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Abstract
Skin cancer affects the lives of millions of people every year, as it is considered the most popular form of cancer. In the USA

alone, approximately three and a half million people are diagnosed with skin cancer annually. The survival rate diminishes

steeply as the skin cancer progresses. Despite this, it is an expensive and difficult procedure to discover this cancer type in the

early stages. In this study, a threshold-based automatic approach for skin cancer detection, classification, and segmentation

utilizing a meta-heuristic optimizer named sparrow search algorithm (SpaSA) is proposed. Five U-Net models (i.e., U-Net, U-

Net??, Attention U-Net, V-net, and Swin U-Net) with different configurations are utilized to perform the segmentation

process. Besides this, the meta-heuristic SpaSA optimizer is used to perform the optimization of the hyperparameters using

eight pre-trained CNN models (i.e., VGG16, VGG19, MobileNet, MobileNetV2, MobileNetV3Large, MobileNetV3Small,

NASNetMobile, and NASNetLarge). The dataset is gathered from five public sources in which two types of datasets are

generated (i.e., 2-classes and 10-classes). For the segmentation, concerning the ‘‘skin cancer segmentation and classification’’

dataset, the best reported scores by U-Net?? with DenseNet201 as a backbone architecture are 0.104, 94:16%, 91:39%,

99:03%, 96:08%, 96:41%, 77:19%, 75:47% in terms of loss, accuracy, F1-score, AUC, IoU, dice, hinge, and squared hinge,

respectively, while for the ‘‘PH2’’ dataset, the best reported scores by the Attention U-Net with DenseNet201 as backbone

architecture are 0.137, 94:75%, 92:65%, 92:56%, 92:74%, 96:20%, 86:30%, 92:65%, 69:28%, and 68:04% in terms of loss,

accuracy, F1-score, precision, sensitivity, specificity, IoU, dice, hinge, and squared hinge, respectively. For the ‘‘ISIC 2019

and 2020 Melanoma’’ dataset, the best reported overall accuracy from the applied CNN experiments is 98:27% by the

MobileNet pre-trained model. Similarly, for the ‘‘Melanoma Classification (HAM10K)’’ dataset, the best reported overall

accuracy from the applied CNN experiments is 98:83% by the MobileNet pre-trained model. For the ‘‘skin diseases image’’

dataset, the best reported overall accuracy from the applied CNN experiments is 85:87% by the MobileNetV2 pre-trained

model. After computing the results, the suggested approach is compared with 13 related studies.

Keywords Skin cancer � Melanoma cancer � Non-melanoma cancer � Convolution neural network (CNN) �
Deep learning (DL) � Meta-heuristic optimization � Segmentation � Sparrow search algorithm (SpaSA)

1 Introduction

Skin cancer is the abnormal growth of cells located in the

skin that frequently develop on the sun-exposed (i.e., UV

light) regions of the skin. However, skin regions that are

not regularly exposed to sunlight may develop cancer.

Around the world, skin cancer is the most prevalent cancer

type. The primary types of skin cancer include ‘‘basal cell

carcinoma,’’ ‘‘squamous cell carcinoma,’’ and ‘‘me-

lanoma.’’ Every year, the number of diagnosed cases is

over 3.5 million in the United States, which exceeds the

counts of lung, breast, and colon cancers combined. Every

57 seconds, one person is diagnosed with skin cancer [48].

Skin cancer can be categorized into two major cate-

gories (i.e., melanoma and non-melanoma) concerning the

cell type that developed cancer. The different types of each

category, statistics, risk factors, diagnosis, and treatment
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will be discussed in Sect. 2.1. Early detection and screen-

ing of skin cancer can lead to a full recovery, as it is with

every cancer type. Different machine and deep learning

architectures and approaches had been proposed to perform

the task of skin cancer detection, classification, and seg-

mentation, e.g., support vector machines SVM [24], fuzzy

C-means [116], recurrent neural networks [111], and deep

neural networks [35].

The current study concentrates on skin cancer detection,

classification, and segmentation. The classification is

accomplished using 8 pre-trained convolution neural net-

work (CNN) models. They are VGG16, VGG19, Mobile-

Net, MobileNetV2, MobileNetV3Large,

MobileNetV3Small, NASNetMobile, and NASNetLarge.

The segmentation is done by employing five different

U-Net models. They are U-Net, U-Net??, Attention

U-Net, V-Net, and Swin U-Net. Additionally, the CNN

hyperparameters optimization is done using the sparrow

search algorithm (SpaSA) to gain the performance metrics

of the state-of-the-art (SOTA).

1.1 Paper contributions

The current study contributions can be recapped in the next

points:

• Presenting a survey on the skin disorders with a

graphical taxonomy.

• Performing the skin cancer segmentation task using

U-Net, U-Net??, Attention U-Net, V-Net, and swin

U-Net models.

• Performing the skin cancer classification task using 8

pre-trained CNN models (i.e., VGG16, VGG19,

MobileNet, MobileNetV2, MobileNetV3Large,

MobileNetV3Small, NASNetMobile, NASNetLarge).

• Utilizing the SpaSA approach for the hyperparameters

optimization processes.

• Reporting the SOTA performance metrics and compar-

ing them with different related studies and approaches.

1.2 Paper organization

The rest of the current study is organized as follows:

Section 2 presents a survey of skin disorders. Section 3

presents and summarizes the related studies. In Section 4,

the background is discussed. It represents deep learning

classification, parameters optimization, transfer learning,

data scaling, data augmentation, segmentation, deep

learning segmentation, meta-heuristic optimization, and

performance metrics. In Section 5, a discussion about the

methodology, datasets acquisition and pre-processing seg-

mentation phase, learning and optimization, and the overall

pseudo-code is discussed. Section 6 presents the details

and discussions of the experiments and results. Section 7

presents the study limitations, and finally, Section 8 con-

cludes the paper and presents the future work.

2 Skin disorders medical survey

The largest organ in the body is the skin [133]. It helps

regulate body temperature, protects against injuries (and

infections), produces vitamin D, and stores fat (and water).

It consists of three main layers. They are (1) Epidermis

(i.e., the skin outer layer), (2) Dermis (i.e., the skin inner

layer), and (3) Hypo-dermis (i.e., the skin deepest layer).

Skin disorders are the conditions that affect the layers of

the skin [57]. They can cause rashes, sores, itching, or other

changes. Some skin conditions can be caused by lifestyle

factors, while others can be a result of genetic factors. Skin

disorders differ widely in severity and symptoms, as they

can be genetic or situational causes; permanent or tempo-

rary; painful or painless; and life-threatening or minor [3].

2.1 Skin disorders taxonomy

Skin-related disorders can be classified into permanent and

temporary. Temporary disorders include (1) acne, (2)

contact dermatitis, (3) cold sore, (4) keratosis pilaris, (5)

blister, (6) hives, (7) sunburn, (8) actinic keratosis, (9)

carbuncle, (10) latex allergy, (11) cellulitis, (12) measles,

(13) chickenpox, and (14) impetigo. Permanent disorders

can be divided into skin cancer and skin diseases (i.e., not

cancer). Skin diseases are (1) lupus, (2) eczema, (3) rosa-

cea, (4) seborrheic dermatitis, (5) psoriasis, (6) vitiligo, and

(7) melasma. As mentioned before, melanoma and non-

melanoma are the two main categories of skin cancer

[101]. Types of melanoma cancers incorporate (1) super-

ficial spreading melanoma, (2) nodular melanoma, (3) acral

lentiginous melanoma, (4) lentigo maligna melanoma, and

(5) other rare melanomas. Squamous cell carcinoma, basal

cell carcinoma, Merkel cell cancer, and cutaneous lym-

phomas are types of non-melanoma skin cancer [8, 45].

Figure 1 shows a taxonomy of skin disorders with graphical

samples.

2.2 Melanoma skin cancer

Melanoma is one of the deadly cancers in the world. It may

spread to other body parts if it has not been discovered and

treated in an early phase. In the following subsections, the

melanoma development, statistics, and other information

related to it will be presented.
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2.2.1 Melanoma development

The most profound epidermis layer found exactly above

the dermis has the melanocytes cells which produce the

color (i.e., pigment) of the skin. When healthy melanocytes

get out of control, a cancerous tumor (i.e., melanoma) is

created [25, 102]. This tumor can extend to further body

parts. Occasionally, normal moles or nevi already located

on the skin can form a melanoma. In such a case, the mole

undergoes changes that are usually visible (e.g., shape,

border, size, or the color of the mole changing) [92]. Scalp,

face, trunk, or torso (i.e., abdomen, back, and chest), arms,

and legs are the most common melanoma locations.

Fig. 1 Skin disorders taxonomy graphical summary
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Nonetheless, it can develop on the neck, head, and areas

that are not exposed to the sun (i.e., anywhere on the body).

Cutaneous melanoma is considered as the most common

type of melanoma type that develops first in the skin. There

are three popular types of it. First, ‘‘superficial spreading

melanoma’’ is the most popular one that presents up to 70%

of melanomas and commonly develops from a present

mole. The second one is ‘‘lentigo maligna melanoma’’ that

older people are more likely to develop. Frequently, it

begins on skin areas that are often sun-exposed. About 15%
of melanomas are diagnosed as ‘‘nodular melanoma’’ rep-

resenting the third melanoma type [83]. It usually arises as

a bump on the skin.

More rarely, the mouth, the mucous membranes that line

the gastrointestinal tract, and a woman’s vagina can

develop melanoma. Also, melanoma can develop in the eye

[26]. It is worth mentioning that the rare types are reported

graphically in Fig. 1.

2.2.2 Melanoma Statistics

In the USA, an estimated number of 106, 110 adults (i.e.,

62, 260 men and 43, 850 women) are diagnosed with

invasive melanoma in 2021 [29, 114, 115]. Among men

and women, the fifth most common type of cancer is

melanoma. It is less common in black people than in white

people by 20 times and is one of the most regular types of

cancer diagnosed among young adults, specifically women.

The average diagnostic age for it is 65. In 2020, the pre-

dicted melanoma cases diagnosed in people aged 15 to 29

were about 2, 400. Over the past three decades, the number

of diagnosed cases with this type of cancer has increased

sharply [44].

The rates increased annually by around 2% from 2008 to

2017. However, the number of melanoma-diagnosed

teenagers aged 15 to 19 between 2007 and 2016 declined

by 6% a year. The number of adults in their 20’s is

decreased by 3%. Most of the deaths associated with skin

cancer are caused by melanoma and approximately repre-

sent 75% of deaths. 7, 180 deaths (i.e., 4, 600 men and

2, 580 women) are estimated to occur in 2021 from mel-

anoma. However, deaths from melanoma have decreased

from 2014 to 2018 by almost 5% in adults older than 50

and by 7% otherwise [114].

2.2.3 Melanoma risk factors

Risk factors for melanoma include indoor tanning (i.e., the

people using sun lamps, tanning beds, or tanning parlors

are more likely to grow all types of skin cancer) [95],

moles, and fair skin (i.e., people with blue eyes, blond or

red hair, and freckles). Studies show that 10% of melano-

mas may be linked to genetic factors or conditions [74].

Some inherited genetic conditions, previous skin cancer,

race or ethnicity, weakened or suppressed immune system

are also risk factors for melanoma [84].

2.2.4 Melanoma early recognition

Recognition of the early warning signs [84] including new

skin growth, a suspicious change in an existing mole or

nevi, and a non-healing sore in two weeks is very impor-

tant. Changes in the mole size, shape, feel, or color are

often the initial and most important warning signs of

melanoma [41, 84, 92]. A guide to the familiar signs of

melanoma is known as the ‘‘ABCDE’’ rule [125] and can

be summarized as follows:

• A is for asymmetry: One half of a nevus or mole does

not match the other.

• B is for border: The edges are blurred, notched, ragged,

or irregular.

• C is for color: The color of the mole varies and may

have black, brown, and tan shades and white, gray, red,

or blue areas.

• D is for diameter: The spot is larger than 6 millimeters

across (i.e., about 0.25 inch), although melanomas

sometimes can be more diminutive than this.

• E is for evolving: The size, color, or shape of a mole is

altered. Additionally, when an existing nevus develops

melanoma, its texture becomes hard or lumpy.

2.2.5 Melanoma diagnosis and treatment

For melanoma, a biopsy from the lesion (i.e., the suspicious

area of skin) is the only sure way to diagnose the cancer

[43]. During a biopsy, a sample of tissue is possessed to be

tested in a laboratory. Computed tomography scan, ultra-

sound, positron emission tomography scan, and magnetic

resonance imaging are some of the other tests that can be

done to diagnose and define the stage of melanoma [47].

Treatment recommendations are depending on numer-

ous factors, counting the stage of the melanoma, the

thickness of the initial melanoma, whether cancer has

grown or not, rate of melanoma growth, the presence of

specified genetic changes in the affected cells, and some

other medical circumstances [84]. To obtain a suit-

able treatment arrangement, potential side effects, the

overall health, and preferences of the patient are considered

[122].

For people with local melanoma and most people with

regional one, the main treatment is surgery. Radiation

therapy is another treatment option that employs X-rays or

other particles with high energy to damage cancer cells

[23]. After surgery, it is common to prescribe radiation

therapy to avert cancer from coming back (i.e., recurrence).
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Other treatment options involve systematic therapy which

comprises immunotherapy, targeted therapy, and

chemotherapy [112].

2.3 Non-melanoma skin cancer

When healthy cells of the skin mutate and grow out of

control, a tumor mass is formed [132]. Non-melanoma skin

cancer can be partitioned into three main types (i.e., ‘‘Basal

cells carcinomas,’’ ‘‘squamous cell cancer,’’ and ‘‘Merkel

cell cancer’’).

2.3.1 Non-Melanoma Development

Basal cells can be defined as the round-shaped cells

existing in the lower epidermis. This cell type develops

about 80% of non-melanoma cancer and is defined as

‘‘basal cell carcinomas’’ [103]. They mostly occur on the

head and neck, and it is mainly produced by exposure to

the sun. This type of skin cancer rarely expands to other

body parts as it usually grows gradually. The epidermis is

mostly formed up of flat scale-shaped cells called squa-

mous cells. Approximately 20% of skin cancers arise from

these cells and are named ‘‘squamous cell carcinomas’’

[103]. Sun exposure is the main cause of it, so it is diag-

nosed in many skin regions. Also, skin that has been

exposed to X-rays, burned, or damaged by chemicals can

develop this type of carcinoma. The percentage of squa-

mous cell carcinomas expand to other body parts range

from 2% to 5%. ‘‘Merkel cell cancer’’ is a fast-growing or

highly aggressive cancer [96]. It initiates at hormone-pro-

ducing cells just below the hair follicles and the skin. It is

commonly discovered in the head and neck area. It is worth

mentioning that the rare types are reported graphically in

Figure 1.

2.3.2 Non-melanoma statistics

In the USA alone, some people are diagnosed with more

than one skin cancer type, so 3.3 million people are esti-

mated to be diagnosed with 5.4 million cases of basal and

squamous cell carcinoma [103]. For several years, non-

melanoma cancer cases have been increasing. The causes

of this increase are longer life spans, increased sun expo-

sure, and earlier detection of the disease. When compared

to each other, basal cell carcinoma is more popular than

squamous cell carcinoma. In recent years, the rate of deaths

from these skin cancers has decreased. Every month, more

than 5, 400 people worldwide die of non-melanoma skin

cancer [49].

2.3.3 Non-melanoma risk factors

Similar to melanoma, indoor tanning, Ultraviolet light

exposure, and people with light-colored skin are more

likely to develop non-melanoma skin cancer [81]. The risk

of getting non-melanoma skin cancers rises as getting

older. Women are less potential to develop this type of

cancer than men. Exposure to considerable amounts of

certain chemicals such as coal tar, arsenic, and paraffin

rises the chance of developing skin cancer [70]. People

with smoking habits have more potential to grow squamous

cell cancer, particularly on the lips.

2.3.4 Non-melanoma diagnosis and treatment

Since it is rare for non-melanoma cancer to expand, a

biopsy is usually the only test required to analyze and

acquire the stage of cancer [81]. As mentioned in Sect.

2.2.5, a biopsy is the small amount of tissue extracted for

testing beneath a microscope. For non-melanoma skin

cancer, surgery is the main treatment [81]. It involves

extracting the cancerous part and surrounding skin. Other

treatments include anti-cancer creams, freezing (i.e.,

cryotherapy), photodynamic therapy, and radiotherapy.

3 Related studies

Research in the domain of melanoma detection, segmen-

tation, recognition is still ongoing. Many automated

approaches and techniques have been proposed to assist in

computer-aided diagnosis. Previous related studies can be

categorized into two main classifications: machine learning

(ML) and deep learning (DL) classification techniques.

3.1 Classical machine learning-based approaches

The classical ML algorithms are consisting of many steps,

e.g., pre-processing, feature extraction and reduction, and

classification [91]. The accuracy of classification is based

on the extracted features, so feature extraction is a key step.

There are two main types of the extracted features. They

are high-level (i.e., local) and low-level (i.e., global) fea-

tures [121].

In Pugazhenthi et al. [98], a gray-level co-occurrence

matrix (GLCM) is employed to extract the texture features,

e.g., contrast, entropy, energy, and inverse difference

moment from the segmented images. Then, these features

were utilized to recognize the skin disease and classify it as

melanoma, leprosy, or eczema using decision trees. An

accuracy of 87% was obtained.

Arivuselvam et al. [9] used a Fuzzy clustering algorithm

and the features were extracted from the input images by
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GLCM and Gabor filter in which features such as size,

color, and texture were extracted. The SVM classifier was

then utilized to calculate the feature values of 1, 500

dataset images and classify them.

In Khan et al. [71], a Gaussian filter is utilized to take out

the noise from the images of the skin lesion followed by

segmenting out the lesion by using an enhanced K-mean

clustering, and a unique hybrid super-feature vector is

formed. For the classification, an SVM is applied. Their

proposed approach was evaluated using the DERMIS

dataset, which has 397 skin cancer images, 251 were nevus

and 146 were melanoma. An accuracy of 96% was obtained.

Astorino et al. [10] proposed a multiple instance learn-

ing algorithm. It was applied on 160 clinical data images

and divided into 80 melanomas and 80 nevi. Their

methodology obtained an accuracy of 92:50%, a sensitivity

of 97:50%, and specificity of 87:50%.

Balaji et al. [22] used a dynamic graph cut algorithm to

perform the skin lesion segmentation followed by a Naive

Bayes classifier for skin disorder classification. Their pro-

posed method was tested by ISIC 2017 dataset and they

achieved an accuracy of 94:3% for benign cases, 91:2% for

melanoma, and 92:9% for keratosis.

In Murugan et al. [90], the watershed segmentation

method was implemented to perform the segmentation

task. The resultant segments were subjected to feature

extraction method in which the ABCD rule, GLCM, and

the shape of the extracted features were utilized for clas-

sification. They used four types of classifiers including K-

nearest neighbor (KNN), random forest, and SVM. An

accuracy of 89:43%, sensitivity of 91:15%, and specificity

of 87:71% were achieved.

İlkin et al. [65] used the SVM algorithm as a classifier

that utilizes a Gaussian radial basis function which had

been enhanced by the bacterial colony algorithm. The

proposed model was trained and evaluated using two

datasets, namely ISIC and PH2. AUC values of 98% and

97% were obtained for ISIC and PH2, respectively.

3.2 Deep learning-based approaches

In the late 1990s, a shift from fully human-designed sys-

tems to computer-trained systems was delivered. This had

done using sample data, from which the vectors of the

handcrafted feature were extracted [50]. The next step was

to allow the computers to figure out how to extract the

suitable features from the input to perform the required

task. The concept of learning how to extract features

automatically from input data is the essence of numerous

DL algorithms.

In Adegun and Viriri [2], an improved encoder–decoder

network with sub-networks linked through a skip connec-

tion series was utilized for feature extraction and learning.

Their algorithm was evaluated on two public datasets, PH2

and international symposium on biomedical imaging

(ISBI) 2017. For the ISBI 2017 dataset, the reported

accuracy and dice coefficient were 95% and 92%, respec-

tively, whereas the reported accuracy and dice coefficient

were 95% and 93% for the PH2 datasets.

Albahli et al. [5] used YOLOv4-DarkNet and active

contour for localization and segmentation of melanoma.

Their algorithm was evaluated on ISIC 2016 and 2018. The

reported dice score and Jaccard coefficient were 1 and

0.989.

Shan et al. [113] proposed FC-DPN segmentation

topology. It was constructed over a dual-path and fully

convolutional network. For the modified ISIC 2017 chal-

lenge test dataset, their proposed method gained a Jaccard

index and an average dice coefficient of 80:02% and

88:13%, respectively, while a Jaccard index and an average

dice coefficient of 83:51% and 90:26% were obtained for

the PH2 dataset.

Junayed et al. [67] introduced a CNN-based model to

categorize skin cancer. Initially, a dataset was collected and

divided into four categories of skin cancer images. Then,

augmentation techniques were applied to increase the

dataset size. On the test phase, their proposed model

received a 95:98% accuracy, exceeding the GoogleNet and

the MobileNet model by 1:76% and 1:12% respectively.

Alheejawi et al. [6] suggested a DL-based technique to

segment regions of melanoma. Results obtained using a

small dataset of melanoma images showed that the sug-

gested approach could perform the segmentation with a

dice coefficient around 85%. Their method is proper for

clinical examination as it had a short execution time with a

fast turnaround time.

Vani et al. [128] suggested a DL-based system to predict

the existence and the type of melanoma. For improving the

images used for classification, pre-processing methods

were utilized. CNN and self-organizing map (SOM) clas-

sifiers were utilized for the process of classification of

melanoma. Their proposed system reported accuracy of

90% and specificity of 99%.

Li and Jimenez [78] proposed a novel testing method

based on the extreme learning machine network and

AlexNet. Additionally, a new improved version of the

Grasshopper optimization algorithm (GOA) was utilized to

tune the hyperparameters of the proposed method. Their

method was evaluated using the PH2 dataset with an

accuracy of 98% and sensitivity of 93% and had the highest

efficiency when compared to some different SOTA

methods.

In Hasan et al. [56], an automated skin lesion classifi-

cation framework was proposed. Their proposed method

had merged the pre-processing and hybrid convolutional

neural network. It had three distinct feature extractor
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modules that were fused to perform better-depth feature

maps of the lesion. Lesion segmentation, augmentation,

and class rebalancing were used to conduct the pre-pro-

cessing phase. Three datasets named ISIC-2016, ISIC-

2017, and ISIC-2018 datasets were utilized to evaluate the

proposed algorithm. It had achieved an AUC of 96%, 95%,

and 97%, for the three used datasets, respectively.

Maniraj and Maran [82] suggested a hybrid deep

learning approach that utilized subband fusion of 3D

wavelets. Their method consists of three stages (i.e., sim-

ple median filtering, 3D wavelet transform, and multiclass

classification). The performance results on the PH2 dataset

showed that it could effectively distinguish normal, benign,

and malignant skin images with 99.33% average accuracy

and more than 90% sensitivity and specificity.

3.3 Related studies summary

Table 1 summarizes the discussed related studies. They are

organized in descending order concerning the publication

year.

3.4 Plan of solution

In medical imaging applications, skin cancer detection,

classification, and segmentation are important and difficult

tasks. In the current study, various DL architectures are

proposed to solve the skin cancer classification and seg-

mentation problem. The transfer learning (TL) and SpaSA

are used to tune (i.e., optimize) the training parameters and

hyperparameters. Different experiments are performed and

various performance metrics are utilized for evaluation.

The best architectures are documented, stored, and reported

to be used in further times.

4 Preliminaries

The current section discusses, for the reader, the back-

ground and elementary parts behind the proposed

approach. The methodology section depends on them. It is

organized into the following points:

• Data scaling and augmentation.

• Segmentation.

• Deep learning (DL) classification.

• Transfer learning (TL).

• Parameters optimization.

• Meta-heuristic optimization.

• Performance metrics

4.1 Data scaling and augmentation

4.1.1 Data scaling

To normalize the scale of features or independent variables

of data, scaling methods are employed. In data processing,

scaling is generally conducted during the data pre-pro-

cessing step to fit the data within a specific range [4, 88].

The four applied scaling techniques in the current research

are (1) standardization, (2) normalization, (3) min-max

scaling, and (4) max-absolute scaling.

• Standardization: The standardization (i.e., z-score nor-

malization) modifies the data, so the distribution has a

mean and a standard deviation of 0 and 1 respectively.

• Normalization: The dataset is re-scaled from its original

range so that all values are in a new range [0 : 1].

• Min-max scaling: In min-max scaling, the data are

transformed so that the features are within a specified

range.

• Max-absolute scaling: The max-absolute scaling is

obtained by finding the absolute maximum value in the

dataset and dividing all the values in the column by that

maximum value.

4.1.2 Data augmentation

Image data augmentation is a procedure that is employed to

boost the dataset size artificially by generating altered

versions of the images [86]. Data augmentation assists the

coping with the ‘‘not enough data’’ issue, prevents over-

fitting, and advances the ability of the models to generalize

[16]. The transformation matrix can be also used to get the

coordinates of a point after applying the data augmentation

method on an image. Image augmentation methods adopted

in the current study experiments are (1) flipping, (2) rota-

tion, (3) shifting, (4) shearing, (5) zooming, (6) cropping,

(7) color change, and (8) brightness change.

• Flipping: Images can be flipped horizontally and

vertically. In some frameworks, functions for vertical

flips are not provided. Instead, a vertical flip can be

employed by rotating an image by 180 degrees and then

executing a horizontal flip.

• Rotation: Rotation is accomplished by rotating the

image on an axis between 1� and 359�, rotating the

image around the center or any other point, counter-

clockwise or clockwise. As the degree of rotation

increases, data labels may be no longer preserved.

• Shifting: Shifting the entire pixels of an image from one

position to another position is known as shift augmen-

tation. Two types of shifting (i.e., horizontal-axis and

vertical-axis shift augmentation) exist.
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Table 1 Related studies summary

References Year Approach ML DL Classification Segmentation Dataset Best performance

[78] 2022 AlexNet ?

Extreme

Learning

Machine

network

U U PH2 dataset An accuracy of 98% and

sensitivity of 93%

[56] 2022 CNN U U U ISIC 2016 [54], ISIC 2017

[37], and ISIC 2018 [36]

datasets

AUC of 96%, 95%, and

97% respectively.

[82] 2022 Hybrid deep

learning

U U PH2 dataset 99.33% average accuracy

and more than 90%

sensitivity and specificity.

[9] 2021 SVM ? Fuzzy

clustering

U U Their own dataset Accuracy of 92:04%,

sensitivity of 80:11%,

specificity of 95:01%, and

precision of 80:17%

[65] 2021 Bacterial

colony

optimization

algorithm

based SVM

U U U ISIC 2016 [54] and PH2

dataset

Precision of 0.969, recall of

0.979, F-measure of

0.974, accuracy of 0.975,

and AUC of 0.98

[67] 2021 CNN U U Their own dataset 95:98% accuracy

[6] 2021 Improved NS-

Net deep

learning

network

U U U Their own collected dataset

from Cross Cancer Institute,

University of Alberta,

Edmonton, Canada

Dice coefficient of around

85%

[128] 2021 SOM ? CNN U U Their own dataset collected

from ISIC archive

accuracy of 90% and

specificity of 99%

[5] 2020 CNN

(YOLOv4)

U U ISIC 2016 [54] and ISIC

2018 [36, 127]

Average accuracy of 95%
and Jaccard coefficient as

0.989

[113] 2020 Fully

convolutional

network and

dual path

network

U U ISIC 2017 [37] Dice coefficient of 90:26%
and a Jaccard index of

83:51%

[10] 2020 Multiple

instance

learning

U U Their own dataset Accuracy of 92:50%,

sensitivity of 97:50%, and

specificity of 87:50%

[22] 2020 Dynamic graph

cut and Naive

Bayes

U U U ISIC 2017 [37] Sensitivity, Specificity, and

Diagnostic accuracy of

91:7%, 70:1%, and 72:7%
respectively

[98] 2019 Decision tree U U Their own dataset Accuracy of 87%

[90] 2019 SVM, random

forest and

KNN

U U U ISIC 2016 [54] Accuracy of 89:43%,

sensitivity of 91:15%, and

specificity of 87:71%

[71] 2019 K-means

clustering

U U U DERMIS dataset [77] 96% accuracy

[2] 2019 Deep

convolutional

encoder-

decoder

network

U U PH2 and ISBI 2017 [37] Accuracy and dice

coefficient of 95% and

93%
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• Shearing: Shearing is used for shifting one part of the

image like a parallelogram and transforming the

orientation of the image.

• Zooming: Zooming is applied to create images with

varying levels of zooming. This augmentation zooms

the image and adds new pixels for the image randomly.

The image can be zoomed out or zoomed in.

• Cropping: Random cropping is the method of cropping

a part of the image, randomly. Similarly, center

cropping is also employed to crop the image and

applied when the image center holds more information

than the corner.

• Color changing: Data of digital images are regularly

encoded as a tensor that has dimensions of

ðheight � width � color channelsÞ. Color augmentation

changes the pixel values instead of the position.

• Brightness changing: Changing the brightness of the

image is one way of performing data augmentation.

Compared to the original image, the resultant one

becomes lighter or darker.

4.2 Segmentation

Skin cancer segmentation algorithms are broadly catego-

rized as thresholding, region-based, or edge-based methods

[117]. Thresholding uses a combination of clustering,

adaptive thresholding, and global thresholding. Good

results can be achieved by thresholding methods when the

contrast between the skin and the lesion is good. Hence,

when the corresponding histogram is bimodal, but when

the two regions overlap, it fails [100]. Edge-based methods

function badly when the edges are not defined well, for

example, when a smooth transmission between the skin and

the lesion takes place. In these situations, the outline may

leak within the edges as they have gaps. Region-based

approaches face problems when the lesion area is struc-

tured or differently colored, leading to over-segmentation

[68].

4.2.1 Threshold-based segmentation

Threshold-, pixel-, or point-based segmentation [64] is the

simplest method to drive the segmentation of images,

relying on grayscale values, to segment pixels in an image.

Various algorithms have been suggested for skin segmen-

tation and classification, including histogram-based

thresholding and piecewise linear classifiers.

4.2.2 Edge-based segmentation

Boundary- or edge-based segmentation algorithms [68]

usually mention dividing an image utilizing the boundaries

between regions, by seeking border pixels and joining them

to produce contours of the image. Nevertheless, for

applying these methods manually and automatically, pro-

cedures are established. For manual methods, the mouse is

used to lay lines that describe the edges of an image among

regions, while for the automatic ones, some edge-detection

filters are executed to divide the pixels into non-edge or

edge based on the result of the filter output. Edge-detection

filters include the Watershed segmentation algorithm,

Laplacian of Gaussian filter, and Canny Edge Detector

[130].

4.2.3 Region-based segmentation

In region-based segmentation methods, an image is seg-

mented into groups of regions (i.e., similar pixels) relying

on some features [69]. The core principle relies on the

concept that inside the same area neighboring pixels have

the same value. It can be achieved by comparing all pixels

with their neighbors in a specific region and based on the

similarity condition, the pixel is added to a particular

region [130]. In the segmentation process, instead of the

original input image, a featured image is used. The featured

image is described with small neighborhoods from regions

[119]. To use a region-based segmentation method, suit-

able threshold approaches have to be employed [68], as the

noise has a significant influence on the output [130]. Some

region-based methods are region splitting, region growing,

and region merging.

4.2.4 Deep learning (DL) segmentation

DL-based image segmentation techniques can be assorted

into: semantic, instance, panoptic, and depth segmentation

sorts according to the segmentation goal. However, due to

the huge variety in those tasks in terms of volume of work,

the architectural categorization is used instead. The archi-

tectural grouping of these models includes CNNs [33],

recurrent neural networks and long short term memory

networks [60], encoder-decoders [11], and generative

adversarial networks [52].

The U-Net model: U-Net [104] is an architecture used for

semantic segmentation and is characterized by the sym-

metric U-shape. U-Net composes of an encoder and a

decoder. The contracting path (i.e., encoder) is used to

capture and collect context and the symmetric expanding

path (i.e., decoder) is employed to enable accurate local-

ization. The encoder obeys the typical architecture of a

convolutional network. It is applied to transform the input

volume into lower-dimensional space. The encoder has a

modular structure composed of repeating convolution

blocks. In the expansive path, every step is consisting of an
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up-sampling of the feature map. The decoder also has a

modular structure, but its goal is to increase the spatial

dimensions by reducing the encoder feature map.

The U-Net?? model: U-Net?? [140] architecture which

can be considered as an extension of U-Net is essentially an

encoder-decoder network that is deeply supervised where

the sub-networks of the decoder and encoder are linked

through a series of dense and nested skip paths. These re-

designed paths seek to decrease the semantic gap between

the sub-networks of the encoder and decoder. The

U-Net?? architecture maintains the benefits of catching

fine-grained details, producing better results of segmenta-

tion than U-Net.

The Attention U-Net model: Similar to the U-Net model,

the Attention U-Net [93] includes expansion path at the

right and contraction path at the left. At each level, it has a

skip connection which is an attention gate. The attention

gates are merged into the typical U-Net architecture to

accentuate salient features that are pushed through the skip

connections. For each skip connection, the gating signal

aggregates information from several imaging scales which

helps reach better performance and improves the resolution

of the attention weights.

The V-Net model: The architecture of the V-Net [87] is

very close to the widely used U-Net model, despite some

differences. In the V-Net architecture, the left part can be

separated into different phases running at various resolu-

tions. In each stage, there are one to three convolution

layers. To facilitate learning the residual function, the

nonlinearities are used to process the input. Then, the

processed input is employed in the convolution layers and

appended to the output of the convolution layer of that

phase. When compared to non-residual learning architec-

ture such as U-Net, convergence is guaranteed by the

V-Net network.

The Swin U-Net model: Swin-U-Net [30] is a U-shaped

transformer-based architecture with skip connections for

local and global feature learning. For an encoder, to extract

context features, a hierarchical Swin transformer with

shifted windows is employed. For the decoder, an asym-

metric Swin Transformer with a patch expanding layer

performs the up-sampling operation to restore the feature

map’s spatial resolution.

4.3 Deep learning (DL) classification

The procedure of sorting a given data set into classes is

known as classification. Classification can be done on

structured and unstructured data. Its main goal is to map

input variables to discrete output variables to identify

which class the new data will fall into. Usually, the classes

are mentioned as categories, targets, or labels. Several DL

algorithms can be used to perform the task of classification

such as CNNs [75], recurrent neural networks [111], long

short-term memory networks [60], generative adversarial

networks [52], radial basis function networks, [27], deep

belief networks [59], and autoencoders [107]. In the current

study, only CNN models are used to perform the

classification.

4.3.1 Convolution neural network (CNN)

Neural networks are at the core of DL algorithms and are

considered as an ML subset [51]. They are composed of

layers of nodes, including an input layer, one or more

hidden layers, and an output layer. Each node inside each

layer has an associated weight and threshold and is con-

nected to other nodes. If the node output is higher than the

value of the threshold value, the node is triggered and starts

to send data to the subsequent layer. Else, no data will be

sent [32].

Neural networks are categorized into different types that

are used to perform different tasks. For an instance,

recurrent neural networks [111] are generally used for

speech recognition and natural language processing while

CNNs [73, 137] are frequently utilized for the tasks of

computer vision and classification. Before the use of

CNNs, to recognize objects in images, manual feature

extraction methods. Now, CNNs offer a scalable approach

to recognize and classify images. For the training process,

they need graphical processing units (GPUs) so they are

computationally demanding [76].

CNNs differ from other types by their higher perfor-

mance with image, audio signal, or speech input types [12].

They consist of three primary layers types, namely con-

volutional, pooling, and fully connected (FC) layers. The

convolution layer is the earliest layer of a typical CNN.

Following it, additional convolution and pooling layers

exist, and the final layer is an FC one [14]. After each layer,

the complexity of the CNN increases and identifies larger

parts of the image. As the image proceeds through the CNN

layers, more extensive elements of the object are begun to

be recognized until the expected object is finally recog-

nized [53].

Convolution layer: The central building block of a CNN is

the convolutional layer as the computation majority hap-

pens inside it. However, it requires some elements, e.g.,

input data, a feature map, and a filter. A tensor, also called

a kernel or filter, seeks for the presence of the features,

which is known as a convolution [39]. The kernel is a 2D

weights array that symbolizes an image part. During

training, back-propagation and gradient descent are used to

adjust parameters like weight values. Yet, the three
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hyperparameters that affect the size of the output and have

to be adjusted before the training begins include [79]:

• The number of filters: The output depth is affected by it.

For illustration, three different feature maps associated

with three distinct depths are produced by three

different filters.

• Stride: The pixels number that the kernel proceeds

through the input matrix is defined as stride.

• Padding: Discussed in the following paragraph.

There are different types of padding [7]:

• Zero padding: It is typically used when the filters and

the input image do not meet. All elements that lay

outside the input matrix are set to zero, so a greater or

equal output is produced.

• Valid padding: Also, it is named as no padding. In this

type, if the dimensions do not match, the last convo-

lution will be discarded.

• Same padding: This type guarantees that the output and

input layers are of the same size.

• Full padding: In this type, the size of the output is

increased by appending zeros to the input border.

Activation function: The linear convolution outputs are

passed into a nonlinear activation function. Before, the

used nonlinear functions are the smooth ones such as tan-

gent hyperbolic (i.e., Tanh) or Sigmoid functions [99].

Lately, the most widely used function is the rectified linear

unit (ReLU) [21]. ReLU is a piecewise linear function that

returns 0 if a negative input is received, else, it returns the

input value. Thus the output range from 0 to infinity. For

neural network types, it has evolved as the standard acti-

vation function. As, its architecture is simpler, easier to

train, and often outperforms others [28].

Pooling layer: The pooling layers (i.e., down-sampling

layers) are used to perform dimensionality reduction and

minimize the number of input parameters. Similar to the

convolution one, a filter is passed over the entire input by

the pooling operations. The distinction is that the filter

contains no weights. Rather, a summation function is

applied by the kernel to the values in the receptive field,

populating the output array [31]. The major pooling types

are:

• Max pooling: The input is passed to a filter that

specifies the pixel holds the maximum value to be sent

to the output array, in which (1) patches are extracted

from the feature maps of the input, (2) in each patch, the

maximum value is generated, and (3) the other values

are discarded [110].

• Average pooling: The input is passed to a filter that

calculates the average value to be sent to the output

array. In the pooling layer, a bunch of information is

lost, but several benefits are gained. They assist to

lower the CNN complexity, enhance efficiency, and

restrict the risk of over-fitting [124].

Fully connected (FC) layer: Simply, an FC Layer is a feed-

forward neural network. The few last layers in the network

are FC layers. The output of the last convolution or pooling

layer (i.e., feature maps) is regularly flattened and then fed

into the FC layer. A learnable weight is utilized to connect

every input to every output [19]. The final layer usually has

several output nodes same as the number of classes. Each

FC layer is followed by a nonlinear function such as ReLU

[15].

4.4 Transfer learning (TL)

The reuse of a formerly trained model for a novel problem

is called transfer learning (TL). In DL, it becomes popular

to use TL as deep neural networks that can be trained with

relatively small data. It becomes very helpful in data sci-

ence, as the majority of the real-world problems do not

have a considerable amount of classified data to train

complex models [18, 126]. In TL, what has been learned in

one task is exploited to enhance the second task general-

ization. Generalization can be done by loosening the

assumption that the test and training data must be identi-

cally distributed and independent [13]. The extensive idea

is to employ the knowledge that has been gained by the

model trained with plenty of labeled data in a novel task

with small amount of data [94]. There are five types of

transfer learning which includes (1) domain adaptation, (2)

domain confusion, (3) multitask learning, (4) one-shot

learning, and (5) zero-shot learning [109].

The TL process is divided into four contexts relying on

‘‘what to transfer’’ in learning. They involve approaches of

(1) the instance-transfer, (2) the feature-representation-

transfer, (3) the parameter-transfer, and (4) the relational-

knowledge-transfer [1]. TL uses a previously trained stored

model as a starting point for DL. This enables fast progress

and improved performance [80]. Many pre-trained CNN

models are available to be used such as VGG16 [118],

ResNet [58], MobileNet [62], Xception [34], NASNet

[141], and DenseNet [63].

NASNet, VGG, and MobileNet architectures are utilized

for image classification. The used architectures in the

current study are NASNetLarge and NASNetMobile [141],

MobileNet [62], MobileNetV2 [108], MobileNetV3Small

and MobileNetV3Large [61], and VGG16 and VGG19

[118]. In all experiments of classification, the size of the

input image is set to ð100 � 100 � 3Þ.
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4.4.1 NASNet

Google ML group has materialized the idea of an opti-

mized network through the concept of NAS that is based on

reinforcement learning [141]. The architecture is consisted

of a controller RNN and CNN, which are to be trained. The

NASNet is trained with two sizes of input images of 331 �
331 and 224 � 224 to obtain NASNetLarge and NASNet-

Mobile architectures respectively. When moving from

NASNetMobile to NASNetLarge, there is great growth in

several parameters. NASNetMobile and NASNetLarge

have 5, 326, 716 and 88, 949, 818 parameters, respec-

tively, which makes NASNetLarge less reliable.

4.4.2 MobileNet

MobileNet is created to efficiently increase accuracy

whereas being aware of the limited resources for an on-

device. To meet the resource constraints of the computing

devices, MobileNet has low-latency and low-power models

[61]. MobileNet uses separable filters, which is a mixture

of a point- and a depth-wise convolution. It operates filters

with a size of 1 � 1 for minimizing the normal convolution

operation computational overheads. Hence, the network is

lighter in terms of size and computational complexity. The

MobileNet has 4.2 million parameters with input image of

size 224 � 224 � 3.

4.4.3 MobileNetV2

MobileNetV2 architecture is close to the original Mobile-

Net, except that inverted residual blocks with bottlenecking

features were utilized and nonlinearities in narrow layers

were removed [108]. It has fewer parameters than the

original MobileNet. MobileNets support all input sizes

larger than 32 � 32 with greater image sizes giving a better

performance. In MobileNetV2, two sorts of blocks exist.

The first is a 1 stride-sized residual block. The other is used

for downsizing and it is a 2 stride-sized block. For both

types of blocks, there are 3 layers. The initial layer is 1�1

convolution with ReLU6, the next is a depth-wise convo-

lution, and the last one is a further 1 � 1 convolution but

without any activation function.

4.4.4 MobileNetV3

The major contribution of MobileNetV3 is the utilizing of

AutoML to obtain the best possible neural network archi-

tecture for a given problem. Precisely, MobileNetV3

combines pair of AutoML techniques: NetAdapt and

MnasNet [61]. MobileNetV3 initially uses MnasNet to

search for a coarse architecture. MnasNet utilized rein-

forcement learning to select the optimal configuration from

a discrete set of choices. Then, the architecture is fine-

tuned using NetAdapt which cuts the underutilized acti-

vation channels in small increments. MobileNetV3 is rep-

resented as two models: MobileNetV3Large and

MobileNetV3Small are targeted at high and low resource

use cases, respectively. When compared to MobileNetV2,

MobileNetV3Large is 3:2% more accurate on ImageNet

classification and latency is decreased by 20%. Similarly,

MobileNetV3Small is more accurate by 6:6% with com-

parable latency.

4.4.5 VGG model

The VGG is formed up of convolution and pooling layers

stacked together [118]. In VGG16, the network depth is 16

layers without the issue of vanishing gradients. It includes

13 convolution layers, 5 max-pooling layers, and 3 dense

layers with two 4096 sized layers. A nonlinear ReLU

activation function was used by all the hidden layers while

the final layer uses a SoftMax function. On the contrary,

the VGG19 network depth is 19 layers. There are 16

convolution layers, 5 MaxPool layers, and 3 dense layers

with two 4096 sized layers. Similar to VGG16, all the

hidden layers of VGG19 utilize the ReLU activation

function and the final layer uses the SoftMax function.

Table 2 summarizes the classification models used in

the current study.

4.5 Parameters optimization

Parameters optimization is the process of selecting the

values of parameters that are optimal for some desired

purpose (e.g., minimizing an error function). The parame-

ters are the weights and biases of the network. The cost

(i.e., error) function is used to perform the model predic-

tions and target values comparison [129]. Some of the

weights optimizers are gradient descent algorithm [106],

Adam (adaptive moment optimization algorithm) [72],

Nadam [123], Adagrad [89, 131], AdaDelta [136], AdaMax

[40], and Ftrl [85].

Table 2 Classification models summary

Model name Reference Parameters # Size (MB)

NASNetLarge [141] 88,949,818 343

NASNetMobile [141] 5,326,716 23

MobileNet [62] 4,253,864 16

MobileNetV2 [108] 3,538,984 14

MobileNetV3Small [61] 2.54 M N/A

MobileNetV3Large [61] 5.48 M N/A

VGG16 [118] 138,357,544 528

VGG19 [118] 143,667,240 549

826 Neural Computing and Applications (2023) 35:815–853

123



To minimize the error function, the gradient descent

algorithm [106] updates the parameters. Small steps in the

negative direction of the loss function are taken by this

algorithm. Adam [72] merges the heuristics of the

RMSProp [42] and momentum [134] optimization algo-

rithms. The momentum optimizer speeds up the search in

the minima direction, while the RMSProp optimizer pre-

vents the search in the direction of the oscillation.

4.6 Meta-heuristic optimization

Usually, numerous real-world optimization problems

involve a big number of decision variables, complex non-

linear constraints, and objective functions; hence, they are

increasingly becoming challenging. When the objective

constraints have multi-peaks, the traditional optimization

approaches such as numerical methods become less pow-

erful. Meta-heuristic optimization methods become pow-

erful tools for managing optimization issues. Their

popularity drives by the following aspects [139]:

• Simplicity: These meta-heuristic methods are mathe-

matical models derived from nature and are generally

simple, easy to perform, and develop variants according

to existing approaches.

• Black box: For a given problem, a set of inputs can offer

a set of outputs.

• Randomness: This allows the meta-heuristic algorithm

to prevent trapping into local optima and inspect the

entire search space.

• Highly flexible: Their practicality can be implied to

diverse types of optimization problems, e.g., complex

numerical problems with plentiful local minima, non-

linear problems, or non-differentiable problems.

4.6.1 Sparrow search algorithm (SpaSA)

The sparrow search algorithm (SpaSA) [135] is inspired by

the strategies of foraging and the behaviors of anti-preda-

tion of sparrows. Compared with traditional heuristic

search methods, it has strong optimization ability, fast

convergence speed, and more extensive application pro-

cedures. Hence, the SpaSA is captivating the attention of

researchers in various fields.

It was originally suggested by Xue and Shen [135]. The

sparrow population is divided into (1) the discoverer and (2)

the follower sparrows according to their role in the food search

procedure. Each of them does their behavioral strategies

separately. In most cases, the discoverers are 0.2 of the pop-

ulation size. They are the guiders, leading other individuals in

the food search. To obtain more food, the roles are switched

flexibly between the discoverers and the followers and com-

pete for the food resources of their companions. However, the

proportion of the followers and the discoverers inside the

population is fixed. The individuals’ energy and the sparrows’

anti-predation behavior determine their foraging strategies.

The mathematical representation of the SpaSA algorithm will

be discussed in Sect. 5.4.1.

Why the sparrow search algorithm (SpaSA) has been

selected to be used? SpaSA is a relatively new swarm

intelligence heuristic algorithm. As reported in [135],

results showed that the proposed SpaSA is superior to grey

wolf optimizer (GWO), gravitational search algorithm

(GSA), and particle swarm optimization (PSO) in terms of

accuracy, convergence speed, stability, and robustness.

Additionally, the SpaSA has high performance in diverse

search spaces. Using the SpaSA, the local optimum issue is

avoided effectively as it has a good ability to explore the

potential region of the global optimum.

4.7 Performance metrics

Evaluating the quality of the produced output is accom-

plished by comparing images is an essential part of mea-

suring progress [138]. Performance metrics are distinct from

loss functions. Loss functions give a measure of model

performance. Metrics are employed to estimate the perfor-

mance of a model. Nevertheless, the loss function can also be

utilized as a performance metric. The assessment metric

should provide details related to the task, whether it is

interventional or diagnostic. For illustration, some tasks

require real-time operations, while tasks for diagnostic pro-

cedures can be conducted offline. For choosing the optimal

approach, the importance of different performance metrics

may differ. Performance metrics can be categorized as (1)

spatial overlap-based metrics, (2) probabilistic-based met-

rics, (3) pair-counting-based metrics, (4) volume- or area-

based metrics, (5) information theoretic-based metrics, and

(6) spatial distance-based metrics [120]. In the current study,

only spatial overlap- and probabilistic-based metrics were

used, so they will be discussed in this section.

4.7.1 Spatial overlap-based metrics

The overlap-based performance metrics are the ones that

can be acquired from the cardinalities of the confusion

matrix. A confusion matrix is a matrix created to assess the

model performance. It matches the actual values with the

ones predicted by the model. It consists of: (1) true positive

(TP), (2) true negative (TN), (3) false positive (FP), and (4)

false negative (FN).

The accuracy is the ratio of the correct predictions for

the test data to the total predictions. The true negative rate

(TNR), also termed specificity, estimates the ability of the

model to predict the true negatives of every class. Like-

wise, the true positive rate (TPR), also termed sensitivity or
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recall, is defined as the ratio of samples that were predicted

to belong to a class to all of the samples that truly belong to

this class. Hence, it estimates the model’s ability to predict

the true positives of every class.

The false negative rate (FNR) and the false positive rate

(FPR) (i.e., fallout) are another two metrics associated with

the two previously mentioned metrics. Additionally, pre-

cision also termed positive predictive value (PPV) is the

ratio of true positives among the retrieved instances.

The dice coefficient, also termed as the overlap index

and F1-score, is one of the most applied metrics to evaluate

the medical images [46]. Besides the direct comparison

between the true and predicted value, it is often used to

estimate repeatability. The Jaccard index (JAC), also ter-

med as the intersection over union (IoU), is the intersection

among two sets divided by their union [66].

4.7.2 Probabilistic-based metrics

Probabilistic-based metrics are defined as a statistical func-

tion’s measure estimated from the voxels in the overlap

region. The receiver operating characteristic (ROC) curve is

a relationship graph between FPR and TPR. The area under

the ROC curve (AUC) was suggested by Hanley and McNeil

[55] as an evaluation of the accuracy of diagnostic radiology

In the situation of comparing the predicted and true value, the

AUC defined according to [97] is considered, that is, the

trapezoidal area determined by the lines TPR ¼ 0 and

FPR ¼ 1 and the measurement point.

5 Methodology and suggested approach

In summary, the images is accepted by the input layer. In the

next phase, they are pre-processed by employing dataset

augmentation, scaling, and balancing. The images can be

classified and segmented after that using the suggested pre-

trained models. Finally, the transfer learning and meta-

heuristic optimization phase occurs. After completion, the

figures, statistics, and post-trained models are prefaced. In

the following subsections, these phases are debated.

5.1 Dataset acquisition

In the current study, five publicly available datasets are

utilized and downloaded from Kaggle. The first dataset is

named ‘‘ISIC 2019 and 2020 Melanoma dataset’’

[37, 38, 105, 127]. It is composed of 11,449 images. It is

partitioned into 2 classes: ‘‘MEL’’ and ‘‘NEVUS.’’ It can

be downloaded and used from https://www.kaggle.com/

qikangdeng/isic-2019-and-2020-melanoma-dataset.

The second one is named ‘‘Melanoma Classification

(HAM10000)’’ [36, 127]. It is composed of 10,015 images

in which images have different sizes. It is partitioned into 2

classes: ‘‘Melanoma’’ and ‘‘NotMelanoma.’’ It can be

downloaded and used from https://www.kaggle.com/adac

slicml/melanoma-classification-ham10k.

The third one is named ‘‘Skin diseases image dataset’’.

It is composed of 27, 153 images in which images have

different sizes. It is partitioned into 10 classes: ‘‘Atopic

Dermatitis,’’ ‘‘Basal Cell Carcinoma,’’ ‘‘Benign Keratosis-

like Lesions,’’ ‘‘Eczema,’’ ‘‘Melanocytic Nevi,’’ ‘‘Mela-

noma,’’ ‘‘Psoriasis pictures Lichen Planus and related dis-

eases,’’ ‘‘Seborrheic Keratoses and other Benign Tumors,’’

‘‘Tinea Ringworm Candidiasis and other Fungal Infec-

tions’’ and ‘‘Warts Molluscum and other Viral Infections.’’

It can be downloaded and used from https://www.kaggle.

com/ismailpromus/skin-diseases-image-dataset.

The fourth one is named ‘‘Skin cancer segmentation

and classification’’. It is composed of 10, 015 images in

which images are of different sizes. It can be downloaded

and used from https://www.kaggle.com/surajghuwalewala/

ham1000-segmentation-and-classification. The fifth one is

named ‘‘PH2’’. It is composed of 200 dermoscopic images

of melanocytic lesions. It can be downloaded and used

from https://www.fc.up.pt/addi/ph2%20database.html.

Table 3 summarizes the used datasets, and Fig. 2 shows

samples from them.

5.2 Dataset pre-processing

5.2.1 dataset scaling

Data scaling is discussed in Sect. 4.1.1 and the correspond-

ing equations that are used in the current study are Eq. 1 for

standardization, Eq. 2 for normalization, Eq. 3 for the min-

max scaler, and Eq. 4 for the max-absolute scaler where l is

the image mean and r is the image standard deviation.

output ¼ input � l
r

ð1Þ

output ¼ input

max ðinputÞ ð2Þ

output ¼ input � min ðinputÞ
max ðinputÞ � min ðinputÞ ð3Þ

output ¼ input

jmax ðinputÞj ð4Þ

5.2.2 Dataset augmentation and balancing

Before the training process, data balancing is applied to

balance the categories since the number of images per

category is not even. Data balancing is performed using the
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methods of data augmentation discussed in Sect. 4.1.2. The

used ranges in this process are (1) 25� for rotation, (2) 15%

for shifting the width and height, (3) 15% for shearing, (4)

applying horizontal and vertical flipping, and (5) changing

the brightness in the range of [0.8 : 1.2]. Additionally, in

the learning and optimization phase, data augmentation is

used to augment the images to avoid any over-fitting and

increase the diversity [17]. The used transformation metrics

are Eq. 5 for horizontal flipping (i.e., x-axis), Eq. 6 for

rotation, Eq. 7 for shifting, Eq. 8 for shearing, and Eq. 9

for zooming where h is the rotation angle, tx determines the

shifting along x-axis, while ty determines the shifting along

y-axis, shx determines the shear factor along x-axis while

shy determines the shear factor along y-axis, and Cx

determines the zoom factor along x-axis and Cy determines

the zoom factor along y-axis.

Flipping Matrix ¼
1 0 0

0 cos h � sin h

0 sin h cos h

2
64

3
75 ð5Þ

Rotation Matrix ¼
cos h sin h 0

� sin h cos h 0

0 0 1

2
64

3
75 ð6Þ

Table 3 The used datasets summary

Dataset Classes

#

Classes Images # Size of

image

Extensions Source (link)

ISIC 2019 and

2020

Melanoma

dataset

2 ‘‘MEL’’ and ‘‘NEVUS’’ 25,331 images for

ISIC 2019 and

11, 449 images

for ISIC 2020

Different

sizes

‘‘.jpg’’ https://www.kaggle.

com/qikangdeng/isic-

2019-and-2020-

melanoma-dataset

Melanoma

Classification

(HAM10K)

2 ‘‘Melanoma’’ and ‘‘NotMelanoma’’ 10, 015 Different

sizes

‘‘.jpg’’ https://www.kaggle.

com/adacslicml/

melanoma-

classification-ham10k

Skin diseases

image dataset

10 ‘‘Atopic Dermatitis,’’ ‘‘Basal Cell

Carcinoma,’’ ‘‘Benign Keratosis-like

Lesions,’’ ‘‘Eczema,’’ ‘‘Melanocytic

Nevi,’’ ‘‘Melanoma,’’ ‘‘Psoriasis

pictures Lichen Planus and related

diseases,’’ ‘‘Seborrheic Keratoses and

other Benign Tumors,’’ ‘‘Tinea

Ringworm Candidiasis and other

Fungal Infections’’ and ‘‘Warts

Molluscum and other Viral Infections’’

27, 153 Different

sizes

‘‘.jpg’’ https://www.kaggle.

com/ismailpromus/

skin-diseases-image-

dataset

Skin cancer

segmentation

and

classification

N/A N/A 10, 015 Different

sizes

‘‘.jpg’’ https://www.kaggle.

com/

surajghuwalewala/

ham1000-

segmentation-and-

classification

PH2 N/A N/A 200 Similar ‘‘.bmp’’ https://www.fc.up.pt/

addi/ph2%20database.

html

Fig. 2 Samples from the used datasets
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Shifting Matrix ¼
1 0 0

0 1 0

tx ty 1

2
64

3
75 ð7Þ

Shearing Matrix ¼
1 shy 0

shx 1 0

0 0 1

2
64

3
75 ð8Þ

Zooming Matrix ¼
Cx 0 0

0 Cy 0

0 0 1

2
64

3
75 ð9Þ

5.3 Segmentation phase

The segmentation phase is qualified for segmenting the

tumor portion from the medical skin images. In the current

phase, the U-Net with different five flavors designed for

image segmentation was used. The used U-Net models in

the present study are U-Net [104], U-Net?? [140],

Attention U-Net [93], V-Net [87], and Swin U-Net [30].

The U-Net consists of the left contraction path and the right

expansion path. In the current study, there are four different

configurations applied to three U-Net models (i.e., U-Net,

U-Net??, and Attention U-Net). They are (1) the default

left contraction path is used in two settings and it is

replaced with the VGG19 and DenseNet121 architectures

for the other two settings, (2) the pre-trained weights for

the VGG19, DenseNet121 are set with ImageNet, (3) the

ImageNet weights are frozen from being updated, (4) the

depth of the architecture is set to five with the number of

filters of [64, 128, 256, 512, 1024] in each level (i.e.,

block), (5) the input image size is set to ð128 � 128 � 3Þ,
and (6) the output mask size is ð128 � 128 � 1Þ.

5.3.1 The U-Net model

In the current study, four configurations of U-Net are

employed to perform the segmentation task. In the first

configuration, the architecture provided in [104] is utilized.

Whereas batch normalization and GeLU as a hidden acti-

vation function is applied in the second one. For the third and

fourth configurations, in addition to batch normalization and

GeLU hidden activation function, VGG19 and DenseNet201

are utilized as a network backbone (i.e., replace the encoder

with the SOTA architectures). A summarization of the four

different U-Net configurations is presented in Table 4.

5.3.2 The U-Net11 model

Similarly to U-Net, four configurations of U-Net?? are

employed to perform the segmentation task. In the first

configuration, the architecture provided in [140] is utilized,

Whereas batch normalization and GeLU as a hidden acti-

vation function is applied in the second one. For the third

and fourth configurations, in addition to batch normaliza-

tion and GeLU hidden activation function, VGG19 and

DenseNet201 are utilized as a backbone. For the four

configuration, deep supervision is deactivated. A summa-

rization of the four different U-Net?? configurations is

presented in Table 5.

5.3.3 The Attention U-Net model

Similar to the previous two architectures, four configura-

tions of Attention U-Net are used to perform the segmen-

tation task. In the first configuration, the architecture

provided in [93] is utilized, whereas the remaining con-

figurations are the same as the previous two networks. For

the four configuration, ReLU was used as an attention

activation function and Add is used as an attention type. A

summarization of the four different Attention U-Net con-

figurations is presented in Table 6.

5.3.4 The V-Net model

In this study, only one configuration is used for the v-net

model. GeLU is used as the hidden activation function,

batch normalization is applied, and the pooling and un-

pooling are deactivated. The configuration of the V-Net

architectures is presented in Table 7.

5.3.5 The Swin U-Net model

Similar to V-Net, only one configuration is used for the

swin u-net model. The configuration of the Swin U-Net

architecture is presented in Table 8.

5.4 Learning and optimization

To achieve the SOTA performance, different DL training

hyperparameters (as shown in Table 9) required to be

optimized. Try-and-error, grid search, and meta-heuristic

optimization algorithms are techniques used to optimize

the hyperparameters. Try-and-error is a weak technique as

it does not cover the ranges of the hyperparameters.

However, the grid search covers it, but, to complete the

searching process, a long time (e.g., months) is required.

In the current study, we are optimizing (1) loss function,

(2) dropout, (3) batch size, (4) the parameters (i.e., weights)

optimizer, (5) the pre-training TL model learn ratio, (6) the

dataset scaling technique, (7) do we need to apply aug-

mentation or not, (8) width shift range, (9) rotation range,

(10) shear range, (11) height shift range, (12) horizontal

flipping, (13) zoom range, (14) vertical flipping, and (15)
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brightness range. In the case the sixth hyperparameter is

true, the last eight hyperparameters will be optimized;

otherwise, they will be neglected. Hence, at least 6

hyperparameters are required to be optimized. So, if the

grid search approach is utilized, this will lead to OðN6Þ
concerning the running complexity. As a result, the meta-

heuristic optimization algorithms approach using Sparrow

Search Algorithm (SpaSA) is applied in the current study.

Table 4 The U-net summary

Keyword Hidden

activation

function

Backbone Freeze

backbone

Stack

down #

Stack

Up #

Batch

normalization

Freeze batch

normalization

Pooling Unpooling

U-Net-Default ReLU None N/A 2 2 False True True True

U-Net-None GeLU None N/A 2 2 True True False False

U-Net-VGG19 GeLU VGG19 True 2 2 True True False False

U-Net-

DenseNet201

GeLU DenseNet201 True 2 2 True True False False

Table 5 The U-Net?? summary

Keyword Hidden

activation

function

Backbone Freeze

backbone

Stack

Down

#

Stack

Up #

Batch

normalization

Freeze batch

normalization

Pooling Unpooling Deep

supervision

U-Net??-

Default

ReLU None N/A 2 2 False True True True False

U-Net??-

None

GeLU None N/A 2 2 True True False False False

U-Net??-

VGG19

GeLU VGG19 True 2 2 True True False False False

U-Net??-

DenseNet201

GeLU DenseNet201 True 2 2 True True False False False

Table 6 The Attention U-Net summary

Keyword Hidden

activation

function

Backbone Freeze

backbone

Stack

Down #

Stack

Up #

Batch

normalization

Freeze batch

normalization

Attention

activation

Attention

type

Attention U-Net-

default

ReLU None N/A 2 2 False True ReLU Add

Attention U-Net-

none

GeLU None N/A 2 2 True True ReLU Add

Attention U-Net-

VGG19

GeLU VGG19 True 2 2 True True ReLU Add

Attention U-Net-

DenseNet201

GeLU DenseNet201 True 2 2 True True ReLU Add

Table 7 The V-Net configuration

Keyword Hidden activation function Batch normalization Pooling Un-pooling Res Initial # Res Max #

V-Net GeLU True False False 1 3
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5.4.1 Sparrow search algorithm (SpaSA)

This approach will be used to solve the optimization issue

to obtain the best combinations. As a beginning, all spar-

row populations and their parameters are initialized ran-

domly from the given ranges (as described in Table 11).

The steps of the hyperparameters optimization include (1)

objective function calculation, (2) population sorting, (3)

selection, and (4) updating. After operating a set of itera-

tions, the best global optimal location and fitness value are

reported. The steps are explained comprehensively in the

next subsections.

5.4.2 Initial population

Initially, the sparrows population and its relevant parame-

ters are selected randomly. An arbitrary method is used to

generate the initial population in SpaSA. It can be defined

as shown in Eq. 10 where Xi;j is the position of ith sparrow

in jth search space, i is the solution index, and j is the

dimension index. D in the current study will be set to 15

(i.e., the number of hyperparameters required to be opti-

mized). It will generate a population with a size of ðPs�
DÞ where Ps is the population size (i.e., number of spar-

rows) and its value is set to 10 in the current study.

Xi;j ¼ LBj þ UBj � LBj

� �
� random 1;Dð Þ ð10Þ

5.4.3 Objective function calculation

The objective function is applied to each sparrow to

determine the corresponding score. The current problem is

a maximization one, the higher the value, the better the

sparrow. To simplify this step, the objective function can

be thought of as a black box in which the solution is the

input and the score (i.e., accuracy in this case) will be

output. What happens internally? After accepting the

solution required to be evaluated, the 15 elements men-

tioned earlier are extracted and applied to the pre-trained

CNN model (e.g., VGG16). Initially, the model uses these

certain values to start the learning process (i.e., the training

and validation processes). Then, it evaluates itself on the

entire dataset to find the overall performance metrics.

Finally, the objective function returns the accuracy. The

reported performance metrics are discussed in Sect. 4.7

and their equations are Eq. 11 for accuracy, Eq. 12 for

specificity, Eq. 13 for recall, Eq. 14 for FNR, Eq. 15 for

fallout, Eq. 16 for precision, Eq. 17 for dice coef., Eq. 18

for JAC, and Eq. 19 for AUC.

Accuracy ¼ TP þ TN

TP þ TN þ FP þ FN
ð11Þ

Specificity ¼ TNR ¼ TN

TN þ FP
ð12Þ

Sensitivity ¼ Recall ¼ TPR ¼ TP

TP þ FN
ð13Þ

FNR ¼ FN

FN þ TP
¼ 1 � TPR ð14Þ

FPR ¼ Fallout ¼ 1 � TNR ¼ FP

FP þ TN
ð15Þ

Precision ¼ PPV ¼ TP

TP þ FP
ð16Þ

Dice ¼ 2 � TP

2 � TP þ FP þ FN
ð17Þ

JAC ¼ TP

TP þ FP þ FN
¼ Dice

2 � Dice
ð18Þ

Table 8 The Swin U-Net configuration

Keyword Stack Up # Stack Down # Patch size Heads # Window size MLP # Fliter Begin # Depth Shift window

Swin U-Net 2 2 (2,2) [4, 8, 8, 8] [4, 2, 2, 2] 512 64 4 True

Table 9 A list of parameters and hyperparameters in a CNN to be optimized

Layer Parameters Hyperparameters

Convolution layer Kernels’ weights Number of kernels, kernel size, stride, activation function, and padding

Pooling layer Filter size, pooling method, padding, and stride

Fully connected layer Neurons’ Weights Activation function and number of weights

Others Optimizer, model architecture, loss function, learning rate, epochs,

batch size, weight initialization, dataset splitting, and regularization
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AUC ¼ 1 � FPRþ FNR

2
¼

1 � 0:5 � FP

FP þ TN
þ FN

FN þ TP

� � ð19Þ

5.4.4 Population sorting

After calculating the objective function of each sparrow in

the population set, sparrows are sorted in descending

arrangements concerning the values of the objective

function.

5.4.5 Selection

The current best individual Xt
best and worst individual Xt

worst

and their fitness values are picked to be applied in the

updating process.

5.4.6 Population updating

Using SpaSA, the individual with the best fitness values

has the priority to collect food in the search procedure and

oversee the entire population movement. So, updating the

sparrow location for producers is important and can be

done using Equation 20 where h represents the number of

the current iteration and T is the maximal iterations num-

ber. Xi;j represents the current position of the ith sparrow in

the jth dimension. a is a random number 2 ½0; 1�. Q is a

random number from the normal distribution. L represents

a 1 � D matrix containing all 1 element. R2 and ST rep-

resent warning and safety values respectively, and

R2 2 ½0; 1�, ST 2 ½0:5; 1�. When R2\ST , there are no

predators and the discoverers can widely search for food

sources. Otherwise, some sparrows have detected the

predators and the whole population flies to other safe areas

when the chirping alarm happens.

Xtþ1
i;j ¼

Xt
i;j � expð

�h
a�TÞ; if R2\ST

Xt
i;j þ Q� L; Otherwise

(
ð20Þ

Additionally, some of the followers supervise the discov-

erers and those discoverers with high predation rates for

food, increasing their nutrition. The followers’ position is

updated using Equation 21 where XP is the currently

optimal discoverer position, and Xworst indicates the current

worst position. A is a 1 � D matrix, where an element is

only - 1 or 1, with Aþ ¼ AT � ðA� ATÞ�1
. If i[ 0:5 � n,

when the followers are starving and have low levels of

energy reserves, they leave to search for food in other

areas. The movement of the leaving followers is in a ran-

dom direction which is away from the current worst posi-

tion. Otherwise, the followers with high levels of energy

move to the discoverers that have found good food.

It is assumed that only 10% to 20% of the entire sparrow

population are aware of the danger. The sparrows initial

positions are randomly formed in the population using

Eq. 22 where b, the step size control parameter, is a normal

distribution with a mean value of 0 and a variance of 1 of

random numbers. Xbest is the current global optimal loca-

tion. K 2 ½�1; 1� is a random number that denotes the

direction in which the sparrow moves. � is the smallest

constant to avoid zero-division-error. fi is the fitness value

of the present sparrow; hence, fg and fw are the current

global best and worst fitness values, respectively. When

fi[ fg, it indicates that the sparrow is at the edge of the

group. Xbest represents the location of the center of the

population and is safe around it. While fi ¼ fg reveals that

the sparrows, that are in the middle of the population, are

aware of the danger.

Xtþ1
i;j ¼

Xt
best þ b� jXt

i;j � Xt
bestj; if fi 6¼ fg

Xt
i;j þ K �

jXt
i;j � Xt

worstj
ðfi � fwÞ þ �

� �
; Otherwise

8><
>:

ð22Þ

5.5 The overall pseudocode and flowchart

The steps are iteratively computed for a number of itera-

tions. Algorithm 1 and the corresponding flowchart in

Fig. 3 summarize the proposed learning and optimization

approach.

Xtþ1
i;j ¼ Q� expð

Xt
worst

�Xt
i;j

i2
Þ; if ði[ 0:5 � nÞ

Xtþ1
P þ jXt

i;j � Xtþ1
P j � Aþ � L; Otherwise

:

8<
: ð21Þ
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6 Experiments and discussions

The experiments are divided into two categories: (1) seg-

mentation experiments and (2) optimization, learning, and

classification experiments.

6.1 Experiments configurations

Generally, ‘‘Python’’ programming language is used in the

current study for coding and testing. Google Colab, with its

GPU, is the learning and optimization environment. Ten-

sorflow, Keras, keras-unet-collection, NumPy, OpenCV,

Pandas, and Matplotlib are the major used Python packages

[20]. The dataset split ratio is set to 85% (for training and

validation) and 15% (for testing). Dataset shuffling is

applied randomly during the learning process. The images

are resized to ð100 � 100 � 3Þ for classification and to

ð128 � 128 � 3Þ for segmentation in the RGB color space.

Table 10 summarizes the common configurations of the

experiments, Table 11 summarizes the optimization,

learning, and classification specific configurations, and

Table 12 summarizes the segmentation specific

configurations.

6.2 Segmentation experiments

The current subsection presents and discusses the experi-

ments related to segmentation. The experiments are applied

using U-Net [104], U-Net?? [140], Attention U-Net [93],

Swin U-Net [30], and V-Net [87]. Table 13 shows the

summarization of the reported results related to the seg-

mentations experiments. For the ‘‘Skin cancer segmenta-

tion and classification’’ dataset, Table 13 shows that the

best model is the ‘‘U-Net??-DenseNet201’’ concerning

the loss, accuracy, F1, AUC, IoU, and dice values. How-

ever, the ‘‘U-Net??-Default’’ model is the best concerning

the specificity, hinge, and square hinge values. It worth

Fig. 3 The suggested learning and hyperparameters optimization

flowchart

Table 10 The used experiments common configurations

Configuration Specifications

Dataset details Table 3

Scripting language Python

Python packages Tensorflow, Keras, keras-unet-collection, NumPy, OpenCV, Scikit-Learn, SciPy, Pandas, and Matplotlib

Learning and optimization

environment

Google Colab (Intel(R) Xeon(R) CPU @ 2.00 GHz, Tesla T4 16 GB GPU with CUDA v.11.2, and 12 GB

RAM)
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Table 11 The used optimization, learning, and classification specific configurations

Configuration Specifications

Image size ð100 � 100 � 3Þ for classification

Train split ratio 85% to 15%

Shuffle dataset Yes

Number of epochs 5

Hyperparameters optimizer Sparrow Search Algorithm (SpaSA)

SpaSA population size 10

SpaSA number of iterations 10

Output activation function SoftMax

Early stopping patience 5

Pre-trained parameters

initializers

ImageNet

Pre-trained models MobileNet, MobileNetV2, MobileNetV3Small, MobileNetV3Large, VGG16, VGG19, NASNetMobile, and

NASNetLarge

Loss Categorical Crossentropy, Categorical Hinge, KLDivergence, Poisson, Squared Hinge, and Hinge

Parameters optimizer Adam, NAdam, AdaGrad, AdaDelta, AdaMax, RMSProp, SGD, Ftrl, SGD Nesterov, RMSProp Centered, and

Adam AMSGrad

Dropout range [0, 0.6]

Batch size 4 to 48 with a step of 4

Pre-trained model learn ratio 1 to 100 with a step of 1

Scaling techniques Normalize, Standard, Min Max, and Max Abs

Apply data augmentation Boolean (Yes or No)

Rotation range 0� to 45� with a step of 1�

Width shift range [0, 0.25]

Height shift range [0, 0.25]

Shear range [0, 0.25]

Zoom range [0, 0.25]

Horizontal flip range Boolean (Yes or No)

Vertical lip range Boolean (Yes or No)

Brightness range [0.5, 2.0]

Table 12 The used

segmentation-specific

configurations

Configuration Specifications

Image size ð128 � 128 � 3Þ for segmentation

Train split ratio 85% to 15%

Filters [64, 128, 256, 512, 1024]

Loss Binary crossentropy

Parameters optimizer Adam

Batch size 4

Number of epochs 10

Early stopping patience 5

Output activation function Sigmoid

Pre-trained parameters initializers ImageNet

Freeze backbone Yes

Freeze batch normalization Yes
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mentioning that the ‘‘V-Net-VGG19’’ model is better than

other concerning the sensitivity and recall values and the

‘‘Attention U-Net-DenseNet201’’ models is better con-

cerning the precision value. Figure 4 presents a graphical

summarization of the reported segmentation results con-

cerning the ‘‘Skin cancer segmentation and classification’’

dataset. For the ‘‘PH2’’ dataset, Table 14 shows that the

best model is the ‘‘Attention U-Net-DenseNet201’’ con-

cerning the loss, accuracy, F1, IoU, and dice values.

However, the ‘‘Swin U-Net’’ model is the best concerning

the precision, specificity, and squared hinge values. It

worth mentioning that the ‘‘UNet??-Default’’ model is

ignored as it reported meaningless performance metrics.

Figure 5 presents a graphical summarization of the repor-

ted segmentation results concerning the ‘‘PH2’’ dataset.

6.3 Learning and optimization experiments

The current subsection presents and discusses the experi-

ments related to the learning and optimization experiments

using the mentioned pre-trained TL CNN models (i.e.,

MobileNet, MobileNetV2, MobileNetV3Small, Mobile-

NetV3Large, VGG16, VGG19, NASNetMobile, and

NASNetLarge) and SpaSA meta-heuristic optimizer. The

number of epochs is set to 5. The numbers of SpaSA

iterations and population size are set to 10 each. The

captured and reported metrics are the loss, accuracy, F1,

precision, recall, sensitivity, specificity, AUC, IoU coef.,

Dice coef., cosine similarity, TP, TN, FP, FN, logcosh

error, mean absolute error, mean IoU, mean squared error,

mean squared logarithmic error, and root mean squared

error.

6.4 The ‘‘ISIC 2019 and 2020 Melanoma dataset’’
experiments

Table 15 shows the TP, TN, FP, and FN of the best solu-

tions after the learning and optimization processes on each

pre-trained model concerning the ‘‘ISIC 2019 and 2020

Melanoma dataset’’ dataset. It shows that MobileNet pre-

trained model has the lowest FP and FN values. On the

other hand, MobileNetV3Small has the highest FP and FN

values. The best solutions combinations concerning each

model are reported in Table 16. It shows that the

KLDivergence loss is recommended by five models while

the Poisson loss is recommended by two models only. The

AdaGrad parameters optimizer is recommended by four

models, while the SGD Nesterov parameters optimizer is

recommended by two only. All models recommended

applying data augmentation. The min-max scaler is rec-

ommended by three models. From the values reported in

Table 15 and the learning history, we can report different

performance metrics. The reported metrics are partitioned

into two types. The first reflects the metrics that are

required to be maximized (i.e., Accuracy, F1, Precision,

Recall, Specificity, Sensitivity, AUC, IoU, Dice, and

Cosine Similarity). The second reflects the metrics that are

required to be minimized (i.e., Categorical Crossentropy,

KLDivergence, Categorical Hinge, Hinge, SquaredHinge,

Poisson, Logcosh Error, Mean Absolute Error, Mean IoU,

Mean Squared Error, Mean Squared Logarithmic Error,

and Root Mean Squared Error). The first category metrics

are reported in Table 17, while the second is in Table 18.

From them, we can report that the MobileNet pre-trained

model is the best model compared to others concerning the

‘‘ISIC 2019 and 2020 Melanoma dataset’’ dataset. Figure 6

and Figure 7 present graphical summarizations of the

Fig. 4 Graphical summary of the segmentation experiments and results concerning the ‘‘Skin cancer segmentation and classification’’ dataset
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reported learning and optimization results concerning the

‘‘ISIC 2019 and 2020 Melanoma dataset’’ dataset.

6.5 The ‘‘Melanoma Classification (HAM10K)’’
experiments

Table 19 shows the TP, TN, FP, and FN of the best solu-

tions after the learning and optimization processes on each

pre-trained model concerning the ‘‘Melanoma Classifica-

tion (HAM10K)’’ dataset. It shows that MobileNet pre-

trained model has the lowest FP and FN values. On the

other hand, MobileNetV3Small has the highest FP and FN

values. The best solutions combinations concerning each

model are reported in Table 20. It shows that the

KLDivergence loss is recommended by four models while

the Squared Hinge loss is recommended by two models

only. The SGD Nesterov parameters optimizer is recom-

mended by five models while the SGD parameters

optimizer is recommended by two only. Seven models

recommended applying data augmentation. The min-max

scaler is recommended by four models. From the values

reported in Table 19 and the learning history, we can report

different performance metrics. The reported metrics are

partitioned into two types. The first reflects the metrics that

are required to be maximized (i.e., Accuracy, F1, Precision,

Recall, Specificity, Sensitivity, AUC, IoU, Dice, and

Cosine Similarity). The second reflects the metrics that are

required to be minimized (i.e., Categorical Crossentropy,

KLDivergence, Categorical Hinge, Hinge, SquaredHinge,

Poisson, Logcosh Error, Mean Absolute Error, Mean IoU,

Mean Squared Error, Mean Squared Logarithmic Error,

and Root Mean Squared Error). The first category metrics

are reported in Table 21, while the second is in Table 22.

From them, we can report that the MobileNet pre-trained

model is the best model compared to others concerning the

‘‘Melanoma Classification (HAM10K)’’ dataset. Figure 8

and Figure 9 present graphical summarizations of the

reported learning and optimization results concerning the

‘‘Melanoma Classification (HAM10K)’’ dataset.

6.6 The ‘‘Skin diseases image dataset’’
experiments

Table 23 shows the TP, TN, FP, and FN of the best solu-

tions after the learning and optimization processes on each

pre-trained model concerning the ‘‘Skin diseases image

dataset.’’ It shows that MobileNetV2 pre-trained model has

the lowest FP and FN values. On the other hand,

MobileNetV3Small has the highest FP and FN values. The

best solutions combinations concerning each model are

reported in Table 24. It shows that the KLDivergence loss

Fig. 5 Graphical summary of the segmentation experiments and results concerning the ‘‘PH2’’ dataset

Table 15 The confusion matrix results concerning the ‘‘ISIC 2019

and 2020 Melanoma dataset’’ dataset

Model name TP TN FP FN

MobileNet 11,250 11,250 198 198

MobileNetV2 11,129 11,129 295 295

MobileNetV3Small 10,647 10,647 801 801

MobileNetV3Large 10,994 10,994 446 446

VGG16 10886 10,886 538 538

VGG19 11098 11,098 350 350

NASNetMobile 11,062 11,062 362 362

NASNetLarge 10,670 10,670 778 778
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is recommended by five models, while the Categorical

Crossentropy loss is recommended by three models only.

The AdaMax parameters optimizer is recommended by

four models, while the SGD parameters optimizer is rec-

ommended by two only. Seven models recommended

applying data augmentation. The standardization is rec-

ommended by four models. From the values reported in

Table 23 and the learning history, we can report different

performance metrics. The reported metrics are partitioned

into two types. The first reflects the metrics that are

required to be maximized (i.e., Accuracy, F1, precision,

recall, specificity, sensitivity, AUC, IoU, dice, and cosine

similarity). The second reflects the metrics that are required

to be minimized (i.e., Categorical crossentropy, KLDiver-

gence, categorical hinge, hinge, squaredhinge, poisson,

logcosh error, mean absolute error, mean IoU, mean

squared error, mean squared logarithmic error, and root

mean squared error). The first category metrics are reported

in Table 25, while the second is in Table 26. From them,

we can report that the MobileNetV2 pre-trained model is

the best model compared to others concerning the ‘‘Skin

diseases image dataset.’’ Figures 10 and 11 present

graphical summary of the reported learning and optimiza-

tion results concerning the ‘‘Skin diseases image dataset.’’

6.7 Overall discussions

The experiments conducted in this study are split into two

categories, i.e., segmentation and classification. In the

segmentation experiments, different U-Net models were

used. Concerning the ‘‘Skin cancer segmentation and

classification’’ dataset, the best model was the U-Net??

with DenseNet201 as a backbone regarding the loss,

accuracy, F1-score, AUC, IoU, and Dice values. However,

the Attention U-Net model was the best regarding the AUC

value. The worst results were obtained by the default

UNet?? architecture. The achieved scores by U-Net??

with DenseNet201 as a backbone architecture were

94:16%, 91:39%, 99:03%, 96:08%, 96:41%, 77:19%,

75:47% in terms of accuracy, F1-score, AUC, IoU, Dice,

hinge, and squared hinge. Concerning the ‘‘PH2’’ dataset,

the best model was the Attention U-Net with DenseNet201

as a backbone regarding the loss, accuracy, F1, IoU, and

dice values. However, the ‘‘Swin U-Net’’ model is the best

concerning the precision, specificity, and squared hinge

values. The achieved scores by Attention U-Net with
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Table 17 The ‘‘ISIC 2019 and 2020 Melanoma dataset’’ dataset experiments with the maxmized metrics

Model name Accuracy

(%)

F1

(%)

Precision

(%)

Recall

(%)

Sensitivity

(%)

Specificity

(%)

AUC

(%)

IoU

(%)

Dice

(%)

Cosine similarity

(%)

MobileNet 98.27 98.27 98.27 98.27 98.27 98.27 99.42 98.00 98.32 98.49

MobileNetV2 97.42 97.42 97.42 97.42 97.42 97.42 98.19 98.12 98.21 97.56

MobileNetV3Small 93.00 93.00 93.00 93.00 93.00 93.00 97.87 93.37 94.28 94.12

MobileNetV3Large 96.10 96.10 96.10 96.10 96.10 96.10 98.85 96.01 96.58 96.61

VGG16 95.29 95.29 95.29 95.29 95.29 95.29 99.13 94.51 95.49 96.25

VGG19 96.94 96.94 96.94 96.94 96.94 96.94 99.19 96.11 96.78 97.23

NASNetMobile 96.83 96.83 96.83 96.83 96.83 96.83 99.14 96.69 97.16 97.19

NASNetLarge 93.20 93.20 93.20 93.20 93.20 93.20 98.18 90.67 92.48 94.46

Table 18 The ‘‘ISIC 2019 and 2020 Melanoma dataset’’ dataset experiments with the minimized metrics

Model name Logcosh

error

Mean absolute

error

Mean

IoU

Mean squared

error

Mean squared logarithmic

error

Root mean squared

error

MobileNet 0.006 0.025 0.512 0.014 0.007 0.120

MobileNetV2 0.010 0.027 0.685 0.024 0.011 0.154

MobileNetV3Small 0.024 0.086 0.323 0.054 0.026 0.232

MobileNetV3Large 0.014 0.051 0.478 0.032 0.015 0.178

VGG16 0.016 0.068 0.264 0.034 0.017 0.185

VGG19 0.012 0.048 0.363 0.026 0.013 0.162

NASNetMobile 0.012 0.043 0.289 0.026 0.013 0.162

NASNetLarge 0.024 0.113 0.250 0.051 0.025 0.225

Fig. 6 Summary of the confusion matrix results concerning the ‘‘ISIC

2019 and 2020 Melanoma dataset’’ dataset

Fig. 7 Summary of the ‘‘ISIC 2019 and 2020 Melanoma dataset’’ dataset experiments with the maxmized metrics

Table 19 The confusion matrix results concerning the ‘‘Melanoma

Classification (HAM10K)’’ dataset

Model name TP TN FP FN

MobileNet 9867 9867 117 117

MobileNetV2 9745 9745 263 263

MobileNetV3Small 8999 8999 985 985

MobileNetV3Large 9720 9720 264 264

VGG16 9417 9417 591 591

VGG19 9811 9811 189 189

NASNetMobile 9323 9323 677 677

NASNetLarge 9163 9163 837 837
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DenseNet201 as a backbone architecture were 0.137,

94.75%, 92.65%, 92:56%, 92:74%, 96:20%, 86:30%,

92:65%, 69:28%, 68:04% in terms of loss, accuracy, F1-

score, precision, sensitivity, specificity, IoU, dice, hinge,

and squared hinge. It is worth noting that the worst results

were also obtained by the default UNet?? architecture.

The SpaSA meta-heuristic optimizer was utilized to

optimize the pre-trained CNN models hyperparameters to

achieve the learning, classification, and optimization phase.

For the classification experiments, eight pre-trained CNN

architectures are used, i.e., VGG16, VGG19, MobileNet,

MobileNetV2, MobileNetV3Small, MobileNetV3Large,

NasNetLarge, and NasNetMobile. For the ‘‘ISIC 2019 and

2020 Melanoma’’ dataset, the best reported overall accu-

racy from the applied CNN experiments is 98:27% by the

MobileNet pre-trained model. The average accuracy was

95:88%. The floored average TP, TN, FP, and FN were

11.250, 11.250, 198, and 198, respectively. Similarly, for

the ‘‘Melanoma Classification (HAM10K)’’ dataset, the

best reported overall accuracy from the applied CNN

experiments is 98:83% by the MobileNet pre-trained

model. The average accuracy was 95:09%. The floored

Table 21 The ‘‘Melanoma Classification (HAM10K)’’ dataset experiments with the maxmized metrics

Model name Accuracy

(%)

F1

(%)

Precision

(%)

Recall

(%)

Sensitivity

(%)

Specificity

(%)

AUC

(%)

IoU

(%)

Dice

(%)

Cosine similarity

(%)

MobileNet 98.83 98.83 98.83 98.83 98.83 98.83 99.45 98.83 98.97 98.91

MobileNetV2 97.37 97.37 97.37 97.37 97.37 97.37 98.26 97.95 98.07 97.44

MobileNetV3Small 90.13 90.13 90.13 90.13 90.13 90.13 90.13 93.42 93.42 90.13

MobileNetV3Large 97.36 97.36 97.36 97.36 97.36 97.36 99.21 96.93 97.42 97.62

VGG16 94.09 94.09 94.09 94.09 94.09 94.09 98.44 92.10 93.58 95.06

VGG19 98.11 98.11 98.11 98.11 98.11 98.11 99.52 97.87 98.18 98.24

NASNetMobile 93.23 93.23 93.23 93.23 93.23 93.23 97.59 94.39 95.00 94.29

NASNetLarge 91.63 91.63 91.63 91.63 91.63 91.63 95.07 91.07 92.30 92.35

Table 22 The ‘‘Melanoma Classification (HAM10K)’’ dataset experiments with the minimized metrics

Model name Logcosh

error

Mean absolute

error

Mean

IoU

Mean squared

error

Mean squared logarithmic

error

Root mean squared

error

MobileNet 0.005 0.015 0.585 0.010 0.005 0.102

MobileNetV2 0.011 0.029 0.779 0.025 0.012 0.158

MobileNetV3Small 0.043 0.099 0.820 0.099 0.047 0.314

MobileNetV3Large 0.010 0.039 0.274 0.022 0.011 0.150

VGG16 0.021 0.096 0.251 0.046 0.022 0.213

VGG19 0.007 0.027 0.251 0.017 0.008 0.129

NASNetMobile 0.024 0.075 0.412 0.053 0.026 0.231

NASNetLarge 0.033 0.115 0.258 0.072 0.035 0.269

Fig. 8 Summary of the confusion matrix results concerning the

‘‘Melanoma Classification (HAM10K)’’ dataset

844 Neural Computing and Applications (2023) 35:815–853
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average TP, TN, FP, and FN were 9.867, 9.867, 117, and

117, respectively. For the ‘‘Skin diseases image’’ dataset,

the best reported overall accuracy from the applied CNN

experiments is 85:87% by the MobileNetV2 pre-trained

model. The average accuracy was 75:50%. The floored

average TP, TN, FP, and FN were 22.130, 241.562, 2.518,

and 4.990, respectively.

6.8 Related studies comparisons

Table 27 shows a comparison between the suggested

approach and related studies concerning the same used

datasets. It can be observed from the literature that there

are different research works for skin cancer diagnosis.

Additionally, using meta-heuristic algorithms for skin

cancer diagnosis is increasing exponentially. In the current

study, a hybrid algorithm using deep learning, transfer

learning, and a recently proposed meta-heuristic algorithm

named SpaSA has been suggested for performing skin

cancer diagnosis. Many optimization approaches, including

hybrid mechanisms, were previously used for skin cancer

diagnosis; however, the SpaSA has not been utilized as far

as we know concerning the published articles. Moreover,

the suggested algorithm is trained and evaluated using 5

different datasets. Figure 12 shows a graphical comparison

between the current study and the related studies.

6.9 Time complexity and other approaches
remarks

The current study concentrated on skin cancer detection,

classification, and segmentation. The classification was

accomplished using 8 pre-trained CNNs, while the seg-

mentation was done by employing 5 different U-Net

models. The CNN hyperparameters optimization was per-

formed using the SpaSA to gain the SOTA performance

metrics. The target during the different experiments was to

achieve high-performance metrics. The learning and pro-

cessing time was high and hence was not declared exactly

in this study. However, approximate times can be calcu-

lated. It is worth noting that the time depended mainly on

the working environment. The current study worked on

Google Colab. Assume that each CNN model takes one

minute approximately. There are 15 hyperparameters to

optimize using the SpaSA. The number of SpaSA iterations

is set to 10, the SpaSA population size is set to 10, and the

number of epochs is set to 5. Hence, there are 10 � 10 �
5 ¼ 500 runs for each model to complete. The approximate

time is 500 minutes (i.e., 8.33 hours) for a single model.

We have 8 pre-trained models and 3 datasets. Hence, there

are 24 experiments. The total approximate time can be 200

hours (i.e., 8.33 days). If the SpaSA is replaced with the

grid search (GS) native search approach, the time would be

more than that (e.g., months) as the GS searches for all

Fig. 9 Summary of the ‘‘Melanoma Classification (HAM10K)’’ dataset experiments with the maxmized metrics

Table 23 The confusion matrix results concerning the ‘‘Skin diseases

image dataset’’

Model name TP TN FP FN

MobileNet 21,111 240,729 3351 6009

MobileNetV2 22,130 241,562 2518 4990

MobileNetV3Small 9657 241,447 2849 17,487

MobileNetV3Large 16,843 240,391 3689 10,277

VGG16 18,261 241,430 2938 8891

VGG19 18,873 242,176 2156 8275

NASNetMobile 20,983 238,828 5396 6153

NASNetLarge 20,455 237,669 6519 6677
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possible combinations. From Table 11, we have 6 losses,

11 parameters optimizers, 60 dropouts, 12 batch sizes, 100

learning ratios, 4 scalers, 2 augmentation values, 45 rota-

tions, 25 shifts in width, 25 shifts in height, 25 shears, 25

zooms, 2 horizontal flips, 2 vertical flips, and 15 brightness

ranges. From that, we can obtain approximately 4E16

combinations which can last for more than 77 billion years.

7 Study limitations

Even though the proposed study demonstrated the potential

of using deep learning models for detecting, classifying,

and segmenting skin cancer, the suggested approach pre-

sents some limitations. The main limitation is the instan-

taneity, where the most time-consuming stage is the

training of the classifier. The slow convergence of the

boosting algorithm and high-dimensional features are the

causes of this limitation. Another limitation includes that

only 8 CNN architectures and 5 U-Net models are used.

8 Conclusions and future work

Automatic skin cancer detection and segmentation is an

open-ended research area that steadily requires improve-

ment. In this research, a methodological approach for

classifying various skin images into their corresponding

category with the help of convolution neural networks.

CNN is a well-known SOTA approach for classifying

images and big data. The study showed several works

related to the current work. The deep learning-based skin

cancer detection, classification, and segmentation system

was developed. Different experiments were achieved and

the results are reported. For the segmentation phase, con-

cerning the ‘‘Skin cancer segmentation and classification’’

dataset, the best model was the U-Net?? with Dense-

Net201 as a backbone regarding the loss, accuracy, F1-

score, AUC, IoU, and dice values. The achieved scores this

architecture were 94:16%, 91:39%, 99:03%, 96:08%,

96:41%, 77:19%, 75:47% in terms of accuracy, F1-score,

AUC, IoU, dice, hinge, and squared hinge. Additionally,

concerning the ‘‘PH2’’ dataset, the best model was the

Attention U-Net with DenseNet201 as a backbone

regarding the loss, accuracy, F1, IoU, and dice values. The

achieved scores by this architecture were 0.137, 94.75%,

92.65%, 92:56%, 92:74%, 96:20%, 86:30%, 92:65%,

69:28%, 68:04% in terms of loss, accuracy, F1-score,

precision, sensitivity, specificity, IoU, dice, hinge, and

squared hinge. The SpaSA meta-heuristic optimizer was
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utilized to optimize the pre-trained CNN models hyperpa-

rameters to achieve the learning, classification, and opti-

mization phase. They were VGG16, VGG19, MobileNet,

MobileNetV2, MobileNetV3Small, MobileNetV3Large,

NasNetLarge, and NasNetMobile. The dataset was col-

lected from different public sources. After collection, there

are categorized into 2-class and 10-class datasets. For the

‘‘ISIC 2019 and 2020 Melanoma’’ dataset, the best reported

overall accuracy from the applied CNN experiments is

98:27% by the MobileNet pre-trained model. Similarly, for

the ‘‘Melanoma Classification (HAM10K)’’ dataset, the

best reported overall accuracy from the applied CNN

experiments is 98:83% by the MobileNet pre-trained

model. For the ‘‘Skin diseases image’’ dataset, the best

reported overall accuracy from the applied CNN experi-

ments is 85:87% by the MobileNetV2 pre-trained model.

The current study results were then compared with 13 prior

related works. This showed that this study had outper-

formed numerous of the prior works. Even though there is a

lot of work for the recognition and segmentation of skin

cancer. There was a big challenge to get a suitable accu-

racy. Due to the lack of datasets in this area. In future

studies, the plan is to (1) try other ML or DL techniques (2)

work on enhancing the performance of the skin cancer

Table 25 The ‘‘Skin diseases image dataset’’ experiments with the maxmized metrics

Model name Accuracy

(%)

F1

(%)

Precision

(%)

Recall

(%)

Sensitivity

(%)

Specificity

(%)

AUC

(%)

IoU

(%)

Dice

(%)

Cosine similarity

(%)

MobileNet 82.09 81.68 86.22 77.84 77.84 98.63 98.35 81.63 83.96 85.02

MobileNetV2 85.87 85.33 89.74 81.60 81.60 98.97 99.01 83.28 85.72 88.08

MobileNetV3Small 54.64 45.67 75.16 35.58 35.58 98.83 91.75 55.92 60.32 62.93

MobileNetV3Large 72.11 70.30 82.03 62.11 62.11 98.49 96.80 71.52 74.89 76.87

VGG16 76.19 74.45 86.05 67.25 67.25 98.80 97.70 75.44 78.41 80.29

VGG19 79.30 77.97 89.72 69.52 69.52 99.12 98.28 76.43 79.52 82.88

NASNetMobile 78.23 78.36 79.54 77.33 77.33 97.79 95.91 82.97 84.31 80.78

NASNetLarge 75.59 75.60 75.84 75.39 75.39 97.33 91.19 82.81 83.42 76.88

Table 26 The ‘‘Skin diseases image dataset’’ experiments with the minimized metrics

Model name Logcosh

error

Mean absolute

error

Mean

IoU

Mean squared

error

Mean squared logarithmic

error

Root mean squared

error

MobileNet 0.012 0.048 0.452 0.026 0.013 0.160

MobileNetV2 0.010 0.043 0.451 0.021 0.010 0.143

MobileNetV3Small 0.027 0.119 0.450 0.057 0.028 0.240

MobileNetV3Large 0.018 0.075 0.450 0.038 0.019 0.195

VGG16 0.015 0.065 0.450 0.032 0.016 0.179

VGG19 0.013 0.061 0.450 0.029 0.014 0.169

NASNetMobile 0.015 0.047 0.476 0.034 0.017 0.185

NASNetLarge 0.019 0.050 0.585 0.044 0.021 0.210

Fig. 10 Summary of the confusion matrix results concerning the

‘‘Skin diseases image dataset’’
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Fig. 11 Summary of the ‘‘Skin diseases image dataset’’ experiments with the maxmized metrics

Table 27 Comparison between the suggested approach and related studies

Study Year Dataset Approach Best performance

[90] 2019 ISIC 2016 [54] SVM, Random

Forest and KNN

Accuracy of 89:43%, sensitivity of 91:15%, and specificity

of 87:71%

[71] 2019 DERMIS dataset [77] K-means clustering 96% accuracy

[2] 2019 PH2 and ISIC 2017 [37] Deep Convolutional

Encoder-Decoder

Network

Accuracy and dice coefficient of 95% and 93%

[98] 2019 Their own dataset Decision Tree Accuracy of 87%

[5] 2020 ISIC 2016 [54] and ISIC 2018 [36, 127] CNN (YOLOv4) Average accuracy of 95% and Jaccard coefficient as 0.989

[113] 2020 ISIC 2017 [37] Fully convolutional

network and dual

path network

Dice coefficient of 90:26% and a Jaccard index of 83:51%

[22] 2020 ISIC 2017 [37] Dynamic graph cut

and Naive Bayes

Sensitivity, Specificity, and Diagnostic accuracy of 91:7%,

70:1%, and 72:7% respectively

[10] 2020 Their own dataset Multiple instance

learning

Accuracy of 92:50%, sensitivity of 97:50%, and specificity

of 87:50%

[65] 2021 ISIC 2016 [54] and PH2 dataset Bacterial colony

optimization

algorithm based

SVM

Precision of 0.969, recall of 0.979, F-measure of 0.974,

accuracy of 0.975, and AUC of 0.98

[128] 2021 Their own dataset collected from ISIC

archive

SOM ? CNN accuracy of 90% and specificity of 99%

[9] 2021 Their own dataset SVM ? Fuzzy

clustering

Accuracy of 92:04%, sensitivity of 80:11%, specificity of

95:01%, and precision of 80:17%

[6] 2021 Their own collected dataset from Cross

Cancer Institute, University of Alberta,

Edmonton, Canada

Improved NS-Net

deep learning

network

Dice coefficient of around 85%

[67] 2021 Their own dataset CNN 95:98% accuracy

[78] 2022 PH2 dataset AlexNet ? Extreme

Learning Machine

network

An accuracy of 98% and sensitivity of 93%

[56] 2022 ISIC 2016 [54], ISIC 2017 [37], and

ISIC 2018 [36] datasets

CNN AUC of 96%, 95%, and 97% respectively.

[82] 2022 PH2 dataset Hybrid deep learning 99.33% average accuracy and more than 90% sensitivity

and specificity.

Current

Study

2022 Five datasets described in Table 3 Hybrid (SpaSA,

CNN, and U-Net)

94.16% and 94.75% (Segmentation, for the two datasets

respectively) and 98.27%, 98.83%, and 85.87%

(Classification, for the three datasets respectively)
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segmentation phase, and (3) evaluate the system with fur-

ther available datasets.

Appendices

Table of Abbreviations

Table 28 shows the abbreviations and the corresponding

meaning. They are sorted alphabetically in ascending

order.
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