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Abstract
Knowledge Graphs represent real-world facts and are used in several applications; however, they are often incomplete and

have many missing facts. Link prediction is the task of completing these missing facts from existing ones. Embedding

models based on Tensor Factorization attain state-of-the-art results in link prediction. Nevertheless, the embeddings they

produce can not be easily interpreted. Inspired by previous work on word embeddings, we propose inducing sparsity in the

bilinear tensor factorization model, RESCAL, to build interpretable Knowledge Graph embeddings. To overcome the

difficulties that stochastic gradient descent has when producing sparse solutions, we add l1 regularization to the learning

objective by using the generalized Regularized Dual Averaging online optimization algorithm. The proposed method

substantially improves the interpretability of the learned embeddings while maintaining competitive performance in the

standard metrics.

Keywords Knowledge graph embedding � Sparse learning � Interpretable embeddings

1 Introduction

Knowledge Graphs are large graph stores that represent

real-world facts by connecting entities through relations.

These facts follow the triple form (es, r, eo) where es and eo
are respectively, the subject and object entities and r is the

relation between them. Unfortunately, Knowledge Graphs

have many missing facts and therefore are not complete.

The amount of facts, entities, and relations is vast and thus,

containing all of them in a Knowledge Graph is a complex

task, e.g., Wikipedia’s task is to contain information on all

branches of knowledge. Furthermore, most Knowledge

Graphs model information areas that are continually

evolving and changing, which causes the graphs to be

incomplete. Different Machine Learning approaches have

been proposed to tackle this issue.

Since Knowledge Graphs can be represented as a third-

order binary tensor where each position of the tensor rep-

resents whether a fact (triple) is true or false, different

algorithms based on Tensor Factorization have been pro-

posed for inferring the missing knowledge. These factor-

ization algorithms [2, 25, 44] produce distributed

representations of the entities and relations within the

Knowledge Graph, also known as Knowledge Graph

Embeddings. Embeddings are then used to predict new

facts from the known ones.

Embeddings, when distributed, are, however, difficult to

interpret. They are real-valued vectors whose individual

dimensions can not be understood, i.e., their latent

dimensions have low semantic meaning. Several cognitive

arguments based on the economy of storage maintain that a

small set of features is not enough to describe every

semantic concept and domain in our vocabularies

[23, 24, 31]. From the cognitive point of view, some words

require more characteristics to be described and others that

require less. Besides, certain properties belong to specific

semantic domains and sharing properties is not natural for

humans. Furthermore, we do not describe concepts based

on what they are not since it would be uneconomical; thus,

we do not store that a desk is not a vegetable or a glass can

not fly. Following these arguments, as authors in [23]

presented, the feature set of a representation should only

store positive facts, a wide range of feature types, and only
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a small quantity of these features should be used to

describe a concept. To achieve such properties, the feature

set of the concepts representations should be non-negative

and sparse. In this work, we present a solution to get the

sparsity property in training time for Knowledge Graph

Embeddings. Nevertheless, while we do not strictly induce

non-negativity in our method, it highly enforces embed-

dings to have high non-negativity values, as we demon-

strate in Sect. 4.4.

Other approaches also have been proposed to increase

interpretability for Knowledge Graph embeddings. Authors

from [5] regularize embeddings incorporating additional

entity co-occurrence statistics from text data, thus inducing

interpretability in the embeddings. [12] extract weighted

Horn rules from embeddings to interpret them. In the area

of word embeddings, different authors proposed various

models for modelling sparse word-embeddings [23, 34].

A common approach to introduce sparsity in machine

learning models is to apply the l1 regularization to the

training process. However, the online optimization with

stochastic gradient descent (SGD) cannot produce sparsity

for the l1 regularizer making it a non-trivial task. To

overcome such an issue, we propose to use the generalized

Regularized Dual Averaging (gRDA) algorithm [6], which

can produce l1 regularized embeddings in an online

learning setting. We are, to our knowledge, the first to

propose a sparse Knowledge Graph Embedding (KGE)

solution without any external knowledge.

To conduct our study, we propose the RESCAL model

and introduce the l1 regularizer into the embeddings

applying gRDA. We perform experiments to evaluate both

the performance and interpretability of the embeddings.

We test the embeddings on the link prediction task and

compare the performance to the other models. Further-

more, we evaluate the interpretability based on the word

intrusion task. Results demonstrate that our approach

remains competitive on link prediction while improving the

interpretability of the learned embeddings.

In summary, our main contributions are:

• Presenting the first sparse linear KGE model, sRES-

CAL, that increases interpretability and remains com-

petitive with the state-of-the-art;

• Adapting the online optimization algorithm generalized

Regularized Dual Averaging to an unknown setting and

showing its efficiency;

• an extensive evaluation and comparison between dense

KGE models and sRESCAL.

2 Related work

The literature has widely studied the representation of

KG’s entities and relations as continuous vectors in a low-

dimensional space. We first review works that produce

embeddings based on tensor decomposition methods which

are of primary interest to our approach. Then, we present

different techniques for interpreting KG embeddings.

2.1 Knowledge graph embedding models

Various tensor factorisation models for link prediction

have been proposed in the literature:

RESCAL [25] is a bilinear model which associates

entities with a vector that captures latent semantics. Rela-

tions are represented as matrices that model pairwise

interactions between the latent factors.

DistMult [44] is a specific case of RESCAL where

relations are diagonal matrices. Therefore, relations only

capture pairwise interactions between the same dimen-

sions. While this model requires fewer parameters, it can-

not model asymmetric relations because of its diagonal

property.

ComplEx [37] is an extension of DistMult which outputs

complex-valued embeddings. This property makes the

model asymmetric, improving the performance in non-

symmetric relations.

TuckER [2] is a linear model based on the Tucker

decomposition [38] and previous linear models can be

interpreted as special cases of this. Its power relies on a

core tensor which allows multi-task learning by sharing

knowledge between entities and relations.

Other models or variations on tensor factorisation such

as DUality-induced RegulArizer (DURA) [45], CP

decomposition [17], ComplEx [37], KGFP [26], knowl-

edge-driven regularizers for embedding learning [22] or

SeAttE [20] are also worth mentioning. Additionally, the

survey [21] provides a complete overview of the different

models and techniques, and [29] offers a comparative

analysis of the approaches.

All of these are based on tensor factorisation techniques

and produce distributed representations. However, unlike

our model, they do not introduce sparsity in the embed-

dings, and the semantic meaning of the representations’

dimensions is less understandable. Furthermore, our

method could be adapted to different models since it relies

on the optimisation process rather than the factorisation

itself.
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2.2 Interpreting knowledge graph embeddings

Authors in the literature have proposed different methods

for interpreting KGEs. In [5] authors induce interpretability

in the embeddings by adding a measure of coherence as a

regularisation term of the overall loss function using

additional entity co-occurrence statistics from the text. The

coherence measure allows automated evaluation of the

quality of topics learned by topic modelling methods by

using additional Point-wise Mutual Information (PMI) for

word pairs. In [12], authors adopt ‘‘pedagogical approa-

ches’’ to interpret KGEs and extract weighted Horn rules to

increase their interpretability. In the work [3], authors

present a model that does predict links and decides whether

it is a ‘‘topical’’ or a ‘‘social’’ link. A different work, [43],

presents a translational model (ITransF) which learns

associations between relations and concepts via sparse

interpretable attention vectors. Authors in [9] use the

topological properties of a network to explain the contri-

bution of particular categories of features in link predic-

tion. In the work [11] authors improve KGEs using

background taxonomic information. Finally, in [1] authors

analyse the latent structure and semantic meaning of KGEs

based on theoretical interpretations of word embeddings.

While all of these works try to increase the interpretability

of link prediction in Knowledge Graphs, several properties

differentiate our approach: it directly increases the inter-

pretability in the embeddings, the process is done at

training time, and it does not use external knowledge in the

process.

Not only methods for interpreting KGEs, but different

approaches for improving KG-related tasks and techniques

were proposed in the literature. In [40], the authors propose

an ensemble framework to enhance the robustness and trust

of knowledge graph completion. Authors in [39] consider a

Bayesian reinforcement learning paradigm to harness

uncertainty into multi-hop reasoning; in this manner, the

method improves interpretability and performance in the

task. Authors in [46] incorporate external knowledge with

explicitly syntactic and contextual information for the task

of aspect-based sentiment analysis.

Techniques for interpreting word embeddings by spar-

sity mechanism have also been proposed. In [23], authors

apply a sparse non-negative matrix factorisation model to

produce word embeddings. In the work [10], they use

sparse coding techniques to derive sparse word embeddings

from dense word representations. Similar to our work,

authors from [35] modify the Continuous Bag of Words

model and add the l1 regulariser in online training by

employing the Regularized Dual Averagaging method.

Authors in [34] present a k-sparse denoising autoencoder to

produce a sparse non-negative high dimensional projection

of word embeddings. Finally, [27] produce word embed-

dings by an underlying LDA-based generative model,

which helps to generate sparse vectors. These approaches

are closer to the approach presented in this work since they

produce sparse embeddings. However, they all focus on

word embeddings which are developed differently. Our

approach works on tensor factorisation techniques that can

not be used to build word embeddings.

3 Sparse tensor factorization

This section presents our approach for applying the l1
regularization to the RESCAL model via the gRDA opti-

mization algorithm. First, we introduce the background and

the RESCAL model itself, then describe the details of the

approach. The same technique can be applied to other KGE

models such as TuckER or DistMult.

3.1 Background

Let E denote the set of all entities and R the set of all

relations present in a knowledge graph. We denote the

collection of triples in a KG as D and each triple is rep-

resented as ðes; r; eoÞ 2 D, with es; eo 2 E denoting subject

and object entities respectively and r 2 R the relation

between them.

In the link prediction task the objective is to learn a

scoring function / which scores, s ¼ /ðes; r; eoÞ 2 R,

whether a triple is true or false. To complete the task, we

observe a subset of all true triples, aiming to score all the

missing ones correctly. In this work, we only consider

scoring functions given by a tensor factorization technique,

e.g., RESCAL.

3.2 RESCAL model

The RESCAL model [25] is a relaxed version of the

DEDICOM [13] matrix factorization method, which

decomposes a matrix into two matrices that provide an

asymmetric relation between entities.

In the case of KGs the tensor is three-mode, therefore

the original tensor X 2 Rne�ne�nr , is decomposed by

RESCAL into an entity matrix A 2 Rne�d and k relation

matrices Rk 2 Rd�d where ne represents the number of

entities in the KG and d is a hyperpameter for the

embedding dimensionality. Thus, the k-th slice of the ten-

sor is factorized as

X k � ARkA
T ; for k ¼ 1; :::; nr ð1Þ

where nr is the number of slices (relations) in the tensor.
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RESCAL is a latent feature model which scores triples

by the interaction of the latent features of the subject and

object entities. The scoring is given by

/ðes; r; eoÞ ¼ eTs Rkeo; ð2Þ

where es; eo 2 Rd are respectively the subject and object

embeddings from the entity embedding matrix E (A in

Eq. 1), and Rk is the asymmetric relation matrix corre-

sponding to the k-th relation in the KG.

3.3 Sparse RESCAL

We aim to introduce sparsity into the embeddings via l1
regularization. As we know, the l1 regularization applies a

penalty in the learned weights, which makes them push

towards 0, leading to finding sparse solutions for the

embeddings.

The RESCAL model was originally [25] optimized

using the Alternating Least Squares (ALS) method. Nev-

ertheless, different works have pointed out that newer

training techniques improve model performance [15, 18].

Furthermore, in a recent work [30] that provides an

extensive analysis on KG models and their training pro-

cesses, authors present the Adam [16] method to be the best

for training RESCAL. However, as Adam is a stochastic

gradient descent (SGD) extension, it can not produce

sparse solutions directly applying l1 regularization to the

loss function. The minor updates which SGD makes in the

vectors’ values difficult the output of many zero entries [8],

i.e., it is quite challenging to get two float numbers to add

up and equal zero. To overcome this issue, we propose

using generalized Regularized Dual Averaging (gRDA) for

optimizing the RESCAL model with sparse constraints.

gRDA is itself a generalization of the RDA algorithm for

sparse neural networks [42], which can be very useful for

sparse online learning with l1 regularization as it can

explicitly exploit the regularization structure. In each iter-

ation of the RDA algorithm, the weights of the model are

updated, taking into account not only the loss function but

also the whole regularization term introduced to achieve

the sparsity.

To apply l1 regularization to our model, we first update

the RESCAL model’s loss function:

LsRESCAL ¼ LRESCAL þ k
X

w2W
fjjwgjj1 ð3Þ

where k is a hyperparameter that controls the importance of

the regularization term.

We follow the same training procedure as [2]. We apply

the data augmentation method used by [7] adding recip-

rocal relations for every triple in the dataset. We also use 1-

N scoring, i.e., we score all entity-relation pairs fðes; rgÞ
and the corresponding inverse fðeo; r�1gÞ with every entity

e 2 E. We use the Binary Cross Entropy (BCE) loss

function:

LRESCAL ¼ � 1

ne

Xne

i¼1

fðyi logfðpigÞ þ fð1� yigÞ logfð1� pigÞgÞ;

ð4Þ

where p 2 Rne is the vector of predicted probabilities and

y 2 Rne is the binary label vector.

3.4 Optimization

In gRDA, at each iteration, the learning weights are

adjusted by solving a simple optimization problem that

involves the running average of all past subgradients of the

loss function. Its update rule is the following:

wnþ1 ¼ argmin
w2Rd

wT �w0 þ c
Xn

1¼0

Df ðwi; Ziþ1f gÞ
 ( )!(

þ g ðn; cf gÞP wð Þ þ F wð Þg
ð5Þ

where c is the step size, PðwÞ is the penalty function, FðwÞ
is a deterministic and convex regularizer which stabilizes

the optimization process in the same manner as proposed in

[32] and gfðn; cgÞ is a deterministic non-negative function

of n; c. Notice that RDA is a special case of gRDA where

gfðn; cgÞ ¼ nc and w0 ¼ 0.

Since we want to apply the l1 regularization to the

RESCAL model, we follow the same criteria given by [6]

for gRDA-l1. We set the strongly convex function FðwÞ ¼
1
2
fjjwgjj22 and the penalty function to be PðwÞ ¼ fjjwgjj1.

We also follow the function

gðn; cÞ ¼ cc
1
2ðnc� t0Þlþ; ð6Þ

which is conjectured by authors to be a universal formula

for applying gRDA-l1 in difficult tasks. In Eq. 6, c ¼ c and
l are hyperparameters and t0 � 0 is the time mean

dynamics. Furthermore, l is the trade-off hyperparameter

between accuracy and sparsity.

Following the stochastic mirror descent representation

of gRDA (see [6] Section 2) and given FðwÞ ¼ 1
2
fjjwgjj22,

we can use the closed-form proximal operator of

gðn; kÞPðwÞ [28], for j ¼ 1; 2; :::; d,

DW�
n;c;jðvÞ ¼ sgnðvjÞ � fðfjvjgj � gfðn; cgÞgÞþ; ð7Þ

which will serve as our penalty function P for gRDA-l1.

Thanks to the closed-form proximal operator, the compu-

tational cost per iteration in the stochastic mirror descent

gRDA is as cheap as SGD.

We present the algorithm for optimizing the sparse

RESCAL model (sRESCAL) in Algorithm 1. We first

initialize the weights of the entity and relation matrices (for
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each slice) E;Rk. Then, for each triplet n in the training set

D, we update the accumulator of gradients v by applying

Eq. 6. Finally, we set the weights by following the update

rule in Eq. 7.

Algorithm 1 gRDA-l1 algorithm for sparse RESCAL
Input: D
Initialize: e,∀e ∈ A,w,∀w ∈ R
for n in D do

t ← update time of triple n
accumulate gradients
v := cγ

1
2 (nγ − t)µ+

for j = 1 to d do
wj+1 := sgn(vj) · ({ v } − γΔf{(wj ; Zj+1}))

end for
end for

4 Experiments

In this section, we analyze the performance in the link

prediction task and the interpretability of the proposed

algorithm. We compare our sparse model with several

dense model baselines. First of all, we describe the datasets

and the setup used for the experiments. Then, we study the

link prediction task and compare our model with the state-

of-the-art dense models. Finally, we analyze the inter-

pretability of the model using the word intrusion task.

4.1 Datasets

The datasets used for the evaluation are the following (see

Table 1):

• FB15k [4] is a subset of the Freebase database which

contains facts about the world.

• FB15k-237 [36] is a better-suited version of FB15k

where the inverse of many relations was removed to

increase the difficulty.

• WN18 [4] is a subset of WordNet, a hierarchical

database containing lexical relations between words.

• WN18RR [7] is a better-suited version of WN18 where

the inverse of many relations was removed to increase

the difficulty.

Both datasets were created for the link prediction task.

4.2 Implementation details

We open source the PyTorch implementation of the

sRESCAL model on GitHub1.

We select the hyper-parameters using random search by

validation set performance. For FB15k and FB15k-237, we

select the entity and relation embedding size from 128,

248, 512. Embedding size for WN18 and WN18RR is

chosen from 50, 100, 200 due to the small number of

relations in the dataset. Additionally, we apply batch nor-

malization [14] and dropout [33] to ease the training pro-

cedure. We choose the dropout value in the range (0.1, 0.5)

for every dataset. The learning rate is selected within the

range (0.1, 0.9) also for both datasets as we observed high

learning rate values necessary to overcome local minima.

We set c to 0.00005 since we found it to be a suitable value

for the starting sparsity in the embeddings. We choose l in

the range (0.6, 0.8) where high values correspond to higher

sparsity in embeddings. We analyze the impact of l in the

following subsections. Finally, the batch size is selected

from 248, 512, 1028. The best hyperparameters for each

dataset are presented in Table 2.

4.3 Link prediction

For the evaluation of the link prediction task, we create all

possible candidate triples by adding every entity in E to the

test entity-pair, then we use our model to score and rank

each of the candidates. We apply the filtered setting where

all known true triples in the Knowledge Graph D are

removed from the candidate set. We use the standard

metrics for the task: mean reciprocal rank and hits@k, k 2
1, 3, 10. Mean reciprocal rank is the average of the inverse

of the mean rank assigned to the true triple overall candi-

date triples. Hits@k measures the percentage of times a

true triple is ranked within the top k candidate triples.

We present the link prediction results in Table 3.

Although sRESCAL does not outperform the state-of-the-

art models, it does remain competitive while finding more

interpretable and sparse solutions (see Sect. 4.4).

Regarding the simplest versions of the datasets, in

WN18, sRESCAL achieves high results on every metric

and gets close to the other models. For FB15k, sRESCAL

suffers the same phenomena as the standard RESCAL

model. The performance on the dataset is considerably

lower when compared to other models. We argue that this

happens due to not finding the optimal hyperparameters for

the dataset. Results from [30, 41] also provide low values

for RESCAL in such dataset. However, as we will see next,

in the more challenging version of the dataset, FB15k-237,

Table 1 Datasets for link

prediction and their number of

entities and relations

Dataset j E j j R j

FB15k 14,951 1345

FB15k-237 14,541 237

WN18 40,943 18

WN18RR 40,943 11
1 https://github.com/unai-zulaika/sRESCAL. Code will be available

when the paper is published
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RESCAL, and sRESCAL provide significantly better

results, being two of the strongest models overall.

Regarding the most challenging datasets, sRESCAL

achieves fantastic results, being competitive in every

metric. Our model equates DistMult and is close to Com-

plEx performance-wise in the WN18RR dataset and stays

close to the state-of-the-art model, TuckER, by less than 4

points in the metrics. For FB15k-237, sRESCAL outper-

forms both DistMult and ComplEx by a significant margin

in every metric. Furthermore, the performance almost

equals RESCAL and TuckER providing fantastic results on

every metric.

While the performance of sRESCAL remains competi-

tive to other models, it does also achieve high sparsity and

interpretability levels. Thus, we present sRESCAL as a

valid and robust model for the link prediction task. Fur-

thermore, as stated before, the induction of sparsity in the

resulting embeddings will increase their interpretability by

raising semanticity in their latent dimension. The increase

of interpretability is further analyzed in Sect. 4.4 and the

outcome is observable in Table 6. However, the introduc-

tion of sparsity to the embeddings does also have a

penalization on performance. Thus, we analyze the tradeoff

between sparsity, thus interpretability, and performance.

4.3.1 Sparsity and performance trade-off

The trade-off between the sparsity level and performance

in the embeddings is a crucial aspect to study. sRESCAL is

a flexible model that can be tuned to increase or decrease

its sparsity levels and, thus, its performance.

Since sRESCAL uses the gRDA-l1 optimization algo-

rithm, sparsity is defined by hyperparameters c (initial

sparsity level) and l, which defines the penalization

applied to the learning weights. By tuning those hyperpa-

rameters, we can achieve the sparsity level we want at the

cost of lowering the final performance of the model. To

demonstrate the variation on those hyperparameters, we

present different metrics: (a) mean rank value, (b) Dis-

tRatio (an interpretability metric based on the word

Table 2 Best hyperparameters for sRESCAL for datasets where: LR
denotes learning rate, l is the trade-off hyperparameter between

accuracy and sparsity, c is the hyperparameter controlling the starting

sparsity value, de and dr correspond to the entity and relation

embedding size, d#k; k 2 f1; 2; 3g are the dropout values applied on

the subject entity embedding, relation matrix, and subject entity

embedding after it has been transformed by the relation matrix

respectively, and LS is the label smoothing

Dataset LR l c de dr d#1 d#2 d#3 LS

FB15k 0.2 0.65 0.00005 248 128 0.36 0.4 0.4 0.17

FB15k-237 0.2 0.65 0.00005 248 128 0.36 0.4 0.4 0.17

WN18 0.9 0.4 0.00005 200 50 0.36 0.4 0.4 0.17

WN18RR 0.9 0.4 0.00005 200 50 0.36 0.4 0.4 0.17

Table 3 Results in link

prediction
RESCAL DistMult ComplEx TuckER sRESCAL

FB15k MRR .64 .84 .83 .79 .38

Hits@10 .82 .90 .89 .89 .55

Hits@3 .70 .86 .85 .83 .42

Hits@1 .54 .80 .80 .74 .29

FB15k-237 MRR .35 .24 .24 .35 .34

Hits@10 .54 .41 .42 .54 .52

Hits@3 .39 .26 .27 .39 .37

Hits@1 .26 .15 .15 .26 .25

WN18 MRR .94 .94 .95 .95 .89

Hits@10 .95 .95 .95 .95 .94

Hits@3 .95 .94 .95 .95 .92

Hits@1 .94 .93 .94 .95 .87

WN18RR MRR .46 .43 .44 .47 .43

Hits@10 .51 .49 .51 .52 .49

Hits@3 .48 .44 .46 .48 .45

Hits@1 .43 .39 .41 .44 .39

Bold numbers indicate the best performance across models
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intrusion task) value and (c) sparsity percentage for dataset

FB15k-237 in Fig. 1. We provide results on different val-

ues of l while fixing every other hyperparameter (we also

fix c since we found the value 0.0005 to be the most

optimal for sRESCAL in every case).

Results show a clear trade-off between l, thus the

sparsity level of the solution, and the final results on both

Fig. 1 Results on FB15k-237

for fixed hyperparameters

except l
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performance and interpretability. Figure 1a presents a dif-

ference between l values where high values, 0.85 and 0.65,

achieve worst results on mean rank when compared to the

lower, 0.25, 0.45 values. However, we find that l ¼ 0:65

remains competitive to lower values as the difference in the

mean rank is quite small. Furthermore, when revising the

interpretability metric DistRatio (further explained in next

subsection) in (b), the difference between the most inter-

pretable models with high l values is evidenced. As

expected, solutions with a high l value achieve good

results on DistRatio while those with low l perform worse.

This fact is directly related to the sparsity level of the

solution, which is shown in (c), where high l valued

solutions have higher sparsity levels. As we stated, gRDA

allows sRESCAL to be a model that obtains high sparsity

values and improves its interpretability2. Nevertheless, this

comes with a trade-off on the standard link prediction

performance metrics such as mean rank, lowering the

model’s performance on those but raising the inter-

pretability of the outcome embeddings.

4.4 Interpretability

In this section, we analyze the interpretability of our sparse

model compared to the dense state-of-the-art models. In the

same manner as [10, 23], we perform experiments on the

word intrusion task to evaluate the interpretability of our

model. For this section, we only consider the datasets

FB15k-237 and WN18RR due to their difficulty and the

fact that they are the standard datasets in the current

literature.

The word intrusion task evaluates coherence regarding

the semantic meaning in each dimension belonging to the

representations. Since sparse models create embeddings

with only a few dimensions activated, i.e., the value is not

0, each dimension should correspond to a meaningful

semantic concept. The task works in the following way: for

each dimension i of the embeddings, it finds the k (k 2 N)

most relevant Knowledge Graph entities, which are those

that have the highest values in the corresponding dimen-

sion. Then, a non-relevant Knowledge Graph entity (one

that has a low value in the corresponding dimension) is

chosen, and it is combined with the top-k entities to create a

set of k ? 1 entities for dimension i. We refer to the non-

relevant Knowledge Graph entity as the intruder, and we

seek to identify it. An example set of entities for k ¼ 5:

{Screenwriter, Film director, Film producer, Television

producer, Actor, Erie} where Erie is the intruder entity

since it is a city and does not belong to the TV and film

industry. Human annotators usually perform the word

intrusion task; however, we adopt the automatic version of

the task presented in [35]. In this version, the DistRatio

evaluation metric is applied. The idea is that to find the

intruder entity automatically, its distance to the top-k

entities should be high. We measure the distance ratio

between the intruder entity and the top-k entities to the

distance between the top-k entities themselves. High ratio

values mean better interpretability levels because the

intruder entity is far (in the embedding space) from the top

words (which are close due to their semantic meaning).

The metric can formally be presented as:

DistRatio ¼ 1

d

Xd

i¼1

InterDisti

IntraDisti
ð8Þ

Table 4 Sparsity, DistRatio, and

negativity results for FB15k-

237

Entity Relation

Model Sparsity DistRatio Negativity Sparsity DistRatio Negativity

Rescal 0 .056 .464 0 .052 .499

TuckER 0 .055 .509 0 .059 .503

sRESCAL .684 .067 .094 .954 .047 .022

Bold numbers indicate the best performance across models

Table 5 Sparsity, DistRatio, and

negativity results for WN18RR
Entity Relation

Model Sparsity DistRatio Negativity Sparsity DistRatio Negativity

Rescal 0 .051 .499 0 .061 .498

TuckER 0 .050 .507 0 .058 .508

sRESCAL .275 .053 .335 .436 .066 .280

Bold numbers indicate the best performance across models

2 gRDA can be reduced to RDA by setting gðn; cÞ ¼ nc and w0 ¼ 0,

which at the same time is an un-penalized version of SGD as setting

PðwÞ and FðwÞ ¼ 1
2
fjjwgjj2w. In such a case, we could convert

sRESCAL into RESCAL itself.

794 Neural Computing and Applications (2023) 35:787–797

123



IntraDisti ¼
X

wj2topkðiÞ

X

wj 2 topkðiÞ
wk 6¼ wj

distðwj;wkÞ
kðk � 1Þ ð9Þ

InterDisti ¼
X

wj2topkðiÞ

distðwj;wbiÞ
k ð10Þ

where topkðiÞ denotes the top-k entities corresponding to

dimension i, wbi denotes the intruder entity for dimension i,

distðwj;wkÞ is the distance between entities wj and wk,

IntraDisti is the average distance between the top-k entities

on dimension i and InterDisti denotes the average distance

between the intruder entity and top-k words on dimension i.

We set k ¼ 5 and the distance function to be the Euclidean

distance.

We present the interpretability results on FB15k-237

and WN18RR in Tables 4 and 5 respectively. We provide

sparsity percentages, DistRatio and negativity percentages

for entities and relations for sRESCAL, RESCAl and

TuckER models. sRESCAL achieves the best results on

DistRatio for both datasets, except in relations for FB15k-

237, while maintaining high sparsity values. Both

RESCAL and TuckER do not have any sparsity level since

they are optimized using the Adam method. Furthermore,

our experiments demonstrate the effectiveness of sparsity

for developing more interpretable embeddings. Moreover,

we present results on negativity since gRDA-l1, while not

constraining to positive values, enforces non-negativity on

embeddings. Positivity is an important characteristic for the

interpretability of the embeddings since human people do

not describe a concept by what is not. Besides, positivity

allows to perform additive combinations and create repre-

sentations from differents parts [19, 23]. Results present

sRESCAL as a highly non-negative method when com-

pared to RESCAL and TuckER, improving interpretability

in the embeddings.

We also provide a qualitative evaluation of the inter-

pretability results. We select the top 5 words of a few

dimensions in RESCAL and sRESCAL and present them in

Table 6. While the top 5 words provided by the standard

RESCAL model do not have any coherence or semantic

meaning, the sRESCAL model gets clear topics. From the

first row to the fifth: dog breed, films, actors and directors,

music topics (instruments), and basketball teams.

5 Conclusion

In this work, we present a novel technique for learning

sparse Knowledge Graph Representations. The approach

uses the generalized Regularized Dual Averaging online

optimization algorithm and applies the l1 regularization

into the RESCAL model. The experiments demonstrate

that the sparse RESCAL remains competitive with the

state-of-the-art while achieving high sparsity and non-

negativity in the embeddings. We prove that gRDA-l1 can

effectively be applied to RESCAL and other tensor fac-

torization models. This fact provides the opportunity to

increase the interpretability in the link prediction task from

the core elements used to perform it, the embeddings.

Furthermore, the results in the word intrusion task show

that the model’s interpretability is effectively improved.

The developed embeddings contain a higher semantic

coherence and are more understandable for people. In the

future, we consider to extend gRDA-l1 to other tensor

factorisation models.
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Table 6 Top 5 words of some

dimensions in RESCAL and

sRESCAL

Model Top-5 words

RESCAL Condition, device, fastener, quality, computer

Mammal family, unpleassant person, masculinization, photograph, process

Break, city, asterid dicot genus, right, meaning

Decoration, tract, mining, magic, improvement

Rescue, touch, ethnic group, stay, stand

sRESCAL Bulldog, Golden Retriever, Labrador Retriever, Yorkshire Terrier, German Shepherd

Finding Neverland, Showgirls, Remember the Titans, Cry Freedom, Shadowlands

Woody Allen, Christopher Hitchens, George Carlin, Harold Pinter, Oliver Stone

Electronic keyboard, Percussion, Electric guitar, Acoustic guitar, Guitar

Miami Heat, Orlando Magic, San Antonio Spurs, Chicago Bulls, Boston Celtics
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