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Abstract
Multiclass classification is a fundamental and challenging task in machine learning. The existing techniques of multiclass

classification can be categorized as (1) decomposition into binary (2) extension from binary and (3) hierarchical classi-

fication. Decomposing multiclass classification into a set of binary classifications that can be efficiently solved by using

binary classifiers, called class binarization, which is a popular technique for multiclass classification. Neuroevolution, a

general and powerful technique for evolving the structure and weights of neural networks, has been successfully applied to

binary classification. In this paper, we apply class binarization techniques to a neuroevolution algorithm, NeuroEvolution

of Augmenting Topologies (NEAT), that are used to generate neural networks for multiclass classification. We propose a

new method that applies Error-Correcting Output Codes (ECOC) to design the class binarization strategies on the neu-

roevolution for multiclass classification. The ECOC strategies are compared with the class binarization strategies of One-

vs-One and One-vs-All on three well-known datasets of Digit, Satellite, and Ecoli. We analyse their performance from four

aspects of multiclass classification degradation, accuracy, evolutionary efficiency, and robustness. The results show that the

NEAT with ECOC performs high accuracy with low variance. Specifically, it shows significant benefits in a flexible

number of binary classifiers and strong robustness.

Keywords Multiclass classification � Binary classification � Error correcting output codes � NEAT � One-vs-one �
One-vs-all

1 Introduction

The classification tasks can be divided into binary (two-

class) classification and multiclass classification. Multi-

class classification is a crucial branch of machine learning,

and has been applied in a wide variety of applications, such

as medicine, speech recognition, and computer vision. The

existing multiclass classification techniques can be basi-

cally divided into three categories, decomposition into

binary, extension from binary, and hierarchical classifica-

tion [1]. Although some classifiers such as Neural Net-

works (NNs) can classify multiple classes directly as a

monolithic multiclass classifier, many state-of-the-art

classifiers are inherently proposed for binary classification.

Currently, a popular technique of multiclass classification

is to decompose multiclass classification into binary clas-

sification [2], which is an efficient method to decode the

classification, called class binarization. The class bina-

rization approaches for multiclass classification have many

advantages. First, developing binary classifiers is generally

much easier than developing multiclass classifiers [3].

Second, many classifiers such as Support Vector Machine
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(SVM) and C4.5 are inherently proposed for binary clas-

sification with outstanding performance [4, 5].

The binary classifiers (e.g., NNs and SVM) have been

successfully applied to the decomposition of multiclass

classification. Neural networks are generally designed by

researchers manually. Using algorithms to automatically

generate efficient neural networks is another popular

approach for designing neural networks. Neuroevolution is

a popular and powerful technique for evolving the structure

and weights of neural networks automatically. Although

neuroevolution approaches have been successfully applied

to evolve efficient neural networks for binary classification,

it generally struggles to generate neural networks for high

accuracy in complex tasks such as multiclass classification

[6]. In this work, we therefore investigate class binarization

techniques in neuroevolution for multiclass classification.

NeuroEvolution of Augmenting Topologies (NEAT) is a

popular neuroevolution algorithm that applies evolutionary

algorithms (EAs) to generate desired neural networks by

evolving both weights and structures [7]. NEAT-based

approaches have been successfully applied to a broad range

of machine learning tasks such as binary classification

[8, 9], regression [10], and robotics [11]. However, it is

notorious that neural networks evolved by NEAT-based

approaches generally suffer severe multiclass classification

degradation [6, 12]. The performance of neural networks

evolved by NEAT degrades rapidly as the number of

classes increases [6, 9]. To solve this issue, we apply the

class binarization technique of Error-Correcting Output

Codes (ECOC) to decompose multiclass classification into

multiple binary classifications that NEAT-based approa-

ches have been successfully applied to.

In general, there are three well-known types of class

binarization approaches: One-vs-One (OvO), One-vs-All

(OvA), and ECOC [2] (see Sect. 3.2). Theoretically, these

three approaches work perfectly for multiclass classifica-

tion when binary classifier predictions are 100% correct.

However, realistic binary classifiers inevitably make wrong

predictions, and these class binarization approaches there-

fore perform differently for multiclass classification.

Although the class binarization techniques of OvO and

OvA have been applied to NEAT-based multiclass classi-

fication [6], it is a novel method that applies ECOC to

NEAT for multiclass classification, noted as ECOC-NEAT.

In this work, we mainly concentrate on the two research

questions: (1) how ECOC-NEAT performs for multiclass

classification? (2) how the size and quality of ECOC

impact the performance of ECOC-NEAT for multiclass

classification? To answer these two research questions, this

study investigates (1) the performance of OvO-NEAT,

OvA-NEAT, ECOC-NEAT, and the standard (original)

NEAT for multiclass classification, (2) the performance of

ECOC-NEAT with different number of classifiers and

different ECOCs. We analyse their performance from four

aspects of multiclass degradation, accuracy, training effi-

ciency, and robustness.

To the convincing conclusions, we choose three popular

datasets, (Digit, Satellite, and Ecoli) that are usually used

to evaluate the methods in multiclass classification. The

main findings are summarized into two points.

(1) ECOC-NEAT offers various benefits compared to

the standard NEAT and the NEAT with other class

binarization techniques for multiclass classification.

• ECOC-NEAT performs comparable high accu-

racy as OvO-NEAT.

• ECOC-NEAT outperforms OvO-NEAT and

OvA-NEAT in terms of robustness.

• ECOC-NEAT performs significant benefits in a

flexible number of base classifiers.

(2) The size and quality of ECOC greatly influence the

performance of ECOC-NEAT.

• Larger size ECOCs usually contribute to better

performance for a given multiclass classification.

• High quality (optimized) ECOCs perform signif-

icantly better than normal ECOCs.

The rest of this paper is organized as follows. In Sect. 2, we

provide an overview of the state-of-the-art studies of class

binarization for multiclass classification. We present the

methodology of NEAT and class binarization in Sect. 3.

Datasets and experimental setup are addressed in Sect. 4.

We present the results in Sect. 5 from four aspects: mul-

ticlass classification degradation, breadth evaluation, evo-

lution efficiency, and robustness. Finally, we discuss this

work in-depth and outlook the future work in Sect. 6,

followed by the conclusions in Sect. 7.

2 Related work

OvO, OvA, and ECOC are three well-known class bina-

rization techniques for multiclass classification. Although

these three class binarization techniques have been suc-

cessful applied to many applications, there is a lack of

study that applies them (particularly ECOC) to neuroevo-

lution for multiclass classification.

In [13], OvA is applied to the diagnosis of concurrent

defects with binary classifiers of SVM and C4.5 decision

tree. Adnan and Islam [14] applied OvA to the context of

Random Forest. Allwein et al. proposed a general method

for combining binary classifiers, in which the ECOC

method is applied to a unifying approach with code

matrices [15]. These studies applied the three class
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binarization techniques into the traditional classifiers for

multiclass classifications.

In the early studies of binary classification in neural

networks and neuroevolution, Liu and Yao [16] proposed a

new cooperative ensemble learning system for designing

neural network ensembles, in which a problem is decom-

posed into smaller and specialized ones, and then each

subproblem is solved by an individual neural network.

Abbass et al. [17] and Garcia-Pedrajas et al. [18] presented

evolution-based methods to design neural network

ensembles. Lin and Damminda proposed a new algorithm

of learning-NEAT that combines class binarization tech-

niques and backpropagation for multiclass classification

[8].

In the recent study [6], the class binarization techniques

of OvO and OvA are applied to decompose multiclass

multiclass into a set of binary classifications for solving the

multiclass classification degradation of NEAT, in which

binary classifiers are the individual NEAT-evolved neural

networks. Two ensemble approaches of OvO-NEAT and

OvA-NEAT are developed to achieve both higher accuracy

and higher efficiency than the standard NEAT. Although

the class binarization techniques of OvO and OvA have

been applied to NEAT for multiclass classification, there is

a lack of study that investigates the well-know technique of

ECOC in NEAT for multiclass classification.

3 Methodology

In this section, we describe the neuroevolution algorithm of

NEAT, the class binarization techniques of OvO, OvA, and

ECOC.

3.1 NeuroEvolution of augmenting topologies

NEAT is a widely used neuroevolution algorithm that

generates neural networks by evolving both weights and

structure [7, 19]. NEAT evolves neural networks with

flexible topology, starting from the elementary topology

where all input nodes are connected to all output nodes,

and adding nodes and connections via the operations of

recombination and mutations, which leads to an augmented

topology. In this work, NEAT is also allowed to delete

nodes as well as connections. NEAT searches optimal

neural networks through weight space and topological

space simultaneously. There is no need for an initial or pre-

defined fixed-topology that relies on the experience of

researchers. Recombination and mutation induce an opti-

mal topology of NN to an effective network.

An example of evolving neural networks by NEAT for

multiclass classification is illustrated in Fig. 1. NEAT aims

to generate an optimal neural network (i.e., highest fitness)

as the winning multiclass classifier. In particular, NEAT

generates a binary classifier when the number of classes is

two, where the NEAT is referred to as binary-NEAT (B-

NEAT) as shown in the left part of Fig. 2. The number of

nodes of the input layer is the dimensions of feature (D),

and the number of output nodes is the number of classes

(k). We apply a softmax operation in the final layer to

output probabilities of each class for multiclass classifica-

tion. The class with the highest probability is predicted as

the result.

NEAT is essentially a variant of evolutionary algo-

rithms. Therefore, the fitness function is crucial to guide

the convergence of evolving desired neural networks. In

this work, we evaluate the performance of evolved neural

networks with the prediction accuracy, that is the per-

centage of correct predictions. We note the number of

correct predictions as N c, the number of total predictions

as N t. The fitness (f) can be calculated as f ¼ N c=N t.

Although NEAT can directly evolve neural networks for

multiclass classification, it suffers the notorious multiclass

classification degradation [8]. We apply NEAT as the

baseline method for multiclass classification in this study,

i.e., standard NEAT.

3.2 Class binarization

3.2.1 One-vs-One

The class binarization of OvO (also called All-vs-All)

technique converts k-class classification into
k
2

� �
binary

classifications that are constructed by using the class i ði ¼

Fig. 1 Illustration of evolving neural networks by NEAT for

multiclass classification
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1; :::; k � 1Þ as the positive examples and other classes

j[ i ðj ¼ 2; :::; kÞ as the negative examples [1]. That is,

each class is compared with each other class separately.

The existing studies [15, 20] show that OvO generally

performs better than OvA approaches.

NEAT evolves neural networks as binary classifiers for

each binary classification. An example of evolving binary

classifiers (base classifiers) by NEAT is shown in the left

part of Fig. 2. The voting strategy is usually used to fuse

these binary classifications for multiclass classification.

Each binary classifier votes to one class, and the class with

the highest votes is predicted as the result. The OvO

technique and base classifiers evolved by NEAT are

combined for multiclass classification, i.e., OvO-NEAT.

Although NEAT are effective to generate binary classifiers,

the OvO-NEAT technique requires building a large number

of
k
2

� �
base classifiers.

3.2.2 One-vs-All

OvA (also called One-vs-Rest or One-against-All) tech-

nique converts a k-class classification into k binary classi-

fications. These binary classifications are constructed by

using class i as the positive examples and the rest of classes

j ðj ¼ 1; :::; k; j 6¼ iÞ as the negative examples. Each binary

classifier is used to distinguish class i from all the other

k � 1 classes. When testing an unknown example, the class

with maximum prediction is considered the winner [1].

Compared to OvO, OvA provides considerable perfor-

mance but requires fewer (k) classifiers.

3.2.3 Error-correcting output codes

ECOC is a class binarization method for multiclass clas-

sification, inspired by error-correcting code transmission

techniques from communications theory [21]. It encodesN

binary classifiers to predict k classes. Each class is given an

N -length codeword according to an ECOC matrix M.

Each codeword in M is mapped to a certain class. An

example of ECOC for k ¼ 4 classes and N ¼ 7-bit code-

words are shown in Table 1. Each column is used to train a

binary classifier. When testing an unseen class, the code-

word predicted by N classifiers is matched to the k code-

words in M. In this work, we adopt hamming distance to

match predicted codeword and the ECOC codewords. The

class with the minimum hamming distance is considered as

the predicted class.

Unlike OvO and OvA methods that convert a multiclass

classification into a fixed number of binary classifications,

ECOC allows each class to be encoded with a flexible

number of binary classifications, and allows extra models

to act as overdetermined predictions that can result in

better predictive performance [22]. The row of ECOC

needs to be a unique codeword, and columns are neither

identical nor complementary. In ECOC, the size of code-

words (rows) is the number of classes, and thus the size of

ECOC refers to the number of base classifiers in this work.

The larger size ECOC provides more bits to correct errors,

Fig. 2 ECOC-NEAT for multiclass classification. The left part shows an evolved base (binary) classifier by NEAT. The right part shows the

ECOC-NEAT with base classifiers

Table 1 An example of ECOC for k ¼ 4 classes with a size of N ¼ 7

bit codewords

Classes Classifers

f1 f2 f3 f4 f5 f6 f7

c1 1 1 1 1 1 1 1

c2 0 0 0 0 1 1 1

c3 0 0 1 1 0 0 0

c4 0 1 0 1 0 1 0
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but too many classifiers cause redundancy which costs a lot

of computation in training and classification.

For k classes, the minimum size of ECOC is dlog2ke. For
example, 10 classes require a minimum size of 4 bits

ECOC that are sufficient for representing each class with a

unique codeword. We call the ECOC with a minimum size

of N ¼ dlog2ke as minimal ECOC. The maximum size of

ECOC is 2k�1 � 1 for k classes. The ECOC with a maxi-

mum size is generally called as exhaustive ECOC [21]. The

upper and lower bounds of ECOC size can be expressed as:

dlog2ke�N � 2k�1 � 1; N 2 Z ð1Þ

where Z is the positive integer set. Besides OvO, OvA,

minimal ECOC, and exhaustive ECOC, the mid-length

ECOC is another representative class binarization tech-

nique with intermediate-length code whose size is N ¼
d10 log2ðkÞe [15].

The number of base classifiers varies as the number of

classes increases using these class binarization is shown in

Fig. 3. OvO requires a polynomial number of base classi-

fiers (Oðk2Þ). However, OvA needs a linear number of

classifiers (O(k)). For minimal ECOC and mid-length

ECOC, OðlogðkÞÞ binary classifiers are required. The

number of base classifiers used in exhaustive ECOC is

exponential (Oð2kÞ).

The exhaustive ECOC is not generally applied to the

multiclass classifications with a large number of classes

because it requires too many binary classifiers. The mid-

length ECOC can be constructed by choosing codewords

from exhaustive ECOC to satisfy row and column sepa-

ration conditions. N columns are randomly chosen from an

exhaustive code to construct the random code matrix when

the number of binary classifiers is N . For example, if

k ¼ 4;N ¼ 3, we can choose f1, f2, and f3 from the

exhaustive ECOC (Table 1) to construct a mid-length

ECOC. By contrast, we cannot choose f5, f6, and f7 because

in that case the codeword of c1 will be exactly the same as

the codeword of c2, in which the class c1 and c2 can not be

classified.

In general, optimized ECOC performs better than nor-

mal ECOC [23] at the same size. In this work, we inves-

tigate whether optimized minimal-ECOC outperforms

minimal ECOC (see Sect. 5.2). NEAT evolves neural

networks to constitute a set of binary classifiers. Hamming

distance is used to determine the final prediction. The

pseudo-code of ECOC-NEAT is shown in Algorithm 1.

4 Experiments

In this section, we introduce the datasets, hyperparameter

configurations, implementation, and the measurements.

4.1 Datasets

In this work, we choose the three well-known datasets of

Digit from the ski-learn package [24], Satellite and Ecoli

from the machine learning repository of the University of

California, Irvine (UCI) [25]. These three datasets with

high quality data are prevalent and widely used in multi-

class classification tasks. The properties of these three

datasets are summarized in Table 2.

4.2 Experimental setup

This work compares the newly proposed ECOC-NEAT

with the standard NEAT, OvO-NEAT, OvA-NEAT, and

ECOC-NEAT. A hyper-parameter configuration of NEAT

Fig. 3 Number of classifiers over the number of classes for class

binarization techniques

Neural Computing and Applications (2022) 34:19845–19862 19849

123



is summarized in Table 3 which are the same for evolving

binary classifiers on the three datasets. The dimensions of

the input layer for evolved binary classifiers equal the

dimensions of feature for a dataset (the last column in

Table 2). The dimension of outputs in NEAT is set to 2 for

evolving binary classifiers. In the standard NEAT, the

dimension of outputs equals the number of classes k for

multiclass classification.

We set the number of generations as G ¼ 3000 for each

evolution process of the standard NEAT. For a fair com-

parison, we apply the same total number of generations

(G ¼ 3000) to evolve binary classifiers for these class

binarization techniques. Specifically, each base classifier is

generated by an evolution of (G=N ) generations in NEAT

if there are N classifiers for a class binarization technique.

We implement the standard and binary NEAT based on

an open-source NEAT-Python1. The experiments are run

on the computer with a dual 8-core 2.4 GHz CPU (Intel

Haswell E5-2630-v3) and 64 GB memory.

5 Results

We show the results from the following four aspects:

multiclass classification degradation, breadth evaluation,

evolution efficiency, and robustness.

5.1 Multiclass classification degradation

The accuracy of multiclass classification generally

decreases as the number of classes increases due to the task

that becomes more difficult. We test the multiclass classi-

fication degradation of NEAT (including the standard

NEAT and NEAT with class binarization) on the Digit

dataset, in which the number of classes varies from two to

ten. For example, the two-class and three-class classifica-

tion predicts the digit ‘‘0, 1’’ and ‘‘0, 1, 2’’, respectively.

5.1.1 Multiclass classification degradation of the standard
NEAT

The standard NEAT is used to evolve neural networks for

the classification from two classes to ten classes. The

experiments are repeated ten times on the Digit dataset.

The convergence processes of the standard NEAT are

Table 2 The properties of three

popular datasets of Digit,
Satellite and Ecoli

Dataset Training samples Test samples classes (k) Dimensions of feature

Digit 1617 180 10 64

Satellite 4435 2000 6 36

Ecoli 336 10-fold 8 7

Table 3 The parameter configurations of NEAT

Parameters Value Parameters Value

pop_size 200 weight_mutate_rate 0.8

elitism 2 activation_mutate_rate 0.3

initial_connection 0.1 conn_delete_prob 0.1

conn_add_prob 0.8 node_delete_prob 0.1

node_add_prob 0.7 bias_mutate_rate 0.7

survival_threshold 0.2 max_fitness_threshold 1.0

max_stagnation 15 compatibility_threshold 2.5

elite_species 3 compatibility_weight_coefficient 0.6

feed_forward True compatibility_disjoint_coefficient 1.0

Fig. 4 The convergence processes of NEAT for the multiclass

classification from two to ten classes. The shadows show 95%

confidence intervals1 https://github.com/CodeReclaimers/neat-python.
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shown in Fig. 4 where we presents the training accuracy

over generations during the evolution of neural networks

with 2–10 classes.

The results clearly show that the accuracy decreases

dramatically as the number of classes increases. The clas-

sification of two and three classes quickly converges to the

high accuracy of more than 95% with narrow confidence

intervals which means their evolution processes are steady.

However, the accuracy converges to the catastrophic value

for the classifications with many classes. In particular, the

10-classes classification (yellow line) converges to an

accuracy of less than 50% slowly. In summary, the results

show that NEAT performs well for the classification with a

few classes (particularly binary classification), but its per-

formance significantly degrades over the number of classes

increases.

5.1.2 Multiclass classification degradation of NEAT
with class binarization

We investigate the degradation of the standard NEAT,

OvO-NEAT, OvA-NEAT, and three different sizes of

ECOC-NEAT (including minimal ECOC-NEAT, mid-

length NEAT, exhaustive ECOC-NEAT) for multiclass

classification. Figure 5 presents the performance of the

standard NEAT, OvO-NEAT, OvO-NEAT, and three

ECOC-NEAT for multiclass classifications with a varying

number of classes from three to ten.

The results show that not only the resulting accuracy of

the standard NEAT decreases dramatically but also that of

NEAT with class binarization techniques decreases as the

number of classifications increases. Importantly, the

methods of NEAT with class binarization techniques per-

form slighter decreases than the standard NEAT. In par-

ticular, exhaustive ECOC-NEAT, OVO-NEAT, and mid-

length ECOC-NEAT perform remarkable robustness over

the number of classes increases. Moreover, they exhibit

higher accuracy and less variance than the standard NEAT.

The mid-length ECOC-NEAT with a moderate number of

base classifiers provides competitive performance com-

pared to OvO-NEAT and the exhaustive ECOC-NEAT that

requires a large number of base classifiers. The exhaustive

ECOC-NEAT outperforms the mid-length ECOC-NEAT

that outperforms minimal ECOC-NEAT. We summarize

that ECOC-NEAT methods with large size ECOC (i.e., a

large number of base classifiers) generally tends to perform

better than small size ECOC. Intriguingly, minimal ECOC-

NEAT with a few bases learners still significantly performs

better than the standard NEAT for multiclass classification.

5.2 Comprehensive comparison

We investigate the standard NEAT, OvO-NEAT and OvA-

NEAT and the proposed ECOC-NEAT methods with dif-

ferent codes including the minimal, mid-length and

exhaustive code on the three datasets. Specially, we apply

the mid-lengths ECOC-NEAT with different sizes to

investigate the relationship between the size of ECOC-

NEAT and their resulting accuracy. The performance of

these methods is shown in Table 4 where we presents (1)

testing accuracy (accuracy on test set), (2) variance of

testing accuracy over ten repetitions, (3) training accuracy

on the training set, (4) average training accuracy of each

base classifier, and (5) average training time per

generation.

The results show that NEAT with class binarization

techniques significantly outperform the standard NEAT in

terms of accuracy. ECOC-NEAT even the minimal ECOC-

NEAT performs higher accuracy than the standard NEAT

on the three datasets. The exhaustive ECOC-NEAT with

the largest number of base classifiers performs the smallest

variances that represent the strong robustness. Conversely,

the minimal ECOC-NEAT with a few binary classifiers

performs large variances that mean the fluctuating

performance.

The average training accuracy of each base classifier

shows the performance of each evolved binary classifier on

the training dataset. The binary classifiers in OvO-NEAT

perform the best average training accuracy because it

decomposes multiclass classifications into simple binary

classification tasks. The evolved binary classifiers in

ECOC-NEAT methods perform lower average accuracy

than OvO-NEAT and OvA-NEAT because the binary

classifications in ECOC-NEAT are generally challenging

and each classifier in ECOC-NEAT is assigned a few

ðG=N Þ generations to evolve. However, the ECOC-NEAT

methods still perform high accuracy for multiclass classi-

fication due to the high quality of ensemble in ECOC.

Fig. 5 Testing accuracy over number of classes for the multiclass

classification methods
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Table 4 Comparison of different methods on the three datasets of Digit (10 classes), Satellite (6 classes), and Ecoli. (8 classes)

Dataset Method Number of

classifiers

Testing

accuracy

Variance Training

accuracy
Ab Average training time/

Generation(s)

Digit Existing Standard NEAT 1 0.449 9.56�10�4 0.484 0.484 13.74

OvO-NEAT 45 0.866 4:94� 10�4 0.953 0.989 0.99

OvA-NEAT 10 0.740 10:46� 10�4 0.820 0.976 8.40

Ours Minimal ECOC-

NEAT

4 0.535 72:01� 10�4 0.614 0.865 10.49

10-bit ECOC-

NEAT

10 0.651 15:78� 10�4 0.724 0.860 8.49

45-bit ECOC-

NEAT

45 0.819 9:04� 10�4 0.876 0.837 5.62

100-bit ECOC-

NEAT

100 0.845 6:77� 10�4 0.894 0.812 4.96

250-bit ECOC-

NEAT

250 0.876 2:76� 10�4 0.908 0.793 4.60

Exhaustive ECOC-

NEAT

511 0.899 0.95 �10�4 0.909 0.783 4.53

Satellite Existing Standard NEAT 1 0.754 0:99� 10�4 0.774 0.774 5.09

OvO-NEAT 28 0.842 0:79� 10�4 0.914 0.989 0.12

OvA-NEAT 8 0.787 1:53� 10�4 0.848 0.979 0.75

Ours Minimal ECOC-

NEAT

3 0.765 2:28� 10�4 0.816 0.922 1.11

8-bit ECOC-NEAT 8 0.790 3:24� 10�4 0.844 0.926 0.94

15-bit ECOC-

NEAT

15 0.828 3:90� 10�4 0.870 0.922 0.84

28-bit ECOC-

NEAT

28 0.849 0:79� 10�4 0.881 0.917 0.73

40-bit ECOC-

NEAT

40 0.848 0.46 �10�4 0.885 0.914 0.68

60-bit ECOC-

NEAT

60 0.848 2:16� 10�4 0.885 0.910 0.62

Exhaustive ECOC-

NEAT

127 0.837 0:88� 10�4 0.873 0.900 0.55

Ecoli. Existing Standard NEAT 1 0.754 0:99� 10�4 0.774 0.774 5.09

OvO-NEAT 28 0.842 0:79� 10�4 0.914 0.989 0.12

OvA-NEAT 8 0.787 1:53� 10�4 0.848 0.979 0.75

Ours Minimal ECOC-

NEAT

3 0.765 2:28� 10�4 0.816 0.922 1.11

8-bit ECOC-NEAT 8 0.790 3:24� 10�4 0.844 0.926 0.94

15-bit ECOC-

NEAT

15 0.828 3:90� 10�4 0.870 0.922 0.84

28-bit ECOC-

NEAT

28 0.849 0:79� 10�4 0.881 0.917 0.73

40-bit ECOC-

NEAT

40 0.848 0.46 �10�4 0.885 0.914 0.68

60-bit ECOC-

NEAT

60 0.848 2:16� 10�4 0.885 0.910 0.62

Exhaustive ECOC-

NEAT

127 0.837 0:88� 10�4 0.873 0.900 0.55

Each method is run ten times and token an average of results. The total generation of each method is identical G ¼ 3000. N -bit ECOC-NEAT

represents different sizes of mid-length ECOC-NEAT that is N base classifiers. Ab represents the average training accuracy of binary classifiers

The underlined values represent the testing accuracy of multiclass classification methods with binary classification. The bold values are the best

values
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NEAT in these methods takes different computation

times to evolve binary classifiers. The standard NEAT

takes much more computation time per generation to

evolve classifiers than the NEAT with class binarization

techniques.

5.3 Size of ECOC-NEAT

The size of ECOC performs a significant influence on their

performance for multiclass classification [26]. To further

observe the influence of the size of ECOC on their per-

formance, we visualize the testing accuracy and variance

over the size of ECOC (the results in Table 4) in Fig. 6.

The visualization shows that testing accuracy increases as

the number of base classifiers increases and the small size

ECOC-NEAT performs fluctuating testing accuracy. A

similar observation can be illustrated from the results on

the Satellite and Ecoli datasets (Table 4).

5.4 Quality of ECOC-NEAT

Besides the size of ECOC, the quality of ECOC is another

crucial factor for the performance of ECOC-NEAT. The

minimal ECOC-NEAT with a few base classifiers generally

perform sensitive to the quality of ECOC. Thus, we con-

centrate on the quality of the minimal ECOC-NEAT.

5.4.1 On the Satellite dataset

ECOC-NEAT with high training accuracy binary classifiers

generally performs high testing accuracy for multiclass

classification. The binary classification tasks in an ECOC-

NEAT are generally with various difficulty. The exhaustive

ECOC for the Satellite dataset with k ¼ 6 classes is with 31

columns (see Table 4). We run an exhaustive ECOC-

NEAT to evolve the 31 binary classifiers on the Satellite

dataset for three repetitions. The training accuracy of these

31 binary classifiers is shown in the bar chart of Fig. 7. The

results show that these binary classifiers in the exhaustive

ECOC-NEAT perform significant different accuracy from

around 70% to 98%.

For the Satellite dataset with k ¼ 6 classes, the minimal

ECOC-NEAT needs a minimum of 3-bit codeword (three

columns) to construct the ECOC. We random choose three

columns from the 31 columns of the exhaustive ECOC to

construct minimal ECOCs. For an exhaustive ECOC with

31 columns, there are
31

3

� �
¼ 4495 combinations, and

420 out of these 4495 combinations are available minimal

ECOCs that satisfy both row and column conditions. We

Fig. 6 Testing accuracy over ECOC-NEAT size on Digit

Fig. 7 Training accuracy of the 31 binary classifiers in an exhaustive

ECOC-NEAT on the Satellite dataset for three repetitions

(a) (b) (c)

Fig. 8 Distribution of all minimal ECOC-NEAT in terms of average classifiers training accuracy on the three datasets of Satellite, Digit, Ecoli..
The frequency of the right vertical axis represents the number of ECOC
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run all 420 minimal ECOC-NEAT on the Digit dataset.

Fig. 8a shows the distribution of average training accuracy

of binary classifiers (noted as Ab) in these 420 minimal

ECOCs. These 420 minimal ECOCs perform different

qualities in terms of their average training accuracy of

binary classifier from around 70% to 90%. We divide these

420 minimal ECOCs into the three-level performance of

low, middle, high accuracy with the ratio of 10%, 80%, and

10%, respectively. These 10% minimal ECOCs with high

accuracy are the optimized minimal ECOCs. The results

indicate that different ECOCs perform significantly accu-

racy and the quality of ECOC is crucial for the high

accuracy of binary classifiers.

Moreover, we randomly choose minimal ECOCs with

low, middle, and high accuracy, respectively. Each mini-

mal ECOC-NEAT evolves three binary classifiers (three

columns in each minimal ECOC) with an evolution of total

3000 generations for multiclass classification, which results

is shown in Table 5. The results indicate that the average

training accuracy of binary classifiers significantly impacts

the testing accuracy. The optimized minimal ECOC-NEAT

performs a testing accuracy of 0.7735 that is much higher

than the low accuracy minimal ECOC-NEAT and the

standard NEAT (0.6377 in Table 4) for 6-classes classifi-

cation on the Satellite dataset. Conversely, the low accu-

racy minimal ECOC-NEAT perform a similar testing

accuracy with the standard NEAT.

Finally, we randomly choose 6 ECOCs from high,

middle, low accuracy ECOCs, respectively, that is 18

various ECOCs in total, to observe the relationship

between their training/testing error and average training

error of binary classifiers (1-Ab), as shown in Fig. 9a. The

lines are applied to fit the data, and indicate that the

training/testing error is linear with the average training

error of binary classifiers. The optimized minimal ECOCs

perform the results that are shown in the left-bottom points

with low training/testing error and low average training

error of binary classifiers.

5.4.2 On the Digit dataset

For the Digit dataset with 10 classes, an exhaustive ECOC

and a minimal ECOC consists of 511 base classifiers and

four base classifiers, respectively (as shown in Table 4). An

Table 5 The performance of

minimal ECOC-NEAT of

different qualities on the three

datasets of Satellite, Digit, and

Ecoli. Ab represents the average

training accuracy of binary

classifiers

Dataset Minimal ECOC Testing accuracy Variance Trainin accuracy Ab

Satellite Middle- 0.704 9:79� 10�4 0.714 0.881

High- 0.774 3.55 �10�4 0.793 0.915

Low- 0.632 33:77� 10�4 0.653 0.848

Digit Middle- 0.535 72:01� 10�4 0.614 0.865

High- 0.647 31:44� 10�4 0.733 0.912

Low- 0.483 6.83 �10�4 0.538 0.814

Ecoli. Middle- 0.765 2:28� 10�4 0.816 0.922

High- 0.818 1:86� 10�4 0.867 0.953

Low- 0.678 1.76 �10�4 0.740 0.870

The bold and underlined values are the best values

(a) (b) (c)

Fig. 9 Training/Testing error and average training error of binary

classifiers on the Satellite problem. Distribution of all minimal

ECOC-NEAT in terms of average classifiers training accuracy on the

three datasets of Satellite, Digit, Ecoli.. The frequency of the right

vertical axis represents the number of ECOC. The lines are applied to

fit the data, and R2 is the goodness of fit
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exhaustive ECOC with 511 columns can be used to con-

struct a large number of
511

4

� �
¼ 2; 807; 768; 705 4-bit

possible minimal ECOCs (4 columns) that is a huge

amount of work and not necessary to be investigated. In

this work, we random choose 10,000 minimal ECOCs to

investigate the performance of various minimal ECOCs on

the Digit dataset. The distribution of the average training

accuracy of binary classifiers is shown in Fig. 8b. Inter-

estingly, the distribution looks like a normal distribution.

We divide these minimal ECOCs into the three-level per-

formance of low, middle, high accuracy with the ratio of

10%, 80%, and 10%, respectively. As the standard NEAT

with an evolution of 3000 generations, each classifier of

these 511 binary classifiers is generated by an evolution of

d3000=511e � 6 generations. Theoretically and empiri-

cally, the average training accuracy of binary classifiers

can be improved with a longer evolution than 6 genera-

tions, and thus lead to the higher accuracy for multiclass

classification on the Digit dataset.

We randomly choose minimal ECOCs from low, mid-

dle, high accuracy (in Fig. 8b), respectively. These minimal

ECOC-NEAT evolve binary classifiers with an evolution of

3000=4 ¼ 750 generations. The results of these minimal

ECOC-NEAT on the Digit dataset is shown in Table 5. The

high accuracy 4-bit ECOC-NEAT performs a remarkable

testing accuracy that is comparable with the 10-bit mid-

length ECOC-NEAT (a testing accuracy of 0.6506, see

Table 4), and saves 60% classifiers (from 10 to 4). The low

accuracy ECOC-NEAT still perform a low testing accuracy

of 0.4832 that is only a little superior to the standard

NEAT.

We randomly choose 9 minimal ECOCs from low,

middle, high accuracy, respectively, that is 27 various

ECOCs in total, to investigate the relationship between

their training/testing error and average training error of

binary classifiers (1-Ab), as shown in Fig. 9b. The lines are

applied to fit the data, and indicate that the training/testing

error is linear with the average training error of binary

classifiers. The 27 minimal ECOC-NEAT generate binary

classifiers by an evolution of 3000=4 ¼ 750 generations

and thus the binary classifiers performs higher average

training accuracy (1 - average training error of binary

classifiers) than the results in Fig. 8b.

a) on the Ecoli. Dataset For the Ecoli. dataset with 8

classes, an exhaustive ECOC-NEAT and a minimal ECOC-

NEAT consists of 127 and 3 base classifiers (3-bit),

respectively. An exhaustive ECOC can be used to construct

a large number (
127

3

� �
¼ 333; 375) of minimal ECOCs.

In this work, we randomly choose 10, 000 minimal

ECOCs. The distribution of average training accuracy of

binary classifiers is shown in Fig. 8c. We categorize these

minimal ECOC-NEAT into three levels of high, middle,

low average training accuracy of binary classifiers.

Moreover, we randomly choose a minimal ECOC from

low, middle, high accuracy, respectively, and run the

minimal ECOC-NEAT to evolve binary classifiers with an

evolution of 1000 (3000/3) generations. The results of the

low, middle, high accuracy (optimized) minimal ECOC-

NEAT on the Ecoli dataset are shown in Table 5. The high

accuracy 3-bit minimal ECOC-NEAT performs a test

accuracy near with 15-bit mid-length ECOC-NEAT. The

low accuracy ECOC-NEAT performs a low test accuracy

of 0.6782 that is even lower than that of the standard

NEAT.

In addition, we randomly choose 7 minimal ECOCs

from low, middle, high accuracy (optimized) minimal

ECOCs (i.e., 21 various ECOCs in total) to validate the

relationship between the quality of ECOCs and their

training/testing error, as shown in Fig. 9c. The lines that fit

the results and indicate the linear relation between the

quality of ECOCs and their training/testing error.

To summarize, we conclude that a high quality ECOC

generally performs high testing accuracy. It is crucial to

design a high quality ECOC for multiclass classification of

neuroevolution approaches.

5.5 Evolutionary efficiency

We observe the convergence of training accuracy and

average training accuracy of binary classifiers during the

evolution. We randomly choose an optimized minimal

ECOC-NEAT from Table 5 and a 10-bit ECOC-NEAT

from Table 4, and run them 10 repetitions on the Digit

dataset. The minimal ECOC-NEAT and 10-bit mid-length

ECOC-NEAT generate binary classifiers with an evolution

Fig. 10 The training accuracy and average training accuracy of binary

classifiers of 4-bit optimized minimal ECOC-NEAT and 10-bit mid-

length ECOC-NEAT on the Digit dataset. The lines and shadow

represent the mean and 95% confidence intervals for 10 repetitions
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of 750 generations and 300 generations, respectively. The

results are shown in Fig. 10.

The results show that the training accuracy performs a

significant similar convergence process with the average

training accuracy of binary classifiers. Both of them dra-

matically increase in the beginning and gradually converge

to a stable value over generations. The high accuracy 4-bit

minimal ECOC-NEAT performs a training accuracy of

72% approximately, which performs even higher accuracy

than the 10-bit mid-length ECOC-NEAT with a training

accuracy of 71%.

Moreover, we compare the training accuracy of the

standard NEAT and NEAT with class binarization tech-

niques during the evolution, as shown in Fig. 11. The

number of generations for each evolution of ECOC-NEAT

is G=N which is different for various ECOC-NEAT. To

compare various ECOC-NEAT in the same scale, we apply

proportional scaling to match an identical x-axis. For

example, 10-bit mid-length ECOC-NEAT with the evolu-

tion of 300 generations for each binary classifier in Fig. 10

is scaled 10 times in Fig. 11.

The results show that NEAT with class binarization

techniques perform significantly better in terms of accuracy

than the standard NEAT for multiclass classification. OvO-

NEAT, exhaustive ECOC-NEAT, mid-length ECOC-

NEAT (including 250-bit, 100-bit, 45-bit ECOC-NEAT)

perform remarkable training accuracy. The NEAT with

large size ECOC (e.g., exhaustive ECOC-NEAT, OvO-

NEAT) generally performs better than the NEAT with

small size ECOC (e.g., 4-bit ECOC-NEAT). Compared to

the normal 4-bit ECOC-NEAT with a training accuracy of

60% approximately, the optimized 4-bit ECOC-NEAT

perform an efficient multiclass classification with a training

accuracy of 72% approximately. Moreover, the optimized

4-bit ECOC-NEAT performs significantly similar evolu-

tion process (the purple line) with the 10-bit ECOC-NEAT

(the brown line). The results demonstrate that the size and

quality of ECOC are crucial for the multiclass classification

performance of ECOC-NEAT.

5.6 Robustness

Robustness is an important measurement for the evaluation

of multiclass classification. The ECOC-NEAT usually

performs a remarkable ability to correct errors for multi-

class classification. Gunjan Verma and Ananthram Swami

applied ECOC to improve the adversarial robustness of

deep neural networks [27]. Although OvO-NEAT performs

outstanding for multiclass classification, the robustness of

OvO-NEAT against errors is insufficient compared to

ECOC-NEAT. In this work, we apply the measure of

Accuracy-Rejection curve to analyse the robustness of the

NEAT with class binarization techniques. Figure 12 shows

the accuracy-rejection curve of OvO-NEAT and other

ECOC-NEAT.

The large size ECOCs perform better than the small size

ECOCs no matter whether the rejection rates are low or

high. Large size ECOC-NEAT always outperforms OvO-

NEAT, which means they have consistently stronger

robustness against errors than OvO-NEAT. Comparing the

small size of 10-bit ECOC-NEAT with OvO-NEAT, there

is an intersection between two lines. The lines of the large

size ECOC intersect the line of OvO-NEAT at the small

values of rejections. From a rejection rate of the intersec-

tion onwards, ECOC-NEAT outperforms OvO-NEAT. For

example, at rejection rates greater than 80%, even 10-bit

ECOC-NEAT outperforms OvO-NEAT, which means

10-bit ECOC-NEAT gives 20% of the test samples pretty

convincing predictions (with testing accuracy of 95%).

Briefly, ECOC-NEAT has strong robustness against errors,

especially with long codes. By contrast, the robustness of

OvO-NEAT seems weak.

ECOC-NEAT performs strong robustness that its base

classifiers are complement each other when the number of

base classifiers decreases. In this work, we investigate the

robustness of the performance of ECOC-NEAT and OvO-

NEAT when their number of base classifiers decreases. The

Fig. 11 Training accuracy of the standard NEAT and the NEAT with

class binarization techniques over generations on the Digit dataset for
10 classes classification

Fig. 12 Accuracy rejection curves of OvO-NEAT and other ECOC-

NEAT on the Digit dataset
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results are shown in Fig. 13, where the size of ECOC and

OvO decrease from 45-bit (45 base classifiers) to 1-bit (one

classifier). We randomly choose base classifiers from 45-

bit ECOC-NEAT and OvO-NEAT to construct various size

ECOC-NEAT and OvO-NEAT with ten repetitions. The

results show that the testing accuracy of OvO-NEAT

declines almost linearly as the number of base classifiers

decreases. However, the accuracy of ECOC-NEAT

decreases slightly as the number of base classifiers

decreases. In particular, the accuracy of ECOC-NEAT

hardly decreases when ECOC-NEAT is with a little fewer

base classifiers, e.g., 40-bit ECOC-NEAT. The ECOC-

NEAT with 22 base classifiers, that is half of 45 base

classifiers, still obtains a testing accuracy of approximately

70% that dropping by 12% from the testing accuracy of 45-

bit ECOC-NEAT (82%). However, OvO-NEAT with 22

base classifiers performs 45% testing accuracy that drop-

ping by 41% from the testing accuracy of 45-bit OvO-

NEAT (86%). This finding illustrates that ECOC-NEAT

performs better robustness than OvO-NEAT when they

ensemble fewer base classifiers for multiclass

classification.

OvO is a decent class binarization technique for multi-

class classification with high accuracy, low variance, and

efficient training process [3, 6], but requires too many

classifiers (Oðk2Þ). The large size ECOC usually performs

high accuracy, low variance, and strong robustness

[28, 29]. An optimized minimal ECOC significantly out-

performs a normal constructed ECOC [23].

In summary, we recommend OvO-NEAT and ECOC-

NEAT with a great number of binary classifiers (e.g. mid-

length ECOC-NEAT, or exhaustive ECOC-NEAT with

moderate classes) for the tasks when a considerable num-

ber of generations is allowed. For the tasks that only lim-

ited generations are allowed, we recommend optimized

ECOC-NEAT with a small number of binary classifiers.

6 Discussions and future work

6.1 Discussions

In this section, we analyse the classification performance of

these methods on different classes and the network com-

plexity of base classifiers.

6.1.1 Behavior analysis

We observe the classification performance on each class of

these methods by analyzing the results of the standard

NEAT and the NEAT with class binarization techniques on

the Digit dataset2. We apply the widely used metrics of

precision, recall, and F1-score to evaluate the classification

on each class of these methods. Moreover, we adopt pop-

ular averaging methods for precision, recall, and F1-score,

resulting in a set of different average scores (macro-aver-

aging, weighted-averaging, micro-averaging), see more

details of these averaging methods in [30]. We conduct

experiments for ten repetitions and take an average of the

results. The heatmaps of the precision, recall, and F1-score

of these methods are visualized in Figs. 14, 15, 16,

respectively.

The classification precision on each class of the Digit

dataset from ‘‘0’’ to ‘‘9’’ is shown in the heatmap of

Fig. 14. The results show that the difficulty of classifica-

tions on different digits is diverse. Specifically, the digit

‘‘0’’ is predicted by all these methods with high accuracy of

more than 90%. All these methods perform low testing

Fig. 13 Testing accuracy of ECOC-NEAT and OvO-NEAT with

various number of base classifiers. The experiments are repeated 10

times and take an average of the testing accuracy. The shadow

represents 95% confidence intervals

Fig. 14 Precision heatmap of these methods on the Digit dataset.

Rows from 0 to 9 are precision on the digit class from ‘‘0’’ to ‘‘9’’.

Rows 10, 11, 12 present micro-averaging precision, weighted-

averaging precision, and macro-averaging precision, respectively.

Columns represent various methods

2 It does not need to analyze the results on all three datasets.
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accuracy on the digit ‘‘3’’ and ‘‘8’’. The other digits are

classified with diverse accuracies that are basically desired.

The larger size ECOC-NEAT generally performs higher

precision than the small size ECOC-NEAT. For example, a

micro-averaging precision of 0.5350 for 4-bit ECOC-

NEAT increases to 0.8189 for 45-bit ECOC-NEAT. All

ECOC-NEAT including the small size 4-bit ECOC-NEAT

outperform the standard NEAT. The precision of the

standard NEAT once again verifies its low performance for

multiclass classification. Exceptionally, the standard NEAT

predict the digit ‘‘0’’ with a decent accuracy, which verifies

that the digit ‘‘0’’ is distinctly predicted.

Figure 15 shows the recall heatmap of different methods

for classifying the digit class ‘‘0’’ to ‘‘9’’. The recall

heatmap shows consistent results with the precision heat-

map. For example, the recall of digit classes ‘‘3’’ and ‘‘8’’

are usually the low for all these methods.

F1-score is the harmonic mean of precision and recall to

evaluate model performance comprehensively, which

conveys a balance between precision and recall. The F1-

score of different methods on the Digit dataset is shown in

Fig. 16. The recall heatmap shows consistent results with

the precision and recall heatmaps.

It is worth noticing that OvO-NEAT performs a high

precision on the digit ‘‘8’’ but a low precision on the digit

‘‘3’’ in Fig. 14. By contrast, its recall on the digit ‘‘8’’ is

lower compared to the digit ‘‘3’’ in Fig. 15. We suppose

that there are recognition errors between these two cate-

gories, and therefore observe the predicted label of OvO-

NEAT and real label to verify this hypothesis, as shown in

Fig. 17.

The results show that OvO-NEAT often incorrectly

predicts the digit ‘‘3’’ as ‘‘8’’. Specifically, 44 digits of ‘‘3’’

are incorrectly predicted as the digit ‘‘8’’. This explains that

these methods perform low testing accuracy on the digit

‘‘3’’ and ‘‘8’’. Intuitively, the digit ‘‘3’’ and ‘‘8’’ have

similar shapes, and they are even incorrectly recognized by

human.

In summary, the three heatmaps of precision, recall, and

F1-score reveal consistent conclusions that 1) NEAT with

class binarization techniques, particularly ECOC-NEAT

and OvO-NEAT, outperform the standard NEAT for mul-

ticlass classification, 2) the large ECOC-NEAT generally

performs high precision, recall, and F1-score, 3) NEAT

(including the standard NEAT, OvO-NEAT, ECOC-

NEAT) techniques perform diverse on different classes and

large size ECOC-NEAT perform robust for the classifica-

tion with different classes.

Fig. 15 Recall heatmap of different methods on the Digit dataset.
Rows 0 to 9 present the recall of digit class ‘‘0’’ to ‘‘9’’. Rows 10 to 12

present micro-averaging recall, weighted-averaging recall, and

macro-averaging recall, respectively. Columns represent different

methods

Fig. 16 F1-score Heatmap of different multiclass classification

methods. Rows 0 to 9 present the F1-score of digit class from ‘‘0’’

to ‘‘9’’. Rows 10 to 12 present micro-averaging, weighted-averaging,

and macro-averaging F1-score, respectively. Columns represent

different methods

Fig. 17 The heatmap of predicted label by OvO-NEAT and real label

on the Digit dataset
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6.1.2 Network complexity

Network complexity offers an insight into the analysis of

the mechanisms of NEAT with class binarization tech-

niques for multiclass classification. We investigate how the

number of nodes and connections influence classification

performance. Table 6 shows the network complexity of

generated classifiers by different NEAT-based methods for

a different number of classes on the Digit dataset. These

Table 6 Network complexity of generated classifiers by different

NEAT-based methods for different number of classes on the Digit
dataset. The value and the the value in the bracket are the average

total number of all base classifiers and the average number of each

base classifier over ten repetitions, respectively

Number of Classes

3 4 5 6 7 8 9 10

Standard NEAT # Classifiers 1 1 1 1 1 1 1 1

Generations 3000(3000) 3000(3000) 3000(3000) 3000(3000) 3000(3000) 3000(3000) 3000(3000) 3000(3000)

Nodes 43(43) 68(68) 61(61) 55(55) 60(60) 63(63) 68(68) 72(72)

Connections 150(150) 308(308) 211(211) 172(172) 133(133) 121(121) 132(132) 177(177)

OvO-NEAT # Classifiers 3 6 10 15 21 28 36 45

Generations 3000(1000) 3000(500) 3000(300) 3000(200) 3003(143) 2996(107) 2988(83) 3015(67)

Nodes 81(27) 159(27) 249(25) 396(26) 506(24) 657(23) 857(24) 1039(23)

Connections 205(68) 282(47) 505(51) 658(44) 744(35) 916(33) 1177(33) 1387(31)

OvA-NEAT # Classifiers 3 4 5 6 7 8 9 10

Generations 3000(1000) 3000(750) 3000(600) 3000(500) 3003(429) 3000(375) 2997(333) 3000(300)

Nodes 109(36) 144(36) 186(37) 221(37) 260(37) 303(38) 325(36) 355(36)

Connections 341(114) 464(116) 661(132) 649(108) 598(85) 967(121) 836(93) 931(93)

Minimal ECOC-

NEAT

# Classifiers 2 2 3 3 3 3 4 4

Generations 3000(1500) 3000(1500) 3000(1000) 3000(1000) 3000(1000) 3000(1000) 3000(750) 3000(750)

Nodes 77(39) 98(49) 132(44) 142(47) 139(46) 120(40) 166(42) 174(44)

Connections 207(104) 492(246) 475(158) 479(160) 471(157) 493(164) 518(130) 540(135)

Mid-length

ECOC-NEAT

# Classifiers 3 7 15 26 29 30 32 34

Generations 3000(1000) 3003(429) 3000(200) 2990(115) 2987(103) 3000(100) 3008(94) 2992(88)

Nodes 107(36) 266(38) 477(32) 739(28) 796(27) 831(28) 848(27) 881(26)

Connections 286(95) 783(112) 1012(67) 1300(50) 1450(50) 1347(45) 1353(42) 1416(42)

Exhaustive

ECOC-NEAT

# Classifiers 3 7 15 31 63 127 255 511

Generations 3000(1000) 3003(429) 3000(200) 3007(97) 3024(48) 3048(24) 3060(12) 3066(6)

Nodes 107(36) 266(38) 477(32) 836(27) 1446(23) 2988(24) 4740(19) 8711(17)

Connections 286(95) 783(112) 1012(67) 1317(42) 1903(30) 3060(24) 5060(20) 8688(17)

Table 7 Network complexity of

generated classifiers by different

NEAT-based methods on the

Satellite dataset

Method Generations #Classifiers Nodes Connections

Standard NEAT 3000 (3000) 1 44 (44) 156 (156)

OvO-NEAT 3000 (200) 15 325 (22) 1095 (73)

OvA-NEAT 3000 (500) 6 151 (25) 975 (163)

Minimal ECOC 3000 (1000) 3 82 (27) 566 (189)

6-bit ECOC 3000 (500) 6 145 (24) 775 (129)

10-bit ECOC 3000 (300) 10 226 (23) 831 (83)

15-bit ECOC 3000 (200) 15 303 (20) 1076 (72)

20-bit ECOC 3000 (150) 20 397 (20) 1119 (56)

Exhaustive ECOC 3007 (97) 31 529 (17) 1252 (40)

The bold values are the key values of different elements for different methods
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experiments are repeated ten times. The network com-

plexity on the Satellite and Ecoli. dataset are presented in

Table 7 and 8. We observe the average total number of

nodes and connections of all base classifiers over ten rep-

etitions, and the average number of nodes and connections

of each base classifier (the value in the bracket). For

example, the exhaustive ECOC-NEAT generate three base

classifiers with an average total number of 107 nodes and

286 connections for 3 classes, and an average number of 36

nodes and 95 connections for each base classifier over ten

repetitions.

As the number of classes increases, it is reasonable to

generate a complex neural network with more nodes and

connections for more complicated patterns. However, the

results show that the standard NEAT struggles to generate

the neural networks with augmented nodes and connections

as the number of classes increases, which basically causes

its dramatic multiclass classification degradation. We

hypothesis that the standard NEAT tend to eliminate the

evolved neural networks with more nodes and connections

during the evolution. In contrast, NEAT with class bina-

rization techniques tend to generate neural networks with

more nodes and connections as the number of classes

increases for remarkable multiclass classification.

Although ECOC-NEAT often generates the base classifiers

with fewer and fewer nodes and connections as the number

of classes increases, the increasing number of binary

classifiers leads to the increasing total number of nodes and

connections that contribute to the remarkable performance

of multiclass classification. For example, the base classifier

evolved by the exhaustive ECOC-NEAT for 3 classes has

an average of 36 nodes and 95 connections, but that for 10

classes has an average of only 17 nodes and 17 connec-

tions. However, the total nodes and connections increase

from 107 and 286 to 8711 and 8688, respectively, for 10

classes classification.

6.2 Future work

Although this work investigates the different class bina-

rization techniques, there are still multiple open issues and

possible future work that may provide new insights into

ECOC-NEAT. First, the ECOC-NEAT needs to train a lot

of binary classifiers, which generally takes a lot of training

time. Second, the hamming distance for matching the

predicted codeword and ECOC codewords is a basic

matching strategy that needs to be improved. Third, the

ECOC still needs to be improved with different code

design. We would like to improve the performance of

ECOC-NEAT from the aspects of:

• using sparse codes (i.e., M 2 f1;�1; 0g) instead of

dense codes (i.e., M 2 f1;�1g), which are beneficial to

efficient training [15].

• using other decoding strategies like loss-based decoding

instead of hamming distance to match the codewords of

ECOC. Loss-based decoding generally contributes to

good performance because of the ‘‘confidence’’ infor-

mation [15].

• applying low-density parity-check code to design the

optimized ECOC.

7 Conclusion

This work investigates class binarization techniques in

neuroevolution and proposes the ECOC-NEAT method

that applies ECOC to the neuroevolution algorithm of

NEAT for multiclass classification. We investigate (1) the

performance of NEAT with different class binarization

techniques for multiclass classification from multiclass

degradation, accuracy, training efficiency, and robustness

on three popular datasets, (2) the performance of ECOC-

NEAT with different size and quality of ECOC. The results

show that ECOC-NEAT offers various benefits compared

Table 8 Network complexity of

generated classifiers by different

NEAT-based methods on the

Ecoli. dataset

Method Generations #Classifiers Nodes Connections

Standard NEAT 3000 (3000) 1 29 (29) 262 (262)

OvO-NEAT 2996 (107) 28 170 (6) 254 (9)

OvA-NEAT 3000 (375) 8 89 (11) 323 (40)

Minimal ECOC 3000 (1000) 3 44 (15) 272 (91)

8-bit ECOC 3000 (375) 8 106 (13) 457 (57)

15-bit ECOC 3025 (200) 15 183 (12) 634 (42)

28-bit ECOC 2996 (107) 28 309 (11) 880 (31)

40-bit ECOC 3000 (75) 40 407 (10) 1007 (25)

60-bit ECOC 3000 (50) 60 556 (9) 1202 (20)

Exhaustive ECOC 3048 (24) 127 964 (8) 1321 (10)

The bold numbers are the maximum values of different elements for different methods
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to the standard NEAT and NEAT with other class bina-

rization techniques for multiclass classification. Large size

ECOCs and optimized ECOCs generally contribute to

better performance for multiclass classification. ECOC-

NEAT shows significant benefits in a flexible number of

binary classifiers and strong robustness. In future, ECOC-

NEAT can be extended to other applications such as image

classification and computer vision. Moreover, ECOC can

be applied to different neuroevolution algorithms for

multiclass classification.
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