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Abstract
Wrist and finger fractures detection is always the weak point of associate study, because there are small targets in X-rays,

such as hairline fractures. In this paper, a dataset, consisting of 4346 anteroposterior, lateral and oblique hand X-rays, is

built from many orthopedic cases. Specifically, it contains a lot of hairline fractures. An automatic preprocessing based on

generative adversative network (GAN) and a detection network, called WrisNet, are designed to improve the detection

performance of wrist and finger fractures. In the preprocessing, an attention mechanism-based GAN is proposed for

obtaining the approximation of manual windowing enhancement. A multiscale attention-module-based generator of the

GAN is proposed to increase continuity between pixels. The discriminator and the generator can achieve 93% structural

similarity (SSIM) as manual windowing enhancement without manual parameter adjustment. The designed WrisNet is

composed of two components: a feature extraction module and a detection module. A group convolution and a lightweight

but efficient triplet attention mechanism are elaborately embedded into the feature extraction module, resulting in richer

representations of hairline fractures. To obtain more accurate locating information in this condition, the soft non-maximum

suppression algorithm is employed as the post-processing method of the detection module. As shown in experimental

results, the designed method can have obvious average precision (AP) improvement up to 7% or more than other

mainstream frameworks. The automatic preprocessing and the detection net can greatly reduce the degree of artificial

intervention, so it is easy to be implemented in real clinical environment.
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1 Introduction

Deep learning [1] is one branch of artificial intelligence

that creates computer models to tackle some vision tasks

including object detection [2], image classification, etc.

The great success of deep learning in the field of computer

vision inspires many scholars to apply it to medical image

analysis. A classic example is fracture detection in X-rays

by using deep learning-based method. Current deep

learning-based object detection algorithms are mainly

divided into two branches: one-stage and two-stage [3].

The one-stage detector shows great real-time performance,

but the detection precision is lower than that of the two-

stage detector. In practice, the fracture detection has no

need for real time operating, so two-stage detector is

widely used in the diagnosis of X-rays [4].

The gray scale of X-rays is compressed in a small range

that is not conducive to differentiate crack features. So as

to make the skeletal structure more conspicuous, manual

windowing enhancement is adopted as preprocessing to

deal with this problem, but each image needs to manually

select the window level and window width [5]. Further-

more, during wrist and finger fracture detection, hairline
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fractures in X-rays are difficult to detect with state-of-the-

art methods in that small object detection [6, 7] is a chal-

lenging task for deep learning-based ways. To solve the

two problems mentioned above, an automatic preprocess-

ing based on GAN [8] and a detection network, called

WrisNet, are designed in this paper. The main contribution

can be concluded as follows.

(1) A dataset, consisting of 4346 anteroposterior, lateral

and oblique hand X-rays, is built from many

orthopedic cases. It should be pointed that hairline

fractures account for more than 50 percent of the

total targets in the dataset, way more compared to the

published datasets.

(2) An attention mechanism-based GAN is proposed as

the preprocessing to expand the gray scale range.

The goal of the proposed GAN is obtaining the

approximation of manual windowing enhancement.

We design a novel generator, consisted of multiscale

attention-module-based net to process the input

image, respectively. The GAN can achieve 93%

SSIM of manual windowing enhancement without

manual parameter adjustment and greatly reduce the

degree of artificial intervention.

(3) In order to deal with hairline fractures of the dataset,

a novel network, called WrisNet, is proposed to

improve the detection performance. A feature

extraction module and a detection module are

formed WristNet. In the feature extraction module,

the ResNeXt with the triplet attention (TA) is

designed to extract the features while in the detection

module, the soft non-maximum suppression (Soft-

NMS) algorithm is used as the post-processing

mechanism to improve the omission of hairline

fractures. The results show that the AP can achieve

7% or more improvement than the state-of-the-art

frameworks.

This paper is organized as follows. In Sect. 2, medical

image preprocessing methods and deep learning-based

fracture detection methods are reviewed. The proposed

preprocessing and WrisNet are detailed in Sect. 3. In

Sect. 4, several experimental results are illustrated to val-

idate the improved detection performance. Finally, the

conclusion is given in Sect. 5.

2 Previous work

2.1 GAN in medical image processing

GANs have great application potential in the field of

medical image processing. The main tasks they can solve

can be divided into image generation and image

translation. In the aspect of image generation, the structure

information existing in the train dataset is used to generate

new medical images. GANs are often used to increase the

number of train datasets to foster the accuracy of classifi-

cation tasks. A new generation method called generating

adversarial Unet was developed by Chen et al. [9], which

can realize the generation of various medical images to

alleviate the over fitting phenomenon in training. A method

that using cycle-consistent adversarial networks to generate

COVID-19 samples was suggested by Morı́s et al. [10] to

improve the accuracy of classification. The applicability of

generating images by GAN in oncology was demonstrated

by Han et al. [11]. The image translation of medical images

mainly includes super-resolution reconstruction, image

denoising and so on. The conditional generation adversarial

network (CGAN) [12] was used as a denoising algorithm in

[13] for low dose chest images and the proposed method

was proved that was superior to the traditional method. A

new super-resolution generation countermeasure network

was proposed by Zhu et al. [14], which combines CGAN

and super-resolution generation adversarial network

(SRGAN) to generate super-resolution images. By

extracting useful information from different channels and

paying more attention to meaningful pixels, a new con-

volutional neural network was proposed by Gu et al. [15]

for super-resolution in medical imaging. Jiang et al. [16]

proposed an improved loss function obtained by combining

four loss functions, and this loss function achieved good

results in the field of super-resolution CT image recon-

struction. In this paper, GAN is firstly used as medical

image preprocessing to expand the gray scale range.

Meanwhile, a multiscale attention-module-based generator

is proposed to process the image. The result of GAN

achieves 93% SSIM as manual windowing enhancement

without manual parameter adjustment.

2.2 Fracture detection by deep learning-based
method

Considering the accuracy of fracture classification and

fracture location, Guan et al. [17] proposed an improved

object detection algorithm for the detection of arm frac-

tures and obtained a model with a high AP. Qi et al. [18]

trained an object detection model to locate femoral frac-

tures by using a framework based on Faster-RCNN [19]

and achieved a good result. In [20], a dilated convolutional

feature pyramid network was designed, which was applied

to thigh fracture detection. In [21], the deep learning

method was employed to process the CT images of spine as

well as to locate spinal fracture. In [22], the top layer of the

original model was retrained by using inception v2 network

[23] for leg bone fracture detection. Nonetheless, the above

methods could not be applied to the proposed dataset due to
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poor hairline break detection performance. To better solve

the problem of detecting small targets, a feature extraction

module, called ResNeXt-TA, is proposed to make fracture

features more prominent. In addition, Soft-NMS is

designed as the specialized post-processing of a detection

module to improve the omission of hairline fractures.

3 Methodology

An automatic preprocessing based on GAN and WrisNet is

proposed for X-ray diagnosis of wrist and finger fractures,

which are detailed in Sects. 3.1 and 3.2, respectively. The

original image is input into the GAN for gray stretch. The

output is operated into WrisNet for detecting fractures of

X-rays.

3.1 GAN-based preprocessing

The X-ray gray value is compressed in a small range,

which is not conducive to the identification of crack fea-

tures. A very efficient way of gray stretch is manual win-

dowing enhancement but the window level and window

width of each image are need to be manually set. In this

paper, a GAN is firstly proposed to expand the gray scale.

Inspired by pix2pix [24], a multiscale attention-module-

based generator and a discriminator are designed to form

the GAN. The structure of the generator is shown in Fig. 1.

The architecture is modeled with encoding process and

decoding process, which are corresponding to 8 down-

samplings and 8 up-samplings, respectively. A CBAM

module [25] is embedded at each scale. 16 CBAM modules

and the encoding-decoding architecture are formed the

generator. The discriminator of pix2pix is directly trans-

planted to the proposed GAN. The designed generator can

greatly increase continuity between pixels of the generated

image, compared with pix2pix, and the comparing results

can be seen in Sect. 4. The gray scale of the output can be

controlled in a reasonable range, which can help the fol-

lowing WrisNet to detect hairline fractures better.

3.2 WrisNet-based fracture detection

The network diagram of WrisNet mainly consists of two

components and is shown in Fig. 2. The first component is

the feature extraction module to extract the feature maps of

the X-rays, which is detailed in Sect. 3.2.1. The second

component is the detection module, which can output the

exact location of the fractures by analyzing the feature

maps obtained in the first component and is detailed in

Sect. 3.2.2.

3.2.1 Feature extraction module

The proposed feature extraction module is inspired by

Faster-RCNN, mainly composed of ResNeXt-TA and FPN

[26].

(1) ResNeXt-TA

ResNeXt-TA is a proposed backbone, composed of C1,

C2, C3, C4 and C5. A convolution layer, a batch normal-

ization layer [27], a ReLU activation function [28] and a

maxpool layer are formed as C1.

C2, C3, C4 and C5 are designed with different number

(3, 4, 23, and 3) of blocks. The structure of each block is

inspired by ResNet-block [29], and the chart of one block is

described as Fig. 2. Each block is formed by a residual

connection and a ReLU layer. The residual connection

contains the following components in order:

(a) a convolution layer,

(b) a batch normalization layer,

(c) a ReLU layer,

(d) a group convolution [30],

(e) a batch normalization layer,

(f) a ReLU layer,

(g) a convolution layer,

(h) a batch normalization layer,

(i) a TA module,

(j) a shortcut connection.

The group convolution: The input tensor is firstly

divided into 64 groups in the channel dimension, then they

are convolved with 64 different convolution layers,

respectively. Finally, the results of the convolution are

concatenated on the channel dimension as the output of

group convolution. When the depth and width of the net-

work are increased to a certain extent, increasing the

number of groups can improve the performance of feature

extraction module effectively.

TA module: The TA module is used from [31] and the

detailed structure of TA module is shown in Fig. 3, which

is composed of three different sub-branches. The TA

module can be expressed as Eq. (1):

MðFÞ ¼ AVG M0;1;2ðFÞ þM1;0;2ðFÞ þM1;2;0ðFÞ
� �

ð1Þ

The formulas of the three branches are expressed as

Eqs. (2), (3) and (4):

M0;1;2ðFÞ ¼ r f 7�7ðZ � PoolðFÞÞ
� �

ð2Þ

M1;0;2ðFÞ ¼ P0;1;2 r f 7�7 Z � Pool P1;0;2ðFÞ
� �� �� �� �

ð3Þ

M1;2;0ðFÞ ¼ P0;1;2 r f 7�7 Z � Pool P1;2;0ðFÞ
� �� �� �� ��

ð4Þ

where F is the input tensor with size C � H �W . P0;1;2ð�Þ,
P1;0;2ð�Þ, P1;2;0ð�Þ refer to the dimensional transformation

operations that convert the size of F to C � H �W , H �
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Fig. 1 Network diagram of

proposed GAN

Fig. 2 Network diagram of WrisNet
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C �W and H �W � C, respectively. f 7�7ð�Þ refers to the

convolution operation with 7� 7 kernel size. And rð�Þ is

the sigmoid operation. Z-Pool(.) in the above formula can

be expressed Eq. (5):

Z � poolðFÞ ¼ ½MaxPoolðFÞ;AvgPoolðFÞ� ð5Þ

where MaxPoolð�Þ and AvgPoolð�Þ refer to the global

maximum pooling and the global average pooling opera-

tions, respectively.

The lightweight TA module is located after the third BN

layer of each block without adding too many parameters.

Fig. 3 Block diagram of ResNeXt-TA and the three-branch structure of TA module

Fig. 4 Size distribution of ground truth boxes in train dataset Fig. 5 Size distribution of ground truth boxes in test dataset
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Although few parameters does it contain, it could still help

each block effectively to understand what information

should be laid more emphasis on in the X-ray. In addition,

spatial attention is combined with channel attention [32] so

that the module could learn the interdependencies between

different dimensions and generate more meaningful rep-

resentations of wrist and finger fractures.

(2) Multi-scale feature extraction for small targets

According to the analysis of the statistical data (as

shown in Figs. 4 and 5), we find that the size distribution of

ground truth boxes is scattered and there are a large number

of hairline fractures. FPN is used in feature extraction

module to prevent the features of small fractures from

being lost during feature extraction. As shown in Fig. 2,

feature maps of different scales are extracted from the

output of C2, C3, C4 and C5 in ResNeXt-TA. These fea-

ture maps are fused from top to bottom to obtain more

meaningful feature maps.

3.2.2 Detection module

In the detection module, a large number of regular anchors

are artificially preset in the RPN, and then the proposal

coordinates representing the foreground area are obtained

through selection and regression. Then they are projected

onto the multi-scale feature maps generated in Sect. 3.2.1.

The feature matrixes are segmented on the feature maps

according to the corresponding proposals and flattened with

the ROI pooling layer. Next, the predicted location and the

label information are obtained through the regression layer

and Softmax layer, respectively. Finally, a post-processing

method Soft-NMS [33] is used to filter the redundant

output of the network. The execution process is defined in

the Algorithm 1. Set B contains N detected boxes and each

detection box has its own confidence. Soft-NMS reduces

the confidence of the possibly redundant detection boxes

instead of removing them directly. First, the confidences in

set S are sorted from high to low. The detected box bm with

the highest confidence is added to the set M, which is

merged into D, and bm is removed from B. Then, the

remaining boxes in B are checked one by one, and their

confidence scores are reduced by the function

f iru M; bið Þð Þ which are shown in Eq. (6). The progressive

loops until all the boxes in B are put into D. Finally, the

boxes with confidence lower than the threshold in D are

considered as repeated fracture localization. Soft-NMS can

greatly improve the detection effect in the above-men-

tioned special case by this kind of scoring reduction

mechanism.

si ¼
si; iou M; bið Þ\Nt

si 1� iou M; bið Þð Þ; iou M; bið Þ�Nt

�
ð6Þ

where Nt is the NMS threshold.

4 Experiment

4.1 Dataset

4346 X-rays of wrist and finger fractures including distal

radius fractures, scaphoid fractures, phalanx fractures, and

other types are utilized in the experiment, which are col-

lected from real medical environment in regular hospitals.

The labels of ground truth boxes are completed by the

experienced radiologists using LabelImg over one month.

The annotations are stored as XML files with PSACAL

VOC format. This dataset brings more challenges because

there are many X-rays with steel nails, plates, and plaster

on the hand. The 4346 X-rays are randomly divided into a

train dataset and a test dataset with a ratio of 8 : 2, which is
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always guaranteed during the experiment. We make

statistics on the size of the X-rays and the number of targets

of different sizes in test dataset(see Table 1). In this paper,

a target with a size less than 32� 32 is defined as a small

target [34], which accounted for more than 53:7% in the

test dataset. And targets with a size between 32� 32 and

96� 96 are considered as medium targets. The distribution

of targets in the train dataset and test dataset is shown in

Figs. 4 and 5.

4.2 Training details of GAN

4.2.1 Manual image preprocessing

The manual window technique is generally used to pre-

process the X-ray image. First, a certain range is selected,

where the maximum and the minimum are set as the

thresholds. The pixel value greater than max is set to 255,

and the pixel value less than min is set to 0. Then, the pixel

values in the range are mapped to 0–255 using a linear

conversion. The formula for pixel value mapping is shown

in Eq. (7):

P ¼ 255� Po �minð Þ
max�min

ð7Þ

Table 1 Data statistics

Maximum height Maximum width Number of targets Number of small targets Number of medium targets

512 (pixel) 512 (pixel) 1116 600 511

Fig. 6 Changes of L1 loss in training GAN

Fig. 7 The data augmentation process includes random flips, bright-

ness transformations, affine transformations, and image sharpening,

designed to enhance the X-rays of the train dataset. The input X-rays

are randomly subjected to the above four transformations, and the

relevant parameters are randomly selected within a certain range. a Is

the original X-ray, while the data-augmented results are shown in (b–
j)
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where Po is the original pixel value and P is the pixel value

after linear conversion.

The X-rays with the manual window adjustment are

used as the ground truths of GAN.

4.2.2 Training process of GAN

The GAN model is trained on a GPU NVIDIA GeForce

RTX 3090. The settings of training are as follows. Adam

gradient descent algorithm [35] is adopted. The batch size

is set to 1 and a total of 200 epochs are trained. The initial

learning rate is set to 0.0002, and a linear learning rate

decay strategy is adopted at the 100th epoch.

In the training process, so as to ensure that the auto-

matically preprocessed images are similar to the manually

preprocessed images, L1 loss is used in the loss function of

the generator to guide the generation of images. The

change of L1 loss during training indicates the process of

gradually approaching the pixel values of the automatically

preprocessed image and the manually preprocessed image,

as shown in Fig. 6.

4.3 Training details of WrisNet

4.3.1 Data augmentation

In the experiment, two data augmentation [36] strategies

are set to improve the performance. One strategy is that the

data are tripled by flipping the image in random directions.

And the other strategy is that the data are increased ten

times by using random flips, brightness transformations,

affine transformations, and image sharpening. Some

transformed images are shown in Fig. 7.

4.3.2 Training process of WrisNet

The pretrained weights on ImageNet [37] are using to

initialize the backbone. The model is trained end-to-end on

four GPU NVIDIA GeForce RTX 3090. The hyperpa-

rameters are shown in Table 2. The warm-up strategy is

used in the first 500 iterations. The SGD gradient descent is

adopted. Furthermore, the training process is shown in

Fig. 8.

4.4 Results and analyses

4.4.1 GAN-based preprocessing

The proposed GAN is compared with Unet-based [38]

pix2pix in two different ways, which are described as

follows:

Table 2 Hyperparameters for

training WrisNet
Learning rate Batch size Momentum (SGD) Weight decay Total epochs

0.02 16 0.9 0.0001 23

Fig. 8 Process of training. WrisNet loads the images and annotations

of the train dataset, updating the weight of the network in repeated

iterations

Table 3 Similarity distribution of test dataset using pix2pix

Threshold of SSIM Number of images in test dataset

SSIM\90% 212

SSIM\80% 45

SSIM\50% 3
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(1) SSIM value

The distribution of SSIM value in test dataset using

pix2pix are shown in Table 3. The SSIM value which is

less than 90% can be great improved by using the proposed

GAN. The SSIM comparison between pix2pix and the

proposed GAN is shown in Table 4, where the SSIM of

single image can be increased from 77.75 to 95.53%, which

proves that the proposed GAN can obtain the approxima-

tion of manual windowing enhancement. The comparison

of the generated images is shown in Fig. 9. The result

shows that the image generated by the proposed GAN is

more similar than pix2pix with ground truth (see circles in

Fig. 9) and proves that the attention-module-based gener-

ator can greatly improves the correlations between pixels.

(2) AP value

As shown in Table 5, the proposed generator ensures the

consistency of the detection results between the generated

images and the manual images, compared with Unet. The

Table 4 SSIM comparison

between pix2pix and the

proposed GAN

pix2pix (%) The proposed GAN (%)

Average of test dataset (SSIM\80%) 69.86 74.14

Maximum of test dataset (SSIM\80%) 79.99 95.53

Average of test dataset (SSIM\90%) 82.84 86.17

Maximum of test dataset (SSIM\90%) 89.99 99.12

Average of test dataset (SSIM\100%) 92.62 92.90

Average of test dataset (SSIM\100%) 99.53 99.59

Maximum improvement of single image 77.75 95.53

Fig. 9 Comparison of the generated images. a Is the original X-ray image. b is the ground truth. c, d Are generated by pix2pix and the proposed

GAN, respectively

Table 5 Effect of manual and generated images on object detection

Algorithm Manual image (AP%) Generated by Unet (AP%) Generated by proposed generator (AP%)

Faster R-CNN (ResNet50) 47.4 47.1 47.4

Faster R-CNN (ResNeXt101) 49.2 48.9 49.4
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Fig. 10 Our model has a good effect on the detection of phalanx, hand scaphoid and distal radius. The first to third results from the upper left

include the detection of phalangeal fractures. Others include the scaphoid and distal radius fractures

Fig. 11 Under the influence of plaster and steel nails, the model still has considerable detection effect. The first to third results from the upper left

include the detection with steel nails. Others include the detection with plasters
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detection effect of generated images even over the manual

test dataset, due to the elimination of the influence of

subjective factors in preprocessing.

4.4.2 Comparison of detection effect

3476 X-rays are using to train the WrisNet, and some

detection results of the test dataset are shown in Figs. 10

and 11. The green boxes in figures are the ground truth

boxes marked by the doctors, and the blue boxes are

detected by WrisNet. As shown in Fig. 10, WrisNet has

excellent results in the fracture detection of phalanx, sca-

phoid, and distal radius, which is reflected in the large

overlap area between the detection boxes and the corre-

sponding ground truth boxes. At the same time, as shown

in Fig. 11, the model can also perform well in complex

environments such as X-rays with nails or plaster. The

result can demonstrate that the effectiveness is very close

to the diagnosis of radiologists.

The detection effects of the representative object

detection frameworks are compared with WrisNet, and the

results are shown in Table 6, where the significant

improvement of our method is marked in bold. All the

frameworks use 3476 X-rays as the train dataset and 870

X-rays are set as the test dataset. The same image pre-

processing method and the first data augmentation strategy

are used in this part. Furthermore, the pretrained weights

on ImageNet are used in all frameworks to initialize the

backbone network, and the hyperparameters are adjusted to

achieve the best effect, to ensure the validity of the com-

parative experiment. AP is used as evaluation criteria of

detection results, which is the most reliable and commonly

used evaluation criteria in current object detection field.

And APs of each framework are obtained when IOU is 0.5.

As shown in Table 6, our network achieves 54:7% AP,

which have an improvement of at least 5:5% in AP over the

other frameworks. With the second data augmentation

strategy and Soft-NMS, the AP of WrisNet can reach to

56:6%:

4.4.3 Ablation experiment

A simple ablation experiment is performed and the results

are shown in Table 7, where the significant improvement of

our method is marked in bold. The impact of the proposed

data preprocessing, the proposed backbone network, the

data augmentation, and the proposed post-processing are

gradually tested. In ablation experiments, the results can

demonstrate that the proposed WrisNet have obvious AP

improvement up to 8:6%. As shown in Table 8, the

improvement is mainly due to the enhancement of small

target detection and WrisNet have obvious AP improve-

ment of small targets up to 9:4%:

Table 6 Comparison of different frameworks

Algorithm Backbone AP (%)

Faster R-CNN ResNet50 47.4

Faster R-CNN ResNeXt101 49.2

Cascade R-CNN [39] ResNet50 48.2

Cascade R-CNN ResNet101 48.4

Cascade R-CNN?DCN [40] ResNet101 48.3

WrisNet ResNeXt-TA 54.7

WrisNet (best effect) ResNeXt-TA 56.6

Table 7 Ablation experiment
Data preprocessing Improved backbone Data augmentation (109) Soft-NMS AP (%)

� � � � 48.0

U � � � 49.2

U U � � 53.7

U � U � 53.3

U U U � 54.0

U U U U 56.6

Table 8 Comparison of AP of

different size targets
Algorithm AP% AP% (small targets) AP% (medium targets)

Faster R-CNN(ResNeXt101) 48.0 27.8 67.6

WrisNet 56.6 37.2 73.4
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5 Conclusion

In this paper, an automatic GAN-based preprocessing and

WrisNet are proposed for X-ray diagnosis of wrist and

finger fractures. The results between the proposed GAN

and manual processing show high similarity for X-ray

enhancement, as a generator incorporating an attention

mechanism is designed. 93% of SSIM indicates that man-

ual window augmentation can be replaced by automatic

GAN-based preprocessing. The preprocessed images are

fed into WrisNet for wrist and finger fracture detection. To

better handle hairline fractures, ResNeXt-TA and Soft-

NMS were used to improve the backbone and post-pro-

cessing. ResNeXt-TA is constructed by using group con-

volution and attention strategy to extract richer feature

maps, while Soft-NMS is used to filter redundant bounding

boxes. The AP value of the proposed method improves by

7% compared to that of the current mainstream framework,

when the IOU threshold is 0.5. We believe that WrisNet

performs better after being trained on a large number of

data and has the potential to help doctors in diagnosis.
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