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Abstract
The traditional image quality assessment (IQA) methods are usually based on convolutional neural networks (CNNs). For

these IQA methods using CNNs, limited by the feature size of the fully connected layer, the input image needs be tailored

to a pre-defined size, which usually results in destroying the original structure and content of the input image and thus

reduces the accuracy of the quality assessment. In this paper, a blind image quality assessment method (named CSPP-IQA),

which is based on multi-scale spatial pyramid pooling, is proposed. CSPP-IQA allows inputting the original image when

assessing the image quality without any image adjustment. Moreover, by facilitating the convolutional block attention

module and image understanding module, CSPP-IQA achieved better accuracy, generalization and efficiency than tradi-

tional IQA methods. The result of experiments running on real-scene IQA datasets in this study verified the effectiveness

and efficiency of CSPP-IQA.
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1 Introduction

Due to the wide adoption of smart phones, the generation

of digital images has shown explosive growth. Quality

assessment is an essential for enhancing the quality of

visual contents sent to the terminal users in a visual com-

munication systems (VCSs). [1]. Video and images also

play an important role in maintaining social stability and

prosperity. For example, in the medical field, with the

sudden outbreak of the novel coronavirus pneumonia

(COVID-19), images play an extremely important role in

fighting the epidemic. Experts across the country can

conduct online medical analysis and diagnosis through

images [2–7]. It is an essential to assess the quality of real-

scene images to optimize the parameters and performance

of the image-oriented systems, so as to ensure the quality

of visual content delivered to the terminal users.

Methods for IQA could be grouped to objective ones

and subjective ones. Objective methods are trained by

using subjective assessment data. It can automatically

predict content quality and is suitable for real-time sce-

narios. Human visual systems (HVS) are the ultimate

receiver of visual signals in most of VCSs; hence, HVS-

based subjective methods are reliable and accurate. How-

ever, it is time-consuming and usually cannot be directly

integrated to other applications as an optimized factor.

Generally, objective IQA methods can be grouped to:

(1) No-Reference (NR), which is also called Blind IQA

(BIQA); (2) Reduced-Reference (RR) and (3) Full-Refer-

ence (FR), which is usually used as a metric to assess

algorithms for image processing. RR-IQA methods are

usually integrated into the other systems to optimize the

algorithm performance. Usually, there is no possibility to

acquire a reference image without any distortions. NR-IQA

is the promising method in practice.

Recently, various kinds of IQA methods are proposed

for the natural image quality assessment [8–17]. These

features extracted by manual operations are not enough to

perfectly achieve the IQA. Besides, the low-level features

are not enough for representing the complex distortion in

practice. Although these exist a number of NR-IQA

methods [18–33] for distortion achieved, most of existing

deep neural networks are not specially proposed for IQA

tasks; therefore, these methods could only work with the

global features rather than the local features. However, the

image distortion mostly occurs in the local areas. More-

over, local distortions are sensitive for HVS; hence, both

the global and local quality while designing an IQA algo-

rithm must be taken into consideration. Moreover, these

IQA methods usually introduce CNN to extract semantic

features of the original images (as illustrated in Fig. 1b).

Constrained by the image size, the original image must be

tailored prior to inputting to the convolutional network. As

illustrated in Fig. 1a, the overexposed frame missed due to

the operation of cropping on the original image; the latter

image is stretched, which indirectly introduces distortions

and destroys the original content of the original image. In

consequence, the caused distortion deviation weakens the

performance of these methods.

In this paper, a novel method for IQA, which is based on

multi-scale spatial pyramid pooling, is proposed. In prac-

tices, such as capturing images with mobile phones, the

proposed method could provide reliable and efficient image

quality assessment for terminal users. The contributions in

this work are as below:

• We proposed a convolutional spatial pyramidal pooling

structure to address the issue of size limitation of

semantic features, and the structure is capable of

assessing the image quality by directly inputting the

original image without the operations tailoring image.

Fig. 1 Comparison of the workflow between traditional CNN-based methods and the proposed method
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• The ResNet50 is adopted as the backbone network to

integrate the multi-scales semantic information of the

image to efficiently capture the local distortion. In the

proposed method, the Convolutional Block Attention

Module is integrated to highlight important features

while suppressing unimportant ones.

• In the proposed method, SmoothL1 loss is introduced in

the process of quality scoring to address the issue that

the original model is not smooth near the zero point.

The remainder of this paper is organized as follows.

Section 2 introduces the related work. The proposed model

is introduced in Sect. 3. Section 4 presents the experiments

of the proposed method. We conclude the paper and dis-

cuss the future directions in Sect. 5.

2 Related work

2.1 NR-IQA-based synthetic distortion

NR-IQA can be grouped to synthetic distortion based on

NR-IQA and authentic distortion based on NR-IQA. The

synthetic distortion based on NR-IQA can be grouped to:

(1) natural scene statistical-based models (NSS), (2) man-

ual feature extraction-based models and (3) deep learning-

based models. There are a number of NSS-based NR-IQA

methods such as BRISQUE [8], NIQE [9], BIQI [10],

DIIVINE [11], BLIINDS [12], ShearletIQM [13] and

SPNSS [14]. Moreover, CORINA [15] is NR-IQA-based

model. ILNIQE is a BIQA-based method [16]. Xu et al.

[17] proposed a High Order Statistics Aggregation hybrid-

based model. Rajevenceltha [34] proposed a rotation-in-

variant and efficient NR-IQA method, which extracts fea-

tures using the modified local binary patterns and statistical

methods and then employs support vector regression to

measure image quality. Azam et al. concluded the fusion

quality assessments metric of fused images with different

imaging modalities [35].

The deep learning-based IQA methods adopt deep

neural networks to extract the visual features of an image

and then calculate the functional expression of the distorted

image to get its quality score. Kang et al [18] introduced

CNN to construct an IQA method. Kim [19] used an image

block-based method to increase the amount of training

data. Bosse et al. [20] performed random sampling opera-

tions to image dataset without the operation of normal-

ization, so these global features (e.g., luminance, etc.) can

be taken into considerations.

2.2 NR-IQA-based authentic distortion

The authentic distortion is usually randomly and mixed

distributed in an image; therefore, traditional synthetic

distortion-based NR-IQA methods cannot perfectly achieve

the quality score of authentic distorted images. Ghadi-

yaram et al. [21] proposed a feature-map-based image

quality assessment method. Bianco et al. [22] introduced a

pre-trained CNN to build a function mapping CNN features

to subjective quality scores. Li et al. [23] proposed a NR-

IQA based method, which is only valid for authentic

blurred. Zeng et al. [24] proposed a probabilistic model to

predict the distribution of five different quality scores

instead of only one score. HyperIQA [26] is proposed to

predict the image quality of with an adaptation to scenar-

ios. Zhang et al. [31] and Sun et al. [32] proposed a BIQA

for in-the-wild images via hierarchical feature fusion and

iterative mixed database training.

To address the cross-distortion-scenario challenges, [25]

proposed a novel model consisting of two networks, in

which one network is used for synthetic distortion and

other network is used for authentic distortion. The change

of image content and types of image distortions hinders the

definition of image quality while assessing the blind quality

of distorted images [36, 37].

3 The proposed model

As shown in Fig. 2, the proposed model consists of (1)

multi-scale semantic feature extraction, (2) quality pre-

diction module and (3) adaptive content understanding.

Firstly, four different scales of semantic features are

extracted from the input image by ResNet50, and then four

different scales of semantic feature vectors are generated,

respectively, by spatial pyramid pooling. Then, these

semantic feature vectors are integrated as the input of the

quality prediction module. By introducing attention

mechanism, the 4th scale semantic features are transferred

to high-level semantic features, which will then be fed to

the adaptive content understanding module. The image

content understanding module is designed to generate the

weights and biases for the quality prediction module. The

quality prediction module is designed to calculate these

weights and biases with a multi-scale semantic feature

vector to get the image’s quality score.

3.1 Multi-scale semantic feature extraction

The ResNet50 [38] is adopted as the backbone network.

The fully connected layer and average pooling layer are

removed from the classical ResNet50 model and the output
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of this model is designated to the high-level semantic

feature stream.

Constrained by the size of feature of the fully connected

layer in the traditional IQA methods, a test image is ran-

domly cropped into several blocks in the same size, and

then these image blocks are subsequently fed into a net-

work for semantic feature extraction. As presented in the

SPPnet [39], spatial pyramid pooling structure could

improve the model performance and speed up the model

training; hence, in the proposed method, the convolutional

spatial pyramidal pooling (CSPP) is adopted as the pooling

structure in the process of semantic feature extraction.

As shown in Fig. 3, the CSPP is introduced for reducing

dimensionalities by spatial pyramidal pooling and 1� 1

convolution. There is no constraint to the size of the input

feature map, and the size of the output channels is set to

256. A three-level spatial pyramid structure is used for the

operation of pooling. By merging the results from the three

sources, the final feature size of 14 � 256 is obtained. So

that, it is transformed to a one-dimensional matrix prior to

Fig. 2 The structure of the proposed image quality assessment model

Fig. 3 The internal structure of

the CSPP
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being passed to the fully connected layer. Whatever the

size of the input images, and with the operation of spatial

pyramid pooling, the size will be finally set to 1 � 3584,
which is the size of input feature in the fully connected

layer.

The CBAM [40] is introduced to highlight the target

features of channel and spatial axis as shown in Fig. 4a.

Besides, the channel attention module and the spatial

attention module in turn, whose functions are adopted to

learn the content in the channel axis and the position in the

spatial axis, respectively. Given an intermediate feature

map F 2 RC�H�W as input (C for channel, H for height, W

for width), CBAM calculates a 1D channel attention map

Mc 2 RC�1�1 and a 2D spatial attention map Ms 2 R1�H�W

in turn, as shown in Fig. 4. The whole attention process can

be summarized as follows:

F0 ¼ Mc Fð Þ � F ð1Þ

F00 ¼ Ms F
0ð Þ � F0 ð2Þ

where � denotes the element-wise multiplication, Mc �ð Þ
represents the calculation of channel attention module, and

Ms �ð Þ represents the calculation of spatial attention module.

The execution process of CBAM are as follows: first, the

input F is multiplied by channel attention module to get the

result F0; then, F0 is used as the input of spatial attention

module, and the refined feature F00 is calculated by the

spatial attention module.

As shown in Fig. 4b, the channel attention module

receives the average-pooled and max-pooled features and

then feeds these features to a weight-sharing Multilayer

Perceptron (MLP). The element-wise summation combin-

ing the output feature vectors is carried out. The core idea

of channel attention module is to make up for the defi-

ciency of channel attention. The channel attention module

is formularized as:

Mc Fð Þ ¼ r MLP AvgPool Fð Þð Þ þMLP MaxPool Fð Þð Þð Þ
ð3Þ

where r represents sigmoid activation function, MLP rep-

resents shared full connection layer, AvgPool represents

average pooling, MaxPool represents maximum pooling,

and ’þ’ represents element-wise addition.

The structure of spatial attention module is shown in

Fig. 4c, a feature map is obtained through max pooling and

average pooling, then they are spliced into a 2D feature

map and then sent to the standard 7� 7 convolution for

parameter learning, and a 1D weight feature map is

obtained. The spatial attention module is formularized as:

Ms F
0ð Þ ¼ r conv7�7 AvgPool F0ð Þ;MaxPool F0ð Þ½ �ð Þ

� �
ð4Þ

where r is the sigmoid activation function and conv7�7 is

the convolution kernel of 7� 7.

The full workflow of the feature extraction module is as

shown in Fig. 2. The original image is inputted to

ResNet50 and then passed through the first convolutional

layer and CBAM. Three strings of semantic feature streams

in different scales are generated from convolutional layers.

Next, these three feature streams are inputted into CSPP(3)

to generate 3 semantic feature vectors. The high-level

Fig. 4 The internal structure of the convolutional block attention module
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semantic feature streams generated in Stage 4 are further

handled by SPP to generate the 4th semantic feature vector.

By calculating these four semantic feature vectors, the

C Ið Þ, which is the input of the quality prediction module, is

obtained.

3.2 Adaptive content understanding

The quality scoring in traditional deep learning-based IQA

methods is defined in Eq. (5).

s ¼ P I; hð Þ ð5Þ

where P is a function mapping the original image I to the

quality score s. h denotes the weight of the network. When

the training process completes, the weight parameter h is

obtained for all test images.

With regard to the characteristics of HVS, we decode

the content of the image and then customize different rules

according to the content, and thus the calculation of the

quality score is defined as follows:

S ¼ P I; hIð Þ ð6Þ

where the parameter hI is determined by the content of the

test image.

The calculation of parameter hI is defined as follows:

hI ¼ U C Ið Þ; kð Þ ð7Þ

where U is a function mapping the high-level semantic

features C Ið Þ to network parameters hI , k is the parameter

in the adaptive content understanding module, and C Ið Þ is
from the input image.

The module is designed to learn the content of the image

and generate the weights and biases for the fully connected

layer. It consists of an adaptive average pooling layer, three

1� 1 convolutional layers and four weight generation

branches. The weights of the fully connected layer are

initiated by the operation of convolution.

An adaptive pooling operation is carried out prior to

inputting the high-level semantic features into the adaptive

content understanding module to ensure that the size of

feature maps is subjected to the requirement. The maxi-

mum or average pooling is formularized as:

Sout ¼ dðSin þ 2*padding � SkernelÞ=stridee þ 1 ð8Þ

where Sout denotes the size of output, Sin denotes the size of

input, and padding denotes the fill size. The operation of

padding during the pooling process is used to maintain the

boundary information of the feature map. Skernel denotes the

kernel size and stride denotes the step size.

Given the input and output dimensions, the adaptive

pooling operation is defined as follows:

stride ¼ bSin=Soutc ð9Þ
Skernel ¼ Sin � Sout � 1ð Þ � stride ð10Þ

3.3 Quality prediction process

The calculation of image quality scoring is formularized in

Eq. (11).

s ¼ P fI ;U C Ið Þ; kð Þð Þ ð11Þ

fI denotes the multi-scale semantic feature stream

extracted from ResNet50. C Ið Þ denotes the high-level

semantic features, which will be fed into the adaptive

content understanding module to generates weights and

biases for the image quality prediction module. These

weights and biases will be calculated with fI using fully

connection to get the quality score.

4 Experiment

4.1 Dataset introduction

The datasets in this experiment includes Live-Challenge

[41], KonIQ-10k [42], BID [43], SPAQ [44] and FLIVE

[45]. The LIVE Challenge was developed by University of

Texas at Austin. It contains 1162 authentic distortion

images with more than 350,000 collected subjective scores.

The values of these scores are from 3.42 to 92.43. The

KonIQ-10k was developed by the University of Konstanz.

It contains 10,073 authentic distorted images with 1,459

annotators and 1.2 million subjective data. BID contains

586 images with authentic blur distortion (such as complex

motion blur, etc.). SPAQ contains 11,125 images covering

a wide range of scene categories such as landscape, human,

animal, etc. FLIVE is currently the largest database for

IQA, and it contains over 40,000 authentic distorted

images.

4.2 Training method

The training was carried out on a Windows 10 computer

equipped with a GPU 2080Ti, and we took Pytorch library

to develop the experimental programs. A single-size

training method proposed in [39] was adopted for model

training. To enhance the generalization of the model, each

image is randomly sampled and horizontally flipped to get

25 blocks in the size 224� 224 pixels. In each round of

training, 80% of the dataset are randomly selected as the

training set and 20% of the dataset are used as the testing

set. In the test, SmoothL1Loss is adopted as the loss

function and is formularized as follows:
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smoothL1 tð Þ ¼ 0:5t2 tj j\1

tj j � 0:5 otherwise

�
ð12Þ

In Eq. (12), SmoothL1Loss will be assigned as L2Loss

when the absolute value of t is less than 1. Then smaller

loss is obtained because L2Loss squares the error, which is

beneficial for model convergence. Otherwise, Smooth-

L1Loss is a translation of L1Loss. L1Loss is more insen-

sitive to outliers compared to L2Loss, and the magnitude of

the gradient is controllable. SmoothL1Loss is treated as the

combination of L2Loss and L1Loss. Therefore, Smooth-

L1Loss is adopted as loss function. The t in Eq. (12) is

defined as below:

t ¼ P fI ;U C Ið Þ; kð Þð Þ � q ð13Þ

The P fI ;U C Ið Þ; kð Þð Þ in Eq. (13) denotes the predicted

score, and q denotes the subjective score. Adam optimizer

is adopted for performance optimization. The weight

attenuation is set to 5� 10�4; meanwhile, the learning rate

is set to 2� 10�5.

4.3 Assessment metrics

In order to validate the performance of the proposed

method, Pearson Linear Correlation Coefficient (PLCC)

and Spearman Rank Order Correlation Coefficient

(SROCC) are taken as assessment metrics to compute the

correlation between subjective and objective scores in this

experiment. PLCC is adopted for assessing the prediction

accuracy of the model, and SROCC is adopted to access

the prediction monotonicity.

The quality scores achieved by different IQA methods

are in different ranges, so a mapping function to regress

these quality scores into a common space is defined as

follows:

Q xð Þ ¼ b1
1

2
� 1

1þ eb2 x�b3ð Þ

� �
þ b4xþ b5 ð14Þ

where x denotes the input score and b1; � � � ; b5ð Þ is the set

of parameters to be fitted.

4.4 Experimental results

4.4.1 SROCC and PLCC Performance

The experiment is carried out on a group of datasets: Live-

Challenge, KonIQ-10k dataset, BID, SPAQ and FLIVE

dataset. The experiment compares the performance of

SROCC and PLCC with the traditional manual feature

extraction IQA methods [8, 16–18], synthetic distortion

IQA methods [20, 21] and authentic distortion IQA meth-

ods [22, 24–27]. As shown in Table 1. The proposed

method outperformed in the comparison, indicating that

directly inputting the whole image into the network is

helpful for reflecting the overall image quality. Because

cropping/stretching the original image usually destroys the

original structure and content of the image, it weakens the

performance of quality scoring.

4.4.2 Comparison of MOS prediction

The MOS prediction was performed using BIECON,

FRISQUEE, PQR, DBCNN, HyperIQA and CSPP-IQA on

Live-Challenge dataset, respectively. As shown in Fig. 5,

the result is illustrated in a group of scatter plots, where the

horizontal coordinates are the true MOS values and the

Table 1 The performance comparison of SROCC and PLCC running on different datasets

Database Live-Challenge KonIQ-10k BID SPAQ FLIVE

Criterion SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC

BRISQUE 0.608 0.629 0.665 0.681 0.574 0.540 0.802 0.806 0.320 0.356

CORNIA 0.629 0.671 0.683 0.713 0.612 0.663 0.709 0.725 0.311 0.349

ILNIQE 0.432 0.508 0.507 0.523 0.516 0.554 0.713 0.721 0.322 0.335

HOSA 0.640 0.678 0.671 0.694 0.721 0.736 0.721 0.733 0.338 0.354

BIECON 0.595 0.613 0.618 0.651 0.439 0.576 0.702 0.722 0.301 0.336

WaDIQaM 0.671 0.680 0.797 0.805 0.725 0.742 0.837 0.845 0.452 0.433

FRIQUEE 0.682 0.705 0.808 0.811 0.728 0.739 0.819 0.830 0.434 0.428

SFA 0.812 0.833 0.685 0.872 0.826 0.840 0.906 0.907 0.542 0.626

PQR 0.857 0.882 0.880 0.884 0.830 0.852 0.902 0.913 0.547 0.635

DBCNN 0.851 0.869 0.875 0.884 0.845 0.859 0.910 0.913 0.554 0.652

HyperIQA 0.859 0.882 0.906 0.917 0.869 0.878 0.916 0.919 0.535 0.623

CSPP-IQA 0.882 0.898 0.912 0.921 0.875 0.891 0.916 0.922 0.556 0.649

Bold number represents the best performance
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vertical coordinates are MOS values predicted by the

objective IQA methods. The scatter plot can intuitively

show the relationship between the two sets of data. The

better the performance of the algorithm, the more the

scatter distribution in the plot is clustered around the red

fitting line. The scatter distribution of CSPP-IQA is more

concentrated and regular than other methods, which also

shows that the predicted MOS of CSPP-IQA is more

consistent with subjective score.

Fig. 5 Scatter plots of predicted

MOS values of six different

IQA methods on the Live-

challenge

Table 2 The comparison of

generalization for proposed

model and others

Train Test PQR DBCNN HyperIQA Proposed

Live-challenge KonIQ-10k 0.757 0.754 0.772 0.788

Live-challenge BID 0.714 0.762 0.756 0.763

KonIQ-10k Live-challenge 0.770 0.755 0.785 0.797

KonIQ-10k BID 0.755 0.816 0.819 0.808

Bold number represents the best performance

Neural Computing and Applications

123



4.4.3 Analysis of model generalization

To evaluate the generalization of the proposed model, we

took different image datasets for training and testing. The

model is trained on a dataset, but tested on a different

dataset. The proposed method outperforms the competition

with PQR, DBCNN and HyperIQA (as shown in Table 2).

Moreover, by integrating the CBAM into the proposed

model, the achieved quality score of the model is close to

human subjective perception.

4.4.4 Comparison of training time

We performed a 100-round experiment to evaluate the

training time of the proposed model and others. The orig-

inal image is inputted directly in the training phase on the

KonIQ-10k dataset without cropping. As shown in the

Table 3, compared with HyperIQA, under the premise of

ensuring accuracy, the training speed of CSPP-IQA is

improved by 4.88 times. Besides, the proposed model

requires less computational resources.

4.4.5 Experimental analysis on SPP structure

By introducing the SPP, there is no need for stretching and

cropping the original image, which could avoid causing

extra distortions to the original image. Figure 6 shows the

result of CSPP-IQA adopted different levels of SPP (i.e.,

SPP-3, SPP-4 and SPP-5). SPP-3 denotes three-level SPP

structure and so on. The result indicates that the three-level

SPP outperformed the performance comparison. That is

because more features extracted by higher-level SPP could

result in certain redundant features, which could affect the

final quality assessment. Meanwhile, the introduction of

Table 3 The performance comparison of training process (100

rounds) running on the dataset KonIQ-10k

Algorithm Hours/h SROCC PLCC

BIECON 73 0.595 0.613

SFA 84 0.685 0.872

DBCNN 112 0.851 0.869

HyperIQA 127 0.906 0.917

CSPP-IQA 26 0.905 0.917

Bold number represents the best performance

Fig. 6 Performance comparison of SPP structure in different levels: a Result based on the dataset Live-Challenge; b Result based on the dataset

KonIQ-10k

Table 4 The performance comparison of different pooling modules

integrated to SPP running on the dataset Live-Challenge

Pooling SROCC PLCC

Max 0.875 0.887

Avg 0.882 0.898

Bold number represents the best performance
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higher-level SPP structure could hinder the converge pro-

cess of the model.

In the experiment based on the dataset Live-Challenge,

the maximum pooling and average pooling are introduced

in the three-layer SPP structure respectively. As shown in

Table 4, the comparative result indicates that average

pooling achieved better performance as it retains the

overall characteristics of the image. In this sense, the main

function of average pooling is more consistent than maxi-

mum pooling, which aims to preserving texture features

and reducing the impact of irrelative information. The idea

of the proposed method is to learn the global and local

semantic information by fusing multi-scale features, and

thus average pooling is adopted in SPP structure.

4.4.6 Comparison of SROCC performance for loss functions

Figure 7 shows the comparative results of different loss

functions running on Live-Challenge dataset. Compared

with L1 / L2 loss function, the SmoothL1 loss function

achieved the best performance thanks to the integration of

L1 and L2 loss functions.

4.4.7 Comparison of quality scoring accuracy

As shown in Fig. 8, we took 5 randomly selected images

from the SPAQ dataset for the experiment, and the pre-

dicted MOS of four IQA methods (BIECON, DBCNN,

HyperIQA and CSPP-IQA) for these images are listed in

Table 5. CSPP-IQA achieved better performance in terms

of consistency with MOS while assessing the quality of

inputting images of different contents (e. g. animals,

landscapes, portraits, buildings, etc.). As shown in Table 5,

DBCNN achieved poor scores on Fig. 8e because the tra-

ditional IQA model that predicts the score directly without

Fig. 7 The comparison of loss functions adopted in this experiment

on the dataset Live-challenge

Fig. 8 A group of randomly selected images from the SPAQ dataset

Table 5 Comparison of prediction MOS between the proposed

method and others

Image number (a) (b) (c) (d) (e)

MOS 49.73 82.38 85.33 91.95 75.5

BIECON 28.79 89.36 75.99 83.78 59.2

DBCNN 32.43 70.33 91.49 81.74 56.32

HyperIQA 43.5 86.45 86.77 88.46 71.86

CSPP-IQA 45.62 79.37 89.28 88.55 73.49

Bold number represents the best performance

Table 6 The result of ablation experiment

Live-challenge KonIQ-10k

Components SROCC PLCC SROCC PLCC

HyperIQA 0.859 0.882 0.906 0.917

HyperIQA ? SPP 0.877 0.889 0.911 0.918

HyperIQA ? CBAM 0.864 0.881 0.897 0.918

CSPP-IQA 0.882 0.898 0.912 0.921

Bold number represents the best performance
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content understanding is prone to mistakenly treat flat

regions (e. g. the sky) as distorted images [24].

4.4.8 Ablation Analysis

As shown in Table 6, ablation experiment was carried out

based on the datasets Live-Challenge and KonIQ-10k to

verify the effectiveness of each component. With Live-

Challenge dataset, the introduction of either the SPP

structure or CBAM could contribute to the improvement of

SROCC by 1.5% and by 0.7% and PLCC by 2.5% and by

0.9%, respectively. With the dataset KonIQ-10k, the

introduction of SPP structure could contribute an

improvement of SROCC by 0.4% and PLCC by 0.5%, and

the introduction of CBAM mechanism could contribute an

improvement of PLCC by 0.6%.

5 Conclusion

In this study, we proposed a blind image quality assessment

method (named CSPP-IQA) for distorted images. It intro-

duces the spatial pyramid pooling, as well as the attention

mechanism to successfully address the issue caused by the

constraint of the image size in the fully connected layer. In

the proposed method, by introducing the CBAM and

adaptive content understanding module, the assessment

accuracy is further improved, and it archives stronger

generalization and less time cost compared with these

existing IQA methods. Besides, CSPP-IQA requires less

training time and computational resources and could be

widely used in many real-time applications.

Because the human eye is easy to be attracted by the

salient areas of the image when observing an image, the

quality of these areas has great impact on the overall

quality of the image. In the future, the visual attention

could be taken into the basis of current study to further

improve the prediction performance for the IQA tasks.
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