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Abstract
In today’s severe situation of the global new crown virus raging, there are still efficiency problems in emergency resource

scheduling, and there are still deficiencies in rescue standards. For the happiness and well-being of people’s lives, adhering

to the principle of a community with a shared future for mankind, the emergency resource scheduling system for urban

public health emergencies needs to be improved and perfected. This paper mainly studies the optimization model of urban

emergency resource scheduling, which uses the deep reinforcement learning algorithm to build the emergency resource

distribution system framework, and uses the Deep Q Network path planning algorithm to optimize the system, to achieve

the purpose of optimizing and upgrading the efficient scheduling of emergency resources in the city. Finally, through

simulation experiments, it is concluded that the deep learning algorithm studied is helpful to the emergency resource

scheduling optimization system. However, with the gradual development of deep learning, some of its disadvantages are

becoming increasingly obvious. An obvious flaw is that building a deep learning-based model generally requires a lot of

CPU computing resources, making the cost too high.

Keywords Deep learning � Emergency resource scheduling � Deep reinforcement learning algorithm � Path planning �
Deep Q network algorithm

1 Introduction

Since the outbreak and spread of the global epidemic, due

to the rapid spread of the new coronavirus, the long incu-

bation period, and the variability, urban public health

emergencies have presented a complex and changeable

situation. To deal with the complex situation of urban

emergencies, the problem of emergency resource

scheduling for public health events needs to be solved

urgently. As a technology that has been widely developed

in various industries today, deep learning has many small

applications in real life. Its existing and mature algorithm

mechanism is of great help to the study of urban public

health emergency resource scheduling optimization.

Today’s development and applications of deep learning

include Microsoft’s Skype real-time voice transla-

tion ? translation function, Moodstocks’ smartphone

image recognition function, autonomous driving technol-

ogy, Baidu’s facial tracking technology, brain tumor

detection technology, and fluid models created with con-

volutional networks, etc. However, in the face of urban

public health emergencies, emergency resource scheduling,

to maximize the benefits in terms of time and space, not

only from the four perspectives of path planning, emer-

gency supply points, demand points, and demand priority

to build a model, it is necessary to select a highly feasible

optimization algorithm related to deep learning, to achieve

resource allocation in the shortest time with the fastest
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transportation speed to ensure that demand points can

obtain emergency supply points. This paper conforms to

the severe epidemic development situation of the current

era and studies the optimization plan of emergency

resource scheduling for urban public health emergencies. It

uses the deep reinforcement learning algorithm to construct

the emergency resource scheduling optimization system

model, to achieve the most efficient distribution of emer-

gency resources in emergencies.

The innovation of this paper is reflected as follows: (1)

In the urban emergency resource scheduling optimization

system based on deep learning, this paper combines the

advantages of deep reinforcement learning algorithm with

deep learning in the emergency resource distribution unit

path planning scheme and abandons the traditional path

planning algorithm. A balance between path quality and

speed is achieved. (2) In the modeling of the system

algorithm, the flexible use of discrete knowledge to reduce

the dimensionality of the three-dimensional space model is

more conducive to the effective use of the deep rein-

forcement learning path algorithm. The research on the

optimization of emergency resource scheduling in this

paper plays a key role in the rescue measures of urban

public health emergencies and has made important con-

tributions to the prevention and control of such

emergencies.

2 Related work

The research and investigation on deep learning and

resource scheduling in various industries in recent years

show that many scholars have achieved rich research

results. Polvara R studies a deep reinforcement learning-

based end-to-end regulation technique for landing drones

with visual markers located on the USV deck. The pro-

posed solution consists of a hierarchical deep Q-network

(DQN) used as a high-level navigation strategy to address

the two phases of flight: marker detection and descent

maneuver. And the robustness of the proposed algorithm to

different disturbances acting on the ship is proved by

simulation studies, and the obtained performance is com-

parable to the state-of-the-art methods based on template

matching [1]. Another team of scholars has developed a

protein residue contact prediction system based on deep

learning and massive statistical features of multiple

sequence alignments [2]. Ojugo created a predictive and

intelligent decision support model for the diabetes pan-

demic using deep reinforcement learning algorithms [3].

Park implemented a recognition system based on the deep

learning algorithm to estimate real intent based on the

user’s gaze direction [4]. Wang and Srikantha propose a

deep learning-based construction model for a novel stealth

black-box attack that performs non-intrusive load moni-

toring on data used in smart meters. Electric utilities and

third-party entities such as smart home management solu-

tion providers gain important insights into these datasets

through machine learning (ML) models. They are then used

to perform active or passive power demand management to

promote economical and sustainable electricity use [5].

Chen LL uses deep learning methods to simulate the

moisture content of high-speed railway subgrade materials.

Based on the moisture content of two subgrade materials in

a winter-spring cycle in recent years, his research proposes

a long short-term memory (LSTM) model, and the relia-

bility and practicability of the LSTM model are proved by

comparing the model and its detection data through

experiments. The model provides a new method for long-

term moisture prediction of high-speed railway subgrade

materials in cold regions; simulating and predicting mois-

ture transport plays an important role in analyzing the

thermal and hydraulic conditions of subgrades in cold

regions [6]. Matthew applies deep learning to the layering

of hidden variables, constructs a nonlinear high-dimen-

sional predictor, and develops and trains it for spatiotem-

poral modeling based on deep learning architectures. He

trained the architectural depth through stochastic gradient

descent and dropout with parameter regularization to

minimize out-of-sample prediction mean squared error.

Finally, based on deep learning algorithms, spatiotemporal

modeling with dynamic traffic flow and high-frequency

trading functions is realized [7]. Lau G proposed an online

path planning algorithm for unmanned vehicles responsible

for automated border patrols. Based on the goal guarding

problem of Isaacs, extended to the scenario where there are

multiple fugitives, a fast exploration method based on

random tree (RRT) path planning is proposed [8]. Puente-

Castro A studied the problem of path planning applied to

groups of UAVs. The use of swarms can speed up flight

times, thereby reducing operating costs, and when com-

bined with artificial intelligence (AI) algorithms, a single

system or operator can control all aircraft. At the same

time, the optimal path for each aircraft can be calculated,

outlining the trend of using artificial intelligence algo-

rithms to solve path planning problems in UAV swarms

[9]. To solve the consistency problem in local path plan-

ning, Chen Q extended the traditional definition of topo-

logical graph and introduced a new concept of local

cognitive graph (LCM). Based on LCM, the consistency of

local path planning can be guaranteed by keeping the

relationship between the selected route and key obstacles

as consistent as possible in successive planning cycles. He

devised an iterative decomposition method to generate

LCMs. To evaluate the candidate routes in LCM, a vehicle-

road evaluation method based on model predictive control

(MPC) with vehicle dynamics is combined. He chooses the
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best route based on MPC simulation results and criteria

such as time spent and route width. The final path followed

by the vehicle is also realized by simulation results, veri-

fying the feasibility of the proposed method [10]. Ober-

meyer studied a sampling-based approach to path planning

for visual reconnaissance UAVs, the path planning prob-

lem of a single fixed-wing aircraft using one or more

electro-optical cameras for reconnaissance missions [11].

Guo studied an improved optimization algorithm based on

the artificial potential field method and extended the

application of this algorithm to three-dimensional space. It

overcame the limited problem of UAV in three-dimen-

sional space and realized the 3D route planning model of

UAV flight more optimally [12]. Jungtae proposed a new

single-query path planning algorithm that works well in

high-dimensional configuration spaces [13]. Chen X stud-

ied a path planning algorithm for UAVs to avoid static

obstacles or dynamic obstacles at any time [14]. However,

these scholars did not elaborate on the combination of deep

learning and resource scheduling, but only analyzed its

significance unilaterally.

3 Design of optimization model for urban
emergency resource scheduling

Problem description: When a city encounters a public

health emergency, the things to consider are as follows: A

distribution center for emergency resources is established

around the disaster-stricken area, which is convenient to

deal with the shortage of various resources required by the

disaster-stricken area, and the resources stored in the

warehouse of the distribution center can be urgently dis-

tributed to the surrounding areas of disaster-stricken

demand in a timely manner [15, 16]. After a public health

emergency occurs, it is necessary to take advantage of the

powerful advantages of current network information

resources, actively search for and integrate available

logistics and transportation resources, and reasonably

arrange vehicles to deliver emergency supplies to various

demand points according to the priority of the demand gap.

3.1 Basic assumptions

(1) The demand point or the transportation hub in the

area close to the demand point should be selected as

the emergency resource distribution center.

(2) The route between the supply point and the distri-

bution center is feasible, and the traffic flow is stable.

Regardless of the chain reaction of other major

natural disasters, the urban climate conditions and

the development situation of public health emergen-

cies are relatively stable.

(3) Each emergency resource distribution center does

not need to supply each other, but it can distribute

emergency supplies to multiple different rescue

demand points at the same time.

(4) All materials in the emergency resource distribution

center can be used for the rescue and distribution of

demand points to ensure that the gap of rescue

resources required by all demand points is filled.

(5) The scheduling rule of the emergency resource

distribution center is to prioritize the demand point

with the largest rescue demand gap and the highest

emergency degree, and so on. When the demand gap

and urgency are the same or not very different, they

can be delivered according to the rescue route.

3.2 Handling of uncertainties

(1) How to deal with uncertain emergency resource

demand? Usually, the emergency resource demand

required by the demand point can be obtained

through model evaluation or direct declaration. At

this time, the demand is often described in language

with estimation, such as ‘‘about n kilograms’’ or

‘‘between n kilograms and m kilograms.’’ We can

use the thinking mode of Wu, Y, T to process these

data fuzzy [17] and use the fuzzy number eA ¼
ðr1i; r2i; r3iÞ in the trigonometric function model to

represent the emergency resource demand of demand

point i. The trigonometric function is shown in

Fig. 1, where r1i and r3i represent the left and right

boundaries of the fuzzy number, and r2i represents

the preference amount, that is, the actual demand and

actual declaration amount of emergency resources.

This function expression is

f ~Ai rið Þ ¼

0 ; ri\r1i
ri � r1i

r2i � r1i
; r1i � ri\r2i

ri � r2i

r3i � r2i
; r2i � ri\r3i

0 ; ri � r3i

8

>

>

>

>

<

>

>

>

>

:

ð1Þ

f

n

r1i r2i r3i ri

Fig. 1 Trigonometric fuzzy function of demand
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(2) The processing method of the vehicle speed of

transporting logistics. According to Khanchehzar-

rin’s speed-dependent function model [18], the

change of vehicle speed is a continuous and uniform

change, rather than a jumping change. This driving

speed dependence function is shown in Fig. 2 , the

abscissa represents the time of 24 h a day, and the

ordinate represents the speed of the logistics vehicle.

According to common sense, the speed of the vehicle

will reach two peaks in the morning and evening, and

the speed will increase temporarily in the period of

noon. Knowing the morning and evening peak

driving speeds of the transportation route, the

integral method can theoretically be used to calculate

the time spent in logistics transportation.

The transportation cost of logistics vehicles may not be

considered in the emergency of urban public health emer-

gencies [19, 20]. Therefore, the construction of the

resource scheduling optimization model should take the

shortest possible total time of logistics and transportation

and maximize the resource demand of each demand point

in the city for the distribution of emergency materials.

According to this main objective, the objective function of

emergency resource scheduling can be described as:

min l1 ¼
X

K

k¼1

X

N

i¼0

X

N

j¼0

tijxxjk
� �

þ
X

N

i¼1

Ti ð2Þ

min l2 ¼ 1 � 1

N

X

N

i¼1

f ~Ai rið Þ ð3Þ

The constraints of this functional model are as follows:

X

N

i¼1

riyik �Q; 8k ¼ 1; 2; . . .;K ð4Þ

LTu
i �ETuþ1

j ; i ¼ 1; 2; . . .;N; j ¼ 1; 2; . . .;N;

u ¼ 1; 2; 3; 4
ð5Þ

X

K

k¼1

yik ¼ 1; i ¼ 1; 2; . . .N ð6Þ

X

N

i¼0

xijk �
X

N

j¼0

xjik ¼ 0; 8k ¼ 1; 2; . . .;K ð7Þ

X

N

i¼0

xijk ¼ yik; i ¼ 1; 2; . . .N; 8k ¼ 1; 2; . . .;K ð8Þ

X

N

i¼0

xijk ¼ yjk; j ¼ 1; 2; . . .N; 8k ¼ 1; 2; . . .;K ð9Þ

X

i2B

X

j2B
xijk � Bj j � 1;

B � f0; 1; . . .;Ng; 2� Bj j �N � 1; 8k
ð10Þ

r1i � ri � r3i ð11Þ
yik; xijk 2 f0; 1g ð12Þ

Explanation of the parameters of this function model:

N is the number of emergency demand points in the city,

where i, j represent the number of demand points, and

when i, j = 0, it represents the emergency material distri-

bution center;

Q is the maximum number of logistics vehicles;

Ti is the delivery time of urban emergency supplies at

emergency demand point i;

tij is the time required for the logistics vehicle to travel

between the emergency demand points i and j, which can

be calculated according to the distance and speed of the

vehicle;

u is the urgency of emergency demand, u = 1 means

general, u = 2 means urgent, u = 3 means urgent, u = 4

means urgent;

ETu
i is the same emergency rescue degree of emergency

demand point, that is, the earliest emergency rescue time

when the u value in the function model is the same;

LTu
i is the same rescue emergency degree of emergency

demand points, that is, the latest emergency rescue time

when the u value in the function model is the same;

xijk; yik; ri are a decision variable, and ri represents the

total amount of emergency rescue resources obtained in the

actual situation of urban emergency demand point i, that is,

the actual unloading volume of logistics vehicles at

emergency demand point i.

3.3 Explanation of constraints

Function expression (2) calculates the shortest total time

spent by emergency resources dispatching logistics vehicles;

function expression (3) calculates the minimum remaining

amount after satisfying the demand of urban emergency

resources to the greatest extent; expression (4) indicates that

in a logistics distribution, the sum of the unloading amount of

the k-th vehicle at each emergency point cannot exceed its

maximum carrying capacity. Expression (5) represents the
Fig. 2 Continuous driving speed-dependent function
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time limit for the distribution of rescue resources between

emergency points with different emergency degrees in the

city. The emergency point with high urgency is given priority

to arrange logistics distribution, that is, the latest emergency

rescue time of the emergency point with high emergency

degree should be earlier than the earliest emergency rescue

time of the emergency point with low emergency degree.

Expression (6) means that each emergency point must have a

rescue logistics vehicle to provide rescue services, and the

planned driving path of the vehicle must reach all emergency

points in the city. Other special circumstances can be solved

by additional logistics. Expression (7) is a conservation

formula for the number of logistics vehicles, which indicates

that the number of vehicles entering and leaving an emer-

gency point should be the same. Equations (8) and (9)

indicate that if a vehicle k is assigned to a certain distribution

route, there must be a vehicle route starting from the distri-

bution center and returning to the distribution center.

Equation (10) is to solve the problem of eliminating unde-

sired bifurcations in route planning and to avoid distribution

errors caused by the formation of circular routes that do not

pass through the emergency distribution center. The function

of formula (11) is that, under the reliability level a of the

rescue emergency service, the supply of emergency materi-

als meets the specified interval of demand for materials at the

emergency point i, that is, the reliability of emergency rescue

services Pos r1i � ri � r3i; i ¼ 1; 2; :::;Nf g� a. When

a = 100%, it is converted to the current expression. In for-

mula (12), yik ¼ 1 indicates that the demand of emergency

demand point i is completed by vehicle k, yik ¼ 0 indicates

other conditions, xijk ¼ 1 indicates that the vehicle travels

from emergency point i to emergency point j, and xijk ¼ 0

indicates other conditions.

4 DQN algorithm design for emergency
resource distribution path

In the face of urban public health emergency resource

scheduling, this paper should maximize the benefits in

terms of time and space. This requires not only the estab-

lishment of models from the four perspectives of route

planning, emergency supply points, emergency demand

points, and demand priority, but also the selection of highly

feasible optimization algorithms related to deep learning to

achieve resource allocation in the shortest time and the

fastest transportation speed to ensure that demand points

can obtain emergency supply points.

Deep Reinforcement Learning (DRL) is a product

derived and evolved from Deep Learning. It not only has

the perception ability of deep learning, but also combines

the decision-making ability of reinforcement learning. To

improve the effective application of deep reinforcement

learning algorithms, it is necessary to map the emergency

resource distribution environment of all demand points in

the city. Theoretically, the urban distribution environment

can be imagined as a closed space, where all logistics

vehicles distribute emergency supplies to their assigned

demand point units. In this way, the simulation environ-

ment of the deep learning algorithm can be defined

according to this limited space abstraction, which is more

conducive to maintaining the global state of the entire

system. When the vehicle performs the next action in the

distribution unit of the space, the action decision can be

made according to the current information state. In the

distribution route planning, we use the Deep Q Network

(DQN) algorithm in deep reinforcement learning. This

algorithm can use the powerful learning function of the

neural network model to convert high-dimensional data

into low-dimensional data and then use the table method to

perform action learning according to the state until the

learning goal of obtaining the maximum reward is

achieved.

In the path planning scheme of emergency resource

logistics distribution, we can subjectively reduce the three-

dimensional space of the environment and then discretize it

into a two-dimensional plane grid. And it uses the grid

method to construct a grid map on a two-dimensional plane

[21], as shown in Fig. 3. In the figure, the unit space where

P is located represents the distribution center; the unit

space where K is located represents the emergency demand

point, that is, the target location of P; the other orange unit

spaces represent obstacles. On the map, each grid cell is a

moving cell space. Then, the movement of the delivery unit

can only move from the grid unit to the grid unit, but not

across the grid units. The constructed raster map is a binary

map. When the value is 1, it means that there is no obstacle

in the space environment, and movement is possible; when

the value is 0, it means that the space has obstacles and

P

K

Fig. 3 The raster map
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cannot be moved. In the real world, the space is always

continuous, and discrete space units cannot accurately and

completely correspond to the real space, so it is relatively

simple and convenient to use a two-dimensional grid in this

way. However, in the modeling of path planning in this

paper, this method can retain the most critical environ-

mental core features, which greatly improves the correla-

tion between spatial units and motion decisions. It can be

well used for the decision-making behavior of the distri-

bution unit, thus effectively realizing the feasibility of the

algorithm in the virtual simulation experiment.

In the DRL algorithm, the reward function plays an

important role in its application, which is responsible for

guiding the neural network to determine the decision-re-

lated factors in the state information. It is used for the next

action after selection and extraction, and directly affects

the convergence speed and final performance of the algo-

rithm. In this paper, we assume four basic situations for

each step of the action decision when the delivery unit

moves forward in the path space. According to these four

situations, the design of the reward function is shown in

Table 1 below, including approaching the destination point,

moving away from the destination point, causing collision,

and reaching the destination point. And it designs the

return values corresponding to the four state conditions,

which as shown in the table, for the learning and accu-

mulation of the algorithm until it obtains the maximum

reward feedback, and then, the optimal path can be

determined.

The steps of multidelivery unit path planning based on

deep reinforcement learning algorithm are as follows:

(1) Initialize all parameter data in the space

environment;

(2) The distribution units start moving from different

starting points to explore the state information of the

space environment;

(3) According to the deep reinforcement learning algo-

rithm, the next action is decided. If the state

information is extracted to explore, the next action

will be randomly generated; if the state information

is extracted to use experience, the delivery unit needs

to perform reinforcement learning and accumulate

experience according to the environmental state, and

then decide the next action;

(4) The environmental state will be updated to a new

state following the action of the distribution unit, and

the enhanced state signal will be obtained by using

the return value of the reward function and loaded

into the Deep Q Network (DQN) neural network;

(5) Judging whether the delivery unit has reached the

destination point, if it reaches the destination point,

the learning process is completed; otherwise, the

time step t = t ? 1 is updated, and the three steps (2),

(3) and (4) are repeated;

The entire reinforcement learning behavior will not end

until the set index parameter value is reached.

5 Simulation results of emergency resource
scheduling system

This paper designs a system architecture for urban emer-

gency resource scheduling optimization based on deep

learning. Deep learning has the powerful function of pro-

cessing a large amount of high-dimensional data and

supervision. In the process of the increasingly mature

development of neural networks, deep reinforcement

learning algorithms with decision-making functions have

evolved. In this paper, a deep reinforcement learning

algorithm is used to construct the distribution path of urban

rescue vehicles. The purpose of virtual simulation experi-

ment design is mainly divided into the following three

aspects:

5.1 Experiment 1

In the virtual simulation system, based on the system

functions of real-time update of space environment status

and effective control of distribution units, taking advantage

of its functional advantages of action decision-making,

state update, and feedback of optimal path results in the

system space, the DQN path planning algorithm is simu-

lated and tested to prove the practicability of the urban

emergency resource distribution system constructed in this

paper. In the simulated virtual environment, the DQN path

planning algorithm is tested, which is divided into a rein-

forcement learning phase and testing phase.

The experimental environment of the reinforcement

learning stage is carried out in the virtual simulation space,

and the TensorFlow framework is used in the virtual

machine to realize the system programming based on the

DQN path planning algorithm [22–24]. When reinforce-

ment learning starts, the delivery unit starts to move from

the starting point to the destination point, and the deep

Table 1 Return function

State Reward

Close to the destination Return 1

Away from the destination Return - 1

Collision Return - 1000

Reach the destination Return 1000
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learning algorithm in the simulation space will update the

state of the entire space environment at each step. Then it

decides whether to choose ‘‘explore’’ (explore) or ‘‘accu-

mulate action experience’’ (use experience) according to

the algorithm strategy. If the spatial environment state

parameter data are passed to the neural network to extract

the environmental features, then the reward value R can be

obtained according to the environmental feature informa-

tion, and the feedback is passed to the Q value, and the

update formula is used for iterative calculation. After each

completion, it increases the Q-learning frequency by one.

According to whether the frequency reaches 3000, it

decides whether to end the study.

During the testing phase, the delivery unit progresses

from the origin to the destination, updating the state of the

environment at each step. The algorithm model directly

decides the next action based on the environmental feature

information. After several iterations, the delivery unit

chooses the optimal path to the destination.

In the reinforcement learning stage of experiment 1, the

convergence process of the reinforcement learning exper-

iment of the DQN algorithm was tested by changing the

number of distribution units and the scale of the distribu-

tion environment. Its convergence data are shown in

Table 2.

According to the experimental data in Table 2, the

reinforcement learning convergence curve is drawn. Fig-

ure 4 shows the system model composed of distribution

units of different scales and the convergence trend diagram

during the convergence process of the reinforcement

learning experiment. Among them, the abscissa represents

the number of delivery units, and the ordinate represents

the convergence time of the system algorithm. Curves 1, 2,

and 3 represent the trend of the convergence function under

different delivery unit tasks, that is, the trend of the con-

vergence trend of delivering 3, 30, and 300 units,

respectively.

In the reinforcement learning convergence trend graph,

experiment, numbers 1, 2, 3, and 4 correspond to curve 1

with the least number of delivery units and the slowest

convergence rate. With the increase in the number of

delivery units in experiments No. 5, 6, 7, 8 and experiments

No. 9, 10, 11, and 12, the convergence speed of the whole

system is also improved. This is because the DQN algo-

rithm is a process of gradual learning by constantly

exploring new situations. When the scale of the environ-

ment is the same, the fewer the number of delivery units,

the lower the probability of discovering new situations

through random exploration, making it difficult for the

system to learn more about the environment state knowl-

edge; as the number of distribution units increases, the

probability of the distribution units encountering each other

is greater, and more environmental states can be learned

more quickly, resulting in a significant increase in the

convergence speed. After testing the convergence speed of

a pair of system models, the feasibility of the urban

emergency resource distribution system based on deep

learning is proved.

Table 2 Convergence data sheet
Experiment number Number of delivery units Delivery environment size Convergence iterations

1 3 10*10 512

2 3 20*20 868

3 3 30*30 1790

4 3 40*40 2408

5 30 10*10 398

6 30 20*20 686

7 30 30*30 1204

8 30 40*40 2081

9 300 10*10 116

10 300 20*20 299

11 300 30*30 909

12 300 40*40 1109

average reward
/frequency

100

200

300

400

contition500 1000 2000

1
2

3

Fig. 4 Training convergence function trend plot
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5.2 Experiment 2

On the basis of the system framework, the same virtual

simulation space environment is guaranteed, and different

path planning algorithms are used and compared, and the

sensitivity of the DQN path planning algorithm in the

urban emergency resource distribution system is proved

through performance analysis. In this paper, the basis of

using the grid method is to construct a map model of the

virtual simulation space, and the influence of other inter-

ference factors is not considered in the experiment. Three

different path planning algorithm models are designed,

including Genetic Algorithm (GA) [25], Ant Algorithm

(ACO) [26], and Deep Q Network Algorithm (DQN). In

the same virtual simulation environment, by changing the

number of distribution units, the amount of distribution

tasks completed in unit time R is calculated, and the value

of R is used to compare the performance of the algorithm.

It is also possible to assign the same distribution task, count

the number of completed path planning of the corre-

sponding algorithm model, and compare the efficiency of

different path planning algorithms, and the amount of

distribution tasks completed per unit time R reflects the

efficiency of the entire system. Therefore, the amount of

delivery tasks R completed per unit time reflects the effi-

ciency of the entire system. In the experiment, we assign

the same delivery task, count the number of completed path

planning of the corresponding algorithm model, and com-

pare the efficiency of different path planning algorithms.

The calculation method is as follows:

Assuming that the system takes t as the cycle, for each

distribution unit ri, count the number of distribution tasks

ni completed in the cycle,

Then, all distribution units complete the sub-task
P

iri
in the time t, so there are R ¼

P

iri=t.

Figure 5 shows the efficiency test results of three dif-

ferent path planning algorithms when the same distribution

task is assigned under the same simulation system envi-

ronment (scale is 30*30). The experimental comparison

shows that, with the increase in the number of distribution

units, the system of the DQN algorithm is more sensitive,

which proves that the distribution unit path planning ability

of the DQN algorithm system is stronger and more

efficient.

5.3 Experiment 3

The performance stress test is carried out in the virtual

simulation system [27]. In order to increase the load

pressure of the whole system, the number of distribution

units can be continuously increased to verify the computing

power and load limit of the system. The experiment in this

article uses four virtual machines (VMware), and the test

starts with the first one VMware. As the number of dis-

tribution units increases, the system load gradually

increases while maintaining the operation and computation

of each distribution unit, and VMware’s resource surplus is

gradually reduced. When the threshold value is reached,

VMware is expanded to trigger the elastic scaling of sys-

tem resources. The experimental system implements the

‘‘change to 1’’ strategy. When expanding VMware, only

one unit is expanded at a time; when recycling, only 1 unit

is recycled at a time. Under normal circumstances, the CPU

is the core computing resource of the system, and the IO

network is the network resource. With the increase in the

system load in the experiment, these two resources will

limit the experiment to the bottleneck stage. Therefore, to

simplify the system performance indicators and consider

the impact of the two on performance, this paper uses

weighting to obtain the target resource and then defines the

system performance pressure measurement indicator as the

unit resource remaining performance. The specific method

is as follows:

resource =
CPU

2
þ IO

2
ð13Þ

perforemance ¼ resource

VM ware
� 100% ð14Þ
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Figure 6 is the performance stress test result after the

system is tested and calculated. The abscissa is the number

of distribution units, and the ordinate is the resource

remaining rate per unit of VMware. By dynamically

tracking the performance of this indicator, you can clearly

observe how the system elastically expands according to

the load pressure. Among them, the four curves represent

the performance curve of 1 VMware, the performance

curve of 2 VMware, the performance curve of 3 VMware,

and the performance curve of 4 VMware. The experimental

results show that the maximum concurrency of a single

VMware is 169, the maximum concurrency is 234 when it

is dynamically increased to 2, the maximum is 377 when it

is dynamically increased to 3, and the maximum is 438

when it is dynamically increased to 4. In theory, assuming

that the performance of one VMware can support Q dis-

tribution units, then N VMwares with the same perfor-

mance can support N * Q distribution units. However, the

above experimental results are based on dynamic expan-

sion, there is some performance loss, and the CPU and IO

resources cannot be perfectly coordinated. Therefore, with

the expansion of VMware, the entire system will reach the

elastic expansion boundary faster, which can be optimized

through better resource scheduling algorithms and elastic

expansion strategies to approximate the theoretical effect.

Ultimately, this experiment confirms that the system of

urban emergency resource scheduling optimization based

on deep learning has good application value. Finally, the

load test of the system in experiment three makes us feel

the load capacity of the system more intuitively, which can

be well applied to the actual situation in emergency rescue.

Therefore, this experiment confirms that the system of

urban emergency resource scheduling optimization based

on deep learning has good application value.

5.4 Discussion

The three experiments designed in this paper are, respec-

tively, Experiment 1. The simulation modeling experiment

of the deep reinforcement learning DQN algorithm is car-

ried out in the system to verify the feasibility of the system.

Experiment 2 compares the genetic algorithm, ant colony

algorithm, and DQN algorithm to solve the path planning

problem of multiintelligent distribution units in the system

simulation experiment. It is found that the deep rein-

forcement learning DQN algorithm has a significant effect

in the simulation experiment and has obvious advantages in

path planning. In the third experiment, by simulating the

distribution tasks in the actual environment, in the virtual

simulation environment, the number of distribution units is

continuously increased to increase the system load for

stress testing. The experiment verifies that the urban

emergency resource scheduling optimization system based

on deep learning has superior performance.

6 Conclusion

For the research on the optimal scheduling of emergency

resources for urban public emergencies, this paper opti-

mizes and upgrades the urban emergency resource

scheduling scheme mainly from the aspect of path planning

for the distribution of emergency resources. And through

research to build an emergency resource distribution

model, the optimal algorithm, that is, a deep reinforcement

learning algorithm, is selected for path planning. Finally,

compared with other commonly used path planning algo-

rithms, the system simulation experiment proves that the

urban emergency resource scheduling optimization

scheme based on deep learning is effective and feasible.
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