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Abstract
Quantitative defect and damage reconstruction play a critical role in industrial quality management. Accurate defect

characterisation in Infrared Thermography (IRT), as one of the widely used Non-Destructive Testing (NDT) techniques,

always demands adequate pre-knowledge which poses a challenge to automatic decision-making in maintenance. This

paper presents an automatic and accurate defect profile reconstruction method, taking advantage of deep learning Neural

Networks (NN). Initially, a fast Finite Element Modelling (FEM) simulation of IRT is introduced for defective specimen

simulation. Mask Region-based Convolution NN (Mask-RCNN) is proposed to detect and segment the defect using a single

thermal frame. A dataset with a single-type-shape defect is tested to validate the feasibility. Then, a dataset with three

mixed shapes of defect is inspected to evaluate the method’s capability on the defect profile reconstruction, where an

accuracy over 90% on Intersection over Union (IoU) is achieved. The results are compared with several state-of-the-art of

post-processing methods in IRT to demonstrate the superiority at detailed defect corners and edges. This research lays solid

evidence that AI deep learning algorithms can be utilised to provide accurate defect profile reconstruction in thermography

NDT, which will contribute to the research community in material degradation analysis and structural health monitoring.
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1 Introduction

Quantitative damage and degradation evaluation for key

components, structures and materials are widely recognised

as an indispensable cornerstone in industrial modernisa-

tion, maintenance science and life-cycle engineering

management. The requirements in terms of Structural

Health Monitoring (SHM), manufacturing quality control,

damage inducement, propagation analysis raise an

increased demand for inspection accuracy, resolution, and

decision reliability. The Non-Destructive Testing, Evalua-

tion (NDT &E), as one of the main techniques to achieve

this, takes the lead in the deployment of practical failure

and damage evaluation in industrial and defence applica-

tions [1]. It utilises the basis of sensing discontinuity and

anomaly in the physical field to identify defects in an

object without causing any modification or destruction. The

defects can be characterised by quantitatively analysing the

type, distribution, feature, and pattern of the anomaly.

Among the diverse NDT, E techniques, Infrared Ther-

mography (IRT) is a powerful technique that offers rapid,

non-contact, robust non-invasive inspection, which has

been widely applied for component integrity measurement

and material characterisation [2]. As the most popular

active IRT, pulsed thermography (PT), sketched in Fig. 1,

is especially attractive for the subsurface defect detection

because it employs a transient external source to heat the

specimen, facilitating rapid, widely applicable, intuitive

and relatively low-cost thermal imagery inspection. In
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principle, it uses a divergent thermal contrast on the object

surface to detect the subsurface defect, supported by ther-

mal pattern enhancement algorithms to estimate defect size

and profile. However, the traditional PT, due to its limi-

tation of the same surface heating and detecting, is always

challenging to accurately reconstruct the profile from the

blurred defect thermal pattern for deep and small defects.

Traditional PT post-processing methods aim to improve

the defect contrast and Signal to Noise Ratio (SNR) for

better measuring the location, size, and depth of defects.

Typical methods including Thermographic Signal Recon-

struction (TSR) [3], Principal Component Thermography

(PCT) [4], Pulse Phase Thermography (PPT) [5], have been

widely used. However, for the accurate reconstruction of

the defect profile, it is always time-consuming and needs

numerous calibrations and human pre-knowledge, and is

sometimes even impossible for small and deep defects.

Furtherly, the deviation in the heating, transfer, and cap-

turing process always results in uncertainty and difficulties

for decision making in periodic inspection. For material

degradation analysis and structural health monitoring, the

defect profile characterisation, especially on the sharp

corner and edges of irregular defects, is essential as it can

provide the anomaly cause for degradation generating and

support defect propagation prediction. Therefore, an

accurate defect profile reconstruction method with less

inspection pre-knowledge is highly demanded and impacts

inspection automation.

Different from the traditional thermography characteri-

sation methods, we focused on the reconstruction of

irregular defect spatial profiles by proposing an end-to-end

deep learning automatic inspection method. By initiating a

fast FEM simulation tool for PT, a multiple defect profiles

database can be generated efficiently for deep learning

network training. This provides a powerful tool for com-

prehensive database generation and augmentation, espe-

cially suitable for the data-driven-based machine learning

technique. Then, a Mask-RCNN-based network is applied

to investigate the defect profile reconstruction performance

in a mixed-shape defect dataset. This paper is structured as

follows: The related works are discussed in Sect. 2. Sec-

tion 3 presents a fast FEM simulation tool for PT inspec-

tion dataset generation. Section 4 provides a Mask-RCNN-

based network for defect characterisation. Section 5 reports

the inspection results in comparison to traditional methods.

Section 6 discusses the network performance, and the

conclusions are given in Sect. 7.

2 Related works

Machine learning methods, as a data-driven approach, are

famous for their comprehensive learning and remarkable

automatic decision support. The state-of-the-art technique

of Neural Networks (NNs) has been reported to be effec-

tive in defect identification using different patterns of

thermographic signals such as pixel-wise temporal signal,

or spatial correlation in one frame. In utilising thermal

temporal information, Recurrent NNs (RNNs) are useful in

defect feature learning and extraction. Fang and Maldague

[6] focused on the thermal temporal information and pro-

posed a defect depth quantification strategy by employing

Gated Recurrent Unit (GRU) model to process the tem-

poral features of a small region through the fully connected

layer. Luo et al. [7] proposed the application of Long

Short-Term Memory (LSTM) that uses the transient

information on both sides of temperature peak combining

spatial pixel transformation to acquire a reliable probability

of detection. Another LSTM model was reported to classify

four types of defects (water, oil, air, adhesive filled) by

learning the thermal conductivity deviation of defects in

temporal responses [8]. Similarly, Duan et al. [9] focused

on the defect classification through training parametric

standard NN with 2 hidden layers using the feature vectors

extracted from TSR coefficients. The outputs demonstrate

that the RNN-based method is remarkable in defect depth

measurement, defect conductivity classification, but its

characterisation of the defect’s spatial profile is presented

as mediocre.

Additionally, the imagery-based Convolutional Neural

Networks (CNNs) also present effectiveness in IRT [10].

One of the common methods is to reduce the data dimen-

sion from 3D to 2D by rearranging thermal image pixels.

Xie et al. [11] proposed an unsupervised learning

Autoencoder model to improve the visibility of rear surface

cracks in inductive thermography. Marani et al. [12] used

CNN to detect defects with multiple sizes and depths.

These two methods consider more temporal information

than spatial information because each image is rearranged

into a 1D vector that undermines the thermal spatial cor-

respondence, which shows less capability of defect profile

Fig. 1 The principle of pulsed thermography (PT)
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regression than identification. Another type of CNN-based

method tends to explore a single thermal image, where

VGG, CNN variations [13] and transfer learning models

have been applied in cooling radiator [14], solar photo-

voltaic module [15], CFRP manufacturing [16, 17],

machine faults diagnosis [18] and crack detection [19, 20].

In combination networks, transfer learning and deep

learning are structured to improve defect detection in

composites [21]. A U-net [22] architecture combined with

the traditional PCT method was proposed to perform a

defect profile segmentation by analysing the likelihood

between defective areas and sound areas. These models

focus on the exploration of spatial information rather than

temporal information to characterise defects. Furtherly, a

comparison work has been studied to investigate the mul-

tiple-size defects detectability between methods of YOLO

[23], Fast-RCNN [24], and Mask-RCNN using a fusion

dataset of synthetic and experimental data [25]. It reports a

superior overall performance in defect detection and seg-

mentation using the Mask-RCNN network. However, these

researches mainly used the regular shape defect like circles

or squares, and very limited studies focus on irregular

shape defects. For real applications, a complex defect

profile with sharp inflexion edges is common and difficult

to be reconstructed using the existing methods. These types

of defects would present mechanical stress concentration

and always lead to defect propagation. But the surface

thermal pattern of these inflexion points and sharp corners

are always vulnerable to surrounding heat aliasing and

sensitive to noise. Therefore, a study to automatically

reconstruct irregular defect profiles is valuable and highly

demanded.

3 Methodology

3.1 Overall methodology

This overall methodology of the proposed method is shown

in Fig. 2. This automatic inspection method starts with

dataset preparation. To ensure the network can learn the

thermal response of defects, a general dataset of PT

inspection results including multiple defects with different

irregular defect profiles is generated. A FEM simulation

tool for PT inspection is applied, which can reduce the

repetitive calculation burden from different defective

models. Then by considering the realistic deviation in

heating (pulse energy and duration noise) and capturing

(thermal image noise), the general dataset is furtherly

processed and augmented. The dataset is distributed with

training, validation and testing sets for Mask-RCNN.

Finally, the testing sets are employed to measure the model

performance. To gradually validate the network, three sub-

datasets selected from the general dataset is implemented

for different objectives. First, a single-shape defects subset

is tested to validate the network feasibility. Then, a mixed-

shape defects subset is used to present the method’s

capability to reconstruct multiple irregular profiles.

Thirdly, the variation of the frame selection is employed to

test the network stability on different temporal thermal

images.

3.2 A fast PT FEM simulation

To establish a general dataset, a large amount of accurate

FEM modelling of known defects is indispensable, and the

fast generation and memory cost-efficient are worthwhile.

In this research, a model-based FEM forward modelling

with a fast solver is adopted.

The governing equation of the PT heat transfer can be

written as Eq. (1), and its FEM governing form is shown in

Eq. (2).

j rf gT rf gT � q c _T ¼ �QC ð1Þ

K½ � TðtÞf g þ C½ � oTðtÞ
ot

� �
¼ QðtÞf g ð2Þ

where T and rf g denote the temperature and gradient

vector and �QC is the excitation heat flux applied on the

surface region (C). The j, q and c denotes the heat con-

ductivity, density, and specific heat of the material,

respectively.

Fig. 2 The methodology

flowchart
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By using Fourier transformation, the response signal can

be calculated based on the frequency domain summation

method. The transformed FEM governing equations are

presented as Eqs. (3) and (4),XN

n¼0
K½ � þ jxn C½ �ð Þ ~Tn

� �
ejxnt ¼

XN

n¼0
~Qn

� �
ejxntð3Þ

ð3Þ

K½ � þ jxn C½ �ð Þ ~Tn

� �
¼ ~Qn

� �
; n ¼ 0; 1; 2; 3; ::: ð4Þ

where Qf g denotes the excitation heat source, [K] and

[C] are the coefficient matrices of the FEM equations. To

guarantee precision and efficiency, two strategies are

applied. Firstly, the number of necessary harmonic fre-

quency components is reduced by using an interpolation

strategy [26]. Secondly, a fast forward scheme based on the

databases strategy is applied to realize the rapid calculation

of the temperature perturbation caused by a bottom-hole

defect [27].

A numerical model of the thermography problem is

shown in Fig. 3. The symbol X denotes the whole no-defect

object; Xc denotes the region of defect; and X0 denotes a

selected suspect region that contains the defect. To

approximate defect, X0 is chosen as a flat-bottom region

with a thickness equal to the defect. The fast forward

scheme based on the databases strategy can be described as

follows using this numerical model.

Upon subtracting the single-frequency governing equa-

tion for the unflawed model from the single-frequency

governing equation for the flawed model, one can obtain

the governing equations about the field perturbation Tf for

single-frequency IRT problems. After separately denoting

all the nodes as three parts, the FEM equations of the IRT

problem become Eq. (5)
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K̂31 K̂32 K̂33

2
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3

8><
>:

9>=
>; ¼
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Tf
3 þ T0

3

8><
>:
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>;

ð5Þ

where ½K� is the FEM discrete coefficient matrix of the

flawless model, ½ ~Kij� is the coefficient matrix corresponding

to the defect model, fT1g is the temperature at the nodes of

defect elements, fT3g is the inspection surface nodes and

fT2g is the remaining unknowns. By denoting the inverse

matrix of ½K� as [H], the following Eq. (6), correlating the

unflawed model to the defect perturbation field in Xc, and

the surface perturbation field response can be derived by

Eq. (7).

I � H11
~K11

� �
Tf
1

n o
¼ H11½ � ~K11

� �
T0
1

� �
ð6Þ

Tf
3

n o
¼ H31

~K11

� �
Tf
1 þ T0

1

n o
ð7Þ

Since the coefficient matrices ½H11�, ½H31� and temperature

vector fT0
1g, fT0

3g, are independent of the defect geometry,

once they have been calculated a priori and stored as

databases, there is no need to recalculate the whole model

for defects of different profiles. Thus, the fast scheme can

significantly promote calculation efficiency by greatly

reducing the dimension of governing equations [27].

3.3 Dataset establishment

Defect modelling

The thermal inspection dataset includes synthetic sim-

ulation data of a plate structure with multiple flat bottom

hole defects. This work aims to investigate the inspection

defect profile reconstruction capability. To minimise the

mutual interference of multiple defects in one specimen,

the defective specimen models are built individually in the

same plate model, and the parameters of the exciting

source are fixed. The model used is illustrated in Fig. 4,

where a triangle-shaped flat bottom hole at 3.5mm depth is

shown. The thermodynamic material parameters for the

Fig. 3 Definition of the defective region in the fast solver algorithm

Fig. 4 Defective specimen model with a triangle shape plat bottom

hole
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thermography of simulation models and the PT simulation

specifications are listed in Table 1.

For defect models, firstly, 9 square defects are designed

with three sizes (121mm2, 49mm2, 1mm2) in three depths

(4.5mm, 3.5mm, 2.5mm to the surface). This single shape

with multiple size design aims to study the feasibility of the

proposed approach. Secondly, three types of flat bottom

hole shapes are modelled using the above simulation. The

planar rectangular and triangular shapes consist of 20

defects (10 for each shape) with the same depth (3.5 mm

from the top surface). These models are designed for

evaluating the network learning compatibility that should

be able to distinguish target among various shapes, and

then to mask the sharp corners and edge accurately. The

specifications and shape profile of all models are listed in

Fig. 5, where the defect boundary of flat-bottom hole

defects in rectangular and triangular defects are shown

using a binary colormap as they have the same (3.5 mm

from the surface) depth. Differently, the images of square

defects are shown in three grayscale levels because the

square defects have different depths.

Dataset pre-processing

To increase the applicability, the PT simulation database

is pre-processed by data augmentation via considering the

systematic noise including camera capturing noise and

heating variation. For the heating variation, five different

heating energy magnitude variants to 1 � 106 W/m2 (96%,

98%, 100%, 102%, 104%) are simulated for each model.

Simultaneously, five different pulse duration variants to 0.2

s (0.18 s, 0.19 s, 0.2 s, 0.21 s, 0.22 s) are also simulated for

each model. As a summary, for each defect, 25 heating

variants are simulated. For simulating noise during the data

capture, each thermal image is added with white noise with

different signal-to-noise ratio (SNR) levels. More details

about the added noise can be found in our previous work

[28]. For Mask R-CNN training, for each defect, the profile

image shown in Table 2 is annotated as ground truth into

the format of JSON files for ResNet network code conve-

nience. Based on this pre-processing for data augmenta-

tion, a general database including 3625 PT thermal

inspection image sequences is established for further

processing.

4 Neural network

4.1 Network architecture

The Mask R-CNN is employed as a defect-recognition

framework in this study. As a state-of-the-art object

recognition algorithm, it has a strong capability of instance

segmentation, which provides the shape of the detected

object and can be used to investigate the defect profile. The

proposed framework is a two-stage structure, as shown in

Fig. 5. The first stage aims to propose the potential region

of interest from the raw image. In this stage, the ResNet

network is employed as the backbone network for feature

extraction and followed by a Region Proposal Network

which predicts the region proposal that includes the

objects. Then the ROIAlign layer is used to preserve the

spatial information, which is the key for the mask predic-

tion. It solves the misalignment between the ROI and the

extracted features by using the bilinear interpolation that

could remove the quantisation of the pooling operation. At

the second stage, there are 2 branches. In the classification

branch, several fully connected layers are operated to

achieve the classification and bounding box regression

from the proposed ROIs. The mask branch achieves the

pixel-wise segmentation mask prediction on each ROI

through convolution and deconvolution operations.

In this proposed framework, as shown in Fig. 5, ResNet

101 [29] is employed to produce the feature map, which is

followed by an RPN network to propose the ROI. Instead

of using the ROIAlign layer to produce the alignment

feature map, in this framework, the PointRend rending

neural network is applied to enhance the detailed edge

detection capability, undermining the over-smooth bound-

aries issue for sharp corners and irregular shapes. It refines

the coarse mask by selecting a set of points that are pre-

dicted by the multi-layer perception and using the adaptive

subdivision step which employs the bilinear interpolation

to compute the edge at the high level. This framework is

developed and implemented through the deep learning

framework of TensorFlow 2.0 based on Python coding.

The loss function output of Mask RCNN is written as:

L� ¼ argmin wC � LC þ wB � LB þ wM � LM ð8Þ

Table 1 The specification of the

specimen model and PT

simulation

Item Parameters of simulation models

Dimension Plate model: 80mm * 80mm * 10mm

Material: Stainless steel q: 7.93 kg/m3; c: 500 J/(kg�K); j: 16.3 W/(m�K);
Heat flux 0.2s pulse; Peak heat flux 1 � 106 W/m2;

Heating range Whole top surface, 80mm * 80mm

Model elements 160*160*20 units; 0.01s time step; Calculate 200 frames

Neural Computing and Applications (2022) 34:21701–21714 21705
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where the LC, LB and LM denote the loss function of

classification, bounding box and mask generation process,

respectively. And the wC, wB and wM denote the weight

coefficients of classification, bounding box and mask

generation process, respectively.

For the ResNet101, the technique of transfer learning is

used through COCO pre-trained weights that were trained

using the COCO dataset to improve the training efficiency

of the model. The algorithm of Adam was used as an

optimiser. The weight decay was set as 0.0001 while the

learning rate was 0.001 and learning momentum was set as

0.9. The number of training steps and validation per epoch

Fig. 5 The defect models

generated for the network

dataset
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both depend on the number of images in the corresponding

dataset; for instance, 40 training steps per epoch is set for

the datasets with 400 images (320 images in the training

sets with the batch size of 8). The main configuration of the

convolutional neural network is shown in Table 2. This

research aims to characterise the defect boundary profile of

a single defect in one model separately. Hence, the per-

formance of profile recall is the key focus instead of the

classification of defect type. To evaluate the performance,

the mean Intersection over Union (mIoU) is calculated to

measure the overlap between the predicted profile and

ground truth, written as Eq. (9).

mIoU ¼ A\=A[ ð9Þ

where A\, A[ denote the area of overlap and union between

the predicted segmentation and the ground truth,

respectively.

4.2 Datasets for defect reconstruction

Single defect shape dataset

In the beginning, to validate the detection feasibility of

the proposed method, the single defect shape detection

using square defect models is conducted to test the archi-

tecture. This process consists of 9 sub-datasets with dif-

ferent sizes and depths for training, validation, and testing.

It can not only demonstrate the detection feasibility but

also investigate the detectability (detectable depth to size

ratio) of this single shape learning process. For each

dataset, a total of 225 inspected thermal images including

25 systematic deviations (5 heating energies x 5 pulse

durations), 5 SNR levels of noise (42–58 dB) are prepared.

Among these data, 180 images are randomly selected as the

training dataset, 22 as the validation dataset and 23 as the

test dataset (8:1:1).

Mixed defect shape datasets

In the second part, we mixed different shape defects in

one dataset to test the method’s capability on defect profile

reconstruction. In this dataset, the selected thermal images

of 10 triangle and 10 rectangle defects are mixed. Then by

adding 20 SNR levels (from 41 dB to 60dB) of noise to

each defect, 400 images (20 models x 20 noise deviation on

each) are used in total. The ratio of the training dataset,

validation dataset, and testing datasets is 8:1:1, which

means that the training, validation, and testing datasets

involve 320, 40, and 40 thermal images, respectively.

5 Experiments, results

5.1 Model performance for different sizes
and depths (square-shaped)

This section presented the results of the detection of

square-shaped defects with different sizes and depths using

each single model dataset. Figure 6(a) shows the 110th

thermal frame after the pulse with 48dB random noise for

all models. Figure 6(b) presents the fusion of the detection

results of the proposed method and ground truth results.

The green area and the green dotted boundary indicates the

ground truth mask and ground truth bounding box,

respectively. The brown area and the brown dotted

boundary indicates the detected mask and detected

bounding box, respectively. In this experiment, each model

was trained for 50 epochs separately.

Inspection of Fig. 7 left part shows that, for M01, as the

biggest and shallowest defect (Width/Depth Ratio (WDR)

at 4.4), the defect position is easy to observe and the

thermal pattern can be recognised as a square shape. The

smallest and deepest defect M09 (WDR at 0.22) is invisi-

ble. The detection results in Fig. 7 right part show the

successful characterisation of the defect profile. All

detected defects are correctly masked in the correct posi-

tion and align to the ground truth boundary. The IoU

between the detected defects and the ground truth is shown

in Fig. 8. The big and middle-size defects can be detected

with around 90% IoU for all three depths, which covers the

defect WDR from 4.4 to 1.5. For the smallest defects (M03,

M06, M09), the IoUs are around 70%. This result suggests

that a big/shallow defect (M01) has better reconstruction

Table 2 Configurations specification of the convolutional neural

network

Item Network settings

Backbone ResNet101

Batch size 8

GPU count 1

Images per GPU 8

Image channel count 3

Image MAX DIM 320

Image MIN DIM 320

Image resize mode square

Image shape [320 320 3]

Learning momentum 0.9

NUM classes 2

ROI positive ratio 0.33

RPN anchor ratios [0.5, 1, 2]

RPN anchor scales (32, 64, 128, 256, 512)

RPN anchor stride 1

RPN NMS threshold 0.7

Weight decay 0.0001

Neural Computing and Applications (2022) 34:21701–21714 21707
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accuracy than a small/deep defect (M09). This phe-

nomenon fits the thermography defect inspection pre-

knowledge. Square defect datasets test results demon-

strated the feasibility of the proposed network and at least

exhibited a stable detectability for the defects with a WDR

of 1.5 (all three middle-size defects).

It should be noted that the WDR of M03, M06, M09 are

lower than 1 and are very difficult to be detected accu-

rately. These 3 defects are invisible in the thermal images

in Fig. 7 left part. To verify if the proposed method can

achieve stable detection on these defects, the total loss and

the mask loss of all 9 models are presented in Fig. 9. Both

loss functions suggest that the big and middle-size defects

with 3 different depths quickly reach a convergency status

within the first 20 epochs. While for M03, M06, M09, the

loss functions are not convergent before the first 50 epochs,

which indicates that the network cannot overcome the

noise and achieve effective learning of the defect thermal

pattern. The detection performance would not be consis-

tently correct for different end epochs, and no reasonable

sign can be used to determine the optimal end epoch for

consistent detection. It is because that defect size is too

small to be effective learned through all the NN layers.

Fig. 6 Mask R-CNN-based

network structure for defect

profile reconstruction

Fig. 7 Single-shape defects

dataset inspection; Left:

Thermal images of 9 defects;

Right: Reconstructed defect

profiles

Fig. 8 Comparison of average intersection-over-union (IOU) of

testing sets

21708 Neural Computing and Applications (2022) 34:21701–21714

123



And the noise has a big influence on defects contrast. In

multiple-layered deep learning networks, the initial input

raw image has been convoluted multiple times, where the

defect contrast has very limited contribution and cannot

compete with noise, especially in the receptive field in the

feature map of the last several layers. This is the reason

why the network learning loss cannot converge and pro-

duce stable results. In most deep learning networks, small

object detection is generally a challenging topic. Therefore,

M03, M06, M09 should not be recognised as stable recon-

struction. To improve the small/deep defect reconstruction,

an improved network requires a further study.

5.2 Mixed defect shape detection

To further explore the network applicability, the mixed-

shape dataset is trained to investigate the performance of

detecting different shape defects. Ten rectangular and tri-

angular defects with the same depth are studied and the

detection results are shown in Fig. 10. The thermal images

in the first and fourth columns present the defect contrast

but with rounded edges and corners. The proposed method

produces highly accurate masks on the defect profile on

both rectangle and triangle defects. Most defects can be

detected with IoU over 90%. It demonstrates that the net-

work can reconstruct the defect profile from the thermal-

profile relationship (e.g. the thermal transfer response of

defect structure). And it has a stable identification and

segmentation performance for a multiple mixed profile

dataset, especially for the straight edges and acute corners

in defect profiles.

In a further analysis, among the rectangle defects, the

network has a slight performance drop at the defects with a

bigger aspect ratio (IoU of R01: 88%, R10: 90%). And the

output mask cannot perfectly fit the corners of the rectan-

gle. On the contrary, for the defects with a smaller aspect

ratio (R05), the reconstructed mask shows an improved

coverage on the corner area. A similar phenomenon can be

observed on the triangle defects. The small defect (T06)

with acute corners are not fully mask covered on corners,

which results in an obvious IoU loss. Even in one triangle

defect like T05, the obtuse angle corner is better recon-

structed than the other two acute angle corners. The reason

is that the big width/height ratio corner and acute triangle

corner that has weaker thermal contrast in these areas is

aliasing with surrounding (sound area) thermal pattern in

the thermal transfer. These cramped areas can easily lose

their shape information affected by noise. In addition, most

edges in the reconstructed mask generally keep straight

aligned with the ground truth boundary but miss several

pixels. It demonstrates that after the RPN network finds the

ROI, the mask rending network has learned the thermal -

profile form (e.g. the thermal transfer response of defect

structure) but is more or less affected by noise. On the

other hand, it presents that the proposed method is prin-

cipally different from the traditional edge detection image

processing methods, which normally output distorted or

curved boundaries.

5.3 Comparison with traditional thermography
methods

To qualitatively compare the capability of the proposed

network, a comparison between the proposed Mask-RCNN

network and the traditional thermography image post-pro-

cessing algorithms is presented in this section. Thermo-

graphic signal reconstruction (TSR) and Principal

Component Thermography (PCT) are two well-known

algorithms for defect contrast improvement. The TSR [24]

method is remarkable for improving the temporal resolu-

tion and reducing time-domain noise of the thermogram

sequence and consequently promoting the time-domain

sensitive features. PCT is derived from the Empirical

Orthogonal Functions (EOFs) in PCA to extract the spatial

features and reduce undesirable noise by projecting origi-

nal data onto an orthogonal components system. Figure 11

shows a comparison between the network inspected defect

profile and TSR 1st derivative peak image, TSR 2nd

derivative peak image and PCT 1st order image.

Fig. 9 Network loss in the training process; Left: Overall train losses of M01-09; Right: Mask losses of M01-09
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The TSR and PCT images produced improved thermal

contrast than the raw images, but it is also obvious that the

shape distortion (rounded corner & edge loss) is inevitable.

These methods are the types of image-based edge

enhancement or kurtosis detection algorithms, where no

ground truth is used for training to build the thermal-profile

relationship learning (e.g. the rounded thermal transfer

contour of true defect structure). Based on these enhanced

images, it would be difficult to decide the accurate defect

boundaries of the acute corners and straight edges using

threshold type methods. On the contrary, the proposed

network shows superior performance than the traditional

algorithms by successfully reconstructing edges and

corners.

Fig. 10 Mixed defects inspected

profiles
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6 Discussion

Collected data of active thermography contains a time

series of images showing the defect contrast. For a specific

defective structure and inspection condition, the defect

would appear and disappear in a specific period of thermal

sequence, which is one important pre-knowledge in ther-

mography. Traditionally, the inspector has to manually

select the optimal frame for defect characterization. The

proposed network uses one of the thermal frames for net-

work training. Even though, one of the key advantages of a

deep learning network for active thermography NDT is that

it can reduce the reliance on pre-knowledge, and improve

its resistance to noise uncertainty. However, the training

frame selection would still affect the network capability to

Fig. 11 Comparison of the

network results with the TSR

and PCT methods
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some extent. Therefore, the thermal frame selection should

be taken into consideration.

Different thermal frames in the inspection sequence are

compared to investigate their influence on network per-

formance. The frames starting from 50th to 190th after the

pulse are selected for training and corresponding inspection

results and training loss are analysed. Figure 12a and b

show the total loss and mask loss of different training

frames, where 100 epochs are used. The losses using the

frame after 110th decrease quickly at the beginning stage,

and reach the convergence status after 60 epochs. How-

ever, the models using the frame at 50th and 70th cannot

reduce the learning loss and have not reached convergence

within 100 epochs. The model using the 90th frame is a

mediocre option. This demonstrates the frame before the

90th frame provides the network with poor defect infor-

mation, and the network and has a ‘‘blind’’ learning area in

the initial state after the pulse.

Fig. 12 Network performance comparison of thermal frames; a Overall train losses; b Mask losses; c IoU performance

Fig. 13 Inspected results using

different thermal frames
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Furtherly, the IoU inspection performance of these

models after 50 epochs are compared in Figure 12(c). It

shows that after convergence, the inspection IoU of net-

works after the 90th frame is around 90 %. On the contrary,

the models using the 50th or 70th frame cannot characterise

the defect profile even though the performance improves

with more epochs. To intuitively demonstrate this, Fig-

ure 13 shows the inspected defect profile using different

frames (50th, 70th, 110th, 190th). Two triangle and two

rectangle defects are listed. In the 50th frame row, all four

defects are poorly detected. The triangle shape is wrongly

inspected as a rectangle shape. In the 70th frame row,

better shape profiles are acquired but still cannot cover the

corner. For the 110th and 190th frames, both networks can

provide good and similar defect profiles. A very small IoU

drop can be observed on the 190th frame compared to the

110th frame. It proves that the proposed method has a

limited performance when the initial thermal frames are

chosen for analysis. On the other hand, it also demonstrates

that the proposed method has the resistance capability to

the frame selection uncertainty in the proper frame period

(110th–190th), which validates the compatibility advan-

tages of the proposed automatic decision-making network

over the manual inspection.

It should also be noted that the deep-learning-based

technique can do fast, accurate characterisation only after a

time-costing and heavy computation training process. The

well-trained networks can also directly contribute to the

on-site inspection with similar inspection scenarios. How-

ever, it should be noted that thermography is an inspection

rather than a structural health monitoring technology, so

real-time performance is not critical. The post-process of

thermography is usually offline-based.

7 Conclusion

This paper proposed an automatic defect profile charac-

terisation technique for pulsed thermography inspection

using an end-to-end deep learning network. The proposed

method shows its higher accurate and robust performance

in sharp corners and edges of irregular defect profiles,

which are commonly difficult for the traditional processing

methods. The contributions of this study are the following:

1) A fast thermography FEM modelling technique was

proposed and employed to efficiently generate the

inspection thermal image database of multiple single

defective specimens. It brings a powerful tool against

the limitation that insufficient defect samples can be

easily obtained in experiments.

2) The method feasibility is validated by training with

single square-shaped defect datasets. The

detectability of the proposed method is investigated,

which the minimal detectable width/depth ratio for

single square shape defect is 1.5. Then, the network

demonstrates remarkable profile characterisation per-

formance with multiple mixed-shape defects data-

base with over 90% IoU accuracy to ground truths.

3) By comparing with traditional thermography post-

processing methods, the proposed method shows its

superiority in detailed characterisation on sharp

corners and edges with strong resistance to the shape

distortion in thermography NDT. Finally, by analys-

ing the network results using different transient

thermal frames, this technique presents robust per-

formance to frame selection variation, demonstrating

its advantages of less pre-knowledge requirement and

better resistance to the inspection uncertainties.

This study presents the superiority of the AI deep learning

algorithm for high accurate defect profile characterisation

in thermography NDT, instead of only detection. The

technique will contribute to the research community for

degradation and health assessment. It should be noted that

the current technique fits the characterisation of flat-bottom

hole defects. But its capability for other defect types like

cracks or corrosion remains to be investigated. In addition,

the study focusing on combining reconstruction for defect

profile and depth is worth investigating and an improved

network will be required to deal with defect depth variation

in future. The efficiency of the defect characterisation is

also an important topic, and then the optimisation works of

training time and computational burden are to be developed

for realistic deployment of the proposed technique.
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