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Abstract
Feature selection techniques are considered one of the most important preprocessing steps, which has the most significant

influence on the performance of data analysis and decision making. These FS techniques aim to achieve several objectives

(such as reducing classification error and minimizing the number of features) at the same time to increase the classification

rate. FS based on Metaheuristic (MH) is considered one of the most promising techniques to improve the classification

process. This paper presents a modified method of the Slime mould algorithm depending on the Marine Predators

Algorithm (MPA) operators as a local search strategy, which leads to increasing the convergence rate of the developed

method, named SMAMPA and avoiding the attraction to local optima. The efficiency of SMAMPA is evaluated using

twenty datasets and compared its results with the state-of-the-art FS methods. In addition, the applicability of SMAMPA to

work with real-world problems is evaluated by using it as a quantitative structure-activity relationship (QSAR) model. The

obtained results show the high ability of the developed SMAMPA method to reduce the dimension of the tested datasets by

increasing the prediction rate. In addition, it provides results better than other FS techniques in terms of performance

metrics.

Keywords Slime mould algorithm � Marine predators algorithm � Optimization feature selection � Quantitative structure-

activity relationship (QSAR)

1 Introduction

The rapid growth of computer applications and information

technologies produces a tremendous amount of data gen-

erated from various devices. The vast amount of data

causes a critical problem for data mining which requires

implementing practical data pre-processing steps using

different techniques. Pr-processing is a necessary step that

is employed to prepare and clean the data for the subse-

quent processing steps of the machine learning [1, 2].

Feature selection (FS) is an essential pre-processing step

which is employed to reduce the size of the dataset. It is

employed to select a small subset of the relevant features

that capture the characteristics of the input data [3, 4].

Generally, FS methods remove noisy, unnecessary, and

repeated features. Thus, an effective FS technique can

boost the efficiency of data mining applications and various

machine learning classification applications [5]. In general,

FS methods can be classified into two types, wrapper-based

and filter-based [6]. The wrapper-based techniques usually

apply a classifier to obtain features, whereas the filter-based

methods use data-reliant specifications to evaluate the

merits of the features [6, 7]. Therefore, filter-based meth-

ods are more effective due to their fast implementation

because they do not require classifiers to be involved in the

FS process. To obtain a subset of features, we face some

challenges. Thus, different search methods are applied to

find the best features, including depth search, breadth

search, random search, and hybrid search. However,

exhaustive search requires a long time for extensive data,

which is considered time-consuming.

Recently, with the great developments of the

metahuristics (MH) optimization algorithms, that inspired

from nature, various optimization problems, including FS

can be solved using these MH algorithms. In the literature,

different MH algorithms have been employed for thisExtended author information available on the last page of the article
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purpose, such as particle swarm optimization (PSO) [8],

genetic algorithm (GA) [9], artificial bee colony (ABC)

[10], firefly algorithm (FA) [11], grey wolf algorithm

(GOA) [12], sine cosine algorithm (SCA) [13], salp swarm

algorithm [14], multi-verse optimizer (MVO) [15], Arith-

metic Optimization Algorithm (AOA) [16], and others

[17, 18]. However, individual MH algorithms may face

severe limitations, such as slow convergence and trapping

at local optima. Therefore, the hybridization concept has

recently been implemented to overcome these limitations.

This concept is performed by combining the operators of

two MH algorithms to leverage their proprieties and

advantages and avoid their shortcomings. Thus, in litera-

ture, we can find various hybrid MH methods for FS, such

as a hybrid of PSO and SSA [19], differential evaluation

(DE) and ABC [20], GOA and crow search algorithm

(CSA) [21], DE and SCA [22], moth flame optimization

(MFO) and DE [23], SSA and SCA [24], and many other

hybrid MH methods [25].

Following the concept of the MH hybridization, this

study proposes a new and efficient FS technique using a

modified version of the slim mould algorithm (SMA) by

the marine predators algorithm (MPA). The SMA was

developed by [26], as a new MH optimizer that can be

utilized to solve various optimization problems. The

oscillation mode of slime mould inspires it in nature. More

so, it is adopted to solve several optimization problems in

literature, such as finding optimal parameters in energy

applications [27, 28], air quality forecasting [29], and other

engineering applications [30–32]. In addition, MPA is

recently proposed by [33] by simulating the conduct of the

marine prey and predators. It has received wide attention

due to its efficiency and it is adopted in various domains,

for example, time series forecasting [34, 35], image seg-

mentation [36], medical image classification [37], param-

eter estimation [38], and other applications [39, 40].

However, the SMA performance requires more

improvements, mainly when applied to real-world appli-

cations, which motivated us to develop a new version of

SMA to improve its local search process using the opera-

tors of the MPA. The main aim of using MPA operators is

to enhance the exploitation ability of SMA during the

process of finding the optimal solution inside the feasible

region. MPA is applied as a local search method since it

has been established its performance in several applica-

tions, including forecasting cases of COVID-19 [35], and

photovoltaic array reconfiguration [41].

The contribution of this study can be summarized as

follows:

• Develop a feature selection technique using an

enhancement version of the SMA.

• Boost the capability of the local search of the SMA

using the operators of MPA.

• Assess the efficiency of the SMAMPA developed

method by using a set of twenty UCI datasets and

comparing it with other FS methods.

• Verify the applicability of the SMAMPA by imple-

menting it with real-world applications, such as QSAR

model.

The structure of this study is as follows. The related works

are presented in Sect. 2, where the preliminaries of the

applied techniques, SMA, and MPA are described in Sect.

3. In Sect. 4, we describe the proposed SMAMPA

approach, and in Sect. 5, the experimental evaluation is

presented, including different benchmark datasets and

comparisons to existing methods. Finally, the conclusions

and future direction are highlighted in Sect. 6.

2 Related works

In this section, we summarize a number of the existing FS

methods based on modified and improved optimization

algorithms proposed in recent years. In [4], a modified

version of the ABC algorithm, called a binary ABC, is

proposed for FS. The searchability of the ABC is improved

using the evolutionary-based similarity search mechanism,

which is integrated into the existing binary ABC variants.

It was evaluated using several datasets and compared to the

original PSO and ABC besides several modified versions of

PSO and ABC. In [42], the authors suggested an FS method

based on a hybrid of the Flower Pollination Algorithm

(FPA) and Clonal Selection Algorithm (CSA). The pro-

posed BCFA was evaluated using the optimum-path forest

classifier, and it showed significant performance with three

different datasets. Also, It showed better performance in

comparison to several optimization methods.

In [43], two binary variants of the whale optimization

algorithm (WOA) were proposed for FS. The first variant is

implemented by improving the search process using

Tournament and Roulette Wheel selection mechanisms. In

the second variant, the exploitation of the whale opti-

mization algorithm is improved by using crossover and

mutation operators. Sayed et al. [44] proposed a chaotic

crow search algorithm (CSA) to overcome the limitations

of the original CSA, such as trapping at local optima and

low convergence rate. The new modified version, CCSA,

was applied as an FS method evaluated using twenty

datasets. The CCSA also was compared to different opti-

mization techniques, and it achieved superior performance

against several previous FS methods.

The authors in [45] suggested two binary versions of

butterfly optimization algorithm (BOA) for FS. They used
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two transfer functions for mapping continuous search

spaces to discrete ones. Several UCI benchmark datasets

were used to evaluate the proposed method. More so, wide

comparisons to some existing FS methods were performed.

Evaluation outcomes showed the superior performance of

the BOA. Too and Abdullah [46] proposed an FS method

using a new variant of the genetic algorithm (GA) and a

fast rival GA. They applied a competition strategy to

combine crossover schemes and the new selection to boost

the global search ability of the GA. Twenty-three UCI

benchmark datasets were utilized to test the performance of

the modified GA.

Zhang et al. [47] presented an improved variant of the

Harris hawks optimization algorithm, called IHHO for FS.

The main idea of the IHHO is by applying the salp swarm

algorithm to enhance the search ability of the HHO. Sev-

eral UCI datasets were used to evaluate the IHHO, and it

achieved competitive performance compared to several FS

methods. Another modified HHO, called Chaotic HHO

(CHHO), is proposed for FS by Elgamal et al. [48]. Chaotic

maps are applied to improve the population diversity of the

HHO in the search space. Moreover, simulated annealing

(SA) is applied to the best solution to enhance the

exploitation of the HHO. They used Fourteen datasets to

evaluate the CHHO compared to several optimization

algorithms. Overall results showed that CHHO got the best

outcomes.

The authors of [49] proposed a FS method, called

ECSA, using a modified version of the crow search algo-

rithm (CSA). The authors proposed three modifications to

the traditional CSA to enhance its search capability. Six-

teen UCI benchmark datasets were applied to evaluate the

ESCA compared to the traditional CSA and several exist-

ing FS methods. The ESCA showed competitive perfor-

mance in all experiments. Too and Mirjalili [6] suggested

an FS method called hyper learning binary dragonfly

algorithm. They applied a hyper learning strategy to

improve the binary dragonfly algorithm, to avoid its limi-

tations, such as trapping at local optima. They evaluate the

proposed method using different UCI datasets and a new

COVID-19 dataset. Zhong et al. [7] proposed a new FS

method based on a modified Tree Growth Algorithm

(TGA). A binary TGA is applied for FS applications, and

also the evolutionary population dynamic strategy is

employed to enhance the search capability of the TGA.

Different UCI benchmark datasets were utilized to test the

TGA performance.

Several works from the previous review were conducted

for addressing FS problems by developing new methods to

overcome the drawbacks of the algorithms’ original ver-

sions using benchmark and real datasets. The proposed

methods showed good abilities to escape getting trapped in

local optima, improve the convergence rate, and improve

population diversity. However, there is no optimization

technique to solve all problems, as stated by the No-Free-

Lunch (NFL) theorem. Accordingly, this paper proposes a

new optimization method by improving the slime mould

algorithm’s local search ability using the MPA operators to

solve different feature selection problems using benchmark

and real datasets. This improvement can help balance the

search methods and avoid local search problems such as

traping in a local optimum and degrading the convergence

rate.

3 Background

This section presents the basic definitions of the SMA and

MPA, as in what follows.

3.1 Slime mould algorithm

The SMA was firstly introduced by [26] as a novel opti-

mization mechanism for global optimization. The SMA

simulates the natural behaviour of the slime mould’s

oscillation. The mathematical formulation of SMA is given

as:

1. Phase 1 (The food approach): This step models the

approach for the slime mould. The following equation

describes this phase:

Z ¼
Zb þ vb: W :ZA � ZBð Þ r\p

vc:Z r� p

�
ð1Þ

where vb is defined in the range of ½�a; a� and vc
decreases from 1 to 0. Zb corresponds to the best

solutions. Additionally, ZA and ZB are two solutions

selected from a randomly, whereas W represents the

mould weight of the slime. While p is computed as:

p ¼ tanh SðiÞ � DFj j; i ¼ 1; 2; :::;N ð2Þ

From Eq. 2, S(i) corresponds to the fitness values of

the Z solution. DF is the best fitness value. The value a

that defines vb in Eq. 1 is computed as:

a ¼ arctanh � t

maxt

� �
þ 1

� �
ð3Þ

where, t is the current iteration. maxt is the maximum

number of iteration. Also, the value of W is obtained as

follows:
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WðSIndðiÞÞ

¼
1þ r logððbF � SðiÞÞ=ðbF �wFÞ þ 1Þ Cond

1� r logððbF � SðiÞÞ=ðbF �wFÞ þ 1Þ otherwise

�

ð4Þ

in which Cond denotes that S(i) ranks first half of the

population. More so, r 2 ½0; 1� is randomly generated.

bF and wF and bF represent the best and worst fitness

values, respectively. Finally, SInd stores the sorted fit-

ness values, as defined in the following formula:

SInd ¼ sortðSÞ ð5Þ

2. Phase 2 (Wrap food): in this step, SMA imitates the

updating position of the slime mould. The following

equation is applied to compute this update.

Z� ¼
randðUB� LBÞ þ LB rand\z

ZbðtÞ þ vbðWZAðtÞ � ZBðtÞÞ r\p

vcZðtÞ r� p

8><
>: ð6Þ

where LB and UB represent the lower and upper

bounds of the search space, respectively. r and rand are

obtained from a random distribution between [0, 1].

3. Phase 3 (Oscillation): at this step the value of vb is

updated within ½�a; a� and vc inside [-1, 1].

3.2 Marine predators algorithm

The MPA is a global optimization mechanism introduced

in [33]. The MPA mimics the elements of marine prey and

predators during hunting. As other metaheuristics, the

MPA begins by taking random solutions from the search

space as in Eq. 7

Z ¼ LBþ rand � ðUB� LBÞ ð7Þ

where, rand a random variable is generated in the range

[0,1]. LB and UB are the upper and lower bounds that

define the search space. Once the candidate solutions are

generated, two matrices (named Elite matrix, which con-

tains the fitness values and prey matrix) are formulated as:

Elite ¼

Z1
11 Z1

12 ::: Z1
1d

Z1
21 Z1

22 ::: Z1
2d

::: ::: ::: :::

Z1
n1 Z1

n2 ::: Z1
nd

2
6664

3
7775; z ¼

Z11 Z12 ::: Z1d

Z21 Z22 ::: Z2d

::: ::: ::: :::

Zn1 Zn2 ::: Znd

2
6664

3
7775;

ð8Þ

The three phases of MPA modify the candidate solution

using the velocity ratio of the predator and prey. Each step

of the MPA is described below.

1. Phase 1 (High-velocity ratio): here, the prey is

extremely fast, then the predator decides to be quiet

and not move. This phase occurs at the beginning of

the optimization process, and the movement of the prey

is modeled as follows:

Si ¼ RB � ðElitei � RB � ZiÞ; i ¼ 1; 2; :::;N ð9Þ

Zi ¼ Zi þ P� R� Si ð10Þ

in which R 2 ½0; 1� refers to a vector of random

numbers P ¼ 0:5, and RB is Brownian motion vector.

2. Phase 2 (Unit velocity ratio): at this phase, the velocity

of the prey and the predator is the same. This case is

present in half of the iterative procedure. Here, the

predator updates his position using Brownian move-

ments, and the prey uses lévy flights. In this phase, Z is

divided into two parts, and to update the solution in the

first part; it applies Eqs. (11)-(12) and the second one

uses Eq. (13)-(14).

Si ¼RL � ðElitei � RL � ZiÞ; i ¼ 1; 2; :::;N ð11Þ

Zi ¼Zi þ P� R� Si ð12Þ

where RL is generated randomly by a Lévy

distribution.

Si ¼ RB � ðRB � Elitei � ZiÞ; i ¼ 1; 2; :::;N ð13Þ

Zi ¼ Elitei þ P� CF � Si;

CF ¼ 1� t

maxt

� �2 t
maxt

Þ ð14Þ

From Eqs. 13 and 14 the values of t and maxt are the

current and total number of iterations, respectively.

3. Phase 3 (low-velocity ratio): Within this phase, the

predator has velocity faster than the prey, which

occurred in the last third of the updating process using

Eq. (15)

Si ¼ RL � ðRL � Elitei � ZiÞ; i ¼ 1; 2; :::;N ð15Þ

Zi ¼ Elitei þ P� CF � Si; ð16Þ

According to [33] the MPA has another two key points.

– The first one is related to the Eddy formation and the

effect of fish aggregating devices (FADS) that can

modify the behavior of the predators. The MPA

employs the following equation to handle these

situations:

Zi¼
ZiþCF½ZminþR�ðZmax�ZminÞ��U r5\FAD

Ziþ½FADð1�rÞþr�ðZr1�Zr2Þ r5[FAD

�

ð17Þ

From Eq. 17 U refers to a binary vector. FAD ¼ 0:2.

r 2 ½0; 1�. r1 and r2 denote random prey.

– The second one is the marine memory, here Z

remembers its position, so, this behavior gives MPA
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ability to save the previous Zb. This solution is used and

compared with the new Zb.

4 The SMAMPA method

The SMAMPA is described in this section. It applies both

SMA and MPA algorithms to improve its performance. In

this context, the MPA applies as a local search of the

original version of SMA to improve its ability to solve

optimization problems. This improvement adds more

flexibility to the method to explore the search space and

improve diversity.

The basic structure of the SMAMPA is shown in Fig. 1.

It starts by defining the parameters and creating the search

space by initialling the problem population. After this step,

the best solution is determined and saved by evaluating the

fitness function. Furthermore, each solution is updated by

either the SMA or MPA algorithms; this switching is based

on the quality of the fitness function value; the quality is

calculated as in Equation 19. Therefore, if the probability

of the solution is more significant than a, the solution will

be updated by SMA, else it will be updated by MPA. In this

paper, the probability value (a) is set to 0.5. These steps are
iterated for all solutions; then, the best solution, among all

solutions, is selected. This sequence loops till reaching the

stop condition, then the final results are presented. In detail,

the SMAMPA begins by initializing the parameters of both

SMA and MPA. Then the SMA generates a Z

[xi; i ¼ 1; 2; ::;XN] random binary population with N and D

size and dimension. Then, the first fitness values are

computed by the operators of the SMA. The following

equation is used to calculate the fitness function value

Eq. (18):

f ðxiðtÞÞ ¼ nExiðtÞ þ ð1� nÞðjxiðtÞjjCj Þ ð18Þ

where ExiðtÞ defines the classification error (in this study we

use kNN as a classifier). n 2 ½0; 1� balances between the

classification error and the number of the selected features.

The proposed method calculates the probability (Proi) by

Eq. 19 to update the solution by the operators of MPA or

SMA (i.e., if Proi [ 0:5 the SMA will be used else, MPA

will be used)

Proi ¼
FiPN
i¼1 F

ð19Þ

where, f is the values of the fitness function. These

sequences are iterated until meeting the stop condition. In

the final step, the best solution is presented as the output of

the proposed method.

5 Experiment results and discussion

5.1 Performance metrics

Minimum (Min) result and maximum (Max) result of the

fitness value are applied using Eqs. 20 and 21,

respectively.

Min ¼ min
1� k�N

Fi ð20Þ

Max ¼ max
1� k�N

Fi ð21Þ

where F is the fitness function values
Fig. 1 The SMAMPA structure and workflow
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Accuracy: It is used to compute the classification

accuracy in the experiments. It is calculated using Eq. 22.

Accuracy ¼ TPþ TN

TPþ FPþ FN þ TN
ð22Þ

where TP and TN define true positive and true negative. FP

and FN define false positive and false negative.

Standard deviation (Std): It is computed using Eq. 23. It

evaluates the stability of the algorithms. The results of the

fitness function are used to compute this measure (F is the

mean of F).

Std ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
k¼1

ðFk � FÞ2
vuut ð23Þ

5.2 Compared techniques and parameter
settings

The SMAMPA is evaluated and compared to nine recently

published metaheuristic algorithms (i.e., MPA, GA, SMA,

PSO, HHO, SSA, MFO, WOA, and GOA) in the fitness

values (i.e., minimum and maximum), standard deviation,

accuracy, classification accuracy, and computational time.

The SMAMPA method is also compared with eight

advanced metaheuristic algorithms (i.e., BDA [50],

BSSAS3 [14], bGWO2 [12], GLR [51], SbBOA [45],

BGOAM [52], Das [53], and S-bBOA [45]).

The parameters setting of these algorithms is identical to

that declared in their original studies. Table 1 presents the

settings of the parameters of all applied methods. The

MATLAB 2015a executes all the algorithms. All methods

run on a 16GB RAM Intel Core i7 1.8 GHz 2.3 GHz

processor. The solution numbers applied in this paper are

set to to 30. The maximum iteration number is set to 500.

Each competitor algorithm is applied 30 independent runs

and the average of its results are presented in the tables.

5.3 Experiment series 1: UCI datasets

In this section, twenty benchmark datasets are tested to

demonstrate the SMAMPA optimizer’s efficiency. These

datasets were taken from the Machine Learning Repository

(UCI) [61]. Table 2 shows the tested datasets that contain

different numbers of features, number of instances, and

number of classes. The applied datasets are collected from

different areas, including biology, games, physics, and

biomedical.

The results obtained by the given SMAMPA method in

the average measure of the fitness function, as stated in

Table 1 Parameters setting of

the applied methods
No. Algorithm Reference Parameter Value

1 MPA [33] c c[1

P 0.0

2 SMA [26] z 0.01

3 GA [54] Selection Roulette wheel (Proportionate)

Crossover Whole arithmetic

Probability 0.8,

a [-0.5, 1.5])

4 HHO [55] a 1.5

5 PSO [56] Topology Fully connected

Cognitive and social constant (C1, C2) 2, 2

Inertia weight Linear reduction values [0.9 0.1]

Velocity limit 10% of dimension range

6 SSA [57] v0 0

7 WOA [58] a Decreased from 2 to 0

b 2

8 MFO [59] Convergence constant a [-2 -1]

Spiral factor b 1

9 GOA [60] Attraction distance 2.079 to 4

l 1.5

f 0.5

cmax 1

cmin 0.00001

3312 Neural Computing and Applications (2023) 35:3307–3324

123



(18), are recorded in Table 3. SMAMPA is observed to

beat the other comparative well-known methods in 85% of

the tested datasets. PSO algorithm is the second-best

method. SMAMPA got better performance than other

comparative methods for all tested datasets except Sonar,

ExactlyD, and krvskpD datasets. According to the average

fitness values measure, the results demonstrated that the

given SMAMPA has a promising ability in addressing this

kind of problem.

The results are given by the introduced SMAMPA in

terms of minimum fitness values, as stated in Eq. (20), are

recorded in Table 4. SMAMPA is observed to defeat the

other comparative well-known methods in 75% of the

tested datasets. PSO algorithm is the second-best method.

Based on minimum fitness values, SMAMPA has achieved

the minimum fitness values with promising results for most

datasets compared to other rival algorithms. It got better

results in almost all the tested datasets except glassD,

WaveformD, SpectD, Exactly2D, and krvskpD datasets.

The results confirmed that the proposed SMAMPA could

solve different feature selection challenges according to the

minimum fitness values.

The results achieved by the SMAMPA for the maximum

fitness values, as declared in Eq. (21), are shown in

Table 5. SMAMPA is recognized to overcome the other

Table 2 The details descriptions of the used UCI datasets

Name Features Instances Classes Type

breastWDBCD 30 569 2 Biology

ionosphereD 34 351 2 Physical

wineD 13 178 3 Chemistry

breastcancerD 9 699 2 Biology

sonarD 60 208 2 Biology

glassD 9 214 7 Physics

tic-tac-toeD 9 958 2 Game

LymphographyD 18 148 2 Biology

waveformD 40 5000 3 Physics

clean1dataD 166 476 2 Artificial

ZooD 16 101 6 Artificial

SPECTD 22 267 2 Biology

ecoliD 7 336 8 Biology

CongressEWD 16 435 2 Politics

M-of-nD 13 1000 2 Biology

ExactlyD 13 1000 2 Biology

Exactly2D 13 1000 2 Biology

VoteD 16 300 2 Politics

heartD 13 270 2 Biology

krvskpD 36 3196 2 Game

Table 3 Results of the fitness values measure

SMAMPA MPA SMA GA HHO PSO SSA WOA MFO GOA

breastWDBCD 0.0925 0.181 0.3409 0.1250 0.1194 0.1049 0.1118 0.1404 0.1733 0.2134

ionosphereD 0.1537 0.279 0.4061 0.2340 0.2144 0.1885 0.2276 0.2442 0.2750 0.3253

wineD 0.0000 0.015 0.1715 0.0151 0.0058 0.0038 0.0566 0.0207 0.1259 0.1514

breastcancerD 0.1543 0.26 0.4009 0.2153 0.1924 0.1669 0.2093 0.2193 0.2604 0.3268

glassD 0.1347 0.146 0.2226 0.1521 0.1428 0.1409 0.1508 0.1501 0.1854 0.2197

sonarD 0.1196 0.275 0.4116 0.2075 0.1951 0.1133 0.1839 0.2409 0.2717 0.3255

LymphographyD 0.2576 0.41 0.5342 0.3557 0.3015 0.2767 0.3168 0.3590 0.4508 0.5160

tic-tac-toeD 0.0000 0.094 0.5068 0.1666 0.0018 0.0079 0.0223 0.0237 0.4428 0.5172

waveformD 0.6337 0.681 0.9037 0.6513 0.6568 0.6346 0.6499 0.6598 0.6736 0.7360

clean1dataD 0.1920 0.285 0.4374 0.2569 0.2627 0.2242 0.2677 0.2962 0.2716 0.3439

SPECTD 0.3078 0.406 0.4791 0.3695 0.3528 0.3355 0.3571 0.3814 0.4045 0.4789

ZooD 0.0000 0.004 0.1878 0.0150 0.0033 0.0042 0.0483 0.0078 0.0901 0.1220

ecoliD 0.1998 0.21 0.3398 0.2235 0.2171 0.2169 0.2252 0.2208 0.2764 0.3337

CongressEWD 0.1132 0.274 0.4035 0.1842 0.1645 0.1363 0.1812 0.1775 0.2308 0.3025

ExactlyD 0.0050 0.292 0.5858 0.1897 0.0539 0.0000 0.0576 0.2399 0.4333 0.5944

Exactly2D 0.4801 0.504 0.5699 0.5048 0.4929 0.4884 0.5081 0.4956 0.5447 0.5816

M-of-nD 0.0000 0.335 0.4790 0.1419 0.0383 0.0000 0.0388 0.1382 0.3096 0.4955

VoteD 0.1250 0.196 0.4115 0.2015 0.1727 0.1626 0.1871 0.1973 0.2595 0.3431

krvskpD 0.1193 0.258 0.5281 0.1954 0.1752 0.1192 0.1718 0.2022 0.1578 0.3534

heartD 0.3408 0.368 0.5425 0.3794 0.3575 0.3471 0.3617 0.3804 0.4255 0.4969

Bold values indicate the best result
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comparative methods in 95% of the tested datasets. PSO

method is also the second-best method. Except for the

ExactlyD dataset, the proposed SMAMPA improved per-

formance in all tested datasets than other comparative

Table 4 Min measure results
MIN SMAMPA MPA SMA GA HHO PSO SSA WOA MFO GOA

breastWDBCD 0.000 0.000 0.084 0.000 0.000 0.000 0.000 0.000 0.119 0.119

ionosphereD 0.000 0.151 0.213 0.107 0.107 0.107 0.107 0.151 0.151 0.185

wineD 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

breastcancerD 0.000 0.107 0.185 0.107 0.000 0.107 0.107 0.107 0.107 0.213

glassD 0.117 0.113 0.099 0.087 0.087 0.087 0.087 0.095 0.117 0.129

sonarD 0.000 0.000 0.277 0.139 0.000 0.000 0.000 0.000 0.139 0.196

LymphographyD 0.000 0.164 0.368 0.232 0.164 0.164 0.232 0.285 0.232 0.285

tic-tac-toeD 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.259 0.000

waveformD 0.593 0.593 0.692 0.611 0.625 0.611 0.601 0.617 0.597 0.631

clean1dataD 0.092 0.225 0.275 0.159 0.159 0.159 0.183 0.225 0.159 0.243

SPECTD 0.212 0.299 0.273 0.244 0.173 0.212 0.273 0.273 0.273 0.367

ZooD 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ecoliD 0.142 0.142 0.194 0.174 0.159 0.159 0.159 0.175 0.190 0.206

CongressEWD 0.000 0.096 0.192 0.096 0.096 0.000 0.096 0.096 0.096 0.096

ExactlyD 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Exactly2D 0.447 0.465 0.465 0.443 0.443 0.443 0.443 0.443 0.465 0.529

M-of-nD 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

VoteD 0.000 0.000 0.163 0.000 0.115 0.000 0.000 0.115 0.115 0.163

krvskpD 0.087 0.162 0.221 0.142 0.137 0.079 0.132 0.137 0.100 0.203

heartD 0.273 0.299 0.367 0.323 0.299 0.273 0.273 0.299 0.299 0.346

Bold values indicate the best result

Table 5 Results of the Max measure

MAX SMAMPA MPA SMA GA HHO PSO SSA WOA MFO GOA

breastWDBCD 0.1454 0.6167 0.6766 0.2056 0.1876 0.1876 0.2374 0.2220 0.2654 0.3140

ionosphereD 0.2384 0.4885 0.5539 0.3371 0.3015 0.2611 0.3371 0.3536 0.4264 0.4767

wineD 0.0000 0.1508 0.4264 0.0754 0.0754 0.0754 0.2820 0.0754 0.2611 0.3454

breastcancerD 0.2132 0.4647 0.5741 0.3371 0.2611 0.2611 0.3198 0.3198 0.3989 0.4523

glassD 0.1801 0.1962 0.3059 0.1943 0.1903 0.1903 0.2664 0.2215 0.2855 0.3442

sonarD 0.1961 0.5718 0.5371 0.3922 0.3397 0.3397 0.3669 0.3669 0.4804 0.4599

LymphographyD 0.3676 0.7534 0.6778 0.4650 0.4027 0.4027 0.6367 0.4650 0.6778 0.7352

tic-tac-toeD 0.0000 0.6338 0.7516 0.4753 0.0647 0.2505 0.5786 0.4387 0.6501 0.7318

waveformD 0.6548 1.1335 1.1486 0.6888 0.6969 0.6573 0.6835 0.7116 0.7720 0.8686

clean1dataD 0.2750 0.4300 0.7101 0.3305 0.3667 0.3305 0.3889 0.3667 0.3430 0.4674

SPECTD 0.3665 0.5599 0.6802 0.4887 0.4887 0.4405 0.4732 0.5037 0.5325 0.5985

ZooD 0.0000 0.0471 0.4447 0.0577 0.0333 0.0333 0.2828 0.0471 0.2925 0.3636

ecoliD 0.2631 0.3489 0.5898 0.2819 0.2806 0.2806 0.3818 0.2806 0.3789 0.7703

CongressEWD 0.1355 0.6773 0.7103 0.2709 0.2534 0.2346 0.4064 0.2709 0.4064 0.5747

ExactlyD 0.0894 0.8509 0.7430 0.5762 0.3688 0.0000 0.5514 0.5477 0.6419 0.7266

Exactly2D 0.5254 0.6928 0.7071 0.5441 0.5441 0.5441 0.6419 0.5441 0.6000 0.7211

M-of-nD 0.0000 0.7975 0.6419 0.4147 0.3225 0.0000 0.5762 0.3633 0.6419 0.6261

VoteD 0.1633 0.4000 0.7916 0.2828 0.2309 0.2582 0.4000 0.3055 0.4761 0.4899

krvskpD 0.1415 0.7102 0.6896 0.2526 0.2209 0.1659 0.2399 0.2526 0.2293 0.5983

heartD 0.3665 0.4052 0.7228 0.4732 0.4405 0.4232 0.4405 0.4732 0.5464 0.6465

Bold values indicate the best result
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approaches. The outcomes demonstrated that the proposed

integration method between the SMA and MPA search

processes has a powerful ability to trade with complicated

feature selection problems.

Figure 2 displays the average, minimum, and maximum

fitness values for the comparative methods overall used

datasets. It can be seen that the developed SMAMPA

reached the best results in terms of the three measures (i.e.,

average, minimum, and maximum fitness values).

SMAMPA got the smallest values using all measures in the

tested datasets, which is strong evidence regarding the

ability of SMAMPA in solving the FS problems. The

modification of the proposed method proved its searcha-

bility in finding better solutions than the original SMA and

MPA, as well as, this modification got all the best out-

comes compared to the comparative algorithms.

Table 6 displays each algorithm’s accuracy measure

values overall the used datasets. The proposed SMAMPA

gathered the best high accuracy values in 95% of the tested

datasets, pursued by PSO. However, the PSO obtained the

best values in three datasets (i.e., ExactlyD, Exactly2, and

M-of-n). In general, the SMAMPA exhibited an excellent

ability to select the most vital features in the selection stage

and produce the highest accuracy values in the classifica-

tion stage. Figure 3 illustrates the average of the accuracy

values for the all methods. We can recognise that the

proposed method got the highest accuracy values compared

to all comparative techniques; this supports our claim

regarding the proposed SMAMPA; it works more effi-

ciently than traditional methods and is also more efficient

than other comparative algorithms. The second best

method is the PSO algorithm; it got more reliable results

than the rest of the comparison techniques in solving these

widespread problems.

Table 7 displays each algorithm’s Std measure of the

fitness function assessments using all the given datasets.

The proposed SMAMPA obtained stable results according

to Std values in 50% of the tested datasets, pursued by

PSO, WOA, HHO, GA, and finally, the MPA. This result

declares that the SMAMPA’s stability is better than other

comparative methods according to its performance. The

obtained results’ distribution is excellent and smaller than

other comparative methods overall, the tested datasets.

Figure 4 illustrates the average of the Std of the fitness

function values for all compared methods. We can see

obviously that the suggested SMAMPA got the smallest

Std values compared to all comparative techniques; this

supports our claim regarding the performance of the pro-

posed SMAMPA again; it achieves promising results

compared to other methods by giving low distribution and

similar outcomes across a wide range of executions. The

following best method is the PSO algorithm, pursued by

HHO.

Table 8 lists the numbers of the selected features for all

the tested methods. Table 8 shows the shorter length of the

obtained optimal subset of features acquired by the com-

parative techniques. Investigating the results, SMA pro-

duced the nominal feature size in ten datasets, pursued by

SMAMPA (six datasets). Compared with MPA, SMA, GA,

HHO, PSO, SSA, WOA, MFO, and GOA, the SMAMPA

can typically find the nominal subset of selected features

that can adequately represent the main idea, as shown in

Fig. 5. Owing to the MPA method, SMAMPA can override

the local optima problem and thoroughly recognize the

most helpful feature selection solution.

According to the computational time given in Table 9

and Fig. 6, the proposed SMAMPA got comparable com-

putational time to solve the given problems. The main

important thing in these experiments to tackle the FS

problem is the evaluation measures, like the accuracy,

because the given problem needs to be solved one time and

not more.

Fig. 2 Error values average for

all algorithms
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5.4 Comparison with the state-of-the-art

This part evaluates the SMAMPA and compares further

with different advanced and well-known published meth-

ods in the literature. These methods are BDA [50],

BSSAS3 [14], bGWO2 [12], GLR [51], SbBOA [45],

BGOAM [52], Das [53], and S-bBOA [45].

Table 10 shows all the tested methods using versions

benchmark datasets. The given values of the comparative

methods in this table are taken from their original papers.

The ‘‘�00 sign denotes no given results for this case. The

proposed SMAMPA obtained better results in 70% of the

tested datasets according to given values. It got the most

high-grade results in almost all the tested datasets except

ionosphereD, BreastcancerD, LymphographyD, ExactlyD,

Exactly2D, and VoteD. The following best method is

BDA, which got the most beneficial results in 53%, as this

method has results for 15 datasets, followed by BSSAS3.

Recap, SMAMPA has a more trustworthy exploration

experience than other comparative optimization tech-

niques. This result is confirmed because the other tested

algorithms did not allow SMAMPA to investigate other

search areas in the search regions. Moreover, this proved

the proposed SMAMPA to sustain solutions heterogeneity

remarkably better than other feature selection methods.

Besides, SMAMPA always got superior fitness values than

other algorithms, proving its ability to evade restricted

optima. In comparison, the other methods may quickly fall

Table 6 Results of the

Accuracy measure
ACC SMAMPA MPA SMA GA HHO PSO SSA WOA MFO GOA

breastWDBCD 0.990 0.949 0.856 0.982 0.984 0.988 0.985 0.979 0.968 0.952

ionosphereD 0.974 0.909 0.826 0.943 0.952 0.962 0.945 0.938 0.920 0.890

wineD 1.000 0.993 0.872 0.995 0.998 0.999 0.967 0.994 0.929 0.903

breastcancerD 0.974 0.923 0.829 0.952 0.961 0.970 0.954 0.949 0.928 0.890

glassD 0.798 0.636 0.657 0.624 0.663 0.687 0.677 0.613 0.579 0.515

sonarD 0.989 0.907 0.825 0.953 0.955 0.978 0.959 0.935 0.919 0.889

LymphographyD 0.932 0.397 0.708 0.703 0.570 0.752 0.729 0.654 0.495 0.364

tic-tac-toeD 1.000 0.941 0.683 0.939 1.000 0.998 0.990 0.992 0.779 0.696

waveformD 0.794 0.767 0.604 0.783 0.784 0.793 0.787 0.786 0.774 0.738

clean1dataD 0.961 0.917 0.800 0.933 0.929 0.948 0.926 0.911 0.924 0.879

SPECTD 0.903 0.669 0.758 0.859 0.874 0.885 0.870 0.853 0.832 0.766

ZooD 1.000 0.994 0.929 0.910 0.996 0.995 0.708 0.966 0.398 0.254

ecoliD 0.862 0.849 0.655 0.836 0.835 0.837 0.839 0.832 0.786 0.818

CongressEWD 0.987 0.896 0.832 0.964 0.971 0.978 0.962 0.966 0.942 0.897

ExactlyD 1.000 0.791 0.636 0.892 0.990 1.000 0.983 0.886 0.770 0.633

Exactly2D 0.465 0.325 0.636 0.737 0.750 0.759 0.729 0.746 0.699 0.660

M-of-nD 1.000 0.751 0.734 0.957 0.994 1.000 0.986 0.965 0.870 0.738

VoteD 0.982 0.955 0.808 0.956 0.969 0.969 0.960 0.959 0.927 0.875

krvskpD 0.986 0.913 0.707 0.961 0.969 0.985 0.970 0.958 0.974 0.862

heartD 0.883 0.864 0.681 0.854 0.871 0.878 0.868 0.853 0.815 0.747

Bold values indicate the best result

Fig. 3 Accuracy average for all

algorithms
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into the local optima problem. Investigating the selected

number of optimal features by SMAMPA has sufficient

exploration energy than other comparative algorithms,

proved by selecting fewer features over the tested bench-

mark datasets.

5.5 Experiment series 2: real2world
quantitative structure-activity relationship
application

In this section, we evaluate ability of the proposed method

in selecting the most relevant features using real-world

problems. Quantitative structure-activity relationship

(QSAR) models is a mathematical framework in

chemometrics to explain the structural relationship

between chemical compounds and biological activity

[62–65]. The QSAR modelling has been conducted to

study the proposed algorithm and verify its effectiveness.

Six high-dimensional datasets are adopted. The first dataset

is the inhibitors of influenza A viruses (H1N1). An RNA

virus called influenza causes a respiratory infection. It is a

highly dangerous illness that is associated with high rates

of mortality and morbidity. The influenza virus has two

main glycoproteins on its surface: neuraminidase and

haemagglutinin. Thus, utilizing compounds that block

neuraminidase can prevent host cells from becoming

infected with viruses and prevent the virus from spreading

across cells. According to IC50, this dataset contained two

Table 7 Results of the Std

measure
STD SMAMPA MPA SMA GA HHO PSO SSA WOA MFO GOA

breastWDBCD 0.036 0.136 0.166 0.045 0.037 0.038 0.055 0.040 0.041 0.045

ionosphereD 0.050 0.115 0.094 0.048 0.048 0.047 0.052 0.048 0.065 0.066

wineD 0.000 0.038 0.111 0.030 0.020 0.016 0.082 0.034 0.053 0.065

breastcancerD 0.047 0.098 0.103 0.044 0.047 0.045 0.047 0.050 0.066 0.056

glassD 0.017 0.022 0.049 0.025 0.021 0.023 0.033 0.025 0.041 0.046

sonarD 0.070 0.132 0.077 0.064 0.082 0.094 0.084 0.086 0.083 0.068

LymphographyD 0.087 0.178 0.084 0.062 0.055 0.062 0.076 0.053 0.105 0.116

tic-tac-toeD 0.000 0.224 0.248 0.183 0.011 0.040 0.098 0.087 0.098 0.190

waveformD 0.016 0.106 0.140 0.017 0.013 0.014 0.019 0.019 0.036 0.055

clean1dataD 0.051 0.047 0.093 0.038 0.042 0.037 0.045 0.042 0.046 0.054

SPECTD 0.042 0.065 0.096 0.055 0.060 0.048 0.052 0.048 0.065 0.065

ZooD 0.000 0.012 0.157 0.019 0.010 0.011 0.069 0.015 0.061 0.092

ecoliD 0.032 0.046 0.109 0.028 0.025 0.025 0.038 0.024 0.047 0.104

CongressEWD 0.035 0.169 0.155 0.043 0.043 0.061 0.069 0.046 0.070 0.109

ExactlyD 0.020 0.274 0.134 0.224 0.083 0.000 0.118 0.181 0.207 0.116

Exactly2D 0.018 0.048 0.069 0.024 0.025 0.026 0.041 0.026 0.031 0.041

M-of-nD 0.000 0.314 0.201 0.151 0.068 0.000 0.110 0.125 0.184 0.127

VoteD 0.052 0.083 0.150 0.058 0.038 0.065 0.067 0.044 0.078 0.087

krvskpD 0.016 0.144 0.121 0.029 0.021 0.018 0.027 0.028 0.031 0.116

heartD 0.031 0.027 0.093 0.043 0.039 0.038 0.039 0.045 0.063 0.079

Bold values indicate the best result

Fig. 4 Standard deviation

average for all algorithms
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classes of active compound (IC50\ 20 lM) and weakly

active compound (IC50 [ 20 lM). This data consists of

2644 features and 479 instances [66].

The second dataset represents the anti-hepatitis C virus

(hepatitis). Hepatitis C virus (HCV)-related liver condi-

tions are among the most prevalent medical issues in the

world today. The compounds employed have anti-hepatitis

C virus action and were thiourea derivatives. This dataset

containing 2952 features and 121 instances. According to

EC50, the compounds were split into two sets: active and

inactive compounds when EC50\ 0.1 lM and EC50 �
0.1 lM, respectively [67].

The third dataset, called Chalcone, relates to a wide

range of antibiotics with unique bioactivities against

Candida albicans. The minimum inhibitory concentration

(MIC) against C. albicans in mM/L was used to measure

the antibacterial activities, which were expressed as pMIC,

or the logarithm of the reciprocal of MIC. The median, or

1.30, of all 212 pMICs was taken into consideration as the

cut-off to categorize these antimicrobial drugs into two

groups based on the bioactivity distribution over the entire

datasets. The first group consisted of 108 active compounds

with pMIC values more than 1.30, and the remaining 104

inactive compounds made up the second group. The fourth,

fifth, and the sixth datasets were publicly available in the

UCI repository [61].

The proposed algorithm results, SMAMPA, are evalu-

ated in terms of classification accuracy, selected features,

Table 8 The evaluation of the

selected features number of all

benchmark

NF SMAMPA MPA SMA GA HHO PSO SSA WOA MFO GOA

breastWDBCD 12 13 8 16 16 15 16 18 16 15

ionosphereD 8 6 6 15 12 14 15 12 16 17

wineD 7 7 5 8 8 7 7 7 7 6

breastcancerD 10 8 9 16 11 15 15 12 16 16

glassD 4 5 5 5 5 5 5 5 5 5

sonarD 20 23 20 30 28 29 30 31 30 30

LymphographyD 9 7 8 10 9 9 9 10 10 9

tic-tac-toeD 9 8 4 8 9 9 9 9 6 5

waveformD 14 15 6 13 15 14 13 17 14 12

clean1dataD 52 56 42 82 73 81 82 73 85 82

SPECTD 8 9 9 11 9 10 11 10 12 11

ZooD 9 9 6 9 10 9 9 10 9 8

ecoliD 5 5 4 5 5 5 5 5 4 4

CongressEWD 7 5 4 8 7 7 7 7 8 8

ExactlyD 6 7 6 8 7 7 7 9 8 7

Exactly2D 5 4 4 6 4 7 6 4 6 7

M-of-nD 7 5 6 8 8 7 7 8 8 7

VoteD 4 4 5 8 6 8 7 6 8 8

krvskpD 21 19 10 20 20 20 20 24 21 19

heartD 6 8 6 8 7 7 7 8 7 7

Bold values indicate the best result

Fig. 5 Selected features of each

optimization method
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and standard deviation (Std). All results are summarized in

Tables 13, 14 and 15.

From the Table 12, we assess the superiority of pro-

posed algorithms, compared to others well-known algo-

rithms. However, SMAMPA can be described as

stable methods in most of all datasets except Biodeg

dataset in which GA algorithm is better.

As can be seen from Table 13, the proposed algorithm,

SMAMPA, has a significantly larger accuracy. These

results demonstrated that the reduction in features con-

tributes to the improvement of the accuracy resulting from

the other algorithms. In terms of the selected features

(Table 14), it can see that the SMAMPA obtained better

values than the compared methods. It selected fewer fea-

tures with high classification accuracy. Related to Std in

Table 15, the SMAMPA algorithm achieved the low Std

results in the H1N1, OralToxicity, and AndrogenReceptor

datasets and was considered the most stable algorithm than

the other algorithms. Furthermore, the hepatitis and Chal-

cone datasets presented competitive results for the

SMAMPA with other algorithms. In general, SMAMPA

algorithm can be considered as stable algorithm. From the

above analysis, the SMAMPA method showed a high

selecting ability for the essential features with high accu-

racy and good stability.

Fig. 6 Computational time

Average of all algorithms

Table 9 Results of the

computational time
Time SMAMPA MPA SMA GA HHO PSO SSA WOA MFO GOA

breastWDBCD 15.31 16.93 6.60 7.06 15.64 6.30 6.34 6.34 6.29 6.95

ionosphereD 14.92 16.63 6.40 6.89 15.40 6.17 6.17 6.29 6.13 6.80

wineD 14.68 16.42 6.23 7.17 15.41 6.44 6.41 6.39 6.43 6.72

breastcancerD 13.75 15.30 6.26 6.75 15.05 6.03 6.04 6.15 6.04 6.69

glassD 14.74 15.52 5.18 7.36 12.11 6.56 6.64 6.18 6.57 6.76

sonarD 13.38 14.74 6.29 6.71 14.59 6.05 6.04 6.03 6.03 7.14

LymphographyD 9.48 11.68 5.27 6.61 13.16 5.67 5.87 5.63 5.82 6.11

tic-tac-toeD 15.83 16.50 6.99 8.16 15.92 7.27 7.37 7.39 7.38 7.36

waveformD 41.40 61.29 12.34 20.30 40.94 18.07 18.09 19.70 18.56 18.41

clean1dataD 16.31 17.89 6.68 7.83 16.75 7.01 7.04 6.96 7.07 10.07

SPECTD 13.58 13.76 5.88 6.71 14.61 6.06 6.09 5.87 6.03 6.48

ZooD 10.76 12.97 4.93 7.29 14.70 6.17 6.38 6.31 6.44 6.52

ecoliD 10.22 10.51 4.62 5.79 11.67 5.18 5.19 5.12 5.24 5.23

CongressEWD 14.20 15.61 6.45 7.25 15.53 6.49 6.47 6.37 6.45 6.83

ExactlyD 15.28 16.51 6.69 7.89 16.48 7.11 7.06 6.96 7.03 7.35

Exactly2D 13.33 14.54 6.94 7.77 16.19 7.03 6.89 6.30 6.99 7.58

M-of-nD 15.44 16.55 6.89 8.05 16.76 7.20 7.23 7.13 7.23 7.55

VoteD 13.74 15.14 6.44 7.25 15.56 6.56 6.47 6.43 6.54 6.73

krvskpD 16.11 43.54 10.45 14.12 29.58 12.57 12.55 13.85 12.70 13.12

heartD 15.23 21.67 10.30 11.53 24.90 10.28 10.32 10.35 10.32 11.04

Bold values indicate the best result
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Table 10 Accuracy compression between SMAMPA and the other methods in the literature

Name SMAMPA BDA BSSAS3 bGWO2 GLR SbBOA BGOAM Das S-bBOA

breastWDBCD 0.990 0.979 0.948 0.935 - 0.971 0.970 - 0.971

ionosphereD 0.974 0.991 0.918 0.834 0.000 0.907 0.946 0.865 0.907

wineD 1.000 1.000 0.993 0.920 0.978 0.984 0.989 0.961 0.984

breastcancerD 0.974 - 0.976 0.975 - 0.969 0.974 0.971 0.969

glassD 0.798 - - - 0.730 - - 0.692 -

sonarD 0.989 0.980 0.937 0.729 0.829 0.936 0.915 0.793 0.936

LymphographyD 0.932 0.992 0.890 0.700 - 0.868 0.912 - 0.868

tic-tac-toeD 1.000 - 0.821 - - 0.798 0.791 - 0.798

waveformD 0.794 0.758 0.733 0.789 - 0.743 0.751 - 0.743

clean1dataD 0.961 - 0.880 0.727 - 0.883 - - 0.883

SPECTD 0.903 0.850 0.836 0.822 - 0.846 0.826 - 0.846

ZooD 1.000 1.000 1.000 0.879 - 0.978 0.958 0.960 0.978

ecoliD 0.862 - - - 0.852 - - 0.789 -

CongressEWD 0.987 0.987 0.963 0.938 - 0.959 0.976 0.526 0.959

ExactlyD 1.000 1.000 0.980 0.776 - 0.972 1.000 - 0.972

Exactly2D 0.465 0.773 0.758 0.750 - 0.760 0.736 - 0.760

M-of-nD 1.000 1.000 0.991 0.963 - 0.972 1.000 - 0.972

VoteD 0.982 0.989 0.951 0.920 - 0.965 0.963 - 0.965

krvskpD 0.986 0.979 0.964 0.956 - 0.966 0.974 - 0.966

heartD 0.883 0.876 0.860 0.776 - 0.824 0.836 0.784 0.824

Bold values indicate the best result

Table 11 Description of the real-world datasets

Dataset Features Instances Classes

H1N1 2644 479 2

hepatitis 2952 121 2

Chalcone 2821 100 2

biodeg 41 1055 2

OralToxicity 1024 8992 2

AndrogenReceptor 1024 1687 2

Table 12 Real application: Average of the fitness functions values

Name SMAMPA MPA SMA GA HHO PSO SSA WOA MFO GOA

H1N1 0.3714 0.3724 0.4898 0.4160 0.3897 0.4011 0.4110 0.3973 0.4363 0.5443

hepatitis 0.1235 0.2023 0.3982 0.3818 0.2719 0.3679 0.3919 0.2400 0.4362 0.4514

Chalcone 0.2906 0.3166 0.5244 0.4837 0.3823 0.4820 0.5135 0.3636 0.5472 0.5352

Biodeg 0.3310 0.3229 0.4204 0.3168 0.3482 0.3312 0.3427 0.3614 0.3711 0.3561

OralToxicity 0.2504 0.2530 0.2645 0.2559 0.2576 0.2581 0.2593 0.2572 0.2639 0.2624

AndrogenReceptor 0.2758 0.2819 0.3194 0.2860 0.2858 0.2870 0.2877 0.2923 0.3087 0.3107

Bold values indicate the best result
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6 Conclusion and future work

This study developed a new feature selection (FS) method

by enhancing the original style of the slime mould algo-

rithm (SMA). We leverage the exploration ability of the

marine predators algorithm (MPA) to work as a local

search method for the proposed method. The modified

version, namely, SMAMPA, was evaluated on twenty well-

known UCI benchmark datasets, using different evaluation

metrics. Moreover, it was compared to the traditional

SMA, MPA, and several state-of-art optimization methods.

The developed SMAMPA showed superior performance

over several optimization algorithms and several modified

optimization algorithms. Furthermore, to verify the effi-

ciency of the SMAMPA on more complicated and high-

dimensional real-world problems, six datasets related to

chemometrics, were used. Evaluation outcomes also

showed the high performance of the SMAMPA, and it

Table 13 Real application: The accuracy percentage

Name SMAMPA MPA SMA GA HHO PSO SSA WOA MFO GOA

H1N1 86.09 85.89 70.56 82.54 84.68 83.77 82.98 84.09 78.06 50.63

hepatitis 96.41 95.21 83.33 85.00 91.82 85.91 84.09 93.18 80.61 79.24

Chalcone 0.9043 0.8869 0.7166 0.7623 0.8503 0.7634 0.7314 0.8594 0.6971 0.7097

Biodeg 0.8902 0.8958 0.8201 0.8996 0.8788 0.8902 0.8826 0.8693 0.8617 0.8731

OralToxicity 0.9373 0.9358 0.9298 0.9344 0.9335 0.9333 0.9326 0.9337 0.9302 0.9310

AndrogenReceptor 0.9234 0.9194 0.8969 0.9171 0.9177 0.9165 0.9159 0.9135 0.9034 0.9023

Bold values indicate the best result

Table 14 Real application:

Selected features number
Name SMAMPA MPA SMA GA HHO PSO SSA WOA MFO GOA

H1N1 1023 1212 1060 1323 1324 1310 1315 1259 1398 1313

hepatitis 1019 1843 1329 1480 1347 1475 1476 1222 1514 1470

Chalcone 634 850 657 1310 661 1329 1338 639 1377 1327

Biodeg 12 19 16 20 28 19 21 27 23 26

OralToxicity 381 431 516 512 507 524 508 659 513 510

AndrogenReceptor 460 387 494 523 559 514 509 557 501 517

Bold values indicate the best result

Table 15 Real application: The standard deviation values

Dataset SMAMPA MPA SMA GA HHO PSO SSA WOA MFO GOA

H1N1 0.0345 0.0348 0.0921 0.0394 0.0363 0.0374 0.0368 0.0356 0.0727 0.1536

hepatitis 0.0658 0.0836 0.0902 0.0649 0.0889 0.0746 0.0743 0.1029 0.0605 0.0619

Chalcone 0.1060 0.1135 0.0917 0.0615 0.0597 0.0648 0.0697 0.0915 0.0587 0.0618

Biodeg 0.0172 0.0085 0.0563 0.0030 0.0000 0.0114 0.0000 0.0079 0.0230 0.0080

OralToxicity 0.0062 0.0119 0.0154 0.0107 0.0120 0.0117 0.0116 0.0102 0.0136 0.0098

AndrogenReceptor 0.0232 0.0328 0.0323 0.0340 0.0259 0.0337 0.0365 0.0326 0.0355 0.0347

Bold values indicate the best result
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obtained the best results compared to other optimization

algorithms. According to the superior results of the

developed SMAMPA, in future work, it could be further

investigated in more complicated problems, such as multi-

optimization problems, big data mining, and medical image

processing.
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