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Abstract
Rapid advances in deep learning models have made it easier for public and crackers to generate hyper-realistic deepfake

videos in which faces are swapped. Such deepfake videos may constitute a significant threat to the world if they are

misused to blackmail public figures and to deceive systems of face recognition. As a result, distinguishing these fake videos

from real ones has become fundamental. This paper introduces a new deepfake video detection method. You Only Look

Once (YOLO) face detector is used to detect faces from video frames. A proposed hybrid method based on proposing two

different feature extraction methods is applied to these faces. The first feature extraction method, a proposed Convolution

Neural Network (CNN), is based on the Histogram of Oriented Gradient (HOG) method. The second one is an ameliorated

XceptionNet CNN. The two extracted sets of features are merged together and fed as input to a sequence of Gated

Recurrent Units (GRUs) to extract the spatial and temporal features and then individuate the authenticity of videos. The

proposed method is trained on the CelebDF-FaceForencics?? (c23) dataset and evaluated on the CelebDF test set. The

experimental results and analysis confirm the superiority of the suggested method over the state-of-the-art methods.

Keywords Deepfake � YOLO � Face detector � CNN � HOG � XceptionNet � GRU � Deepfake video detection �
Videos authenticity

1 Introduction

Currently, the evolution of digitally tampered media is

attracting the attention of the public, policymakers,

attackers, and researchers. The progress in artificial

intelligence, especially deep networks, has enabled the

creation of highly realistic deepfake videos. These videos

portray the target subject saying or doing things said or

done by the source one. Deepfakes are AI-synthesized and

generated videos and audio. This kind of fake media has

given rise to substantial concerns about potential misuse. In

2017, the term deepfake arises from the Reddit site when a

user, called deepfake, posted tampered pornographic

videos for target actors and shared the writing code to

enable the public to follow suit. The deepfake technique is

menacing to world security when its creation methods can

be used to generate leaders’ videos with counterfeit spee-

ches for falsification goals. Therefore, it can be abused to

extort victims, cause religious and political tensions

between nations, deceive the public, affect the election

results, and expose individuals, societies, governmental

institutions, and countries to danger [1].

Most deepfake applications are based on two AI

approaches: autoencoders and Generative Adversarial

Networks (GANs). The autoencoders can extract the latent

facial features from photographs and then use these
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features to create photographs with a different expression.

The GANs can learn how to model the input distribution by

training two competing networks: generator and discrimi-

nator. The generator keeps on discovering how to generate

fake data that can deceive the discriminator, while the

discriminator is trained to differentiate between fake and

genuine data. As the training goes forward, the discrimi-

nator will not be able to discern the difference between the

generated fake data and the genuine one. Thus, the dis-

criminator can be rejected, and the generator can then be

utilized to generate hyper-realistic data that have not been

seen before [2].

Malicious video deepfakes can be categorized into face-

swap, puppet master, lip-sync, facial synthesis and attribute

altering, and voice cloning deepfakes. Face-swap or

replacement is when the face of the source subject is

replaced with the target subject to create a deepfake video

of the target one, attempting to depict the actions done by

the source subject to the target one. Several implementa-

tions to create the face-swap technique have been

deployed, including FaceSwap [3], DeepFaceLab [4],

DFaker [5], FaceSwap GAN [6], and DeepFake-tf [7]. The

deepfake puppet master or re-enactment is created by

imitating either the expressions of the target subject, such

as facial expressions, and head and eye movements, or the

full body. Face2face [8], ReenactGAN [9], and Headon

[10] are examples of the re-enactment deepfake technique.

Lip-sync is when the lip movements of the target subject

are transformed to be consistent with a certain audio

recording as in synthesizing Barack Obama video [11].

Facial synthesis and attribute altering focus on the gener-

ation of realistic face photos and facial attribute manipu-

lation. DCGAN [12], ProGAN [13], StyleGAN [14],

BigGAN [15], IcGAN [16], StarGAN [17], and AttGAN

[18] are some instances of the facial synthesis and attribute

altering deepfake technique. The voice cloning [19, 20] or

audio deepfake involves the generation of the voice of the

target subject utilizing deep learning techniques to depict

the target saying things they have never said.

Since the great advances in deepfake video creation

methods, there is a necessity to keep up with the evolution

of such creation methods thus arising a need for a deepfake

video detection method that is generally applicable to

videos generated by any deepfake method. This paper

presents a new efficient method, YOLO-Feature extraction-

merge hybrid method (YF), which captures the defects in

the spatial and temporal domains of video frames and then

distinguishes whether a given video is a deepfake or not.

The YOLO face detector has been proven its efficiency in

detecting the deepfake videos over the other state-of-the-art

face detectors since it produces fewer false-positive

instances [21–23], thus enhancing the performance of the

proposed detection method. Therefore, it is used as a face

detector extracting the faces from the video frames.

Moreover, a new feature extraction-merge method is pro-

posed based on a combination of two proposed feature

extraction methods. The first method is a proposed CNN

based on the HOG descriptor. The HOG descriptor is used

to extract the spatial gradient orientation features that

describe the local contour, silhouette, and some texture

information of faces. The HOG has proven its effectiveness

in several image processing and computer vision applica-

tions, especially for action recognition [24], object detec-

tion [25], facial expression and face recognition [26, 27],

and videos and images forgery detection [28–30]. The

output of the HOG is then fed as an input to a proposed

CNN to learn the most discriminative spatial gradient ori-

entation features by utilizing several building blocks. This

aims to discover the discrepancies in spatial information

between genuine and manipulated video frames. The sec-

ond feature extraction method adopted here is the Xcep-

tionNet with some ameliorations. The XceptionNet had

previously attained good results in detecting the forged

videos [31, 32]. The proposed amelioration to the Xcep-

tionNet is aimed to produce an informative spatial repre-

sentation of the video features and enhance the

performance of the deepfake video detection method in

real-world scenarios. Furthermore, the outputs of these two

feature extraction methods are merged and fed to a

sequence of GRUs to learn and extract the spatiotemporal

features of videos. The GRU is a kind of Recurrent Neural

Networks (RNNs). It shows a big efficiency in mitigating

the gradient vanishing and exploding problem of the tra-

ditional RNNs when learning long-term dependencies. Its

architecture is simpler while maintaining the effect of the

Long Short-Term Memory (LSTM) [33].

In summary, this paper presents the following

contributions:

• A new feature extraction-merge method based on a

combination of two newly proposed different feature

extraction methods; a proposed CNN based on HOG

descriptor, and an ameliorated XceptionNet, is intro-

duced to efficiently and powerfully learn the discrim-

inant spatial video information. The final deepfake

detection performance has been improved due to the

combination of the two feature extraction methods.

• Many deepfake videos creation methods work on a

frame-by-frame basis where faces of each frame are

processed or swapped independently of the other

frames. Thus, the generated videos lack coherence in

temporal information. A sequence of GRUs is applied

on the merged features to provide high learning

capabilities to better understand of the incoherence in

the temporal domain between genuine and deepfakes

videos.
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• A comparative study with current state-of-the-art

methods of deepfake video detection is applied in

terms of AUROC, accuracy, sensitivity, specificity,

precision, recall, and F1-measure.

The rest of this paper is organized as follows: Sect. 2

presents a literature review about deepfake video detection

methods. Section 3 introduces methods and materials for

detecting deepfake videos. Section 4 introduces the time

complexity of the proposed method. Section 5 is dedicated

to the case study, results and analysis. Section 6 presents

the conclusion and future work.

2 Literature review

The progress of machine learning algorithms has raised the

ease of creating fake content: images, videos, and audio.

Additionally, it has enhanced the realism of tampered

information. It is extremely difficult for individuals to

distinguish between genuine and fake multimedia. Since

deepfake media violates privacy and poses a significant

threat to the world, many researchers have paid consider-

able attention to create methods for detecting media

manipulations and forgery. Current deepfakes detection

approaches can be categorized into two categories. The first

one consists of methods that depend on specific artifacts:

spatial and temporal, generated using various deepfake

creation methods. The second one comprises methods that

discover differentiating properties via training on deep-

fakes datasets using deep neural networks, which is called

data-driven classification. The spatial artifacts involve

inconsistencies, GAN artificial fingerprints, and abnor-

malities in environment. Meanwhile, the temporal artifacts

include incoherence, personal behavior variations, physio-

logical signals changes, and un-synchronization among

video frames [34, 35].

Li and Lyu [36] introduced a method for detecting

deepfakes depending on the observations that existing

DeepFake creation methods produce images of low reso-

lutions that leave distinct artifacts when warped to be

consistent with source faces. The faces were detected using

the dlib software, and then four CNN models were trained

to distinguish fake videos from real ones; VGG16,

ResNet152, ResNet101, and ResNet50. This detection

method was not robust regarding multiple video compres-

sion. Koopman et al. [37] analyzed the photo response non-

uniformity (PRNU) noise pattern of the video frames to

detect the deepfakes because it was expected that the

manipulated facial region affects the local PRNU pattern in

frames. The PRNU analysis demonstrated a noteworthy

difference in the scores of mean-normalized cross corre-

lations between real and deepfake videos. This work was

only applied to a very small dataset. The work in [38]

proposed a method for detecting the deepfakes based on the

observation that such fakes were generated by splicing

synthesized face area into the source image. First, the facial

landmarks were extracted from face frames, and then the

3D head poses were estimated. After that, the computed

difference of the head poses was fed as an input feature

vector to the Support Vector Machine (SVM) classifier to

differentiate between real and deepfake videos. The per-

formance of this work degraded for blurry images due to

the difficulties to estimate facial landmark locations. The

work in [39] presented a deepfake detection method based

on analyzing the frequency domain of real and fake face

frames using discrete Fourier transform followed by

applying the azimuthal average to produce a 1D feature

representation vector. This feature vector was then fed to

three machine learning classifiers; logistic regression,

SVM, and K-means clustering.

Güera and Delp [40] proposed a temporal deepfake

video detection method exploiting the incoherence in

illumination across fake video frames that causes flicker

artifacts in the face area. The Inception V3 was used to

extract features from video frames, and the LSTM was then

trained on these features to judge videos authenticity. This

method yielded good performance on videos of length less

than 2 s. Sabir et al. [41] observed that the artificial face

generation methods do not usually enforce temporal

coherence in the synthesis process. As a result, they first

proposed to detect, crop, and align faces from video

frames. Then, they applied either DenseNet or ResNet50

with bidirectional GRU on these aligned faces to learn the

temporal artifacts to detect synthesized faces in video

frames. The work in [42] proposed a method to detect

deepfakes depending on the fact that the forged videos lack

some physiological signals, eye blinking, in synthesized

faces. First, the faces were detected from video frames

using the dlib software and aligned based on facial land-

marks. The areas corresponding to eyes were cropped out,

and the lack of eye blinking in videos is then detected by

determining the openness degree of an eye using VGG16-

LSTM. Although this method achieved good performance,

it cannot detect the manipulations in videos with closed

eyes, frequent eye blinking, or realistic eye blinking. The

work in [43] exploited the dissimilarities of the optical flow

field across frames as a clue to distinguish between real and

deepfake videos. The estimated optical flow was then given

as input to two CNN models; VGG16 and ResNet50.

In [44], two shallow CNN models, Meso-4 and

MesoInception-4, have been introduced focusing on the

mesoscopic properties of forged content. This method

detected manipulations in videos efficiently with a little

computational cost; however, its performance degraded on

low-quality videos. Rossler et al. [31] employed six
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methods for detecting deepfake videos based both hand-

crafted and learned features. The faces were detected using

a face tracking method. Then, the features were extracted

from these faces and fed into six classifier models to dis-

tinguish videos authenticity: co-occurrence matrix-SVM,

co-occurrence matrix-CNN, constrained CNN, Stats-2L

network, MesoInception-4, and XceptionNet. Although the

detection performance was good with XceptionNet, it

degraded on compressed videos. Nguyen et al. [45]

employed a multi-task learning-based designed CNN to

simultaneously detect and locate forged content in videos.

The method used an autoencoder for the classification of

manipulated content, while it applied a y-shaped decoder to

share the gained information for the segmentation and

reconstruction tasks. The detection performance of this

method degraded over unseen instances. In [46], the multi-

task CNN was used to detect faces from video frames,

where the EfficientNet-b5 was applied to these faces to

extract the visual features. Then, the automatic face

weighting mechanism along with bidirectional GRUs was

employed to learn the temporal information and detect the

manipulated videos. Wang et al. [47] proposed a method

called FakeSpotter to detect the synthesized faces by

monitoring neuron behaviors in deep face recognition

systems with a simple classifier that consists of five fully

connected layers. The VGG-Face with ResNet-50 was used

to capture the activated neurons helping to get more subtle

features that are significant for detecting the fakes. The

work in [48] suggested using a part of VGG-19 to extract

the hidden features from the detected faces. These features

were fed as input to three primary capsules and two output

capsules dedicated to real and fake images. Ismail et al.

[22] proposed a hybrid method named YIX to discover

inconsistencies and artifacts in spatial information of the

forged video frames and then judge the authenticity of

videos. This method used the YOLO detector to extract

faces from video frames. Then, a fine-tuned Incep-

tionResNetV2 model was employed as a feature extractor,

followed by the XGBoost model as a classifier to distin-

guish a deepfake video from a genuine one. In [23], a

method to detect the spatiotemporal discrepancies in

deepfake videos was introduced. This method employed a

refined version of the YOLO face to detect faces from

video frames. Then, a fine-tuned EfficientNet-b5 Bidirec-

tional-LSTM (Bi-LSTM) with a fully connected layer was

employed to extract the spatial-temporal features and

detect the video’s authenticity.

In [49], a method for detecting the lip-sync deepfakes

was proposed. The distances between mouth landmarks

were employed as visual features together with the Mel

Frequency Cepstral Coefficients (MFCC) as audio features.

The principal component analysis was then applied to

reduce the dimensionality of the joint visual-audio feature

vector, which was fed as input to different classifiers:

Gaussian mixture model, SVM, multilayer perceptron, and

LSTM. This method with the LSTM classifier achieved

better performance than other classifiers, however; its

performance dropped as the training instances decreased.

Korshunov et al. [50] demonstrated that replacing the

MFCC audio features in [49] with embeddings from a deep

neural network achieved a significant performance

improvement in detecting the lip-sync deepfakes on chal-

lenging publicly datasets. The work in [51] exploited the

inconsistencies between the mouth shape dynamics and the

spoken phonemes to detect the lip-sync deepfake videos

based on using either vertical intensity profile or CNN.

Since the existing deepfake detection methods have

focused on either exploiting specific spatial and temporal

artifacts left over from the creation methods or data-driven

classification, the proposed method employs both direc-

tions. This aims to discover different features using various

approaches to improve the detection method’s perfor-

mance. First, the proposed method targets some kind of

spatial artifacts: visible splicing boundaries [52], using a

CNN method based on one of the computer vision features;

HOG. This is because the creation method synthesizes the

target face per frame, and this may produce abnormal

changes to several features. The HOG is a local descriptor

that describes a pixel in a face frame based upon its local

horizontal and vertical surroundings. It creates histograms

of local intensity gradients to describe the appearance and

shape of local objects. The HOG representation captures

gradient structure or edge information, as well as texture

near edges, corresponding to the underlying local shape

[53]. It is based on calculating the color variation at all

pixels of localized areas of face frame in both x and y di-

rections, which yields two gradient-x to x axis; x axis

derivative, and gradient-y to y axis; y axis derivative [54].

Thus, the HOG-based CNN feature extraction method may

produce specific artifacts by learning the difference

between the spatial HOG feature of genuine and deepfake

face. Second, the proposed method also applies data-driven

classification by employing the proposed ameliorated

Xception deep network to automatically find informative

spatial hierarchical features representing face frames.

These along with GRUs sequence and dense layers are

used to detect the temporal incoherence and inconsistencies

among the video frames and then classify videos as gen-

uine or deepfake. In addition, to boost the applicability of

the proposed method in real-world scenarios, it is trained

using a diverse CelebDF-FaceForencics?? (c23) dataset

and tested using high-quality hyper-realistic videos from

the CelebDF dataset.

21780 Neural Computing and Applications (2022) 34:21777–21791

123



3 Methods and materials

The proposed deepfake video detection method consists of

three fundamental phases: data pre-processing phase, fea-

ture extraction-merge phase, and classification phase.

These phases are displayed in Fig. 1, and each of them will

be detailed in the following subsections.

3.1 Data pre-processing

In this phase, the video is transformed into frames. Then,

the faces are detected and cropped out from video frames

since most forged methods focus on manipulating faces.

The YOLO detector, one of the most popular state-of-the-

art face detectors, is used for the face detection process

[55, 56]. It is characterized by producing fewer false-pos-

itive samples compared to other face detectors: BlazeFace,

dlib, and MTCNN [21–23]. The size of the detected

bounding box of the face is increased by 22% relative to its

height and width. This adds a large region of the head that

may contains artifacts aiding to judge deepfakes. After that,

the extracted face images are resized to 224 9 224, and its

pixels are normalized to belong to [- 1,1].

3.2 The proposed ‘‘feature extraction-merge’’
hybrid method

In this phase, a hybrid solution for the deepfake detection

problem is proposed based on the two proposed feature

extraction methods: HOG-based CNN and an ameliorated

XceptionNet. The two proposed components are explained

hereafter. The different spatial features are extracted from

the detected faces based on those two feature extraction

methods. These features are then merged together aiming

to get the optimal spatial representation of video infor-

mation. After that, the temporal features are learned to

discover the temporal incoherence among the manipulated

video frames.

3.2.1 The proposed HOG-based CNN

The HOG method has been proposed by Dalal and Triggs,

where the local features of an object in image can be

effectively described by direction of the contours or the

intensity distribution of gradients [57]. First, the image is

divided into small spatial blocks and each block is divided

into smaller areas called cells. Then, for each cell, the

gradient magnitude mðxi; yiÞ and orientation hðxi; yiÞ are

calculated based on the horizontal Gxðxi; yiÞ and vertical

Gyðxi; yiÞ gradient information of each pixel ðxi; yiÞ. Those
Gx and Gy gradients are computed using 1-D discrete

derivations filter masks ½� 0:17em1; 0; 1� and

½� 0:17em1; 0; 1�T . They are also calculated singly for each

color channel, and for each pixel, it selects the channel

with the largest gradient magnitude. The following equa-

tions describe m and h calculations:

m xi; yið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gxðxi; yiÞ2 þ Gyðxi; yiÞ2
q

ð1Þ

h xi; yið Þ ¼ arctan
Gy xi; yið Þ
Gx xi; yið Þ

� �

ð2Þ

After that, the histograms are created and normalized for

each block built on cells. Those histograms, which are

presented as vectors, are combined to configure the overall

HOG visual feature descriptor of an image [58–60]. Fig-

ure 2 depicts the HOG feature extraction process.

Here, the HOG feature is extracted from the face and

then is reshaped to be fed as an input to the proposed CNN

to reduce the feature size and learn the most distinctive

spatial gradient orientation features of the genuine and

deepfake face as shown in Fig. 1. The difference between

the HOG feature of the genuine and deepfake face frame in

the gradient information and texture of the forehead, nose

and its around, and cheeks areas is shown in Fig. 3.

The proposed CNN is a lightweight architecture inspired

by using shortcut connections of residual networks with a

stack of separable depth convolution layers [61]. The

shortcut connections is known to effectively deal with the

problem of vanishing gradients and enhance performance.

Fig. 1 The suggested YF method diagram
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The separable depth convolution layers are a type of con-

volution that is believed to be substantially far more effi-

cient in terms of computational complexity. The

architecture diagram of the proposed CNN is shown in

Fig. 4. It consists of several building blocks including

convolution, batch normalization, Rectified Linear Unit

(ReLU), separable depth convolution, shortcut connec-

tions, densely connected, dropout, and pooling layers. The

convolution contains kernels that convolve over the height

and width of face frames and produces feature maps. Each

convolution layer with a 3 9 3 kernel size is followed by

batch normalization and ReLU activation layers, while

each separable convolution layer is followed by a batch

normalization layer. The batch normalization is used to

normalize data into zero mean and unit variance for each

mini-batch, which accelerates the training. The ReLU

activation adds nonlinearity to the layer by forcing all

negative input values to be zeros, which accelerates the

training, reduces the vanishing gradient problem, and

contributes to achieve better predictions and reduce the

overfitting. The pooling layers are employed to minimize

the parameters’ number and computation time by reducing

the feature dimension. The dropout layer drops out the

neurons randomly with a desire probability rate per training

step, which helps to prevent overfitting. The length of the

output feature vector is 1024. The details of the proposed

CNN layers are shown in Table 1.

3.2.2 The proposed ameliorated XceptionNet method

The Xception network, which stands for extreme Inception,

employs the concept of a depth-wise separable convolution

to decouple the channel and spatial dimensions of an image

[61]. The Xception architecture starts with two convolution

layers having 32 and 64 filters, respectively, each with a

3 9 3 kernel size. Each convolution layer is followed by

the ReLU activation layer. This is followed by five blocks,

where each input to the Xception block is passed via two

separable convolution layers followed by a max-pooling

layer and is also passed via a pointwise convolution layer

through shortcut residual connection except the fourth

block. The fourth block comprises three separable convo-

lution layers, and this Xception block iterates eight times.

The last Xception block is followed by a couple of layers:

separable convolution and ReLU activation. This is fol-

lowed by a global average pooling layer. After that, the

densely connected layers are added where the last one

being the output layer [62]. In the Xception architecture, all

convolution and separable convolution layers are followed

by batch normalization layer. In addition, all separable

convolution layers are preceded by the ReLU activation

layer except the first one and the last two layers.

As depicted in Fig. 5, the Xception network is amelio-

rated by injecting two layers before the ReLU activation

layer of the last separable convolution layer. These two

layers are the typical convolution and batch normalization

Fig. 2 The description of the HOG feature extraction process

Fig. 3 The HOG feature of genuine and deepfake face frame
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layers. Then, after the global average pooling layer, the

following layers are injected: densely connected layer with

ReLU activation function, and dropout layer to prevent the

overfitting. The detected face is now passed into this

ameliorated network to obtain 1024 features. The amelio-

rated XceptionNet layers are presented in Table 2. The

proposed ameliorations in the XceptionNet aim to produce

an informative spatial representation of face hierarchal

features. This assists to enhance the deepfake detection

method performance in real-world scenarios.

3.2.3 Features merge

In this step, the spatial features extracted from the HOG-

based CNN are merged with those of the ameliorated

XceptionNet to get 2048 optimal spatial features for each

face. Thus, the output of the features merge step for a given

Fig. 4 The proposed CNN architecture diagram

Table 1 The proposed CNN

layers details
Layers Activations

Input 162 9 162 9 1

C, B, R 162 9 162 9 32

C, B, R 79 9 79 9 32

C, B, R 77 9 77 9 64

S, B, R, S, B 77 9 77 9 128

C, M, B, Add (M, B), R 39 9 39 9 128

S, B, R, S, B 39 9 39 9 256

C, M, B, Add_1 (M, B), R 20 9 20 9 256

S, B, R, S, B 20 9 20 9 728

C, M, B, Add_2 (M, B), [R, S, B] 9 3, Add_3 (B, Add_2) 10 9 10 9 728

[[R, S, B] 9 3, Add_i (B, Add_j)] 9 2; i = 3,4 and j = i - 1 10 9 10 9 728

C, B, R 10 9 10 9 1024

G, DS, D 1024

C, convolutional layer; S, separable convolution layer; B, batch normalization layer; R, rectified linear unit

layer; M, max-pooling layer; G, global average pooling layer; D, dropout layer; DS, densely connected

layer
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dataset is (videos, frames per video, 2048). This outcome

will be utilized as an input to the next step to learn the

temporal features of genuine and fake videos.

3.2.4 Temporal feature extraction in the proposed hybrid
method

In this step, a sequence of the Gated Recurrent Units

(GRUs) is employed to learn the temporal features of

videos. The GRU is an improved version of the standard

RNN with memory cells. It aims to solve the gradient

vanishing problem of RNN with a gating mechanism. It

employs the update and reset gates to modulate the flow of

information inside the cell state. At each time step t, the

cell takes the input sequence xt and the hidden state ht�1

which comes from the previous time step t � 1, and outputs

a new hidden state ht which again passes to the next time

step. The reset gate is employed to determine the amount of

past information that needs to forget. The update gate helps

to decide the amount of past information that needs to be

passed to the future state. The following formulae are

utilized in the GRU output calculations at each time step

[33, 63, 64]:

resett ¼ sigmoidðWrxt þ Ur hiddent�1Þ ð3Þ
updatet ¼ sigmoidðWuxt þ Uuhiddent�1Þ ð4Þ

hid0dent ¼ tanh Whxt þ Uhðresett � hiddent�1ð ÞÞ ð5Þ

hiddent ¼ 1� updatetð Þ � hiddent�1 þ updatet
� hid0dent ð6Þ

Fig. 5 The ameliorated XceptionNet architecture

Table 2 The ameliorated

XceptionNet layers details
Layers Activations

Input 224 9 224 9 3

C, B, R 111 9 111 9 32

C, B, R 109 9 109 9 64

S, B, R, S, B 109 9 109 9 128

C, M, B, Add (M, B), R 55 9 55 9 128

S, B, R, S, B 55 9 55 9 256

C, M, B, Add_1 (M, B), R 28 9 28 9 256

S, B, R, S, B 28 9 28 9 728

C, M, B, Add_2 (M, B) 14 9 14 9 728

[[R, S, B] 9 3, Add_i (B, Add_j)] 9 8; i = 3, …,10 and j = i - 1 14 9 14 9 728

R, S, B, R 14 9 14 9 728

S, B 14 9 14 9 1024

C, M, B, Add_11 (M, B) 7 9 7 9 1024

S, B, R 7 9 7 9 536

S, B 7 9 7 9 2048

C, B, R 7 9 7 9 1024

G, DS, D 1024

C, convolutional layer; S, separable convolution layer; B, batch normalization layer; R, rectified linear unit

layer; M, max-pooling layer; G, global average pooling layer; D, dropout layer; DS, densely connected

layer
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The variables xt, resett, updatet, hid
0dent, and hiddent

denote the input vector, reset gate, an update gate, candi-

date activation vector, and output vector, respectively, and

all W and U variables represent the weight matrices. The

symbol � denotes an element-wise product.

As each manipulated face frame is generated individu-

ally, it inevitably causes an evident flicker and disconti-

nuity of the face surface. To exploit this vulnerability, the

optimal spatial extracted features of each video are fed into

a sequence of GRUs to learn the temporal incoherence

among the forged video frames. It had been agreed upon

that using a sequence of GRUs might ameliorate the overall

performance [46]. As illustrated in Fig. 1, this sequence

consists of eight GRUs where each GRU couple is

employed with units 2048, 1024, 512, and 256, respec-

tively. The experimental results showed that the proposed

system performed better as we increased the number of

GRUs. The discovered optimal value is eight GRUs after

which the performance degrades. The GRUs layers’ details

are described in Table 3.

3.3 Classification

Once the temporal features have been extracted, a densely

connected layer with 256 units and ReLU activation

function is added on the top of the features. The ReLU

function, gðxÞ ¼ maxð0; xÞ, avoids the vanishing gradient

problem and makes it possible to learn complex relations in

the data. Finally, a densely connected layers with 2 units

representing the output classes; genuine, and deepfake, and

Softmax activation function is added to distinguish the

genuine video from the deepfake one.

3.4 Dataset

The proposed hybrid method has been applied to a diver-

sifiable real and fake videos dataset, namely: CelebDF-

FaceForencics?? (c23), that results by combining two

popular datasets: CelebDF and FaceForencics?? (c23).

This helped to assess the robustness of the proposed fake

detection method and boosted the applicability of the

proposed method in the real world [22, 23].

The CelebDF dataset consists of 590 genuine videos of

celebrities selected from YouTube that vary in ethnic

groups, genders, and ages, and 5639 generated DeepFake

videos. It also includes 300 additional genuine videos of

random subjects collected from YouTube [52]. The

FaceForensics?? dataset consists of 1000 genuine videos

that have been altered with four face manipulation meth-

ods: Deepfakes, FaceSwap, Face2Face, and NeuralTex-

tures. It is generated with three compression levels: high

(c40), light (c23), and raw (H.264) [26].

To train the YF method, 1424 genuine and fake Cel-

ebDF videos are combined with 1424 real and deepfake

FaceForencics?? (c23) videos. The training set is split

into training and validation subsets. To test the proposed

YF method, the CelebDF test set which originally consists

of 518 genuine and fake videos is employed. This situation

simulates real-world scenarios because the CelebDF has

high visual quality videos that resemble those circulated on

the Internet where they are generated using an improved

deepfake generation algorithm [52].

4 Time complexity analysis of the proposed
method

In general, the time complexity of CNN comprises con-

volution, pooling, and dense layers. The pooling and dense

layers use just 5–10% of the total calculation time, whereas

convolution layers take the overwhelming majority of the

computational time. For simplicity, the time complexity of

the proposed method is assessed based on the convolution

layers [65–67].

The first phase of the proposed method, data pre-pro-

cessing, is based on using the YOLO face detector. The

YOLO detector applied here relies on the pre-trained

YOLOv3 which is based on the darknet-35 network

architecture. This architecture employs successive convo-

lutional layers with some residual connections to produce

the predicted bounding boxes from frames with a confi-

dence score and then loop through all the bounding boxes,

filtering out the ones with low scores. The non-maximum

suppression is applied to the remaining boxes. This elim-

inates overlapping bounding boxes [56, 68]. Thus, the

Table 3 The GRUs layers description of the proposed YF method

Layer (type) Output shape Parameters number

main_input (InputLayer) [(None, 10, 2048)] 0

gru (GRU) (None, 10, 2048) 25,178,112

gru_1 (GRU) (None, 10, 2048) 25,178,112

gru_2 (GRU) (None, 10, 1024) 9,443,328

gru_3 (GRU) (None, 10, 1024) 6,297,600

gru_4 (GRU) (None, 10, 1024) 6,297,600

gru_5 (GRU) (None, 10, 512) 2,362,368

gru_6 (GRU) (None, 10, 512) 1,575,936

gru_7 (GRU) (None, 10, 256) 59,1360

gru_8 (GRU) (None, 256) 394,752

dense (Dense) (None, 256) 65,792

dense_1 (Dense) (None, 2) 514

Total parameters number: 77,385,474. Trainable parameters number:

77,385,474. Non-trainable parameters number: 0
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calculation of the bounding boxes’ coordinates that repre-

sents the detected YOLO faces from a frame depends on

the computational complexity of the darknet-53 network’s

convolution layers. The first phase has Oð
PL

l¼1 C
2K

2
hwÞ

time complexity. The symbol l represents the convolution

layer index, L denotes the convolution layers number, C

represents the channel size, K refers to the kernel size, and

h and w represent the spatial height and width of the output

feature map, respectively [65–67, 69]. The second phase,

the feature extraction-merge hybrid method, is based on

merging the extracted features from the HOG-based CNN

and an ameliorated XceptionNet and then feeding the

merge outcome to GRUs sequence for learning the tem-

poral features of genuine and deepfake videos. The cal-

culation of the face’s HOG feature has a time complexity

OðHWÞ where H and W represent the height and width of

the face frame, respectively [70]. The extracted HOG

feature of the face is then fed into the proposed CNN for

feature reduction and further learning. Since the proposed

CNN mainly comprises convolution layers and separable

depth convolution layers, it has Oð
Pd

l¼1 C
2K2hwÞþ

O(
Pd1

l1¼1 ChwðC þ K2ÞÞ time complexity. The first and

second terms represent the total computational complexity

of convolution and separable depth convolution layers,

respectively. The symbol dð\LÞ denotes the convolution

layers number, l1 denotes the separable depth convolution

layer index, and d1 refers to the number of separable

convolution layers [65–67, 69]. Thus, for each face frame,

the HOG-based CNN has OðHW þ
Pd

l¼1 C
2K2hwþ

Pd1
l1¼1 ChwðC þ K2ÞÞ time complexity. The ameliorated

XceptionNet mainly consists of convolution layers and

separable depth convolution layers, it has

Oð
Pd

l¼1 C
2K2hwÞþ O(

PD1

l1¼1 ChwðC þ K2ÞÞ time com-

plexity per frame where D1ð[ d1Þ denotes the number of

separable depth convolution layers. Consequently, for each

frame, the time complexity of applying the HOG-based

CNN and the ameliorated XceptionNet and merging their

outcomes is OðHW þ
P2d

l¼1 C
2K2hwþ

Pd1þD1

l1¼1 ChwðCþ
K2ÞÞ. Since the input to the GRU is a sequence of m frames

representing a given video, the time complexity of a single

GRU is Oðmd2h þ mdhdiÞ where dh and di represent

dimensions of hidden state and input, respectively [71, 72].

The GRUs sequence has a time complexity

Oð
PK

k¼1ðmd2h þ mdhdiÞÞ where k and K represent the GRU

index and the number of GRUs, respectively. As a result,

the total time complexity per video in the second phase is

Oðm:½HW þ
P2d

l¼1 C
2 K2hwþ

Pd1þD1

l1¼1 ChwðC þ K2Þ� þ
PK

k¼1ðmd2h þ mdhdiÞÞ .

Finally, assume the sample size is v, representing the

total number of videos, and the training process has e

epochs. The total theoretical time complexity of the pro-

posed method has been proven to be equal to:

O ev: m: HW þ
X

Lþ2d

l¼1

C2K2hwþ
X

d1þD1

l1¼1

ChwðC þ K2Þ
" #( 

þ
X

K

k¼1

md2h þ mdhdi
� �

)!

:

ð7Þ

5 Case study, results and analysis

The YF proposed deepfake video detection method is

trained by the CelebDF-FaceForencics?? (c23) dataset,

and the assessment is conducted on the original CelebDF

test set. The training set is divided into random subsets:

train and validation.

To evaluate the classification performance of the sug-

gested YF method for detecting the deepfake videos, sev-

eral standard metrics are applied: an area under the receiver

operating characteristic (AUROC) curve, accuracy, preci-

sion, recall, F-score, sensitivity, specificity, and confusion

matrix.

The receiver operating characteristic (ROC) curve is a

more robust approach in evaluating predictive methods. It

provides a graphical manner to visualize the performance

in terms of sensitivity, true positive rate (tpr), against 1-

Specificity, false positive rate (fpr), across a series of

thresholds. The closer the curve to the top left, the more

efficient the detection method’s performance [73]. The

AUROC score measures the discriminative ability of the

proposed learning method to correctly classify positive and

negative random instances and is employed as a single

number summary of the ROC. It can be calculated as fol-

lows [74]:

AUROC ¼
Z

1

0

tpr fpr�1 xð Þ
� �

dx ¼ pðx2 [ x1Þ ð8Þ

where x2 is the predicted positive instance and x1 is the

predicted negative instance. The higher the AUROC score,

the better the detection method performance is at distin-

guishing between deepfake and genuine classes. The

mathematical expressions of the rest of the standard eval-

uation metrics are defined as follows [75]:

Accuracy ¼ TPþ TN

TPþ TNþ FNþ FP
ð9Þ
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Precision ¼ TP

TPþ FP
ð10Þ

Recall ¼ Sensitivity ¼ TP

TPþ FN
ð11Þ

F�score ¼ 2� precision� recall

precisionþ recall
ð12Þ

Specificity ¼ TN

TNþ FP
ð13Þ

where TP represents the number of actual positive instan-

ces that are predicted as positive. FP denotes the number of

actual negative instances that are predicted as positive. The

FN represents the number of actual positive instances that

are predicted as negative. TN represents the number of

actual negative instances that are predicted as negative.

The proposed YF deepfake detection method is trained

for 42 epochs using the stochastic gradient descent opti-

mizer [76] with a learning rate started from 0.002 and

decayed by a factor of 0.000004, and momentum 0.9. This

updates the weight parameters and aims to reduce the

difference between the target and predicted outcomes. The

batch size is set to 64. The cross-entropy function is used as

a loss function to measure the efficiency of the proposed

YF method, and its equation [77] is defined as follows:

Loss ¼ � 1

N

X

N

i¼1

ðyilogðpiÞ þ ð1� yiÞlogð1� piÞÞ ð14Þ

where N is the total number of videos and yi represents the

ground truth label for the ith video, while pi represents its

predicted probability.

The experiments are conducted on the following

benchmark: an OMEN HP laptop that has an Intel (R) Core

(TM) i7-9750H CPU with 16 GB, an RTX 2060 GPU with

6 GB, and Windows 10. The Python language is used to

implement the suggested YF method. Tensorflow, Keras,

OpenCV, Skimage, Numpy, OS, Random, and PIL are

some Python libraries utilized for achieving the proposed

method.

The experimental results show that the proposed

approach outperforms the recent state-of-the-art approa-

ches. Figure 6 shows the accuracy and loss curves for the

proposed YF method. The confusion matrix of the YF

method for detecting the deepfake videos is shown in

Fig. 7. Additionally, Fig. 8 depicts the ROC curve and the

AUROC curve metric corresponding to the YF method

performance. As can be seen from Fig. 8, the ROC curve is

very close to the upper left confirming a high performance

by the suggested YF method.

Table 4 shows the AUROC scores for the proposed

approach compared to recent deepfake videos detection

approaches. As seen from Table 4, the YF method scored

the highest performance. It recorded an AUROC score of

95.53% which exceeds that of other current detection

methods [22, 23, 46, 52] with an average increase of

7.695%. In addition, the running time is recorded in

Table 4. It is susceptible to implementation and hardware

Fig. 6 The accuracy and loss curves of the proposed YF method on

training and validation sets

Fig. 7 The confusion matrix visualization of the proposed YF method

Fig. 8 The ROC curve corresponding to the proposed YF method

performance
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[63]. The previously described benchmark has been used to

run four algorithms and the proposed one. The running

time of the YF proposed method is 13.31 h, and it is lower

than that of current detection methods [22, 23, 46] except

for the detection method based on the XceptionNet [52].

The XceptionNet has a slightly lower running time than

that of the YF method because it converges faster than the

YF, so it has a lower number of epochs. However, it

achieves low performance and high loss compared to the

YF. The YF method recorded 0.1004 loss, 95.56% accu-

racy, and 95.53% AUROC, while the XceptionNet recor-

ded 0.5411 loss, 84.94% accuracy, and 84.55% AUROC.

Figure 9 shows the evaluation metrics-based compara-

tive analysis of the YF proposed method with recent state-

of-the-art methods. As can be seen from Fig. 9, the YF

method has achieved higher performance compared to the

other methods. The YF yields 95.53% AUROC, 95.56%

accuracy, 97.06% precision, 96.21% recall, 96.63%

F-score, 96.21% sensitivity, and 94.29% specificity.

Additionally, the YF method is evaluated without using

the HOG-based CNN feature extraction method and

achieved 94.38% AUROC, 94.40% accuracy, 95.88% pre-

cision, 95.6% recall, 95.7% F-score, 92.09% sensitivity, and

94.29% specificity. It can be concluded that merging two

different feature extraction methods improved the learning

process of the proposed detection method. It provided an

optimal spatial representation of real and deepfake faces.

The proposed HOG-based CNN feature extraction method

produces discriminative specific artifacts by learning the

difference between the spatial HOG feature of a genuine and

deepfake face. The ameliorated XceptionNet feature

extraction method produced an informative spatial hierar-

chical representation of the face that helped to discriminate

between the real and deepfake face. The GRUs, which are

applied on the top of merged features, helped to adaptively

capture the temporal incoherence among the deepfake video

frames. The GRU is characterized by a simple structure with

few parameters while ensuring that important features will

not be lost during transmission among video frames. It saves

a lot of time without immolating performance. Thus, the

GRUs contributed to enhancing the overall performance of

the proposed method. The experimental results have

demonstrated the superiority of the YF suggested method

compared to the current methods.

6 Conclusion and future work

This paper introduced a new spatiotemporal-based method-

ology, called YF, for detecting deepfake videos. The YOLO

detector has been utilized for face detection from the frames

of videos since it reduces the false-positive samples. Two

different proposed feature extraction methods have been

applied to the detected faces aiming to enrich learning while

training the proposed method. Combining these methods,

HOG-based CNN and ameliorated Xception network, has

succeeded in producing an informative spatial representation

of genuine and fake faces. The produced features are merged

and fed as an input to a sequence of GRUs. This helps to

discover the defects in the temporal domain across the

deepfake videos frames. The proposed YF method has been

trained on the CelebDF-FaceForencics?? (c23) dataset and

evaluated on the CelebDF test set which has videos that

resemble those in real life. The experimental results have

shown a high performance of the YF method. The proposed

method achieved 95.53% AUROC score, 95.56% accuracy,

97.06% precision, 96.21% recall, 96.63% F-score, 96.21%

sensitivity, and 94.29% specificity. Moreover, the compar-

ative analysis confirmed that the suggested YF method out-

performs the recent state-of-the-art methods by an average

improvement of 7.695% in terms of the AUROC score.

Table 4 The AUROC score and

the running time for the

proposed YF method compared

to previous detection methods

when trained by the CelebDF-

FaceForencies?? (c23) dataset

and tested by the CelebDF test

set.

Method AUROC score (%) Running time (h)

YF proposed method 95.53% 13.31

InceptionResNetV2?XGBoost [22] 90.62% 15.59

Fine-tuned EffecientNet-b5?Bi-LSTM [23] 89.35% 14.93

EfficientNet-b5?Bi-GRU [46] 86.82% 14.08

XceptionNet [52] 84.55% 11.55

Fig. 9 The performance of the YF method compared to recent state-

of-the-art detection methods when trained by the CelebDF-

FaceForencics?? (c23) dataset and evaluated by the CelebDF test set
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In the future work, more efforts are required to enhance

the detection method so that it becomes lighter with

achieving a higher performance level. Additionally, the

proposed method may be expanded to discover the deep-

fakes in multimodal videos that include both visual-video

and auditory modalities. Furthermore, a huge video dataset

may be used to ameliorate the deepfake detection method’s

performance.
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