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Abstract
Nowadays, the information obtainable from the markets are potentially limitless. Economic theory has always supported

the possible advantage obtainable from having more information than competitors, however quantifying the advantage that

these can give has always been a problem. In particular, in this paper we study the amount of information obtainable from

the markets taking into account only the time series of the prices, through the use of a specific Generative Adversarial

Network. We consider two types of financial instruments traded on the market, stocks and cryptocurrencies: the first are

traded in a market subject to opening and closing hours, whereas cryptocurrencies are traded in a 24/7 market. Our goal is

to use this GAN to be able to ‘‘convert’’ the amount of information that the different instruments can have in discriminative

and predictive power, useful to improve forecast. Finally, we demonstrate that by using the initial dataset with the 5 most

important feature useds by traders, the prices of cryptocurrencies present higher discriminatory and predictive power than

stocks, while by adding a feature the situation can be completely reversed.

Keywords Generative adversarial network � Deep learning applications �Market information analysis � Stock price analysis

1 Introduction

The problem of information present in the markets and of

information that can be released at a company level has

always been fundamental for understanding how a price is

determined, as well as at a regulatory level. As early as

1945, Hayek [1] described how prices, in a system where

relevant information is dispersed, can coordinate the

actions of different subjects. In modern financial markets,

investors benefit from the information available by select-

ing only what they believe is important.

In recent times, the amount of information available to

investors has increased exponentially [2] thanks to the

news provided by companies, creating a problem of opti-

mal selection of the most important information compared

to those that could only ‘‘deceive’’ the investor. Thus, an

open question remains how much current information

dissemination capabilities are able to impact price effi-

ciency in incorporating new information.

The first forms of analysis of the price effects of infor-

mation concern disclosures of corporate reporting [3]. The

disclosure of information highlights managerial talent and

is able to explain crisis situations [4, 5], or it is able to

reduce the information asymmetry by preventing investors

from exchanging private information [6]. In contrast to this

view, the increase in complexity in the information pro-

vided could lead to problems with the legibility of a news

[7], or it could be used to obfuscate negative news [8].

Some studies [9–11] examine the effectiveness of numer-

ical and textual information on price discovery, highlight-

ing how the combination of high levels of numerical

information combined with graphic information can have a

great impact [12] on investors and on the choice of price;

while in this case we face the inverse situation, that is to

understand from the prices what is the level of information
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contained and the consequences that this can have on the

forecast. This is where this paper focuses, in investigating

the market hours problem associated with financial infor-

mation. However, our starting point is not to consider

textual information (deriving for example from company

statements), but to use only the prices recorded on the

markets to understand what level of information these

prices embody. In particular, this consideration is carried

out over small time intervals to highlight the difference

between closing markets and always open markets.

Many markets are subject to opening and closing times.

In such types of markets, when news spreads or events

occur after closing hours, price reactions can only occur

after the next opening of the market. In contrast, the

cryptocurrency market (and currencies in general) is not

subject to closing times. In this type of market, the

‘‘opening’’ price of the new day and ‘‘closing’’ price of the

previous day are recorded at midnight each day, creating

continuity in the historical price series. Thus, the recorded

prices are assumed to be the sum of events occurring in a

24-h period. Therefore, these prices may contain more

information useful for forecasting. The objective of this

study is to verify how this difference of information in

price can result in forecast imbalances when using an

appropriate neural network. We focus on the discriminative

and predictive power of prices. Previous studies, such as

those of Tang et al. [13] and Gorr [14], have demonstrated

that neural networks can model seasonality and other fac-

tors, e.g., trends and cyclicity, autonomously. Therefore,

different ‘‘quantities of information’’ contained in various

types of prices would seem to be the only cause resulting in

forecast imbalances. Datasets with different temporal

structures would contain different amounts of information,

resulting in differences with respect to the degree of pre-

dictability related to associative learning tasks [15].

The remainder of this paper is organized as follows. In

Sect. 2, we present some of the most important literature in

the sector, in Sect. 3, we analyze the architecture of Gen-

erative Adversarial Network (GAN). Herein, we focus on

TimeGAN, which is used to extrapolate the characteristics

of different features in time-series data. In Sect. 4, we

define our model and methodology. In Sect. 5, we apply

this special GAN to the time-series data of stocks and

cryptocurrencies and compare the obtained results,

extending the previous datasets by adding a feature and

verifying the results. Finally, conclusions are presented in

Sect. 6. In ‘‘Appendix’’, the most used neural network

architectures to make financial market predictions, Long–

Short Term Memory (LSTM) and Convolutional Neural

Network (CNN), are presented.

2 Literature review

Moving away from works in which give the information

we try to understand what the impact on the price is,

finding ourselves in the diametrically opposite situation, we

can consider only time series, whose analyzes has always

attracted the attention of academia, especially for predict-

ing the future values in a series. Financial time series are

optimal candidates for such an analysis. They base their

assumptions on the random walk hypothesis, a concept

introduced by Bachelier [16] in 1900, which has remained

the central pivot in the theory of time series. Based on the

random walk hypothesis, Kendall [17] assumed that the

stock price movement was random, whereas Cootner [18]

indicated how the stock price movement could not be

explained in detail but could be better approximated based

on the Brownian motion. Traditionally, the best practice

has been to focus on logarithmic returns, which provides

the benefit of linking statistical analysis with financial

theory. In his efficient market hypothesis (EMH) theory,

Fama [19] introduced a concept that historical prices are

factored into the current prices in a given market. However,

deploying such historical data in any analysis would be less

useful (if not completely useless) for predicting future

prices. LeRoy [20] demonstrated that the concentration on

yields was unjustified and concluded that the stock markets

are inefficient. Taylor [21] proposed an alternative price

trend model and provided empirical evidence that the price

trend model was useful for analyzing the future prices in

markets.

From an econometric perspective, Box and Jenkins [22]

introduced power transformations to statistical models and

applied them to a time series. Specifically, they suggested

to use power transformation for obtaining an adequate

Autoregressive Moving Average (ARMA) model. Based on

this, Hamilton [23] provided a formal mathematical defi-

nition of this model. Several evolutions have followed this

pattern, e.g., Autoregressive Integrated Moving Average

(ARIMA) and Seasonal Autoregressive Integrated Moving

Average (SARIMA).

2.1 Machine learning

Recently, because of the developments of Artificial Neural

Networks (ANNs) and their suitability in nonlinear mod-

eling [24], there has been considerable interest in applying

such methods to time-series prediction in the Machine

Learning (ML) framework. For example, Foster et al. [25]

were among the first to compare the use of neural networks

as function approximators with the use of the same net-

works to optimally combine classical regression methods.

Further, they highlighted the manner in which using
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networks to combine forecasting techniques provided per-

formance improvements. In addition, Refenes et al. [26]

used a neural network system to forecast the exchange rates

via a feedforward network, which faced difficulty in pre-

dicting the turning points despite an accuracy of 66%.

Sharda and Patil [27] compared the predictions obtained

using neural networks and the Box–Jenkins model. Based

on this comparison, they verified that neural networks

performed better than expected for time series with long

memory. In contrast, the neural networks outperformed the

prevision for time series with short memory. Andrawis

et al. [28] combined the forecasts obtained via different

time aggregation, and Adeodato et al. [29] proposed a

methodology based on an ensemble of Multilayer Percep-

tron networks (MLPs) to achieve robust time-series fore-

casting. In addition, Wichard [30] proposed a hybrid model

to forecast a time series with recurring seasonal periods

using separately trained models. A considerable innovation

was introduced in the support vector machine (SVM)

model [31], thereby solving the pattern classification

problem. In particular, its use was immediately extended to

regression, with subsequent application to time-series

forecasting [32]. Over time, several SVM-based models

have been developed, e.g., the least-square SVM (LS-

SVM) [33]. More recently, Xiao et al. [34] used a cumu-

lative auto-regressive moving average which combines the

least squares Support Vector Machine model (ARI-MA-

LS-SVM), to make basic predictions for the stock market;

highlighting how this model is more effective for stock

price forecasting than a classical forecasting model. In

addition, Kovalerchuk and Vityaev [35] used various

models, such as the Evolutionary Computation (EC) and

Genetic Programming (GP) models, Zaccagnino et al.

[36, 37] developed automatic ML-based methods to pro-

vide privacy awareness to users and total control over their

data during online activities, and Li and Ma [38] developed

a model to forecast the stock price using an ANN. Mit-

telmayer and Knolmayer [39] compared different text

mining techniques for extracting market response to

improve prediction; and Mitra [40] focused on studying

news to predict the anomalous returns associated with

trading strategies.

2.2 Deep learning

In case of Deep Learning (DL) techniques, increasingly

complex architectures have been used, especially in the

previous decade [41]. For example, Liu et al. [42] used a

CNN-LSTM for strategic analysis in financial markets;

Zhang et al. [43] used structure for motion (SFM) to pre-

dict stock prices by extracting different types of patterns;

Jin et al. [44] propose a decomposition for stock price by

an Empirical Model Decomposition (EDM), subsequently

used an LSTM with Attention Mechanism to improve

prediction; or Lu et al. [45] that used a combination of

CNN for extracting features, biLSTM to predict a stock

price for the next day and the Attention Mechanism to

capture the influence of features on the closing price.

However, many other types of more complex networks can

be readjusted to the time series to make predictions, e.g.,

GANs for speech synthesis [46], denoising images [47], or

an imbalanced generative adversarial fusion network

(IGAFN) to integrate credit data into an unified latent

feature space, as demonstrated by Lei et al. [48]. In addi-

tion, other combinations of architectures are represented by

the deep convolutional neural network (DCNN) and con-

ditional random field (CRF) networks as proposed by

Papandreou et al. [49] for high-resolution segmentation and

a deep relative distance learning (DRDL) network as

proposed by Liu et al. [50] to calculate the distance

between vehicles via graphical analysis by translating them

into the Euclidean space. Finally, this methodology that we

intend to apply to the financial sphere about quantities of

information, can be implemented in other promising sce-

narios, e.g., Blockchain [51], R&D [52], or supply chain

[53].

3 Neural network architectures

The most generally used network architectures in financial

time series forecasting are Long–Short Term Memory

(LSTMs), particularly for the ability of adapting to the

features considered. However, more recently, this sector

has opened up to new architectures such as Convolutional

Neural Networks (CNNs, whose use is justified by con-

sidering features no longer as mere time series but, in many

cases, images) and Generative Adversarial Networks

(GANs). A more accurate description of how LSTM and

CNN work can be found in ‘‘Appendix’’. Below, however,

we will focus only on GANs (and on a particular version)

to highlight the amount of information available on the

markets.

3.1 Generative adversarial network

Generative models are formulated based on an approach

developed in accordance with the Bayes’ theorem. Gen-

erative models consider sensorial hypotheses about the

input to modify the parameters characterizing them. The

learning mechanism involves maximization of the likeli-

hood of data relative to the generative model; this corre-

sponds to the discovery of efficient methods for encoding

the input information. For financial time-series forecasting,

the most common generative model is Generative Adver-

sarial Network (GAN), which was introduced by
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Goodfellow et al. [54] in 2014. The GAN model comprises

two networks, i.e., a generative network G that produces

new data based on a certain distribution pg and a dis-

criminative network D that evaluates them, resulting the

probability of x� pdata, where pdata indicates the distribu-

tion of training data. The network’s objective [46] is to

encourage D to find a binary classifier that provides opti-

mal discrimination between the real and generated data and

simultaneously encourage G to fit the true data distribution.

D and G play the following two-player minimax game [54]

with the value function V(G, D).

min
G

max
D

VðD;GÞ ¼ Ex� pdataðxÞ½logDðxÞ�

þ Ez� pzðzÞ½logð1� DðGðzÞÞÞ�
ð1Þ

This type of neural network is one of the most complex and

is generally used in complex sectors. Yoon et al. [55]

adopted a version of it to accept time-series inputs and

generate synthetic data.

3.1.1 TimeGAN

One of the main problems associated with time-series

forecasting is the selection of optimal variables such that

the neural network can capture their links and dynamics

over time. In particular, Yoon et al. [55] proposed the

Time-Series Generative Adversarial Network (TimeGAN)

to generate realistic time-series data in various domains.

TimeGAN considers unsupervised adversarial loss and

stepwise supervised loss and uses the original data for

supervision. TimeGAN comprises four networks [55]: the

embedding function, the recovery function, the sequence

generator, and the sequence discriminator. The autoen-

coding components are trained jointly with the adversarial

components such that TimeGAN simultaneously learns to

encode features, generate representations, and iterate over

time. Typically, GANs are used (regarding a financial time

series) for the generation and replacement of any missing

values (NaN). However, in this case, the main objective is

to recreate a time series based on the features considered as

input.

In this model, the generator is exposed to two types of

inputs during training, i.e., synthetic embeddings to gen-

erate the next synthetic vector and sequences of embed-

dings of actual data for generating the next latent vector. In

the first case, the gradient is computed based on unsuper-

vised loss, whereas the gradient is computed based on

supervised loss in the second case.

4 Methods and materials

To highlight the generated results, Yoon et al. [55] pro-

posed a graphical measure for visualization, i.e., t-SNE

(van der Maaten and Hinton [56], to visualize the similarity

of the generated distribution with respect to the original

distribution) and two scores (obtained by optimizing a two-

layer LSTM).

• Discriminative score: This factor indicates the error of a

standardized classifier (RNN) when distinguishing the

real sequence and the sequence generated based on a

test set using a post-hoc RNN network.

• Predictive score: This factor evaluates the prediction

performance of synthetic data. Here, a post-hoc RNN

architecture is employed for prediction. Further, the

performance is reported in terms of mean absolute error

(MAE), which measures the ability of synthetic data to

predict the next-step temporal vectors. For example, the

MAE between paired observations is defined as

MAE ¼
Pn

i¼1 jyi � xij
n

: ð2Þ

In addition, the t-SNE algorithm also returns Kullback–

Leibler (KL) divergence

DKLðPkQÞ ¼
X

i

PðiÞ log2
PðiÞ
QðiÞ

� �

; ð3Þ

which is a measure of the difference between two proba-

bility distributions P and Q [57] that indicates the infor-

mation lost when using a distribution (in this case, the

synthetic distribution) for approximating another distribu-

tion (the original distribution). We employ this network to

demonstrate that the financial instruments listed on a

market subject to time constraints have less predictive

power than the instruments traded on a 24/7 market. The

financial instruments that are subject to timetables during

the continuous trading phase are representative of the

information presented during those hours; however, the

events that occur after closing is not reflected (immedi-

ately) by the price and will be recorded only on the fol-

lowing day during the opening auction. In contrast, for

instruments not subject to schedules, this problem does not

occur because any event that may affect the price will be

recorded, affecting the price dynamics. Exchanges offer the

possibility to conduct negotiations outside closing hours

(trading in premarket and after hours), as in the case of

Borsa Italiana, where the preauction phase is from 08:00 to

09:00 and after-hours trading is from 05:50 to 8:30 p.m.,

and NASDAQ, where premarket trading is from 04:00 to

09:30 (ET) and after-hours trading is from 4:00 to 8:00

p.m. (ET). However, certain time slots remain uncovered.

Therefore, the ‘‘amount of information’’ associated with
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each price is an essential element for time-series fore-

casting. This hypothesis is confirmed by the fact that the

corresponding financial instrument becomes more suit-

able for forecasting when considering a variable that links

two successive days.

Here, GAN is used to generate synthetic data based on

the input such that the network understands the links

existing between data. This network can optimally identify

the best variables (features) for forecasting by observing

the improvements/reduction in the predictive score and by

replacing different features in the datasets. Therefore, GAN

can be used to validate financial instruments and variables

based on which predictions can be subsequently conducted

using any tool for obtaining the optimal result. In partic-

ular, many tools used to make predictions originate from

econometrics. Thus, this type of network can be used to

screen financial instruments such that the accuracy of the

classical econometric tools is improved.

4.1 Dataset and experimental setup

Herein, empirical analyses of stocks and cryptocurren-

cies were conducted. However, first, we can consider dif-

ferent instruments because they are both time series and,

therefore, have the same characteristics. The instruments

used are four stocks and three cryptos listed in Table 1. All

the stocks1 are from NASDAQ, while the cryptocurrencies2

are related to USD. The related datasets were divided into

two categories, i.e., classic variables (features) obtained

from any site that tracks negotiations and a category in

which the yield feature was added. Each dataset for stocks

is about 500 days, while those for cryptocurrencies are

from 700 days (due to the 24 h opening). The classical

features used in the financial sector are Open (O), High

(H), Low (L), Close (C), and Volume (V), which give the

name to the corresponding datasets. For simplicity, we

indicate with Close the Adjusted Close feature, which

represents the price recorded at closing after some updates

made by the Stock Exchange. Prices were considered based

on a daily time frame from 12/20/2017 to 12/31/2019.

Table 2, shows an extract of how the dataset is composed.

Here, the Yield feature (indicate with (Y)) was determined

as Y ¼ ln Pt

Pt�1
, where Pt represents the current stock price

and Pt�1 is the stock price of the previous day. Table 3

shows how the dataset changes with the addition of the new

feature (the Close feature in cryptocurrencies is called

Last). An immediately striking peculiarity is that in cryp-

tocurrency datasets, the opening and closing prices are the

same in most cases. This is linked to the 24 h opening

described above since the registration of the closing and

opening price of the following day take place with a few

moments of difference. Previous datasets were again

divided into several types to test the predictive ability of

prices. In particular, the macro division concerns the use or

not of the Yield feature and some combinations between

the previous OHLCVs.

• Dataset without yield:

– OHLCV dataset, with five features: open, high, low,

close (last in the case of cryptocurrencies), and

volume;

– OC dataset, with only two features: open and close

(last).

• Dataset with yield:

– OHLCVY dataset, with six features (yield was

added to the previous OHLCV).

– OCY dataset, with three features (yield was added

to the previous OC).

– CY dataset, with only two features: close/last and

yield.

In the ‘‘with yield’’ case, to test the predictive power of the

Close feature (the price that is most considered in the

financial field), we decided to combine it alone with Yield

(CY dataset), which represents a summary of the trend

between the previous day and the current one.

As previously defined, the TimeGAN we will use

comprises 4 component networks, of which 2 are encoders

and 2 decoders. These encoders and decoders, in practice,

are based on Recurrent Neural Networks (RNNs) with

LSTM cell. Figure 1 represents the structure of the Time-

GAN instantiated with RNNs and their connections are

visible. In this case, the L functions represent the losses;

gS;X , rS;X , dS;X and eS;X represent the functions that

operate for each type of network (e.g., g for generator); ut

and hS;t the hidden state sequences; while ~s, s, ~xt, xt, ~yS , ~yt,

zS , zt are the random vectors extracted from a certain

distribution. It is precisely the various g, r, d and e func-

tions implemented with particular network architectures.

Table 1 List of stocks and cryptos used

Stocks Cryptocurrencies

AAPL (Apple Inc.) BTC (Bitcoin Index)

GOOG (Alphabet Inc.) ETH (Ethereum Index)

AMZN (Amazon.com) BCH (Bitcoin Cash Index)

TSLA (Tesla Inc.)

1 Source: www.finance.yahoo.com.
2 Source: www.investing.com.
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Regarding the choice of the hyperparameters, the first

choice was the module (cell), for which we opted for the

LSTM, given its diffusion in the financial field and the

excellent results obtained on data of this type. On the other

hand, the hyperparameters contained in Table 4(a) were

selected by choosing the configuration of Yoon et al. [55],

as they also analyzed the financial case and proposed this

choice as the best result. Only for seq_len (sequence length

of time-series data) we have operated as choice 24, this to

make it represent approximately one month of trading.

Otherwise, the number of neurons in the RNN (the so-

called parameter hidden_dim) was chosen variable based

on the dataset type. To make a choice, we made, with each

dataset, 10-fold cross-validation by using the Grid-

SearchCV method (as proposed by Guarino et al. [58]).

The number of neurons size was tested with values in the

range between 2 and 40 (for even number), and the best

results are those shown in Table 4(b) (as the values that

minimize the KL divergence). Figure 2 summarizes how it

works, highlighting a concatenation of LSTM cells whose

input Xt is represented by the tensor constituted by the

different datasets. Training and testing were performed

using Google Colab.

5 Results

At this point we can compare the behavior of the network

in the different types of subdivisions created in the dataset.

5.1 Case 1: Dataset without yield

Here, we compare different datasets from a graphical

perspective. Then, based on the scores, we compare the

capabilities of different time series in terms of the differ-

ence with respect to the amount of information. In this

comparison, we compared the OHLCV datasets with the

OC datasets for all financial instruments beginning from

the dataset without yield. The graphical analysis was per-

formed by comparing the t-SNE plots, and score-based

comparison was performed by comparing the KL diver-

gence, discriminative score, and predictive score.

The first t-SNE analysis considered the OHLCV dataset

(Fig. 3). This analysis indicates the potential of TimeGAN

relative to data generation. In the cases shown in Fig. 3b, f

(both cryptocurrencies), there is very precise adherence of

the synthetic data to the original real data. Obviously, with

this type of dataset, greater features are combined, allowing

the network to improve the forecast. Graphical analysis

allows us to observe how synthetic data extend over a

greater surface than the original data in the case of cryp-

tocurrencies Fig. 3b, d, f compared with the stocks (where

they are much more concentrated).

The second t-SNE analysis was based on the OC dataset,

as shown in Fig. 4.

In this case, at first glance, synthetic data are observed to

be different from original data. However, careful analysis

indicates that in Fig. 4a, c, f (all cryptocurrencies), syn-

thetic data are similar to the original data or imitate (to a

limited extent) their distribution. In case of stocks, the

distribution of synthetic data is dispersive and not entirely

consistent with the distribution of original data.

Here, the hypothesis is that the prices of cryptocurren-

cies contain a greater amount of information and have

greater discriminative and predictive power. This hypoth-

esis is supported based on a graphical analysis. However,

to eliminate doubt, we introduce the results of analysis

based on discriminative and predictive scores, where Ds

denotes the discriminative score, Ps denotes the predictive

score, and DKL denotes the KL divergence, as shown in

Table 5. The most important score is the predictive score

(corresponding to MAE) because it specifies the ability to

use the input data for making predictions, whereas the

discriminative score specifies the ability of data to deceive

the GAN discriminator.

By analyzing the values, it can be noticed how the

cryptocurrency scores were the lowest and therefore the

most significant, especially in the case of the OC dataset.

We also assume that in markets subject to open-

ing/closing time, investors are struck by ‘‘euphoria’’ by

being trapped in a bottleneck and going to generate a price

that may not be representative of the real trend, especially

close to the closing minutes. In contrast, such situations

may not exist in 24/7 markets because such markets are

always open.

5.1.1 Outliers

We observe a particular situation when analyzing the

stocks of Tesla Inc. (TSLA) listed on NASDAQ. Despite

being listed on a market subject to timetables, this analysis

using TimeGAN (both graphically and based on scores)

resulted in a price type containing plenty of information

Table 2 Extract of the Apple price dataset without Yield

Date Open High Low Close Volume

12/20/2017 174.89 175.42 173.25 168.82 23475600

12/21/2017 174.17 176.02 174.01 169.46 20949900

12/22/2017 174.69 175.42 174.50 169.46 16349400

12/26/2017 170.08 171.47 169.68 165.16 33185500

12/27/2017 170.10 170.78 169.71 165.19 21498200

..

. ..
. ..

. ..
. ..

. ..
.
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such that it achieved almost better results than cryptocur-

rencies (Fig. 5).

In the second dataset, the synthetic data reproduced the

distribution of the original data very well. The results of the

score analysis are presented in Table 6.

In this case, especially in the OC dataset, the price range

indicated very low discriminative and predictive scores,

even lower than that associated with cryptocurrencies.

Because of this ‘‘outlier’’, we deduce that some financial

instruments listed on stock exchanges are subject to

timetables, which can completely absorb information

despite the above limitation. This situation could be linked

to, for example, the hypothesis that negative events never

occurred outside the opening hours of the stock exchange

or (in a less realistic but still possible hypothesis) that no

external situations occurred in the considered time range

that could influence the price. In these cases, the use of this

type of GAN can be a ‘‘form of control’’ on prices, espe-

cially when they are to be used for forecasting. In addition,

there may be hidden elements that affect the price. How-

ever, we assume that a financial instrument whose price has

a ‘‘large amount of information’’ could result in improved

prediction power when compared with a financial instru-

ment with less information.

5.2 Case 2: Dataset with yield

Here, as in the previous case, we compare the financial

instruments from a graphical perspective relative to the

discriminative and predictive scores in reference to the

datasets with the yield feature. We included the yield

feature and verified its usefulness with respect to the

amount of information. The hypothesis we seek to validate

is that yield can link the information of the current day with

the previous day, eliminating (or at least attenuating) the

information gap created in markets subject to closing/

opening times, e.g., stocks. In addition, under this new

condition, the Tesla stock is no longer regarded as an

outlier (the proof is presented later).

Fig. 1 TimeGAN [55] structure instantiated with RNNs

Table 3 Extract of the Bitcoin

price dataset with Yield
Date Open High Low Last Volume Yield

12/20/2017 17521.70 17813.60 15642.70 16462.00 227680 - 0.06239

12/21/2017 16461.10 17301.80 14953.00 15631.10 163740 - 0.05173

12/22/2017 15632.10 15823.70 10875.70 13665.00 466980 - 0.13449

12/23/2017 13665.00 15492.20 13356.10 14396.50 170170 0.052147

12/24/2017 14396.60 14413.70 12166.50 13790.00 182420 - 0.04304

..

. ..
. ..

. ..
. ..

. ..
.

Table 4 Parameter setting
Parameters Choice Dataset N. neurons

(a) Hyperparameter configuration list (b) Choice of hidden_dim for dataset

module LSTM OHLCV 20

seq-len 24 OC 8

iterations 30,000 OHLCVY 24

batch_size 128 OCY 12

num_layer 3 CY 8
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The first t-SNE analysis considered the OHLCVY

dataset, as shown in Fig. 6. From the graphical perspective,

it can be observed how the situation changed compared to

the previous datasets (without yield). In case of stocks

(Fig. 6a, c, e, g), synthetic data adhere nearly perfectly to

the original real data and cover a more extensive surface on

them unlike cryptocurrencies, which extend over more

‘‘uncovered’’ areas.

The second t-SNE analysis was based on the OCY

dataset, as shown in Fig. 7. In this case, despite the small

differences between the two types of financial instruments,

the data generated by stocks overlap better with the original

data when compared with those generated by cryptocur-

rencies even though the covered areas are limited in both

cases.

Finally, the third t-SNE analysis was conducted based

on the CY dataset, as shown in Fig. 8. In the latter case, the

best performances were obtained in the Bitcoin Cash

Fig. 8f and Google Fig. 8e cases, where the ability of

cryptocurrencies to be more predictive was eliminated. The

Tesla stock Fig. 8g presented original data that can be

classified as outliers, making t-SNE less readable. How-

ever, it was possible to observe how the synthetic data can

cover the rest of the originals very well.

In support of the graphical analyses, the scores shown in

Table 7 demonstrate how the yield feature improved the

information potential of stocks.

On an average, the performance allowed GAN to

achieved improved predictive score for stocks and dis-

criminative score (especially in the OCY and CY datasets).

However, this feature, which was also associated with the

dataset of cryptocurrencies, resulted in a worse

performance compared to the datasets in which it was not

present, confirming that TimeGAN is an excellent predic-

tion tool. The Tesla stock was no longer an outlier because

it obtained very similar scores compared to the remaining

stocks. The yield feature, which is commonly used in

financial analysis, made it possible to eliminate the infor-

mation gap between cryptocurrencies and stocks.

6 Conclusion

In this paper, we demonstrated that TimeGAN can identify

which financial instruments have a time series of prices

containing abundant information. First, the prices of

cryptocurrencies were observed to have much higher dis-

criminatory and predictive powers than stocks, especially

in the dataset comprising only the opening and closing

prices. In addition, in case of the complete OHLCV data-

set, prices with high discriminative power (combined with

the remaining features) made it possible to significantly

improve the adherence of the synthetic data with original

data. From this analysis, we observed that some stocks

have the same discriminative and predictive power as

cryptocurrencies. Thus, because the time-series forecasting

is primarily performed on stocks, this neural network can

be used to screen the optimal titles, which combined with

different features, improve the forecasting procedure.

Second, by adding the yield feature, the previous situation

can be modified to obtain datasets with stock prices as

predictive as cryptocurrencies (or more in some cases). In

future, we plan to investigate other features based on which

Fig. 2 LSTM cells concatenated

in a RNN [59, 60] with an

example of the input data
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Fig. 3 t-SNE analysis of synthetic data (blue) and original data (red) (OHLCV dataset) (color figure online)
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Fig. 4 t-SNE analysis of synthetic data (blue) and original data (red) (OC dataset) (color figure online)
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the information capacity of various financial instruments

may be improved to mitigate errors in forecasts.

Appendix: LSTM and CNN architectures

A neural network is a parallel computational model con-

taining artificial neurons. Each network comprises a series

of neurons [61] with a set of inputs and a corresponding

output signal. The neuron model was modified by Rosen-

blatt [62], who defined perceptron as an entity with input

and output layers based on error minimization. The study

of associative memories and development of the back-

propagation algorithm by Rumelhart et al. [63] have paved

the way for the application of feedforward networks,

drawing attention to recurrent networks. The fundamental

unit of the neural network, i.e., the neuron, involves three

fundamental elements: connections (each characterized by

a weight), an adder that produces a linear combination of

the inputs, and an activation function that limits the

amplitude of the output. We can describe a neuron as

follows:

ŷ ¼ g

�

w0 þ
Xm

i¼1

xiwi

�

; ð4Þ

where ŷ is the output, g is the activation function, xi rep-

resent the inputs, w0 represents the bias, and wi represents

weights. This can be expressed in matrix form as follows:

ŷ ¼ gðw0 þ XTWÞ; ð5Þ

where X and W are the vectors of inputs and weights,

respectively. The most common activation functions are

the sigmoid, hyperbolic tangent, and rectified linear unit

(ReLU) functions. Neural networks are characterized by a

learning algorithm, i.e., a set of well-defined rules that can

be used to solve a learning problem, which allows us to

adapt the free parameters of the network. The learning

algorithms can be of three types.

• Supervised learning: The network learns to infer the

relation that binds the input values with the relative

output values.

• Unsupervised learning: The network only has a set of

input data and learns mappings autonomously.

Table 5 Scores of both datasets (the lower the value, the better the

result)

OHLCV OC

DKL DS PS DKL DS PS

AAPL 54.3214 0.1133 0.1084 53.6518 0.0347 0.0354

GOOG 53.9618 0.1449 0.0722 55.6298 0.0378 0.0431

AMZN 52.2606 0.0755 0.1079 54.9458 0.0316 0.0254

BTC 54.7267 0.0868 0.0672 55.6924 0.0674 0.0109

BCH 53.6472 0.0569 0.0273 53.5539 0.0528 0.0136

ETH 52.9701 0.2458 0.0443 52.0232 0.0382 0.0129

Fig. 5 t-SNE analysis of the TSLA stock on different datasets

Table 6 Scores of TSLA in both datasets

OHLCV OC

DKL DS PS DKL DS PS

TSLA 54.3992 0.2163 0.1071 55.6569 0.0082 0.0182
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Fig. 6 t-SNE analysis of synthetic data (blue) and original data (red) (OHLCVY dataset) (color figure online)
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Fig. 7 t-SNE analysis of synthetic data (blue) and original data (red) (OCY dataset) (color figure online)

Neural Computing and Applications (2022) 34:17473–17490 17485

123



Fig. 8 t-SNE analysis of synthetic data (blue) and original data (red) (CY dataset) (color figure online)
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• Semisupervised learning: This is a mixed approach that

combines a small number of labeled values and a large

number of unlabeled values.

A neural network includes a set of inputs, several hidden

layers, and a set of outputs. Each neuron has a nonlinear

activation function and is equipped with high connectivity.

In this case, we focus on Multilayer Perceptron (MLP)

networks, in which learning involves the minimization of

loss function J(W) using a backpropagation algorithm [63].

Convolutional neural network

A Convolutional Neural Network (CNN) is a feedforward

network introduced by LeCun et al. [64], which was ini-

tially designed for image processing. However, recently,

CNNs have been applied to financial time series [65].

Based on convolution, a CNN comprises a hierarchy of

levels in which the intermediate levels use local connec-

tions and the latter layers are fully connected and operate

as classifiers. The key feature of this model is the presence

of the convolution and pooling levels, which aggregate the

information associated with the input volume to generate a

feature map of small dimensionality to ensure invariance

relative to transformations and avoid loss of information. In

a financial case, some recent applications are those of

Mittelman [66], who used an undecimated fully convolu-

tional network to model a time series, Binkowski et al.

[67], who based their idea on an autoregressive-type

weighting system with a CNN, Tsantekidis et al. [68], who

used the time series derived from an order book, and

Livieris et al. [69] who propose a convolutional layer for

extracting knowledge and a LSTM for identify dependen-

cies in gold price time series.

The key element of such networks is convolution (in the

discrete case). Here, an operator is defined as follows [70]:

ðf � gÞðiÞ ¼
X1

j¼�1
f ðjÞgði � jÞ; ð6Þ

where f and g are two functions defined on Z. For example,

convolution is used in the layer following the input layer

with a set of filters to create a feature map. As defined by

Borovykh et al. [70], the feature map from the first layer is

obtained by bringing together each filter wi
h for h ¼

1; . . .;M1 (where M1 is the set of filters applied on each

input channel) with the input.

a1ði; hÞ ¼
X1

j¼�1
w1

hðhÞxði � jÞ; ð7Þ

where w1
h 2 R1�k�1 and a1 2 R1�N�kþ1�M1 (in this case, a

one-dimensional input of size N without zero padding).

This process is repeated for each subsequent layer. The

output of the network after L convolutional layers is the

matrix f L. The size of this matrix f L is dependent on the

filter size and the number of filters used.

Long–short term memory

In financial time-series forecasting, the most common

Recurrent Neural Network (RNN) is the Long Short-Term

Memory (LSTM), which was introduced by Hochreiter and

Schmidhuber [71] in 1997. A characteristic of this network

is that at each step, the network receives both the input and

the output of the previous level. Thus, decisions can be

made based on history. However, because distant memory

tends to fade in base cells, LSTM prevents this through its

long-term memory. Each LSTM cell controls the flow of

information, i.e., irrelevant things are forgotten, the cell-

state values are updated, and an output gate is used to

output parts of the cell state. As defined by Sagheer and

Kotb [72], the hidden state St, which is based on the input

Xt and the hidden state from the previous time step St�1,

can be described as follows:

ft ¼ rðXtU
f þ St�1W

f þ bf Þ;
it ¼ rðXtU

i þ St�1Wi þ biÞ;
~Ct ¼ tanhðXtU

c þ St�1W
c þ bcÞ;

Ct ¼ Ct�1 � ft þ it � ~Ct;

ot ¼ rðXtU
o þ St�1W

o þ boÞ;
St ¼ ot � tanhðCtÞ:

ð8Þ

Table 7 Scores of both datasets

(lower scores are better)
OHLCVY OCY CY

DKL DS PS DKL DS PS DKL DS PS

AAPL 52.6359 0.3316 0.0815 55.8588 0.0408 0.0735 60.1909 0.0337 0.0731

GOOG 55.2421 0.1714 0.0686 58.3399 0.0357 0.0656 63.4955 0.0204 0.0654

AMZN 54.9933 0.2194 0.0866 55.6771 0.0337 0.0791 63.0692 0.1337 0.1014

TSLA 54.1207 0.2398 0.0825 59.2129 0.0184 0.0771 63.3792 0.0602 0.0771

BTC 55.4594 0.1764 0.0908 59.0598 0.0701 0.0842 63.4355 0.0161 0.0791

BCH 53.8986 0.3458 0.0839 58.2165 0.0326 0.0529 58.0093 0.0576 0.0594

ETH 58.7887 0.1979 0.0927 60.4058 0.0326 0.0901 63.4868 0.0911 0.0908
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Here, � represents the Hadamard product, r is the logistic

sigmoid activation function, f is the forget gate, i is the

identify gate, o is the output gate, and C is the cell state. In

addition, U represents the input weight matrix, W repre-

sents the recurrent weight matrix, and b represents the bias.

Funding Open access funding provided by Università di Foggia
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tifiques de l’École Normale Supérieure 3e s’erie 17:21–86.

https://doi.org/10.24033/asens.476

17. Kendall MG, Hill AB (1953) The analysis of economic time

series. Part I: prices. J R Stat Soc Ser A (Gen) 116(1):11–34.

https://doi.org/10.2307/2980947

18. Cootner PH (1964) The random character of stock market prices.

MIT Press, Cambridge, p 510

19. Fama E (1970) Efficient capital markets: a review of theory and

empirical work. J Finance 25(2):383–417. https://doi.org/10.

2307/2325486

20. LeRoy SF (1989) Efficient capital markets and martingales.

J Econ Liter 27(4):1583–1621

21. Taylor SJ (1980) Conjectured models for trends in financial pri-

ces, tests and forecast. J R Stat Soc Ser A (Gen) 143(3):338–362.

https://doi.org/10.2307/2982133

22. Box GEP, Jenkins GM (2015) Time series analysis: forecasting

and control. Holden-Day, New York

23. Hamilton JD (1994) Time series analysis. Princeton University

Press, Princeton

24. Zhang GP (2003) Time series forecasting using a hybrid ARIMA

and neural network model. Neurocomputing 50:159–175. https://

doi.org/10.1016/S0925-2312(01)00702-0

25. Foster WR, Collopy F, Ungar LH (1992) Neural network fore-

casting of short, noisy time series. Comput Chem Eng

16(4):293–297. https://doi.org/10.1016/0098-1354(92)80049-F

26. Refenes AN, Azema-Barac M, Karoussos SA (1992) Currency

exchange rate forecasting by error backpropagation. In: Pro-

ceedings of the twenty-fifth Hawaii international conference on

system sciences, vol iv, pp 504–5154. https://doi.org/10.1109/

HICSS.1992.183441

27. Sharda R, Patil RB (1992) Connectionist approach to time series

prediction: an empirical test. J Intell Manuf 3:317–323. https://

doi.org/10.1007/BF01577272

28. Andrawis RR, Atiya AF, El-Shishiny H (2011) Combination of

long term and short term forecasts, with application to tourism

demand forecasting. Int J Forecast 27(3):870–886. https://doi.org/
10.1016/j.ijforecast.2010.05.019

29. Adeodato PJL, Arnaud AL, Vasconcelos GC, Cunha RCLV,

Monteiro DSMP (2011) MLP ensembles improve long term

prediction accuracy over single networks. Int J Forecast

27(3):661–671. https://doi.org/10.1016/j.ijforecast.2009.05.029

17488 Neural Computing and Applications (2022) 34:17473–17490

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1111/jofi.12162
https://doi.org/10.1111/jofi.12162
https://doi.org/10.1016/j.accfor.2004.07.001
https://doi.org/10.1016/j.accfor.2004.07.001
https://doi.org/10.1016/S0165-4101(01)00018-0
https://doi.org/10.1016/S0165-4101(01)00018-0
https://doi.org/10.1016/j.jacceco.2005.01.002
https://doi.org/10.1007/s11142-007-9032-5
https://doi.org/10.1016/j.jacceco.2008.02.003
https://doi.org/10.1016/j.jacceco.2008.02.003
https://doi.org/10.1016/j.jacceco.2008.04.002
https://doi.org/10.1108/RAF-06-2015-0081
https://doi.org/10.1002/isaf.1386
https://doi.org/10.1111/1475-679X.12094
https://doi.org/10.1111/1475-679X.12094
https://doi.org/10.1016/j.jcae.2018.12.001
https://doi.org/10.1016/j.jcae.2018.12.001
https://doi.org/10.1177/003754979105700508
https://doi.org/10.1016/0169-2070(94)90044-2
https://doi.org/10.1016/0169-2070(94)90044-2
https://doi.org/10.1109/HIS.2014.7086184
https://doi.org/10.24033/asens.476
https://doi.org/10.2307/2980947
https://doi.org/10.2307/2325486
https://doi.org/10.2307/2325486
https://doi.org/10.2307/2982133
https://doi.org/10.1016/S0925-2312(01)00702-0
https://doi.org/10.1016/S0925-2312(01)00702-0
https://doi.org/10.1016/0098-1354(92)80049-F
https://doi.org/10.1109/HICSS.1992.183441
https://doi.org/10.1109/HICSS.1992.183441
https://doi.org/10.1007/BF01577272
https://doi.org/10.1007/BF01577272
https://doi.org/10.1016/j.ijforecast.2010.05.019
https://doi.org/10.1016/j.ijforecast.2010.05.019
https://doi.org/10.1016/j.ijforecast.2009.05.029


30. Wichard JD (2011) Forecasting the NN5 time series with hybrid

models. Int J Forecast 27(3):700–707. https://doi.org/10.1016/j.

ijforecast.2010.02.011

31. Vapnik V (1998) Statistical learning theory. Wiley, Hoboken,

p 736

32. Adhikari R, Agrawal RK (2013) An introductory study in time

series modeling and forecasting. LAP LAMBERT Academic

Publishing, Sunnyvale, p 76

33. Suykens JAK, Vandewalle J (2000) Recurrent least squares

support vector machines. IEEE Trans Circuits Syst I Fundam

Theory Appl 47(7):1109–1114. https://doi.org/10.1109/81.

855471

34. Xiao C, Xia W, Jiang J (2020) Stock price forecast based on

combined model of ARIMA-LS-SVM. Neural Comput Appl

32:5379–5388. https://doi.org/10.1007/s00521-019-04698-5

35. Kovalerchuk B, Vityaev E (2000) Data mining in finance:

advances in relational and hybrid methods. The springer inter-

national series in engineering and computer science. Springer,

New York, p 308

36. Zaccagnino R, Capo C, Guarino A (2021) Techno-regulation and

intelligent safeguards. Multimedia Tools Appl 80:15803–15824.

https://doi.org/10.1007/s11042-020-10446-y

37. Guarino A, Malandrino D, Zaccagnino R (2022) An automatic

mechanism to provide privacy awareness and control over

unwittingly dissemination of online private information. Comput

Netw 202:108614. https://doi.org/10.1016/j.comnet.2021.108614

38. Li Y, Ma W (2010) Applications of artificial neural networks in

financial economics: a survey. In: 2010 international symposium

on computational intelligence and design. IEEE, pp 211–214.

https://doi.org/10.1109/ISCID.2010.70

39. Mittelmayer M, Knolmayer GF (2006) Text mining systems for

market response to news: Aasurvey. In: IADIS European con-

ference data mining 2007 (part of MCCSIS 2007), pp 164–169.

ISBN: 978-972-8924-40-9

40. Mitra L, Mitra G (2011) Applications of news analytics in

finance: a review. The handbook of news analytics in finance,

pp 1–39. ISBN: 9781118467411

41. Sezer OB, Gudelek MU, Ozbayoglu AM (2020) Financial time

series forecasting with deep learning: a systematic literature

review: 2005–2019. Appl Soft Comput. https://doi.org/10.1016/j.

asoc.2020.106181

42. Liu S, Zhang C, Ma J (2017) CNN-LSTM neural network model

for quantitative strategy analysis in stock markets. In: Liu D, Xie

S, Li Y, Zhao D, El-Alfy E-SM (eds) Neural information pro-

cessing. Springer, Cham, pp 198–206

43. Zhang L, Aggarwal C, Qi G-J (2017) Stock price prediction via

discovering multi-frequency trading patterns. In: Proceedings of

the 23rd ACM SIGKDD international conference on knowledge

discovery and data mining. KDD’17, pp 2141–2149. Association

for Computing Machinery, New York, NY, USA. https://doi.org/

10.1145/3097983.3098117

44. Jin Z, Yang Y, Liu Y (2020) Stock closing price prediction based

on sentiment analysis and LSTM. Neural Comput Appl

32:9713–9729. https://doi.org/10.1007/s00521-019-04504-2

45. Lu W, Zi J, Wang Q (2021) A CNN-BiLSTM-AM method for

stock price prediction. Neural Comput Appl 33:4741–4753.

https://doi.org/10.1007/s00521-020-05532-z

46. Kaneko T, Kameoka H, Hojo N, Ijima Y, Hiramatsu K, Kashino

K (2017) Generative adversarial network-based postfilter for

statistical parametric speech synthesis. In: 2017 IEEE interna-

tional conference on acoustics, speech and signal processing

(ICASSP), pp 4910–4914. https://doi.org/10.1109/ICASSP.2017.

7953090

47. Sun Y, Ximing L, Cong P, Li L, Zhao Z (2018) Digital radiog-

raphy image denoising using a generative adversarial network.

J Xray Sci Technol 26(4):523–534. https://doi.org/10.3233/XST-

17356

48. Lei K, Xie Y, Zhong S, Dai J, Yang M, Shen Y (2020) Generative

adversarial fusion network for class imbalance credit scoring.

Neural Comput Appl 32:8451–8462. https://doi.org/10.1007/

s00521-019-04335-1

49. Papandreou G, Chen L-C, Murphy KP, Yuille AL (2015)

Weakly-and semi-supervised learning of a deep convolutional

network for semantic image segmentation. In: 2015 IEEE inter-

national conference on computer vision (ICCV), pp 1742–1750.

https://doi.org/10.1109/ICCV.2015.203

50. Liu H, Tian Y, Wang Y, Pang L, Huang T (2016) Deep relative

distance learning: tell the difference between similar vehicles. In:

2016 IEEE conference on computer vision and pattern recogni-

tion (CVPR), pp 2167–2175. https://doi.org/10.1109/CVPR.2016.

238

51. Zhang J, Zhong S, Wang T, Chao HC, Wang J (2020) Block-

chain-based systems and applications: a survey. J Internet

Technol 21(1):1–14

52. Qi E, Deng M (2019) R&D investment enhance the financial

performance of company driven by big data computing and

analysis. Comput Syst Sci Eng 34(4):237–248

53. Zhou H, Sun G, Fu S, Fan X, Jiang W (2020) A distributed

approach of big data mining for financial fraud detection in a

supply chain. Comput Mater Continua 64(2):1091–1105

54. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley

D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial

nets. In: Proceedings of the 27th international conference on

neural information processing systems - volume 2. NIPS’14. MIT

Press, Cambridge, MA, USA, pp 2672–2680

55. Yoon J, Jarrett D, van der Schaar M (2019) Time-series gener-

ative adversarial networks. In: Wallach H, Larochelle H,
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