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Abstract
Group behavior pattern mining in traffic scenarios is a challenging problem due to group variability and behavioral

regionality. Most methods are either based on trajectory data stored in static databases regardless of the variability of group

members or do not consider the influence of scene structures on behaviors. However, in traffic scenarios, information about

group members may change over time, and objects’ motions show regional characteristics owing to scene structures. To

address these issues, we present a general framework of a moving cluster with scene constraints (MCSC) discovery

consisting of semantic region segmentation, mapping, and an MCSC decision. In the first phase, a hidden Markov chain is

adopted to model the evolution of behaviors along a video clip sequence, and a Markov topic model is proposed for

semantic region analysis. During the mapping procedure, to generate snapshot clusters, moving objects are mapped into the

corresponding sets of moving objects according to the semantic regions where they are located at each timestamp. In the

MCSC decision phase, a candidate MCSC recognition algorithm and screening algorithm are designed to incrementally

identify and output MCSCs. The effectiveness of the proposed approach is verified by experiments carried out using public

road traffic data.

Keywords Moving cluster with scene constraints � Group pattern � Behavior understanding � Scene modeling �
Semantic region

1 Introduction

With the development of computer vision and network

technology, the intelligent video surveillance system has

become an important part of an intelligent transportation

system (ITS). Video sensor nodes enable the timely and

accurate capture of the visual appearance of moving

objects, and the extraction of information about them, such

as through object detection, tracking, and behavior analy-

sis. The research focus of intelligent video surveillance is

shifting to the understanding of behavior patterns extracted

from traffic video data using machine learning methods,

which has attracted attention in the field of computer vision

[1].

Current research on behavior understanding includes the

steps of establishing behavior models from training sam-

ples and matching test samples with established models

[2, 3], where typical behavior models are obtained by

clustering trajectory data. In traffic monitoring scenarios,

combined with scene knowledge, semantic interpretation of

behaviors can be given, such as heading straight, turning

left, turning right, making a U-turn, reverse driving, and

illegal lane changing [4–7]. These are classified as indi-

vidual patterns (regular patterns of an individual) according

to the granularity of trajectory patterns [8]. Individual

behaviors are identified by matching with established

behavior models, whose training samples generally come

from static datasets, which cannot reflect real-time patterns

of behavior and incrementally output results.
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The discovery of group behavior patterns differs fun-

damentally in that the patterns of discovery follow a given

notion of common patterns of different objects. These can

be exploited to describe traffic scenarios in real time,

answer group behavior questions such as ‘‘when and where

do the aggregation and segregation of objects’ move-

ments?’’ and ‘‘what are the traffic behavior rules in sce-

narios at the current time?’’ Through the identification of

these group behavior patterns, the rules and trends of group

movements and the occurrence of various mass incidents

can be more effectively reflected, so as to better manage

traffic infrastructure. However, these problems cannot be

resolved by extracting individual patterns.

Studies have been proposed to discover group patterns

[9–18], whose common point, such as a group [9], flock

[10], convoy [11], swarm [12], traveling companion [13],

or loose traveling companion [14], is that the objects’

groups are required to contain the same collection of

moving objects. However, this does not always conform to

the actual situation. In a monitoring scene, within a certain

time interval, the set of objects continually changes as they

enter or exit. In addition, due to regional characteristics

shown by group behavior patterns (such as convergence

and divergence), moving objects may pass through differ-

ent combinations of semantic regions, which correspond to

different behavior categories. The sets of moving objects

within these clusters change over time, while a trajectory

cluster has a constant set of objects regardless of their

temporal information. It is critical that all the objects’

motions are constrained by scene structures. Based on this,

we define moving clusters with scene constraints (MCSCs),

where two consecutive snapshot clusters share many

common objects. Hence, the above group patterns [9–14]

are unsuitable to model an MCSC.

Other kinds of group patterns also exist, such as the

moving cluster [15], gathering [16, 17], or evolving convoy

[18], which have no strict requirements that objects’ groups

contain the same moving objects, allowing members to

leave a group during its life cycle, while new members can

join it. To retrieve these group patterns, density-based

clustering algorithms such as DBSCAN [19] and OPTICS

[20] are adopted to cluster moving objects at each times-

tamp. However, in traffic monitoring scenarios, moving

behaviors of vehicles are related to semantic regions

passing by, but not to vehicle density. Density-based

clustering algorithms have difficulty identifying group

movements of vehicles.

Existing methods cannot effectively support the dis-

covery of MCSCs, because of challenges including the

following:

(1) Group variability: The membership information of

MCSCs may change over time. However, many

state-of-the-art trajectory-based approaches and

group discovery methods require the group to

contain a constant set of objects, ignoring changes

in group membership;

(2) Behavioral regionality: Due to scene structures,

objects’ motions in the same semantic region have

similar semantic interpretations. However, clusters

identified by density-based clustering algorithms,

which are adopted by most group discovery methods

at each timestamp, do not always consist of objects

in the same semantic region. Therefore, they cannot

be directly used for MCSC discovery;

(3) Incremental discovery: To describe traffic scenarios

and answer group behavior problems in real time,

MCSCs should be reported incrementally, i.e., the

discovery algorithm should output the results while

processing the trajectory data flow.

We propose a framework to extract meaningful group

behavior patterns from traffic video data. Using a hidden

Markov chain to model the evolution of behaviors along a

video clip sequence, the Markov topic model (MTM)

learns the distribution of topics and maps the learned topics

to semantic regions in a scene. Under our framework, video

clips are treated as documents, and trajectory points (po-

sitions and moving directions) of moving objects as motion

words. Topics model semantic regions, which correspond

to common paths, are taken by objects in a scene. At each

timestamp, instead of clustering moving objects using

density-based clustering algorithms, moving objects pass-

ing through the same semantic region are mapped to the

corresponding moving object sets to generate snapshot

clusters, which is more consistent with the actual move-

ment situation of vehicles in traffic scenarios. In the MCSC

decision phase, at each timestamp, lists of candidate

MCSCs are constructed by a candidate MCSC recognition

algorithm, and MCSCs in the candidate lists are identified

and output incrementally by a screening algorithm, which

effectively reduces the number of redundant MCSCs.

The remainder of this paper is organized as follows.

Section 2 discusses related work, and Sect. 3 states the

problem of MCSCs in traffic scenarios. A Markov topic

model is introduced for semantic region analysis in Sect. 4.

Section 5 describes discovery algorithms of MCSC pat-

terns. Section 6 presents our experimental results, and we

discuss our conclusions and suggest future work in Sect. 7.
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2 Related work

2.1 Behavior understanding based on trajectory
analysis

Trajectory analysis is the most popular method for vehicle

behavior understanding in traffic video surveillance. After

constructing a trajectory similarity/distance matrix based

on the computed similarity/distance between trajectories,

clustering algorithms such as spectral clustering [21, 22],

fuzzy C-means [23], and agglomerative hierarchical clus-

tering [24] can be used to group the objects’ motion tra-

jectories into different behavior categories. Such

unsupervised trajectory pattern classification methods have

been extensively used. Other learning methods of trajectory

patterns do not need to calculate pairwise similarities

between trajectories. GMMs [25], HMMs [26], and self-

organizing neural networks [27, 28] can also be used to

model the trajectory distribution patterns of moving objects

for atypical event recognition and behavior prediction.

The above methods model behaviors with the whole

trajectory. However, they may ignore common sub-trajec-

tories that are useful in many applications. Lee et al. [29]

proposed a partition-and-group framework that partitions a

trajectory into a set of line segments according to the

minimum description length (MDL) principle and clusters

them using a density-based line-segment clustering algo-

rithm to discover the common sub-trajectories. However,

the presented trajectory clustering algorithm TRACLUS is

sensitive to the input parameters e and MinLns, and the

trajectory data model ignores the time dimension. Piciarelli

et al. [30] proposed a tree-like structure to represent tra-

jectories as a tree of clusters, during whose creation the

trajectories are divided into sub-trajectories due to splits.

Sub-trajectories are clustered to generate path regions with

semantically similar descriptions. A path, represented by

all pixels covered by objects with the same behavior cluster

along their course, is conceptually related to the proposed

semantic region, which is defined as a subset of a path [31].

However, the tree-like structure does not inherently pro-

vide a probabilistic interpretation for behavior analysis, and

it cannot handle group moving behaviors.

2.2 Learning behavior with topic models

Behaviors are closely related to scene structures, since

objects’ motions are constrained by them. Wang et al. [31]

employed dual-HDP to segment semantic regions, which

correspond to the common paths taken by objects in a

scene, for activity analysis from trajectories. Li et al.

[32–34] segmented monitoring scenarios into multiple

semantic regions according to the distribution of low-level

atomic video events, where scene segmentation was

regarded as an image segmentation problem. The object

was for behaviors in each segmented semantic region to

have similar characteristics and to be represented by some

kind of atomic video events. Zhou et al. [35] proposed a

random field topic (RFT) model including sources and

sinks as high-level semantic priors to learn semantic

regions from tracklets (fragments of trajectories). Similar

to Wang et al. [31], these semantic regions corresponded to

common paths taken by objects, whose motions in the same

semantic region have similar semantic interpretations.

Traffic scenarios include many kinds of behaviors that

evolve according to a certain temporal order of traffic flow.

The topic model itself ignores the time factor and cannot

model the temporal relationships between behaviors. We

use a hidden Markov chain to model the temporal corre-

lation between behaviors and propose an MTM to model

semantic regions to generate snapshot clusters.

3 Problem statement

Let T ¼ t1; t2; . . .; tnf g be the set of all timestamps, and O

¼ o1; o2; . . .; omf g the set of all moving objects that have

moved during T in the database. Moving object oj has its

own lifetime Toj from entering to leaving the scene. A

snapshot Si of T is a subset of O, which is located at ti. The

concept of a snapshot is employed as the projection of

moving objects’ spatial information at one timestamp. The

regularity of objects’ motions can be reflected by the

concurrence of trajectories of the same category (similar

moving directions and adjacent spatial positions) in the

spatial regions. Such regions are defined as semantic

regions.

Let C ¼ C1;C2; . . .;CK
� �

be the set of the learned

semantic regions in the monitoring scene, which is viewed

as the set of general classes. K represents the number of

semantic regions. Then, at each timestamp, moving objects

are mapped to a certain general class according to the

semantic regions in which they are located. Ultimately, the

set of snapshot clusters Cti ¼ C1
ti
;C2

ti
; . . .;CK

ti

n o
at times-

tamp ti is generated, where C j
ti ¼ oj1; oj2; . . .; ojv

� �

1� j�K; 1� v�mð Þ is a snapshot cluster at timestamp ti
and m is the total number of moving objects.

An MCSC is a sequence of snapshot clusters at con-

secutive timestamps, whose definition can be generalized

as follows.

Definition 1 Let g ¼ C
jv
tv ;C

jvþ1

tvþ1
; . . .;C

jw
tw 8Cji

ti 2 C
� �

be a

sequence of snapshot clusters, Cq
ti the snapshot cluster at

the next timestamp of Cp
ti�1

, and h the coincidence rate
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threshold. If
Cp
ti�1

\Cq
ti

j j
Cp
ti�1

[Cq
ti

j j � h 0\h� 1; v\i�w; 1ð � jv � p;

q� jw �KÞ, the sequence of snapshot clusters g is defined

as an MCSC.

Figure 1 shows an example of an MCSC. There are

three semantic regions in a monitoring scene, and their

spatial locations and shapes remain constant at each

timestamp. Let t1, t2, and t3 be three consecutive times-

tamps. At each timestamp is a set of snapshot clusters

C1
ti
;C2

ti
;C3

ti

n o
, corresponding to the set of general classes

C1;C2;C3
� �

mapped to the semantic regions in the scene,

and ot1j , o
t2
j , and o

t3
j are the representations of moving object

oj at these timestamps. Note that object o7 enters the scene

at timestamp t2 and object o5 leaves the scene at t3. In other

words, the membership information of MCSCs may change

over time.

Let h ¼ 1
4
. C1

t1
C2
t2
C3
t3
is an MCSC, since

C1
t1
\C2

t2

�� ��
C1
t1
[C2

t2
j j ¼

4
7
and

C2
t2
\C3

t3

�� ��

C2
t2
[C3

t3

�� �� ¼
2
7
are both at least h. In the same way, C1

t1
C1
t2
C3
t3

can also be discovered as an MCSC, since
C1
t1
\C1

t2

�� ��
C1
t1
[C1

t2
j j ¼

1
3
,

C1
t2
\C3

t3

�� ��

C1
t2
[C3

t3

�� �� ¼
1
2
. C1

t1
and C1

t2
are different representations of

general class C1 at timestamps t1 and t2. After removing

the timestamp subscripts in the sequence of snapshot

clusters and the sequence data deduplication, we get two

sequences of general classes, which are C1C2C3 and C1C3.

We have every reason to believe that C1C2C3 and C1C3 are

the two typical group moving behaviors in the scene during

this period.

4 Semantic scene modeling using markov
topic model

4.1 Markov topic model

A traffic video sample V ¼ v1; v2; . . .; vTf g can be divided

into t-segment video clips, 1� t� T . In our method, a

video is segmented into non-overlapping clips with equal

frame length Nf , whose value is between 100 and 300,

depending on the nature of the traffic scene. We treat a

Fig. 1 Example of MCSC

Fig. 2 Graphical representation of Markov topic model
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video clip as a document, and the trajectory points of

moving objects as motion words. Each video clip is map-

ped to a motion word bag and embodies a kind of behavior

pattern. Finally, the video sample is represented by a

behavior sequence (motion word package sequence).

Because the topic model itself ignores the temporal rela-

tionship between words, it cannot model the temporal

correlation between behaviors. We incorporate a hidden

Markov chain to model these and propose an MTM to

model a video clip sequence as a Markov chain of

behaviors.

Figure 2 shows the graphical representation of an MTM.

Let M traffic videos constitute a video set

D ¼ V1;V2; . . .;VMf g, where each video

Vj j ¼ 1; 2; . . .;Mð Þ is divided into t-segment video clips,

and each video clip vt shows a specific kind of behavior, yt.

We model the behavior sequence ytf gTt¼1 as a Markov

chain, and the behavior yt evolves along the sequence

direction of the video clip sequence according to a multi-

nomial distribution,

p ytjyt�1; gð Þ ¼ multinominal gyt�1

� �
: ð1Þ

The behavior pattern Yj of video Vj is a behavior

sequence composed of video clip behavior yt,

Yj ¼ y1; y2; . . .; yt; . . .; yTf g: ð2Þ

All of the trajectory points of moving objects in each

video clip vt are encoded, and a video clip is represented as

a word bag containing N motion words, where wt is the set

of motion words wt;i contained in vt,

wt ¼ wt;1;wt;2; . . .;wt;i; . . .;wt;N

� �
: ð3Þ

Each video clip is represented by a random mixture

distribution over K latent topics (semantic regions). Each

topic in video clip vt is essentially a distribution of tra-

jectory points that constitute the semantic regions in the

scene. The mixed ratio ht of various topics is determined by

the Dirichlet parameter a as

p htjyt; að Þ ¼ Dirichlet að Þ: ð4Þ

The mixed ratio ht is the multinomial distribution of

topics in the video clip vt, and the topic zt;i is determined by

the parameter ht as

p zt;ijht
� �

¼ multinominal htð Þ: ð5Þ

The motion word wt;i in video clip vt is determined by

uzt as

p wt;ijzt;i;u
� �

¼ multinominal uzt

� �
: ð6Þ

The generative process of the MTM is described as

follows:

1. For each latent topic z 2 1; 2; . . .; k; . . .K, draw

discrete distributions uk of motion words from a

Dirichlet prior b, and construct K � L dimensional

matrix u�Dirichlet bð Þ;
2. For each video Vj, j 2 1; 2; . . .;M, draw discrete

distributions g of behavior types from Dirichlet prior c:
g�Dirichlet cð Þ;
3. Generate any video clip vt in video Vj as follows:

a. Sample the corresponding behavior type

yt �multinominal gyt�1

� �
;

b. Draw discrete distribution ht of topics from a

Dirichlet prior, a: ht �Dirichlet að Þ;
c. Generate motion word wt;i in video clip vt as

follows:

i. Draw the corresponding topic zt;i:

zt;i �multinominal htð Þ;
ii. Draw motion word wt;i from p wt;ijzt;i;u

� �
:

The number L of basic motion words in the dictionary

and the number K of topics are predetermined. The con-

ditional probability p wt;ijzt;i;u
� �

is calculated by the matrix

u of dimension KL, where uij is the generating probability

of motion word wj under the condition of the current

known topic type zi, i.e.,

uij ¼ p wj ¼ 1jzi ¼ 1
� �

: ð7Þ

Given a, c, and b, the joint distribution of topic mixture

parameter h, motion word mixture parameter u, behavior
mixture parameter g, behavior type yt, topics zt ¼ zt;i

� �
,

and motion words wt ¼ wt;i

� �
is

p wt; zt; ytf gT1 ; g; h;uja; b; c
� �

¼ p gjcð Þp ujbð Þ
YT

t¼1

YNj

i¼1

p zt;ijht
� �

p wt;ijzt;i;u
� �

 !

p ytjyt�1; gð Þp htja; ytð Þ;

ð8Þ

where Nj is the number of motion words in video clip vt.

4.2 Model learning

We adopt Gibbs sampling based on the Markov chain

Monte Carlo method to estimate the parameters of MTM.

Due to the Dirichlet-multinomial conjugate structures of

the model, the parameters g; h;uf g can be automatically

eliminated during the Gibbs sampling procedure.

The parameters h and u are eliminated from the con-

ditional probability, and the Gibbs sampling conditional

probability for topic is obtained as

p zt;ijzt;:i; y;w
� �

/
nwzt þ b

P
w n

w
zt
þ Lb

nzy þ a
P

z n
z
y þ Ka

; ð9Þ
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where zt;:i denotes all z variables except zt;i, nwzt is the

number of basic motion words in the dictionary assigned to

topic zt,
P

w
nwzt is the total number of motion words assigned

to topic zt, n
z
y is the number of topic types assigned to

behavior type y,
P

z
nzy is the total number of topics assigned

to behavior type y, L is the number of basic motion words

in the dictionary, and K is the number of topic types.

The parameters g and h are eliminated from the condi-

tional probability, and the Gibbs sampling conditional

probability for behavior type is obtained as

where y:t denotes all y variables except yt; nzyt is the

number of topic types assigned to behavior types yt; n
z
:yt is

the number of topic types not assigned to behavior types yt;

P

z
nzyt is the total number of topics assigned to behavior

type yt;
P

z
nz:yt is the total number of topics not assigned to

behavior type yt; nyt ;ytþ1
is the count of behavior type ytþ1

following behavior type yt;
P

ytþ1

nyt ;ytþ1
is the total count of

behavior type yt, followed by other behavior types;M is the

number of behavior types; and I is the identity function,

which returns the value 1 if its argument is true.

After sampling converges, parameters can be estimated

as

ĥ ¼
nzy þ a

P
z n

z
y þ Ka

; ð11Þ

û ¼ nwz þ b
P

w n
w
z þ Lb

; ð12Þ

ĝ ¼ nyt ;ytþ1
þ c

P
ytþ1

nyt ;ytþ1
þMc

: ð13Þ

5 Discovery algorithms of MCSC patterns

By learning from MTM, the trajectory points of moving

objects (co-occurring motion words) in video clips (docu-

ments) can be clustered into semantic regions (topics).

Then we get the set of snapshot clusters Cti ¼

C1
ti
;C2

ti
; . . .;CK

ti

n o
at timestamp ti according to the

description of the mapping process in Sect. 3, where

cluster C j
ti ¼ oj1; oj2; . . .; ojv

� �
1� j�K; 1� v�mð Þ is one

of the snapshot clusters at timestamp ti, K is the number of

semantic regions (topics), and m is the total number of

moving objects.

The MCSCs can be discovered by using the candidate

MCSC recognition algorithm to construct lists of candidate

MCSCs and using the screening algorithm to distinguish

MCSCs in the candidate lists. We give the following

definitions.

Definition 2 (Key Set of Moving Objects): Let Cp
ti�1

and Cq
ti

be the snapshot clusters at timestamp ti�1 and ti, respec-

tively, and S ¼ oi1; oi2; . . .; oiuf g a set of moving objects at

timestamp ti. S is said to be a key set of moving objects if:

1)
Cp
ti�1

\Cq
ti

j j
Cp
ti�1

[Cq
ti

j j � h 0\h� 1ð Þ: Cp
ti�1

\ Cq
ti is an MCSC;

2) S ¼ Cp
ti�1

\ Cq
ti : these moving objects are the decisive

factors for MCSC;

3) Sj j �minS: there are at least minS objects in set S.

Definition 3 (Candidate MCSC): Let S be a key set of

moving objects. S;G is a candidate MCSC, where S is the

intersection of the set of moving objects contained in

snapshot cluster Cp
ti�1

and Cq
ti , and G ¼ Cp

ti�1
Cq
ti .

A queue L of candidate MCSCs is called the list of

candidate MCSCs. At timestamp ti, all current candidate

MCSCs are stored in list L.

The process of identifying MCSCs is to construct and

update the lists of candidate MCSCs at each timestamp,

step by step. Figure 3 shows a running example of the

candidate MCSC recognition algorithm (CMCR). There

are seven objects and three timestamps (O

¼ o1; o2; o3; o4; o5; o6; o7f g, T ¼ t1; t2; t3f g), and ot1j , ot2j

and ot3j are the representations of moving object oj at dif-

ferent timestamps. We set h ¼ 1
4
and minS ¼ 2 in this

example. At each timestamp, the key set of moving objects

is constructed and updated in list L together with the cor-

responding sets of snapshot clusters. The lists corre-

sponding to timestamps t1, t2, and t3 are Lt1 , Lt2 , and Lt3 ,

respectively.

p ytjy:t; z;wð Þ /
Q

z C aþ nzyt

� �
C Kaþ

P
z n

z
:yt

� �

Q
z C aþ nz:yt

� �
C Kaþ

P
z n

z
yt

� �
nyt ;ytþ1

þ c
� �

nyt ;ytþ1
þ I yt�1 ¼ ytð ÞI yt ¼ ytþ1ð Þ þ c

� �
P

ytþ1
nyt ;ytþ1

þ I yt�1 ¼ ytð Þ þMc
; ð10Þ
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5.1 Update and insertion rules for candidates

According to the above definitions, we introduce the fol-

lowing lemma.

Lemma 1 Let Cp
ti�1

Cq
ti , and Cq

tiC
r
tiþ1

be MCSCs. Cp
ti�1

Cq
tiC

r
tiþ1

is an MCSC.

Proof Since Cp
ti�1

Cq
ti and Cq

tiC
r
tiþ1

are MCSCs, we have

Cp
ti�1

\Cq
ti

j j
Cp
ti�1

[Cq
ti

j j � h and
Cq
ti
\Cr

tiþ1

�� ��

Cq
ti
[Cr

tiþ1

�� �� � h. Therefore, Cp
ti�1

Cq
tiC

r
tiþ1

is an

MCSC.

We give the following update and insertion rules.

Rule 1 (Update): For any candidate item u ¼ Cp
ti�1

;G in

list L, if Cp
ti�1

� Cq
ti and

Cp
ti�1

\Cq
ti

j j
Cp
ti�1

[Cq
ti

j j � h, then candidate item u

is updated to Cp
ti�1

;G [ Cq
ti

� �
.

In Fig. 3, o1; o6f g;C1
t1
C1
t2
is a candidate in list Lt2 , where

C1
t2
¼ o1; o6f g and C3

t3
¼ o1; o3; o4; o6f g. The candidate

item o1; o6f g;C1
t1
C1
t2

is updated to o1; o6f g;C1
t1
C1
t2
C3
t3
,

because C1
t2
� C3

t3
and

C1
t2
\C3

t3

�� ��

C1
t2
[C3

t3

�� �� ¼
1
2
� h.

In fact, candidate item u is extended by snapshot cluster

C3
t3
in Lt3 to form a valid MCSC. It should be noted that C1

t1

and C1
t2

are different representations of the learned

semantic region C1 at timestamps t1 and t2, respectively.

Rule 2: For any candidate item u ¼ Cp
ti�1

;G in list L, if

Cp
ti�1

ˆCq
ti and

Cp
ti�1

\Cq
ti

j j
Cp
ti�1

[Cq
ti

j j � h, then a new candidate item

Cp
ti�1

\ Cq
ti ;G [ Cq

ti

� �
is created and inserted in list L.

In Fig. 3, o1; o6f g;C1
t1
C1
t2
, o2; o3; o4; o5f g;C1

t1
C2
t2
,

o3; o4f g;C2
t2
C3
t3
, and o2; o7f g;C2

t2
C2
t3
are all candidate items

created under rule 2.

Rule 3: For any snapshot cluster Cq
ti at timestamp ti, if

Cq
tiˆCp

ti�1
, then a new candidate item Cq

ti ; Cq
ti

� �
is created

and inserted in list L.

Obviously, o2; o3; o4; o5; o7f g;C2
t2

and

o1; o3; o4; o6f g;C3
t3

are two typical examples.

Fig. 3 Example of CMCR algorithm
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o1; o2; o3; o4; o5; o6f g;C1
t1
is the initial candidate item that

should be inserted in list L when initialized.

5.2 Candidate MCSC recognition algorithm

The above rules construct the list L of candidate MCSCs

and the set of added candidate items at current timestamp

ti. The candidate MCSC recognition algorithm maintains

candidate list L by updating and inserting candidate items

in list L according to rules 1–3 at each timestamp.

Algorithm 1 presents the pseudocode of CMCR.

In the first step, at timestamp t1, we generate initial

candidate items utilizing the nonempty snapshot clusters in

snapshot S1, and insert them in MLt1 and L (lines 1–2). At

each subsequent timestamp, snapshots Si and Si�1 are
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examined to update and insert candidate items (lines 4–10).

When scanning through snapshot Si, MLti includes candi-

date items containing snapshot clusters in Si (lines 11–15).

The set ML of added candidate items at each timestamp is

used to extend candidate MCSCs to closed candidates in

the screening algorithm.

5.3 Screening algorithm

Our goal is to discover the complete set of MCSCs from

the candidates, i.e., the MCSCs with the largest continuous

timestamps. To avoid mining redundant MCSCs, we define

a closed candidate.

Definition 4 (Closed Candidate):

For a candidate MCSC u in list L, if there does not exist

another candidate v such that u:G � v:G, then u is a closed

candidate.

We use the example in Fig. 2 to intuitively explain our

methods. It is easy to see that o2; o3; o4; o5f g; C1
t1
;C2

t2

n o
is

a candidate MCSC at consecutive timestamps t1 and t2, and

o3; o4f g; C2
t2
;C3

t3

n o
is a candidate MCSC at timestamps t2

and t3. It is obviously redundant to output

o2; o3; o4; o5f g; C1
t1
;C2

t2

n o
as an MCSC, since it can be

extended to form another MCSC, o3; o4f g; C1
t1
;C2

t2
;C3

t3

n o
,

which is a closed candidate.

Based on the above output set ML at each timestamp, the

screening algorithm can retrieve all MCSCs based on the

construction of closed candidates. This is described as

Algorithm 2.

When examining MLti�1
, MLti�1

includes the added can-

didate items at timestamp ti�1. Each candidate item u 2
MLti�1

is checked to verify whether u can be extended by

any v 2 MLti to form a valid MCSC (lines 6–10). The

candidate items in MLti�1
that were not extended at ti are

output. MLti to be used at the next iteration consists of

candidate items in MLti�1
that were extended at ti. In this
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manner, the screening algorithm misses no closed candi-

dates and outputs no redundant items.

Note that the original snapshot cluster C1
t1

splits into

snapshot clusters C1
t2

and C2
t2

at timestamp t2. Since

C1
t1
\C1

t2

�� ��
C1
t1
[C1

t2
j j ¼

1
3
� h and

C1
t1
\C2

t2

�� ��
C1
t1
[C2

t2
j j ¼

4
7
� h, they satisfy the cri-

terion of Definition 1. Therefore, o1; o6f g;C1
t1
C1
t2

and

o2; o3; o4; o5f g;C1
t1
C2
t2
are legal candidate items in list L.

This is called traffic divergence, and it captures the

behavior of a group of objects that diverge into multiple

semantic regions. This can be semantically described as a

group of moving objects o1; o2; o3; o4; o5; o6f g located in

region 1 at timestamp t1, and partial moving objects

o2; o3; o4; o5f g diverting to region 2 at timestamp t2. In the

case of symmetry, a similar phenomenon is observed, i.e.,

two snapshot clusters merge into one snapshot cluster at the

next timestamp, which is called traffic convergence.

6 Experimental evaluation

6.1 Datasets

We evaluated the effectiveness of the proposed framework

of MCSC discovery for group behavior pattern mining

using QMUL junction and roundabout datasets. The two

datasets were collected from real-world public road

surveillance scenarios with large numbers of moving

objects exhibiting typical group behavior patterns.

Junction Dataset This dataset contains 60 min of 25 fps

video of a busy urban road junction with a frame size of

360 9 288 pixels. The scene contains many objects mov-

ing at different regions and exhibiting complex behaviors.

The traffic lights govern the behaviors of moving objects,

which form four types of traffic flow patterns in a certain

temporal order, as shown in Fig. 4.

Roundabout Dataset This dataset contains about 60 min

of 25 fps video of a traffic roundabout with a frame size of

360 9 288 pixels. Similar to the urban road junction,

moving objects show complex behaviors. Three types of

traffic flow patterns are controlled by traffic lights in a

certain temporal order, as shown in Fig. 5.

6.2 Semantic region segmentation

Experiments were performed to decompose each scene into

semantic regions on the QMUL junction and roundabout

datasets. For the junction, 33 non-overlapping sub-videos

were obtained after segmenting the video according to the

temporal order of traffic flow. Each sub-video contains all

traffic flow patterns in the scene, and they constitute video

set D. The roundabout video dataset was similarly cut into

66 non-overlapping sub-videos, constituting video set

D. Each sub-video was segmented into non-overlapping

clips with an equal length of 100 frames. Each video clip

was considered a document, and the trajectory points of

moving objects within video clips were considered motion

words in documents. To build the motion dictionary, the

360 9 288 surveillance scene was quantized into 40 9 32

cells of size 9 9 9, and the moving directions were

quantized into four directions perpendicular to each other.

So, the size of the dictionary was 40 9 32 9 4.

We set the model parameters a ¼ K/50, b ¼ 0:01,

c ¼ 1, and segmented each scene into semantic regions. K

is the number of topics (semantic regions). Our proposed

method decomposed the junction and roundabout scenes

into nine regions, as shown in Figs. 6a and 7a. For com-

parison, in Figs. 6b and 7b, the junction and roundabout

scenes were segmented into six and nine regions, respec-

tively, using the modified spectral clustering algorithm of

Li et al. [34], which represents the state of the art of

semantic scene segmentation. Li et al. treated the semantic

region segmentation problem as an image segmentation

problem, except that they represented each pixel location

of a scene by pixel-wise feature vectors instead of RGB

and texture feature values. The modified spectral clustering

algorithm was employed to segment the scene into differ-

ent non-overlapping semantic regions. As shown in

Figs. 6b and 7b, those areas not belonging to traffic lanes

and waiting zones were also divided into semantic regions.

From this point of view, the result of region segmentation

Fig. 4 a–d: traffic flow patterns A–D, respectively, at urban road junction
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is somewhat rough. This segmentation result has been

useful enough for learning behavior spatial context, but is

unsuitable for our MCSC discovery scenarios. Other than

that, both methods display meaningful distributions of

semantic regions, which almost correspond to various

traffic lanes and waiting zones. Moving objects passing

through the same combination of semantic regions tend to

follow a similar behavior pattern. Thus, it can be seen that

inappropriate segmentation of semantic regions makes it

more difficult to find meaningful group behavior patterns.

For example, Figs. 6c and 7c show the segmented semantic

regions using the original Zelnik–Perona (ZP) method [33]

at an urban road junction and traffic roundabout, from

which it is evident that, no matter C1C2C3 and C3C2C1 at

the urban road junction, or C1C2 and C2C1 at the traffic

roundabout, these are not meaningful group moving

behaviors, which cannot reflect meaningful traffic flow

patterns in real scenarios.

6.3 Traffic group behavior pattern mining
evaluation

We evaluate the identified quality of traffic divergence,

which is the typical traffic group behavior pattern, as

obtained by MCSC discovery. With the learned semantic

regions, the set of snapshot clusters at each timestamp is

Fig. 5 a–c: traffic flow patterns E–G, respectively, at traffic roundabout

Fig. 6 Semantic region segmentation for junction dataset: a proposed method—9 regions; b spectral clustering algorithm—6 regions; c Zelnik–
Perona method—4 regions

Fig. 7 Semantic region segmentation for roundabout dataset: a proposed method—9 regions; b spectral clustering algorithm—9 regions;

c Zelnik–Perona method—2 regions
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obtained by mapping moving objects to semantic regions

(see Sect. 3). In the real world, streaming trajectory data

generated by moving objects may arrive in different

semantic regions of the monitoring scenarios at different

timestamps. With rigorous constraints on time, inappro-

priate setting of timestamps makes it more difficult to

discover meaningful MCSCs.

For all of the datasets of the experiments, considering

the lifetime of moving objects in these scenarios, the

interval between consecutive timestamps was set at one

second, i.e., the movement data of moving objects were

output each second to produce snapshot clusters. To

retrieve all of the MCSCs, the candidate list L was reported

at each timestamp in the form of S;G in the MCSC deci-

sion phase. G is considered to discover MCSCs by con-

structing closed candidates. The remaining S is the

intersection of the set of moving objects contained in two

adjacent snapshot clusters. This can be applied to extract

more information, such as to identify the key moving

objects from the process of generating MCSCs and

describing their semantic behaviors, which is beyond the

scope of this paper.

We generated ground truth by manually and exhaus-

tively labeling all traffic divergence in the video times-

tamps from both datasets. The outputs of the different

approaches were compared with the ground truth and

evaluated by Precision and Recall, which are proportions

of correct discoveries based on all retrieved results and the

ground truth, respectively.

Baselines: We compared the proposed MCSC discovery

approach with three state-of-the-art baselines: 1) the swarm

(SW) pattern [12], which captures groups whose members

move together in clusters of arbitrary shape for certain

(possibly non-consecutive) time intervals; 2) the traveling

companion (TC) pattern [13], which requires that group

members are close together for certain consecutive snap-

shots; 3) and the moving cluster (MC) [15], which allows

members to leave or join a group during its life cycle,

where the proportion of common members in any two

consecutive snapshot clusters does not fall below a

threshold.

Parameter settings: Experimental parameters were set

based on observations on the two datasets, and were

selected intuitively according to the nature of the traffic

scene. The sample points query operation in radius range

widely used in DBSCAN [19] is supported by dividing the

surveillance scene into 40 9 32 cells of size 9 9 9, i.e., 42

rows and 30 columns. Objects distributed on both sides of

the traffic lane in parallel were required to be in a cluster.

DBSCAN with MinPts = 2 and Eps = 6 was applied to

generate clusters for SW, TC, and MC patterns at each

timestamp. We set default size thresholds of mino ¼ 2

(number of objects) and mint ¼ 2 (consecutive timestamps,

i.e., half of the shortest time span of traffic flows) for both

datasets. For discovery of MC and MCSC patterns, we

considered h ¼ 1
4
and separately for MCSC patterns, we set

minS ¼ 1, which are restricted by scene structures.

Figure 8a and b plot the precision and recall of different

approaches on the junction and roundabout datasets,

according to the default setting. As indicated in Fig. 8a,

MCSC, MC, TC, and SW achieved precision of 93.0%,

40.0%, 29.0%, and 21.9%, respectively, on the junction

dataset, with corresponding recall of 76.0%, 48.5%, 33.3%,

and 25.1%. On the roundabout dataset, Fig. 8b indicates

precision for MCSC, MC, TC, and SW of 94.0%, 55.8%,

37.8%, and 28.2%, respectively, with corresponding recall

of 81.3%, 66.7%, 41.8%, and 36.1%. As shown in figures,

our proposed approach gains the preferable performance on

both traffic scenarios. SW, TC, and MC utilized the

DBSCAN algorithm to generate snapshot clusters at each

timestamp, which cannot well reflect datasets with

changeable data density because of the adopted global

density parameter. When the density of the dataset is not

uniform and the distance between clusters is very different,

the quality of clustering is poor. In the two datasets, under

different traffic flow conditions, the density of vehicles

varied greatly. In extreme cases, all high-density moving

objects were in one group, so it was difficult to distinguish

snapshot clusters. In the case of sparse moving objects,

objects with different motion behaviors could be grouped

into one class, resulting in more false positives.

In traffic monitoring scenarios with entering or exiting

moving objects, MC is more suitable than SW and TC

because MC groups satisfy the overlap threshold between

snapshot clusters distributed on consecutive timestamps,

while the latter are the results of the intersection of the

(continuous or with an allowed time-gap) snapshot

clusters. SW generates more false positives that degrade

performance. In addition, the performance of SW, TC,

and MC on the roundabout dataset was significantly

better than on the junction dataset. This is because

DBSCAN does not consider the moving directions of

objects, which leads to more false positives when the

spatial positions of moving objects are adjacent and the

moving directions are opposite. Traffic flow pattern B

(see Fig. 4b) at an urban road junction is a typical scene

of false positives.

It is also interesting that the high-frequency traffic dif-

ferences identified from the junction and roundabout

datasets can reflect their typical traffic flow patterns, as

shown in Figs. 9 and 10.

To further investigate the influences of parameters K

and h on the quality of traffic divergence identification, we

used the junction dataset from the previous experiment and

varied K from 6 to 12, and h from 1/4 to 1/2.
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As shown in Fig. 11, both the precision and recall

increase when K increases in the range of 6–9, because

semantic regions that better conform to the scene structure

identify more traffic divergences with fewer false positives.

When K increases in the range of 9–12, the precision

increases and recall decreases because inappropriately

segmented semantic regions eliminate traffic divergences

that fail to satisfy the h criterion, and the probability of

error recognition is smaller. If K is set greater than 11,

100% precision can be achieved. However, the recall under

this setting is extremely low. We also observe that the

precision increases and recall decreases when h increases,

because when h is large, the probability of discovering

MCSCs at consecutive timestamps is small, and the prob-

ability of false positives also decreases.

Finally, we conducted experiments while changing the

values of the size threshold mino on the junction dataset.

Figure 12 shows the precision and recall of MCSC, MC,

TC, and SW. It should be noted that we considered the

default setting of minS ¼ 1 for MCSC instead of changing

the value because, in a real-world traffic scene, a large

number of snapshot clusters generated by mapping moving

objects to semantic regions can only contain one moving

object due to the size of the semantic regions. In addition,

we did not consider the influence of the duration threshold

mint because that only two different snapshot clusters at

two consecutive timestamps, respectively, are needed to

determine whether traffic divergence is possible. There-

fore, we took the duration threshold mint as the default

setting. As shown in Fig. 12, the recall of MC, TC, and SW

Fig. 8 Precision and recall of different approaches on: a junction dataset; and b roundabout dataset

Fig. 9 Traffic divergence identified at urban road junction corresponding to: a–b traffic flow pattern C; c–d traffic flow pattern D; e–f traffic flow
pattern A
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decreased as mino increased, because the snapshot clus-

tering available for traffic divergence detection was

reduced affected by semantic regions. When the duration

threshold mino increased from 2 to 3, the precision of all

approaches increased, because fewer snapshot clusters

could pass a higher threshold with fewer false positives.

Fig. 10 Traffic divergence identified at traffic roundabout corresponding to: a–b traffic flow pattern F; c–d traffic flow pattern E; e–f traffic flow
pattern F

Fig. 11 Effectiveness of MCSC: a precision; b recall

Fig. 12 Effectiveness: a precision and b recall of MCSC vs mino
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When mino ¼ 4, precision and recall were both 0 because

of no detected traffic divergence.

7 Conclusion

We introduced the challenging problem of MCSC discov-

ery, which yields to group variability and behavioral

regionality. Different from previous learned behavior

clusters, the membership information of MCSC may

change over time, and objects’ motions show regional

characteristics owing to scene structures. Since density-

based clustering algorithms cannot reflect the movement of

vehicles restricted by scene structures, we proposed a

Markov topic model to segment semantic regions, which

are viewed as subsets of a path that objects move along. At

each timestamp, snapshot clusters are obtained by mapping

moving objects to semantic regions, rather than through the

conventional density-based clustering algorithms. Finally,

a candidate MCSC recognition algorithm and screening

algorithm, executed at each timestamp, incrementally

identified and output MCSCs in real time. Extensive

experiments on two real-world public road surveillance

scenarios demonstrated the effectiveness of the proposed

framework.

At present, the number of topics is mainly determined

through domain knowledge or cross-validation. Our future

work will focus on optimizing hyperparameters and intel-

ligently training the number of topics. The coordination of

multi-camera monitoring functions and the fusion of video

data information are also a focus of further research.
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