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Abstract
In the era of Big Data, many scientific disciplines and engineering activities rely on cumulative databases, consisting of

many entries derived from different experiments and studies, to investigate complex problems. Their contents can be

analysed with much finer granularity than with the usual meta-analytic tools, based on summary statistics such as means

and standard deviations. At the same time, not being primary studies, also traditional statistical techniques are not adequate

to investigate them. New meta-analysis methods have therefore been adapted to study these cumulative databases and to

ensure their validity and consistency. Information theoretic and neural computational tools represent a series of comple-

mentary techniques, which can be deployed to identify the most important variables to analyse the problem at hand, to

detect whether quantities are missing and to determine the coherence between the entries provided by the individual

experiments and studies. The performances of the developed methodologies are verified with a systematic series of tests

with synthetic data. An application to thermonuclear fusion proves the capability of the tools to handle real data, in one of

the most complex fields of modern physics.
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1 Introduction: meta-analysis and the era
of Big Data

The progress of scientific knowledge is based on peer

review and reproducibility of experiments. Repetition of

studies is therefore intrinsic to the scientific process.

Indeed, professional researchers know very well that it is

very difficult, if not impossible, to reach definitive con-

clusions and address complex problems with a single

investigation. Consequently, collective knowledge in sci-

ence is consolidated in two major steps: (a) cumulating

individual studies and experiments and (b) the organisation

of facts and data in models and theories. The present work

aims at contributing to the transition between these two

phases in the era of Big Data. It is therefore a contribution

to research synthesis [1] and in particular to Meta-Analysis

(MA) [2, 3] but with a specific angle (see later).

Meta-analysis can be defined as the statistical synthesis

of results from a series of different studies. From a his-

torical perspective, the first meta-analytic publication can

be considered the collation of data from several studies of

typhoid inoculation by K. Pearson [4]. The 1940 paper

Extrasensory Perception After Sixty Years, by Duke

University psychologists J. G. Pratt and J. B. Rhine, is the

first meta-analysis of all conceptually identical experi-

ments, carried out by independent researchers on a specific

issue [5]. Even if today the main applications of systematic

reviews are probably in the health sciences (particularly

epidemiology in the last years), meta-analysis papers on

medical treatments were not published before the second

half of the fifties. More sophisticated treatments were

indeed motivated by problems in education, and the term

meta-analysis was coined in 1976 by the statistician G.V

Glass [6].

Coming to technical aspects and motivation, when

multiple scientific studies have been performed to address
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the same question, meta-analysis is a statistical set of

techniques aimed at combining their results, to reach more

solid conclusions. The inadequacies of the original inves-

tigations are limited statistical evidence and uncertainties

in the data or any form of artefact effects, ranging from

poor design to sampling errors. The main idea behind

meta-analysis consists of taking advantage of statistical

methods to derive pooled estimates, better approximating

the underlying common truth.

Existing methods for meta-analysis have been conceived

to provide a weighted average of the summary statistics,

such as means and standard deviations, already derived in

the individual studies. The main differences between these

techniques relate to the methods for allocating the weights

and to the procedures to associate the confidence intervals

to the obtained point estimates [7]. The key benefit of

meta-analysis is the aggregation of information, which

typically results in higher statistical powers and more

reliable point estimates, compared to those that are possible

to derive from any individual study. In addition to this

main objective, MA techniques can also provide other

interesting outputs, such as contrasting different studies

and identifying file drawer problems [8]. The importance of

meta-analysis today can be appreciated by the scheme of

ranking evidence GRADE, constructed by the Grading of

Recommendations Assessment, Development and Evalua-

tion Working Group, nowadays used by more than 50

organisations worldwide [9]. Meta-analysis and systematic

reviews are ranked even above Randomised Control Trials

(RCT), once considered the gold standards of scientific

investigations.

The incredible developments in sensors, data acquisi-

tion, storage and computational power allow nowadays to

build databases of different nature than the ones combined

by traditional MA. In particular, in many fields, namely the

physical sciences and engineering, it is possible to have

access to the original entries, the individual results of the

experiments, and not only to their summary statistics.

These collections of data are not primary studies, because

they contain data from different experiments. At the same

time, they are not the traditional subject of meta-analysis

either, because they are not limited to the summary

statistics of the individual studies. For lack of a better

name, these databases, consisting of individual entries,

coming from different primary experiments or studies

without any statistical manipulation, will be called ‘‘cu-

mulative databases’’ in the rest of the paper. It is possible

to argue that some of these cumulative databases were used

at the beginning of modern science in the seventeenth

century, particularly in the development of the heliocentric

view of the solar system and the formulation of the Kepler

laws.

Since the results of individual experiments, and not

summary statistics, are available, these cumulative data-

bases have been typically analysed with the techniques of

traditional statistics and not meta-analysis. It is the basic

contention of this work that such an approach is insufficient

and can result in completing misleading conclusions. On

the contrary, a series of checks can be applied to the results

of the individual experiments, to improve the entire infer-

ence process. Such a task requires developing new tech-

niques to perform meta-analysis analysis at the lower level

than traditional methods: at the level of the individual

entries and not summary statistics. This additional level of

meta-analysis is indispensable, to take full advantage of the

information available at the level of individual entries

without being misled.

In more detail, the checks to be performed, when deal-

ing with cumulative databases, relate mainly to three

aspects: the selection of the most suitable quantities to

analyse a certain phenomenon, the assessment of the data

consistency and the evaluation of the final results. The

main objective of this work is indeed to propose a

methodology and a series of tools, to perform quality

checks on the quantities included in the databases available

and their coherence. None of these aspects is properly

addressed neither by traditional statistics nor by usual

meta-analysis techniques. Only psychometric meta-analy-

sis deals with some of these issues but with a much more

limited scope, as will be discussed in more detail in

Sects. 6 and 7 [10]. The developed techniques can be

considered a preliminary step to any form of actual sci-

entific exploitation, be it meta-analysis, modelling or

causality detection. They basically apply a meta-analytic

mind-set to the entries derived from primary but different

experiments. Neglecting this preliminary phase can often

compromise the entire inference process. To fix the ideas,

the discussion in the following is particularised for the case

of regression, probably the most interesting from a scien-

tific perspective.

With regard to the structure of the paper, next section

presents the main rationale behind the importance of and

the issues posed by cumulative databases for sound

research synthesis. The main families of techniques,

refined and deployed for their analysis, are described in

Sect. 3 and Sect. 4; they are information theoretic tools and

neural networks respectively. The potential of the proposed

approach is substantiated in Sect. 5, with examples from a

battery of systematic numerical tests performed with syn-

thetic data. Section 6 is devoted to discussing the very

important practical issue of overfitting due to spurious

regressors. This problem can compromise the conclusions

derived from a naı̈ve application of traditional model

selection criteria, but can be efficiently addressed with the

methodology proposed in this paper. A quite challenging
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real time example from Big Physics, namely thermonuclear

fusion, is reported in Sect. 7. This example shows the

importance of performing meta-analysis at the level of the

individual experiments, when dealing with cumulative

databases. The conclusions are drawn in the last section of

the paper.

2 The issues posed by cumulative
databases: objectives of the analysis
and overview of the main tools

In this work, it is assumed that cumulative databases,

consisting of the collection of entries from different

experiments, have been built. This means that the data are

assumed to be already validated and that the basic infor-

mation about the various quantities, such as error bars and

calibration factors, are available for the entries corre-

sponding to each study or experiment. The difficulties and

subtleties related to the collection and validation of the

individual entries, though extremely important, are there-

fore not within the scope of the present discussion and

should be left to the scientists conducting the individual

experiments. It is also assumed that the objective of the

investigation is to determine the dependence of a quantity

Y, called the dependent variable, on a series of independent

quantities X1…Xn, also called regressors. The number of

individual studies, aggregated in the database (DB), is

indicated with the letter k.

At this level of database validation, the main aspects to

be addressed, for proceeding efficiently with the scientific

exploitation of the data, relate to the relevance and con-

sistency of the entries. In more detail, intuitively, prior to

the modelling and further analysis of the data, the fol-

lowing questions should be answered:

(1) Which are the most important quantities to analyse

the database?

(2) Are the quantities available sufficient to draw the

conclusions of the study or some essential informa-

tion is missing?

(3) Are the data from the various experiments or studies

sufficiently coherent to grant the aggregation of the

data?

In the rest of the paper, the tasks made explicit by these

questions will be called regressor selection, sufficiency and

global consistency, respectively. The first two have to be

assessed individually for each of the k studies included in

the cumulative database. Global consistency refers to the

coherence between the different studies.

The importance of regressor selection is probably

obvious. Among the quantities belonging to each experi-

ment or study in the database, it is essential to determine

which ones are really important to model the dependent

variable. Excluding quantities, which have spurious cor-

relations with the dependent variable, is essential to avoid

overfitting, as will be shown in more detail later. Suffi-

ciency consists of determining that the regressors, identi-

fied with the help of the feature selection tools, can

properly explain the trends of the dependent variable. It

should be noted that in many modern applications, linear

regression is not an option, because the phenomena to be

studied are typically nonlinear. Nonlinear versions of the

unexplained variance have therefore to be implemented.

Global consistency refers to the fact that criteria are needed

to avoid mixing apples with pears. Basically, it must be

verified that the same essential mechanisms are at play in

all the studies included in the cumulative database, prior to

extracting global models. To this end, it must first be

verified that the regressors in the individual studies are

sufficient to describe the dependent variable and that they

are the same in all studies. It should also be checked that

the dependence between the dependent and the indepen-

dent variables is not too heterogeneous (according to

quantitative criteria that will be specified later).

The proposed techniques, to answer the previously

mentioned fundamental questions, are covered in the next

sections. Profiting from the information in the original

entries, they basically perform a forensic activity prelimi-

nary to the starting point of traditional meta-analysis,

which assumes independent variables and effects sizes of

the primary studies as given. The tools developed belong to

two main classes; information theory and neural compu-

tation. Information theoretic quantities, such as Shannon

entropy and mutual information, are quite consolidated and

have been used in the past in many fields for the investi-

gation of nonlinear correlations between quantities. Neural

networks are powerful tools, which have witnessed many

successes in the last years and can be used profitably also

for the tasks identified in this work. It is worth pointing out

that the two families of tools are mathematically com-

pletely different. Their combination is therefore particu-

larly important because, if they provide coherent results,

the investigators are authorised to have much stronger

confidence in the conclusions.

3 Information theoretic tools
for the investigation of cumulative
databases

In this section, the main information theoretic techniques

implemented, to analyse large cumulative databases, are

introduced. First, purely information theoretic indicators,

which can be deployed directly on the data, are overviewed

(Sect. 3.1). They are first utilised for feature extraction, to

Neural Computing and Applications (2023) 35:469–486 471

123



select the most important independent variables in a data-

base to regress a certain dependent quantity; two different

approaches are introduced in Sects. 3.2 and 3.3. Then they

can also be adapted to determine the sufficiency of the

quantities in the DB to study the independent variable

(Sect. 3.4). The techniques proposed to assess the global

consistency are described (Sect. 3.5). The issue of assess-

ing the statistical significance of the indicators is addressed

in Sect. 3.6

3.1 Basic information theoretic quantities

The first information theoretic quantity [11], required to

implement the meta-analytic techniques proposed in this

work, is the Gibbs-Shannon entropy H:

HðXÞ ¼ �
X

x
PxlogPx ð1Þ

The higher the value of H, the higher the uniformity of

the corresponding probability distribution function, whose

values are indicated with Px.

The other essential and well understood quantity is the

Mutual Information (MI) [11]:

MIðX; YÞ ¼ �
X

x

X
y
Pxyln

Pxy

PxPy

� �
ð2Þ

where Pxy is the joint probability distribution function (pdf)

of the random variables X and Y. Being fully nonlinear,

contrary to the Pearson correlation coefficient, the MI is

well suited to extract, from a given database, the best

features, i.e. the best regressors Xi to reproduce the desired

dependent variable Y.

The third important information theoretic indicator, used

in the rest of the paper, is the conditional mutual infor-

mation, defined as:

CMIðX; Y jZÞ ¼ �
X

z

Pz

X
x

X
y
Pxyjzln

Pxyjz
PxzPyz

� �
ð3Þ

Alternative continuous versions of the just defined

quantities are available and do not entail any major diffi-

culty for the applications discussed in this work. In any

case, a detailed mathematical introduction and intuitive

explanation of these information theoretical concepts can

be found in [11].

3.2 Regressors selection for each individual
study in the DB: the conditional mutual
information approach

To investigate a database, the first step is the identification

of the most important regressors, i.e. the most important

quantities to regress the dependent variable. The first

regressor X1 to be selected is the one maximising the

mutual information between itself and the dependent

variable, MI (X1, Y). The following Xi regressors have to be

chosen with much more care, because they could have a

very high MI with the dependent variable only because

they are highly correlated with one or more previously

selected regressors. They could therefore be very redundant

and bring no additional information, even if they present a

high MI(Y, Xi). The quantity to maximise is therefore the

mutual information between the additional candidate

variable Xac, conditional on the regressors already selected.

Assuming that the n quantities X1…Xn have already been

identified as the most important independent variables, the

indicator to maximise to select the next one is:

CMIðY;XacjX1. . .. . .::XnÞ ð4Þ

The stopping criterion is easy to define; when

MIðY ;XacjX1. . .. . .::XnÞ becomes negligible, or negative,

for all the remaining variables of the database, only the

previously selected quantities have to be retained.

3.3 Regressors selection for each individual
study in the DB: the redundancy approach

The solution proposed in the previous subsection is quite

elegant, but it requires the evaluation of the conditional

mutual information, which is based on the estimate of

higher order probability distribution functions. When the

number of variables to condition on increases, this estimate

is affected by the problem typically called the curse of

dimensionality. The number of entries, required for reliable

density estimation, tends to diverge. The alterative pro-

posed in this subsection needs only the evaluation of the

mutual information between two quantities and can there-

fore become computationally preferable [12].

The first regressor X1 can be selected again simply by

maximising the mutual information between itself and the

dependent variable, MI (X1, Y). Again the following Xi

regressors have to be chosen with greater attention, because

they could be highly correlated with one or more previ-

ously selected regressors.

The technique, to choose the independent variables after

the first one, is based on the definition of redundancy RD

between a variable Xi and the set Sps of previously selected

ones Xj:

RDðXi; SpsÞ ¼
X

Xj2SPS

MIðXi;XjÞ ð5Þ

Therefore after the first, all the next regressors Xj

selected are the ones, which maximise the relevance RL

defined as:
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RLðXi; YÞ ¼ MIðXi;YÞ � RDðXi; SpsÞ
¼ MIðXi; YÞ �

X

Xj2SPS

MIðXi;XjÞ ð6Þ

When the relevance of a certain Xi is negligible or

negative, that quantity does not bring any additional

information and should not be included in the set of

regressors [12]. The relations between RD, MI and RL are

shown graphically in Fig. 1. The procedure to select the

best regressors can therefore be written in pseudo-code as

follows:

(1) For the first regressor, select the Xi with highest

mutual information with the dependent variable

MI(Xi,Y)

(2) For each of the following candidate regressors, select

the Xi with highest relevance RL (Xi,Y)

(3) Stop when the relevance becomes negligible or

negative for all the remaining candidate regressors

It is important to notice that the algorithm just described

requires only the calculation of binary mutual information

indicators and it is therefore numerically much more effi-

cient than the approach introduced in the previous

subsection.

3.4 Sufficiency of the regressors in each
individual study in the DB

The stopping criteria, introduced at the end of the last two

subsections, have been conceived to ensure that variables,

which do not contribute any additional information, are not

included in the list of regressors. This is very important, as

discussed in Sect. 6, because including ‘‘spurious’’ quan-

tities in the models can result in significant overfitting,

difficult to detect later in the analysis. On the other hand,

ensuring that redundant quantities are excluded does not

imply that the selected regressors are sufficient to fit the

dependent variable. Important information could be miss-

ing, due to the fact that additional quantities influence Y but

are not in the DB. To assess whether the candidate

regressors contain enough information to fit the dependent

variable, the algorithms proposed in Sect. 3.2 would sug-

gest to determine whether CMI(Y|X1,..Xn) is compatible

with the uncertainties of the DB entries. This means basi-

cally to verify that:

H Yð Þ � CMIðY jX1; ::XnÞ � HRes Yð Þ ð7Þ

where the residual entropy HRes (Y) quantifies the

remaining entropy due to the intrinsic uncertainty of the

dependent variable, once all the relevant regressors have

been taken into account.

In the case of the approach introduced in Sect. 3.3, one

should ascertain whether the following equality is valid:

HðyÞ �
X

Xi2SReg

RL Xi; Yð Þ ¼ H yð Þ �
X

Xi2SReg

ðMI Xi; Yð Þ

þ
X

Xj2SReg

MI Xi;Xj

� �
Þ

� HResðYÞ ð8Þ

where SReg is the set of the quantities selected as regressors

with the procedures described in the previous sec-

tion. Indeed, if all and only the important regressors have

been selected, and there are no quantities missing in the

database, the entropy left after considering the regressors

should be equal to the residual entropy HRes(Y), compatible

with the level of intrinsic uncertainty affecting the depen-

dent variable Y.

3.5 Global consistency

In the case of cumulative databases, in addition to the

relevance and sufficiency analysis, it is very important to

assess also the consistency of the dependencies in the

various experiments or studies. To this end, first the anal-

ysis described in the previous subsections should be par-

ticularised for each individual study, to verify that the set

of regressors is sufficient to model the dependent variables

in all of them. Moreover, it should also be checked that the

most relevant variables are the same, in the same order of

priority, in all the individual studies. Lastly, the coherency

between the dependencies is also to be considered. In this

perspective, it is very informative to calculate the mutual

information between the regressors and the dependent

variable, to assess whether they are consistent. To this end,

the mutual information indicators MI (Xi,Y) are expected to

be the same, within the confidence intervals, for all the

k individual studies included in the cumulative database.

The individual studies, which present significantly different

Fig. 1 A visual representation of mutual information and redundancy.

X1 is chosen first due to its high mutual information MI with Y. Given

the high redundancy RD between X3 and X1, X2 is chosen next, even

if its MI with Y is smaller, because its relevance RL is higher (as

shown in the last row)
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dependencies between the regressors and the dependent

variable, should indeed be considered separately or at least

adequate motivations should be adduced to keep them in

the global study.

3.6 Statistical significance of the indicators

The procedures, proposed in the previous sections, are well

established, being based on consolidated information the-

oretic quantities. Their properties are typically guaranteed

in the limit of an infinite number of examples. However, in

practice, the indicators cannot be calculated in ideal con-

ditions. Two aspects have to be taken into account when

dealing with experimental databases, namely that the

number of entries is limited and that the data can be

affected by various forms of noise. In the perspective of the

present work, the main consequence of these effects is that

they render potentially difficult the interpretation of the

numerical values of the calculated quantities (entropy,

mutual information etc.). To overcome this difficulty, two

different measures can be adopted, one for the calculation

of the entropy and one for the mutual information.

For the residual entropy, one has to assume that the

distribution function of the uncertainties is known. In this

hypothesis, the residual value of the entropy HRes is the one

due only to the intrinsic uncertainties affecting the

dependent variable (which can be due to noise, thermal

fluctuations or any other source). Therefore only the dif-

ference, between the entropy of the dependent variable and

the sum of the relevancies of the selected regressors, is the

quantity to be considered to assess sufficiency.

In the case of MI and CMI, a good practice consists of

calculating a sort of baseline value for the indicators, by

randomising one of the two quantities involved. The

obtained values are the reference MIRes and CMIRes,

against which to test the actual MI and CMI of the original

data. Only the difference between the mutual information

indicators and their residual values is statistically relevant.

For the quantification of the statistical significance, tradi-

tional goodness-of-fit tests can be deployed; the most

widely used are the Chi-squared, Anderson Darling and

Kolmogorov–Smirnov [13].

Examples and a more detailed discussion about the

inference process with information theoretic indicators, in

the presence of the typical practical limitations of the data,

are provided in Sects. 5 and 6.

4 Neural computational tools
for the investigation of cumulative
databases

Artificial Neural Networks (ANN) constitute a powerful

alternative to the checks based on the information theoretic

criteria presented in the previous section. In particular,

multilayer perceptrons, with at least one layer of nonlinear

activation functions, are known to be universal approxi-

mators (see Fig. 2). They can therefore be deployed to fit

the dependent quantity, using the potential regressors as

inputs. For the task in hand of assessing the consistency of

cumulative databases, they can be trained, in a supervised

way with traditional back propagation, to reproduce the

dependent quantity on the basis of the potential regressors

provided as inputs. The rest of this section is devoted to

describing in detail how they can be deployed, to address

the three issues of regressor selection, sufficiency and

global consistency. In Sect. 4.4, the practical aspects of

dealing with real data are discussed.

4.1 Regressors selection for each individual
study in the DB

To identify the best regressors, by minimising the redun-

dancy between them, the ANN can be trained to reproduce

the dependent variables with increasing number of inputs,

until adding regressors does not improve performance. In

detail, the following procedure can be implemented:

(1) For the first regressor, select the Xi which minimises

the output error of the networks, when they are

trained with only one input

Fig. 2 The architecture of a traditional ANN for the analysis reported

in the present work. The activation function of the neurons in the

hidden layers is the sigmoid. The activation functions of the neurons

in the input and output layers are linear functions
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(2) For each of the following regressors, select the Xi

that, if added to the previously selected inputs,

maximises the reduction in the output error, if

compared to the one obtained with the previous set

of inputs

(3) Stop when adding any of the remaining candidate

regressors to the input list does not result in a

statistically significant reduction of the output error.

To increase the confidence in the results, it is advisable

to implement the previous procedure also in reverse order.

To this end, the first network is trained with all the avail-

able candidate regressors and then one is excluded at the

time. The quantities, whose exclusion from the list of

inputs has no statistically significant detrimental effect on

the residuals, are considered not relevant and are elimi-

nated from the list of regressors. The procedure is contin-

ued until removing any additional independent variable

would result in an appreciable degradation in the network

performance.

For the quantification of the error statistical significance,

again traditional goodness-of-fit tests can be deployed [13].

In the studies reported in this paper, for clarity of

explanation, only some simple indicators, widely known

and used, are discussed. To this end, the training of the

networks is typically repeated N times, to obtain a statis-

tically relevant distribution of the results. This process is

repeated for any new variable candidate to be added to (or

eliminated from) the list of relevant regressors. The root

main square error of the residuals and their standard

deviations, obtained adding the new quantity are therefore

indicated as:

RMSEnew ¼ 1

N

X
i
RMSEnew;i;rnew

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i RMSEnew;i � RMSEnew

� �

N � 1

s

where RMSEnew,i is the RMSE of the fit using the set

including the additional candidate regressor. To evaluate

the impact of the new quantity on the dependent variable,

the quality of the residuals is to be compared with the one

obtained with all the previous regressors without the new

candidate. This impact can be quantified with the help of

the indicator Zscore,new:

Zscore;new ¼ RMSEprev � RMSEnewffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2prev þ r2new

q ð9Þ

where the subscript ‘‘prev’’ indicates the results obtained in

the previous step (i.e. the one without the new variable).

In the case the approach of subtracting, instead of add-

ing, one quantity at a time from the list of regressors is

adopted, and the indicator is calculated as:

Zscore;remove ¼
RMSEremoved � RMSEprevffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2prev þ r2removed

q ð10Þ

where RMSEremove is the RMSE of the fit using the set,

from which one candidate regressor has been removed

(overbars again indicate averages).

4.2 Sufficiency of the regressors in each
individual study of the DB

To determine whether the selected regressors are sufficient

to model the independent quantity, or whether additional

inputs would be necessary, again the level of output error

can be analysed. If a sufficient set of regressors has been

identified, the ANN should be able to reproduce perfectly

the dependent variable and the errors in the output should

be due only to the intrinsic uncertainties in Y (due to noise,

fluctuations etc.). If the level of noise is negligible, the

following R2 indicator should tend to 1:

R2 ¼ 1� RMSEAllselvar

r Yð Þ ð11Þ

where RMSEAll sel var indicates the root main square error

of the residuals for the complete set of selected variables.

Therefore R2 quantifies how much uncertainties in the

dependent variable are explained by the regressors.

In the eventuality, typically more relevant in practice,

that the uncertainties are appreciable, again more sophis-

ticated goodness-of-fit tests can be implemented to assess

the quality of the ANN output. The null distribution of

these statistical tests is calculated assuming that the outputs

are drawn from the reference distribution, the one of the

noise affecting the data in the present case. The goodness-

of-fit tests previously mentioned, or others equivalent, can

be deployed with this objective. Most goodness-of-fit tests

typically provide a Z score as output, which can be

expressed in such a way that the lower its value, the closer

the residuals to the pdf of the null hypothesis (the one of

the noise in our application). If the output, including all the

selected inputs, does not approximate sufficiently well the

noise statistics, additional quantities should be added to the

DB to model the dependent variable.

4.3 Global consistency

Again, the first step, in the assessment of the coherence

between the various contributions to a cumulative database,

consists of verifying that the k subsets of entries, provided

by the individual studies, satisfy the condition of suffi-

ciency in terms of the same set of regressors. These two

aspects, that the individual studies contain enough infor-

mation to explain the dependent variable in terms of the
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same regressors, are a natural outcome of the tools

described in the previous subsections. More delicate, as for

the case of the information theoretic tools, is to ascertain

consistency.

To test the consistency of the dependencies between the

regressors and the dependent quantity, a set of k networks,

each trained with the entries of an individual study, can be

deployed. They can then be given as input one regressor

scanned over its relevant range, while the other indepen-

dent variables are kept constant. This process is repeated

for each regressor and the values of the output stored. The

obtained outputs can then be compared, and if they do not

show the same trends, it is easy to determine which vari-

ables have a different effect on the output in the k indi-

vidual studies. The individual studies, whose independent

variables present a statistically significant different

dependence on the regressors than the rest, should not be

included in the global database without adequate justifi-

cations. This procedure is exemplified in Sect. 5.4.

4.4 Robust inference with neural computational
tools

The neural computational techniques previously described

are very powerful, but they are also completely data driven

and therefore are affected by the limitations and imper-

fections of the data available in practice. Not requiring the

identification of the data pdf, they are less demanding than

the information theoretic tools, in terms of the amounts of

data required to obtain reasonably robust conclusions. On

the other hand, of course, great care must be taken anyway

to ensure the quality of the results and of the inference

process. The most important way to achieve reliability

consists of adapting the procedures, used for ensembles of

classifiers [14]. The tools are to be deployed several times,

each one with slightly different data as inputs. The slightly

different datasets can be derived from the original DB by

the traditional tools of bagging or adding different reali-

sations of the noise [15]. The final quantities, to base the

inference process on, will then be appropriate summary

statistics of the individual results. Basically, it is sufficient

to verify that the estimates of the ANN present high values

of goodness-of-fit indicators, such as the R2. Again repre-

sentative examples and a more detailed discussion about

the inference process with neural computational tools, in

presence of the typical practical limitations in the data, are

provided in Sects. 5 and 6.

5 Examples and benchmarking
of the proposed techniques with synthetic
data

This section is meant to exemplify the potential of the

previously described procedures with the help of synthetic

data. The first subsection introduces the rationale behind

the choice of the cases described in detail. The following

three subsections report the results for the assessment of

the three main aspects of regressor selection, sufficiency

and global consistency.

5.1 Examples of some functional dependencies
important in practice

The techniques and methodologies described in the previ-

ous sections have been successfully tested using databases

of different compositions. All the main functional depen-

dencies have been investigated, from linear and additive, to

nonlinear, multiplicative and exponential. Different noise

statistics have been analysed, from Gaussian and uniform

to Poisson and gamma. The developed tools have proved to

cope well with all these situations. Of course the require-

ments, in terms of both amounts of data and computational

resources, become more stringent the more nonlinear the

phenomena to investigate and the more exotic the noise

statistics.

In the rest of this section, for the sake of brevity, the

potential of the developed techniques is exemplified for the

case of power laws. This is motivated by two main reasons.

First, power laws are a very important class of nonlinear

interactions, which are widely studied also with the help of

cumulative databases. Secondly, the challenging real-life

case, described in detail in Sect. 7, is typically modelled

with this class of functional dependency.

For simplicity’s sake, the cumulative database of syn-

thetic data, analysed in this section, is supposed to be

composed of the results coming from only two individual

experiments or studies. The extension to higher numbers of

individual contributions is immediate both conceptually

and practically. The noise statistics considered is Gaussian,

by far the most relevant in practice. Again, different noise

statistics can be handled equally effectively.

The synthetic data have been generated as described in

the following, for all the functional dependencies investi-

gated. The independent variables Xi in each individual

study are 6, sampled uniformly in the interval between 1

and 10 (103 points for each variable). Namely, the

regressors are sampled in the intervals:
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X1a ¼ U 1; 10ð Þ;X2a ¼ U 1; 10ð Þ;
X3a ¼ U 1; 10ð Þ;X4a ¼ U 1; 10ð Þ;
X5a ¼ U 1; 10ð Þ;X6a ¼ U 1; 10ð Þ

X1b ¼ U 1; 10ð Þ;X2b ¼ U 1; 10ð Þ;
X3b ¼ U 1; 10ð Þ;X ¼ U 1; 10ð Þ;
X5b ¼ U 1; 10ð Þ;X6b ¼ U 1; 10ð Þ

where U indicates the uniform distribution. The quantities

belonging to the first study are indicated with the subscript

a and the ones belonging to the second with the subscript b.

The individual and cumulative databases investigated are

therefore:

Xa ¼ X1aX2aX3aX4aX5aX6a½ �
Xb ¼ X1bX2bX3bX4bX5bX6b½ �
X ¼ XaXb½ �
Y ¼ YaYb½ �

The functional dependencies of Ya and Yb are specified

in each case in the following subsections.

Noise of Gaussian distribution has been added to both

the dependent and the independent variables. The results

reported in this work have been derived for noise of zero

mean and standard deviation equal to 10% of the entries

amplitude.

Three important representative cases are discussed in the

rest of this section. In the first database, the two individual

studies are similar, but the dependent variable does not

depend on the same regressors. Therefore interpreting the

entire DB as a whole would not be correct. The second set

of synthetic data is supposed to address a very important

point related to sufficiency: the danger of missing impor-

tant quantities with the related risk of using spurious ones

in their place. In this case, not testing for sufficiency, at the

global and individual level, would again result in com-

pletely wrong results. In the third collection of hypothetical

studies, the same quantities are relevant for both studies,

but their functional dependencies are different. Again only

the type of analysis, proposed in this work for testing the

global coherence of the studies, can detect the fact that

interpreting the data as coming from a single individual

experiment would be inappropriate.

5.2 Regressor selection

In this case, the functional dependencies investigated are:

Ya ¼ X1a � X2a � X3a ð12Þ
Yb ¼ X1b � X2b � X4b ð13Þ

As in the other examples, the subscript number indicates

the regressor and the subscript letter the single contribution

to the global database.

The two individual studies are similar, but the dependent

variable is not influenced by the same regressors in the two

cases. Interpreting the entire DB as a whole would there-

fore not be correct.

On the other hand, both series of tools, information

theoretic and neural networks, if applied to the cumulative

database [Ya Yb], identify that the necessary variables are

X1, X2, X3, X4. Given the presence of a low but significant

level of noise, both the information theoretic indicators and

the R2 of the networks have problems identifying that

something is amiss. Indeed the difference between these

indicators and the ones expected in the case of a single

database, depending only on X1, X2, X3, X4 are practically

within the confidence intervals of the statistical indicators.

On the other hand, the proposed tools, applied to the

individual contributions of the database, manage to detect

very well that the two systems are different, since the

dependent variables depend on different regressors. In

Fig. 3, the variable selection sequence, using the relevance

criterion of Eq. 6, is reported. From inspection of the his-

tograms shown, it is easy to see how the relevance criterion

manages to correctly identify that the relevant regressors

for contribution a are X1, X2, X3, and that for contribution

b the independent quantities of interest are X1, X2, X4.

The indications of the conditional mutual information

are perfectly coherent with the results obtained with the

redundancy approach, producing the same selection of the

variables as reported in Fig. 3.

Fig. 3 Regressor selection for the data generated with Eqs. 12 and 13.

Left-hand side column: sequence of selected variables with the

relevance criterion for the first contribution a. Right-hand side

column: sequence of selected variables with the relevance criterion

for the second contribution b. The red bar indicates the variable

selected at each step of the procedure
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Exactly the same conclusions can be derived also from

the neural networks, whose results are shown in Fig. 4,

using both approaches of adding and removing variables.

Therefore in this case, the proposed detailed analysis of the

individual primary studies, contributing to the cumulative

database, would provide essential information for a con-

sistent interpretation of the data available and for the

subsequent meta-analysis and scientific exploitation.

5.3 Sufficiency

The issue of the global DB not containing all the relevant

quantities, to perform the desired investigation and infer-

ence, is not to be underestimated. Among other things, as

described in more detail in Sect. 6, it can render the anal-

ysis particularly vulnerable to overfitting. The nature of the

problem can be easily appreciated by the following

example. The two individual studies, contributing to the

cumulative database, are assumed to generate data

according to the equations:

Ya ¼ X1a � X2a � X3a ð14Þ
Yb ¼ X1b � X2b � X3b þ 20X6b ð15Þ

In this case, the two data generating equations depend

exactly in the same way on X1, X2, X3 but Yb is also

influenced by X6. For the investigation of the issues posed

by the lack of sufficiency, it is assumed that X6 is not

included in the variables contained in the database.

This problem is very difficult to interpret at the global

level. Even in the present hypothetical case of only two

studies with the same number of entries, inspection of both

the residual entropy and the R2 indicator does not reveal

that some regressors are missing. For example, as reported

in Fig. 5, for Eqs. 14 and 15 R2 reaches almost 0.86, a

value not incompatible with the noise level (the case shown

for the approach of adding one regressor at the time is

confirmed by the alternative of progressively deselecting

quantities). On the contrary, the analysis particularised for

the individual subsets of data reveals immediately that the

sufficiency condition is satisfied by the individual study

a and that it is the second set of entries, which is not

complete and would need integrating with additional

quantities. Indeed, the R2 indicator assumes a value of 0.94,

basically compatible with the level of noise, for the subset

a of entries; the value of R2 for the second set of entries b,

on the contrary, is too low (0.82) and gives away the fact

that one or more additional regressors would be required to

interpret the dependent variable. The indications obtained

with the help of the information theoretic indicators are in

good agreement with the outputs of the ANNs.

It should be mentioned that this type of problem would

be even more difficult to identify at the global level in case

of multiple studies or in case the missing quantities belong

to a contributor with a minority number of entries. How-

ever, the sufficiency indicators applied to the individual

studies would show quite clearly, for which individual

study the regressors do not constitute a complete list of

independent quantities.

5.4 Global consistency

To exemplify the potential of the developed tools to

address the issue of global consistency, a synthetic cumu-

lative database has been generated, with the dependencies

determined by the two following equations:

Ya ¼ X1a � X2a � X2
3a ð16Þ

Yb ¼ X1b � X2b � X�0:5
3a ð17Þ

In this case, the two systems, providing entries to the

primary studies, present the same dependency on the

quantities X1 and X2 but a completely different one on X3.

The tools developed in this work, when applied to the

entire DB, identify X1, X2, X3 as the relevant quantities to

regress Y. However, both the residual entropy and the R2

indicator basically assume values much lower than would

be expected on the basis of the noise level affecting the

data, as shown in Fig. 6. On the other hand, particularising

the analysis for the individual studies a and b does not

reveal any inconsistency in the individual studies. Indeed,

the ANNs indicate even more clearly that X1, X2, X3 are the

Fig. 4 Regressor selection for the data generated with Eqs. 12 and 13.

Sequence of variable selection with the two approaches of removing

and adding variables, explained in Sect. 4.1. The results are fully

coherent with those obtained with the information theoretic criteria.

The important variables are selected in the right order. On the

ordinates, R2 shows how much uncertainty in the dependent variable

is explained by the regressors
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right variables and R2 values reach 0.9, compatible with

10% of random noise. It is worth mentioning once more

that very coherent results are obtained with both approa-

ches of adding to or removing from the network inputs one

variable at the time. Therefore there is no indication that

sufficiency is violated at the level of the individual studies.

These conclusions are supported by the information theo-

retic indicators, both the conditional mutual information

and the relevance.

For the systems described by Eqs. 16 and 17, only the

final consistency checks reveal that something is amiss and

that the two studies do not show the same dependencies

and should therefore not be light heartedly included in the

same regression. The values of the mutual information,

between the regressors and the dependent quantity, indicate

that the relations are different in the two studies con-

tributing to the DB; these values are reported in Tables 1

and 2. For completeness sake, the Pearson correlation

coefficients are also reported, to show how the linear cor-

relations between X3 and Y even change sign in the two

subsets of entries. From inspection of these two tables, it

appears very clearly that the information theoretic criteria

Fig. 5 Sufficiency identification for the data generated with Eqs. 14 and 15). The R2 indicator assumes value compatible with the noise level only

in the case of the database a, revealing that one or more regressors are missing in the study b. The database c is the union of a and b

Fig. 6 Global consistency for the data generated with Eqs. 16 and 17.

The values of the R2 indicator are low only for the entire DB. This

fact reveals that there is a global consistency issue, confirmed by the

analysis particularised for the individual contributions, for which R2 is

sufficiently high to be compatible the noise level
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manage to identify the important regressors (the irrelevant

variables have practically a negligible MI with the

dependent quantity). The values of the mutual information

for the relevant regressors X1, X2, X3 are very different,

indicating that the entries of the two individual studies

cannot have been generated by the same system or process.

These results are confirmed by the conditional mutual

information, whose variable selection is reported in

Table 3. The fact that the order of the quantities selected is

different for the individual studies and for the entire DB

reveals that something is amiss and that it is not legitimate

to treat the individual contributions as part of a unique

basis for the following analysis.

Also the networks show that the two individual studies

are structurally different. The visualisation of the trends of

variable X3 for the two subsets of entries a and b, obtained

with the trained network as explained in Sect. 4.3, shows

quite clearly that the dependencies are different in the two

individual studies, as reported in Fig. 7. The plots shown in

this figure have been obtained by scanning the regressor X3

versus alternatively one of the other two independent

quantities, one at a time. For the quantity kept constant,

three values have been chosen: mean, maximum and

minimum in the confidence interval range. For each case

therefore there are three different curves. Visual inspection

of Fig. 7 reveals immediately that the trends of the effect of

X3 on the dependent variable are completely different in the

two subsets of data a and b, indicating that the two studies

cannot be naively aggregated in a single database. It is

worth mentioning that whereas random-effects models

prove not to be very useful in this case, psychometric meta-

analysis of the correlation coefficients [10], particularised

for the two subsets of data, would be able to detect the

problem and would suggest not to combine the two studies.

6 Impact on model selection

To exemplify and illustrate the importance of the tech-

niques proposed in this work, this section is devoted to the

effects of overfitting on model selection. Indeed one of the

main objectives of meta-analysis in the exact sciences

consists of helping in the process of selecting the right

model to interpret the available data. The techniques

developed can help obtaining better results from the

Table 1 Mutual information and Pearson correlation coefficient

between the regressors and y for the subset a of data generated with

Eqs. 16 and 17

Variables Mutual information (y,xi) Pearson

X1 0.1008 0.4008

X2 0.0841 0.3887

X3 0.2487 0.6203

X4 0.0153 – 0.0002

X5 0.0132 0.0302

X6 0.0089 – 0.0110

Table 2 Mutual information and Pearson correlation coefficient

between the regressors and y for the subset b of data generated with

Eqs. 16 and 17

Variables Mutual information (y,xi) Pearson

X1 0.2190 0.5884

X2 0.2202 0.5813

X3 0.0796 – 0.3550

X4 0.0105 0.0154

X5 0.0050 – 0.0048

X6 0.0107 0.0021

Table 3 Variable selection obtained with the CMI for the datasets

generated with Eqs. 16 and 17

DB–ya DB–yb DB–yc

First selected variable X3 X1 X3

Second selected variable X2 X2 X2

Third selected variable X1 X3 X1

Fig. 7 Global consistency for the data generated with Eqs. 16 and 17.

The y axis is the value of the dependent variable. The regressor

scanned is X3 and The other two independent variables X1 and X2 are

alternatively kept fixed (F) or assume their median, maximum and

minimum value (M), giving rise to the three curves
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deployment of both frequentist and Bayesian or informa-

tion theoretic model selection criteria. Next subsection is

devoted to a brief overview of model selection criteria. The

following addresses in detail how the tools described in this

paper can contribute to avoid including spurious quantities

in the models.

6.1 Brief overview of statistical criteria to select
the best model among various alternatives

Choosing a model from a set of candidates, on the basis of

the available evidence, is called model selection. It can be

argued that the task of selecting the best mathematical

model is the main and final objective of many scientific

enquiries. To help performing it in sound way given the

data, various statistical techniques have been developed.

Traditional frequentist techniques tend to emphasise the

goodness of fit. In the context of selecting the important

regressors for a specified family of models, the candidate

quantities are given as inputs to the fitting routines and only

the ones, providing a statistically significant improvement

in the predictions, are retained. The statistical relevance of

the results is assessed with aforementioned techniques such

as Chi-squared, Anderson Darling and Kolmogorov–

Smirnov [13].

Bayesian and information theoretic methods try to

explicitly find a compromise between goodness of fit and

complexity, by favouring simpler models. The Bayesian

Information Criterion (BIC) and the Akaike Information

Criterion (AIC) are all consolidated and widely used

indicators for this task [16]. The BIC is an unbiased esti-

mator of the likelihood of a model. The form of the BIC

indicator used in this paper is:

BIC ¼ n � ln r2�ð Þ

� �
þ p � ln nð Þ ð18Þ

where � ¼ ydata � ymodel are the residuals, r2�ð Þ their vari-

ance, p is the number of parameters of the model, and n the

number of ydata available, so the number of entries in the

database (DB).

The AIC is a well-known model selection criterion,

based on information theory. The AIC form most com-

monly used is:

AIC ¼ 2pþ n � ln RSS

n

� �
ð19Þ

where RSS is the Residual Sum of Squares between the

experimental values and the estimates of the models, p is

the number of parameters of the model and n the number of

ydata provided, i.e. the number of entries in the database

(DB).

All the aforementioned criteria are cost functions to be

minimised, in the sense that better models have lower

values of these metrics. This property can be appreciated

by inspection of their mathematical structure. Indeed, BIC

and AIC consist basically of two parts. The first one

depends on the quality of the fit, represented by the

residuals. Models closer to the data have lower values of

this term. The second addend implements a penalisation for

complexity, since it is proportional to the number of the

parameters in the model equation. Therefore, parsimony is

built in the cost function to avoid overfitting. The mathe-

matical background to appreciate the relative merits of

these model selection criteria, their strengths and weak-

nesses, can be found in [16].

6.2 The problem of overfitting due to spurious
regressors

The issue of overfitting is a problem addressed carefully in

machine learning and in statistics. To regress one quantity,

it is important to pay attention not to include additional

regressors, which have no impact on the dependent variable

but have some level of correlation with other proper

regressors. If additional spurious quantities are included in

the set of regressors, the fit can be improved from a sta-

tistical point of view, reducing the v2 of the residuals. The
model selecting criteria can therefore be induced to prefer

models including spurious regressors, not really necessary

to model Y. On the other hand, of course, these models lose

physical meaning with the introduction of these spurious

independent variables. This can therefore be considered a

form of overfitting due to spurious regressors.

The nature of the problem can be easily appreciated by

the following example. Let us assume that the cumulative

database includes the contributions of three individual

studies or experiments. The 8 available regressors consid-

ered are normalised between 1 and 10; they are sampled

uniformly in this interval. The number of points in the

synthetic database is 103. The three individual contribu-

tions have been generated with the following equations:

ya ¼ x1a � x2a � x3a � x4a ð20Þ
yb ¼ x1b � x2b � x3b � x5b ð21Þ
yc ¼ x1c � x2c � x3c � x6c ð22Þ

The individual systems, providing entries to the data-

base, present a power-law dependence that it is the same

for the three quantities X1, X2 and X3. Then each depends

also on a different quantity (again in power-law form).

Fitting the database with only three or with all the 8

regressors provides the results reported in Fig. 8. Inspec-

tion of the plots in this figure reveals immediately that all

criteria would favour the choice of all the 8 regressors over

the more limited set of three. Indeed, the R2 is significantly

higher for the model including all variables. Moreover, the
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value reached is not incompatible with the level of noise.

AIC and BIC, being cost functions, are significantly lower

for the model using all 8 regressors. Contrary to the case of

global consistency problems investigated in Sect. 5.4,

applying random-effects or psychometric meta-analysis

does not help much in this situation [10]. Since the vari-

ables are not outliers but have concrete effects on parts of

the database, also these techniques do not manage to

clearly spot that something is wrong when considering the

entire database. Only the analysis of the individual con-

tributions, as suggested in this work, would therefore allow

to detect that there is a problem with the cumulative

database and that the individual studies should be consid-

ered separately. This is also the case of the real-life

example reported in next section.

7 Application to a cumulative database
of extreme relevance for thermonuclear
fusion

In this section, the techniques previously described and

benchmarked are applied to an experimental database,

including measurements of the energy confinement time in

the major Tokamak facilities in the world. Sect. 7.1 pro-

vides an overview of the physical background and a

description of the problems that this cumulative database is

meant to address. The technical details of the entries of the

database, and the scaling laws originally derived from

them, are discussed in Sect. 7.2. The results, obtained

applying the tools developed in the context of the present

work, are reported in Sect. 7.3.

7.1 Thermonuclear fusion and the scaling
of the energy confinement time

The most exoenergetic reaction in the known universe is

nuclear fusion, the coalescence of lighter nuclei to form

heavier ones. Since the most relevant nuclei are hydrogen

isotopes, they constitute an abundant fuel on earth. Con-

sequently, nuclear fusion remains one of the most

promising alternatives for the production of an almost

unlimited quantity of energy without emission of green-

house gasses, to satisfy the requirements of an increasingly

power hungry world population. Magnetic Confinement

Nuclear Fusion (MCNF) constitutes the most credible

approach to a reactor, potentially capable of producing

commercially viable power.

In MCNF, plasmas are confined by magnetic fields in a

vacuum container and heated to temperatures higher than

in the core of the sun. So far the best performance, in the

perspective of the reactor, has been obtained with the

configuration of the magnetic fields of the tokamak type. In

any case, for every configuration, one of the most crucial

quantities, to assess its reactor relevance, is the so called

energy confinement time sE. This indicator quantifies how
fast the internal energy of the plasma is lost [17]. Unfor-

tunately, the transport mechanisms affecting the energy

confinement in high temperature plasmas are very complex

and nonlinear. Moreover, they include effects at many

scales, ranging from microturbulence to macroscopic

dimensions comparable to the devices’ size. So, even if the

understanding of the energy transport has progressed a lot

in the last years, it remains very difficult, if not impossible,

to properly estimate sE from theoretical or numerical cal-

culations. As a consequence, since various decades, an

empirical approach has been pursued, which consists of

extracting robust scaling laws for sE from experimental

data. Indeed, the energy confinement time is estimated in

all the major devices on a routine basis. Multi-machine

databases, containing information about this quantity, have

been built. The most advanced remains the International

Tokamak Programme Agreement (ITPA) database, which

was expressively built to support advanced confinement

time studies and includes validated measurements from all

of the most relevant tokamak devices ever operated in the

Fig. 8 Quality of the fits of the database generated by the three contributions, Eqs. 20, 21 and 22
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world [18, 19]. The DB3v13f version of the DB is also the

one used to define the scaling chosen as a basis for the

design of ITER, the IPB98 (y,2). This version, with the

same selection rules reported in [19], is the DB analysed in

the following as an application of the techniques proposed

in the previous sections. The ITPA DB is a typical example

of a cumulative database, because the entries are individual

results but collected in different experiments performed in

different devices.

7.2 The ITPA Database of the energy
confinement time for the H mode

As mentioned, to maximise the generality of the results

obtained with the tools described in the previous sections,

an international database has been considered (DB3). To

select a set of suitable predictors, the same variables,

considered in the conventional scaling law for the plasma

confinement time, have been taken into account in this

study as well. These are:Ip;BT ;PLTH; nel;Meff ;RGEO; �; ka,

where Ip is the plasma current, BT is the toroidal magnetic

field, PLTH is the power loss across the last closed surface,

nel is the line average electron density, Meff is the plasma

isotopic composition, RGEO is the plasma major radius,

� ¼ a
RGEO

, where a is the plasma minor radius, and ka is the

volume measure of elongation [20].

The contributions of the various devices to the DB are

reported in Table 4 for the case of the H mode of con-

finement. Inspection of the table suggests to divide the

entries in three groups. The contributions of the largest

devices JET, JT-60U and TFTR; the set of values provided

by the medium size tokamaks ASDEX, AUG, DIII-D and

PBXM; and finally the set made of the contributions of all

the remaining smaller experiments.

The most widely accepted scaling law, extracted from

this database in terms of dimensional quantities, is the

IPB98(y,2):

sE ¼ 5:62 � 10�2 � I0:93p B0:15
t n0:41e P�0:69R1:97k0:78e0:58M0:19

eff

ð23Þ

The scaling reported as Eq. 23 has been obtained with

log regression, assuming implicitly that the most appro-

priate mathematical form of the equation is a power-law

monomial.

7.3 Results

Employing the feature selection algorithm proposed in this

work, the main objective of the analysis consists of veri-

fying whether all the predictor variables included in Eq. 23

are really necessary for a good description of sE, or whe-
ther a smaller subset of variables is sufficient. Unfortu-

nately, the number of entries is quite low for the

complexity and the dimensionality of the problem. The

ANNs therefore perform much better to analyse the data-

base and the information theoretic indicators can play only

a confirmatory role, being affected by higher uncertainties.

Application of the ANN, proposed in this work, to the

ITPA database provides the results reported in Table 5 for

the entire dataset and the three subsets previously men-

tioned. To decide when to exclude additional variables, a

backward (removing variable) method with ensembles of

NN has been utilised. 36 NNs have been trained for 20

times, and the mean RMSE over the 36 NNs has been

calculated. If, after removing a variable, the increase in the

RMSE mean is statistically significant, that quantity is

retained in the set of regressors. The significance level of

5% with a Z test is the threshold implemented to assess

whether the improvement in the RMSE mean is statistically

relevant.

To confirm the results obtained as just described, the

following procedure has been deployed for each of the four

groups. Log regression has been used to fit the database,

firstly including the entire set of variables available and

Table 4 Entries per machine for

the H mode case
TOK #

ASDEX 431

AUG 526

CMOD 45

COMPASS 16

DIII-D 300

JET 1413

TDEV 3

TCV 11

TFTR 13

JFT-2 M 70

JT-60U 87

NSTX 5

PBXM 59

PDX 97

MAST 9

START 8

Table 5 Variable selection for the ITPA database and three subsets

Database Selected variables

JET/JT-60U/TFTR Ip;PLTH; nel; �

ASDEX, AUG/DIII-D/PBXM Ip;PLTH; ; nel;RGEO;BT ;Meff

OTHERS Ip;PLTH; ; nel;RGEO;Meff

ENTIRE DATABASE Ip;PLTH; nel;RGEO;BT ; �
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secondly considering only the ones selected with the help

of the ANNs. Then Gaussian noise has been added to the

database entries, both to the regressors and to the predicted

variables. The standard deviation of the noise has been

chosen equal to the error bars in the entries of the database

summarised in Table 6. Consequently, the two power laws

previously obtained have been evaluated using the new

data with added noise, and their goodness of fit has been

calculated again with the R2 indicator. Since the process of

adding noise is random, the procedure above has been

repeated again 500 times in order to provide sufficiently

sound statistical basis for the conclusions. The results are

two distribution of R2, one for the power law with all the

variables, and one for the power law with only the

regressors selected by the ANNs proposed in this work.

The two distributions are then compared to assess whether

all the variables in the power law are really useful to

describe sE or whether the set selected to obtain the IPB98

includes spurious quantities.

The R2 achieved by fitting the datasets with all the eight

variables of the IPB98(y,2) or with the ones selected by the

ANNs are practically identical. When the noise is added,

the power laws with all the variables in Eq. 23 present a

goodness of fit lower than the ones using only the regres-

sors selected by the ANNs and the difference is clearly

statistically significant. A visualisation of the two R2 dis-

tributions for each group is reported in Fig. 9, whose plots

substantiate the previous statements. The proposed proce-

dures therefore provide quite strong evidence that the

variables removed by the algorithm do not bring any new

information about sE and the IPB98 is affected by a

problem of spurious quantities. The meta-analytic tools,

introduced in this work, also indicate that the entries of the

three groups of devices should not be included in the same

dataset to apply a global fit, confirming previous prelimi-

nary investigations on the same subject [20].

To confirm the competitive advantage of the developed

indicators, compared to traditional meta-analytic tech-

niques, the data have been aggregated with psychometric

techniques [10]. Unfortunately, all the correlation coeffi-

cients between the regressors and the dependent variable

are statistically significant and therefore there is no indi-

cation that some of them should be discarded. Using these

coefficients as a first guess for the log regression provides a

power-law scaling, whose exponents are reported in

Table 7. The scaling has a poor physical meaning and the

extrapolation to ITER gives an estimate of significantly

more than 4 s for the energy confinement time, clearly an

unrealistically optimistic low value. This is because the

traditional meta-analytic techniques are not designed to

detect that the database contains sets of entries from

experiments of different nature, which should not be

grouped together. Consequently also in this real-life case

study, the procedure proposed in the present work seems an

indispensable preliminary step to any form of reasonable

statistical inference.

8 Conclusions

Large databases, composed of the entries produced by

different experiments and studies, are becoming increas-

ingly important and popular in many fields of science,

given the widespread use of sensors and storage tech-

nologies. In practice, these DBs pose significant interpre-

tation issues, which cannot be addressed, neither with the

traditional tools for primary studies nor with the meta-an-

alytic techniques used to handle summary statistics. A

series of data analysis techniques have therefore been

developed to address the research synthesis issues inherent

to the analysis of these databases. The combination of

completely independent mathematical tools, belonging to

information theory and neural computation, allows deriv-

ing quite robust results, as confirmed by a series of sys-

tematic tests with synthetic data. The deployment of the

methodology, for the analysis of an international database

Table 6 The uncertainties for the entries of the ITPA database

Ip BT PLTH nel Meff RGEO � ka s

Rel. err 1% 1% 14% 5% 8% 1% 1% 10% 10%

Fig. 9 Results of the tests to assess the level of overfitting in the ITPA

database
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built by the thermonuclear fusion community, has revealed

the potential of the approach to address practical and quite

difficult examples. It is probably worth noting that the

tools, developed to address regressors selection and con-

sistency, can be deployed also to analyse large primary

databases, if it is not clear which are the independent

variables and whether they are enough to interpret the data.

With regard to future developments, from a method-

ological perspective, it would be important to extend the

described tools to the case of classification. In this respect,

the crucial point is the definition of an appropriate metric to

minimise. In both supervised and unsupervised classifica-

tion, it could be based on the distance to the boundary

between the classes, but more work is required to properly

develop this aspect. More generally, it should be remem-

bered that the proposed techniques have been conceived to

provide only a detailed analysis of the individual contri-

butions to the global database. The potential of these tools,

and additional ones, to contribute to other applications of

research synthesis, remains to be explored. More sophis-

ticated versions of the developed indicators could con-

tribute significantly to multilevel synthesis, which is

typically performed mainly with linear tools [21]. In par-

ticular, how to best combine the individual studies, to

obtain more general conclusions, is a subject worth

investigating in detail. The potential of other machine

learning families, in particular evolutionary computation,

should also be considered seriously, given the great results

of these techniques in many fields [22–26]. Regarding

thermonuclear fusion, the analysis performed in Sect. 7

should be applied also to the other major cumulative

databases used in the community, such as the ones for the L

mode of confinement and the Stellarator configuration at

different levels of optimisation. Particularising the results

for devices with a metallic wall, such as JET ITER Like

Wall [27, 28], is also a priority, together with the extension

of the approach to profiles and distributed quantities

[29, 30].
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