss functions


	Experiments
	Evaluation metric
	Experimental results on different datasets
	Results on Shanghaitech dataset
	Results on UCF-QNRF dataset
	Results on JHU-CROWD++ dataset
	Results on NWPU-Crowd dataset

	Ablation experiments
	Network architecture
	The correction coefficient of DRmap
	 The hyperparameter q in DRmap
	Comparison of FPN and DPFM module

	Cross-domain research

	Conclusion
	Availability of data and materials
	References




