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Abstract
Nature-inspired optimization techniques have been applied in various fields of study to solve optimization problems. Since

designing a Fuzzy System (FS) can be considered one of the most complex optimization problems, many meta-heuristic

optimizations have been developed to design FS structures. This paper aims to design a Takagi–Sugeno–Kang fuzzy

Systems (TSK-FS) structure by generating the required fuzzy rules and selecting the most influential parameters for these

rules. In this context, a new hybrid nature-inspired algorithm is proposed, namely Genetic–Grey Wolf Optimization

(GGWO) algorithm, to optimize TSK-FSs. In GGWO, a hybridization of the genetic algorithm (GA) and the grey wolf

optimizer (GWO) is applied to overcome the premature convergence and poor solution exploitation of the standard GWO.

Using genetic crossover and mutation operators accelerates the exploration process and efficiently reaches the best solution

(rule generation) within a reasonable time. The proposed GGWO is tested on several benchmark functions compared with

other nature-inspired optimization algorithms. The result of simulations applied to the fuzzy control of nonlinear plants

shows the superiority of GGWO in designing TSK-FSs with high accuracy compared with different optimization algo-

rithms in terms of Root Mean Squared Error (RMSE) and computational time.

Keywords Nature-inspired optimization methods � Takagi–Sugeno–Kang Fuzzy System � Grey Wolf Optimizer (GWO) �
Fuzzy rules � Genetic algorithm (GA)

1 Introduction

Fuzzy systems have been extensively applied in multiple

areas, including decision analysis, automatic control, and

system modeling [1]. The membership functions are

responsible for mapping the input variables of the fuzzy

system. These mappings are then inputted into the fuzzy

rules. The generated fuzzy rules are responsible for

deciding which action to take. Consequently, designing a

fuzzy system structure is one of the most critical processes

in FS applications and can be considered a complex opti-

mization problem. Generating the fuzzy rules in a Takagi–

Sugeno–Kang Fuzzy System (TSK-FS) and selecting the

parameters in these rules are considered an optimization

problem that enhances system accuracy. However, fuzzy

rule generation is problematic and time-consuming.

Therefore, the traditional computation and statistical

approaches [2] for automatically generating fuzzy rules

cannot enhance the FS performance.

Nature-inspired optimization methods provide an effi-

cient way to find the optimal solution in complex real-

world problems [3], such as the optimal design of fuzzy

systems and classification problems. Nature-inspired opti-

mization algorithms can be inspired by animal behaviors or

evolutionary concepts based on individuals’ populations.

Extraordinary efforts have been made to optimize the

design of TSK-FSs using evolutionary algorithms (EAs)

[4], various genetic algorithms (GAs) [5–7], and nature-

inspired optimization algorithms such as particle swarm

optimization (PSO) [8–10], ant colony optimization (ACO)
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[11], the gravitational search algorithm (GSA) [12], and the

grey wolf optimizer (GWO) [13–15].

GWO is a relatively new nature-inspired optimization

algorithm that mimics grey wolves’ social hierarchy and

their hunting mechanisms in the wild. The main advantage

of GWO lies in its reduced number of search parameters,

which results in its superiority on different optimization

problems, including optimal tuning of PID-fuzzy con-

trollers [16], training multi-layer perceptrons [17], and

optimization benchmarks [18].

This advantage has motivated several researchers

[19–24] to hybridize two or more meta-heuristics to

improve the performance of GWO for optimizing FSs. The

authors of [19] recently proposed gDE-GWO, which is a

hybridization of GWO and differential evolution (DE)

mutation [20]. In [21], the GWO was improved by altering

the equation for finding the following positions of the

wolves; then, the IGWO with Fuzzy PID controller was

applied to power system load frequency control (LFC).

Tawhid et al. [22] proposed the hybrid algorithm

HGWOGA, which combined the GA and GWO algorithms

to minimize a simplified model of a molecule’s energy

function. A modified version of the GWO algorithm was

proposed in [23], namely, the MGWO-based cascade PI-

PD controller; the authors assigned more importance to the

alpha wolves to find the optimal solution during the

iterations.

This paper aims to introduce a hybrid Genetic–Grey

Wolf Optimization (GGWO) algorithm for TSK-FS opti-

mization through five main stages. The contributions of the

proposed GGWO lie in two main directions.

First, the standard GWO is improved [13] by embedding

the GA’s crossover and mutation operations to overcome

the premature convergence of poor exploitation of solu-

tions in the standard GWO. It will help optimize the search

process to find the next locations for the wolves and opti-

mal solutions during iteration. Also, this hybridization

accelerates the exploration process and reaches the best

solution in a reasonable time.

Second, because designing a fuzzy system can be con-

sidered an optimization problem, GGWO is used to opti-

mize TSK-FSs by designing their structure, using rule

generation, and optimizing the parameters for each fuzzy

rule in the TSK-FSs. The proposed algorithm shows

promising performance in optimizing FS compared to other

optimization algorithms, as demonstrated in Sect. 5.

The main contribution is summarized as follows.

• A new hybrid nature-inspired algorithm is proposed,

namely Genetic–Grey Wolf Optimization (GGWO)

algorithm, to optimize TSK-FSs.

• GGWO is applied to overcome the premature conver-

gence and poor solution exploitation of the standard

GWO.

• Using genetic crossover and mutation operators accel-

erates the exploration process and efficiently reaches

the best solution (rule generation) within a reasonable

time.

• The proposed GGWO is tested on several benchmark

functions compared with other nature-inspired opti-

mization algorithms.

• The result of simulations applied to the fuzzy control of

nonlinear plants shows the superiority of GGWO in

designing TSK-FSs with high accuracy compared with

different optimization algorithms.

This paper’s remainder is organized as follows. Sec-

tion 2 describes related studies in fuzzy system optimiza-

tion and introduces the GWO. In Sect. 3, the first-order

TSK-FS is defined as a model that can be formulated as an

optimization problem; its main goal is to find the optimal

convenient solution. Section 4 describes the proposed

GGWO. Section 5 presents GGWO simulation results

compared to other optimization algorithms, and Sect. 6

concludes the paper.

2 Related work

When designing the structure of TSK-FSs, there are several

considerations, including accuracy and interpretability

[25]. To preserve a fuzzy model’s accuracy, the number of

fuzzy rules must be determined, and the parameters in each

fuzzy rule must be selected appropriately. Also, constraints

that optimize the interpretability of TSK-FSs must be

considered. Several studies have been proposed to optimize

the design process for TSK-FS models. In [26], generating

fuzzy rules was presented based on a fuzzy genetic system.

In [10], a constrained PSO algorithm (C-PSO) was pro-

posed to set linear constraints to enhance interpretability

while preserving a TSK-FS model’s accuracy. Juang et al.

[9] proposed a hierarchical cluster-based multispecies

particle swarm optimization (HCMSPSO) algorithm for

TSK-FS optimization; the authors designed both the

structure (the number of rules) and the parameters of an FS.

In [27], the authors proposed a new approach for generat-

ing accurate and interpretable fuzzy rules: using only fuzzy

labels to build transparent knowledge-based systems. In

[28], a fuzzy genetic programming approach called FGPRL

was proposed to determine the fuzzy rules’ size and adjust

the controller parameters based on reinforcement learning.

Recently, many researchers [29–34] have investigated

the optimization algorithms in TSK-FS models and fuzzy

rules as follows: Deng et. al. [34] investigated a monotonic
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relation between the inputs and outputs of the TSK-FS

model and presented a Tikhonov regularization strategy to

avoid the loss. In [29], the authors used sparse regressions

to train high-order TSK-FS models. The sparse regressions

used offer regularization; it means that it can be used when

the variables number increases the observations. Adequate

monotonicity conditions for zero-order TSK-FS models

with membership functions generated by cubic splines are

proposed in [35], the model concerned with the optimiza-

tion problems.

Wu et al. [36] proposed three influential optimization

techniques based on neural networks for training TSK-FS

models: the MBGD with regularization, DropRule, and

AdaBound (MBGD-RDA). In [37], the authors improved

the MBGD-RDA proposed in [36] by using fuzzy c-means

clustering and AdaBound, in a new algorithm named FCM-

RDpA, to optimize the parameters used in generating the

rules. Wang et al. [38] proposed an aggregation method

using fuzzy neural networks for TSK-FS models, namely

TSKFNN. The authors implemented AdaBoost to gain a

combination of trusty rules to generate prediction models

using a number of real datasets.

In [39], the authors proposed a graph-based TSK-FS

model to predict hemodialysis patients’ adequacy.

2.1 Grey Wolf Optimizer (GWO)

The GWO is a nature-inspired optimization algorithm that

Seyedali Mirjalili first proposed in 2014 [13]. The GWO

algorithm mimics the social hierarchy of grey wolves and

their hunting mechanisms in the wild. The wolves’ hunting

mechanisms are used to represent a path to the solution of

the optimization problem.

Grey wolves tend to live in packs. To simulate the wolf

social hierarchy, suppose that there are each pack of

wolves contains four different types of wolves: alpha (a),
beta (b), delta (d), and omega (x); thus, the wolves can be

categorized into four classes. The population of search

agents (wolves) is categorized according to their fitness

function. This hierarchy’s mathematical model is designed

by considering the wolf with the best fitness function as the

alpha wolf (The leader). The second-best fitness is the beta

wolf, and the third-best solution is the delta wolf. Any

other solution will be considered the omega wolves (the

lowest-ranked wolves), who will follow the other three

types. This hierarchy is updated in every iteration to

change the solutions. The hunting mechanisms of the grey

wolves are mathematically modeled via the following

steps.

2.1.1 Searching for the prey

The search process (exploration) is implemented based on

a, b, and d. Their positions are varied randomly to foster a

global search for prey. The coefficient vectors A~ are

assigned random values ranging from �1[ A
!

[ 1, and

the coefficient vectors C~ are assigned random values from

[0 to 2], as shown in Fig. 1a, to enable the wolves to find

more suitable prey.

2.1.2 Encircling prey

Grey wolves encircle their prey during a hunt; the fol-

lowing equations simulate the encircling process:

D~ ¼ C~:V~p ið Þ � V~ ið Þ

�
�
�

�
�
� ð1Þ

V~ iþ1ð Þ ¼ V~p ið Þ � A
!� D! ð2Þ

where V~p is the position vector of the prey, i indexes the

current iteration, and V~ indicates the position vector of a

grey wolf. A
!

and C~ are calculated as follows:

A~¼ 2a~:r~1 � a~ ð3Þ

C~ ¼ 2: r!2 ð4Þ

During the iterations, the values of a~ vary from 0 to 2

and r~1 and r!2 are assigned random values from 0 to 1 to

allow the wolves to update their positions around the prey’s

location using (1) and (2), as shown in Fig. 1b. In Fig. 1b,

suppose that the location of a grey wolf is (X, Y) and the

location of the prey is (X0,Y 0): the wolves can then update

their positions based on prey’s location.

2.1.3 Hunting the prey

The alpha wolf is responsible for the hunting process [40]

(exploitation), because in most cases, the a wolf leads the

pack and can detect the location of prey. However, to

Fig. 1 a Effect of the coefficient vectors A! and C!and b Position

vectors of the grey wolves around the prey
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mathematically model the optimum location of the prey,

the first three best solutions are obtained from the alpha (a),
beta (b), and delta (d) wolves and are calculated as follows:

D~a ¼ C1
�!

:V~a � X~
�
�
�

�
�
�

D~b ¼ C2
�!

:V~b � X~
�
�
�

�
�
�

D~d ¼ C3
�!

:V~d � X~
�
�
�

�
�
�

ð5Þ

V~1 ¼ V~a � A1
�! � Da

�!� �

V~2 ¼ V~b � A2
�! � Db

�!� �

V~3 ¼ V~d � A3
�! � Dd

�!� �

ð6Þ

Then, the other agents (wolves) must update their

positions based on the positions of the three best search

agents (a, b, d) as shown in the following equation:

V~ iþ1ð Þ ¼
V~1 þ V~2 þ V~3

3
ð7Þ

Thus, the a, b, and d wolves determine the prey’s

position, and the other wolves sequentially update their

positions around the prey.

2.1.4 Attacking the prey

When the wolves surround the prey, it stops moving. Then,

the grey wolves attack the prey to finish the hunting pro-

cess. To simulate the attacking process, the value of a~ is

decreased; as a result, the value of A
�!

also decreases. The

result of the attack process is shown in Fig. 2. A
�!

is

considered as having a value from 2a to -2a. The next

position of the grey wolf will be between its current

location and the location of the prey if the value of A
�!

is

between 1 and - 1.

3 Problem statement

This section describes the first order TSK-FS [41] to be

optimized and shows the mathematical functions for the

TSK-FS model; these include the fuzzy rules in the fol-

lowing form:

Rj : Ifx1 mð Þ is Aj1; and. . .: and xp mð Þ is Ajp ð8Þ

THEN yisZj xð Þ ¼ aj0 þ aj1x1 þ . . .þ ajpxp. where Rj is

the jth rule, 2 Rn, Ajp are the fuzzy sets, y 2 R, and j ranges

from [1 to c]:

Ajp xp
� �

¼ exp
Xp � Vjp

rjp

� 	2
 !

ð9Þ

where Vjp and rjp are the parameters of the fuzzy set, and

ajp 2 Ajp, where p ranges from [1 to IS] and IS is the

dimension of the input space.

Suppose a dataset x = {x1; . . .::xng: The strength of

fuzzy rule j is calculated as follows:

Uj x~ð Þ ¼
Yn

i¼1

MjiðxiÞ ð10Þ

Uj x~ð Þ ¼ exp �
Xn

i¼1

Xp � Vjp

rjp

� 	2
( )

ð11Þ

Gaussian fuzzy sets represent local information effi-

ciently and contain continuous derivatives of the values. In

first-order TSK FSs, the consequent function Zj xð Þ is set to
a linear function of the input variables. The output of the

system is given by:

ŷ ¼
Pc

j¼1

QIS
P¼1 Ajp xp

� �

Zj xð Þ
h i.

Pc
k¼1

QIS
P¼1 Akp xp

� �h i

ð12Þ

where c is the number of rules in the FS. The proposed

GGWO algorithm’s main goal is to optimize the parame-

ters used in each fuzzy rule and specify the number of rules

c.

4 The proposed hybrid Genetic–Grey Wolf
optimizer (GGWO) algorithm

The proposed GGWO algorithm optimizes the fuzzy sys-

tem in the five main stages shown in Fig. 2. (1) initial

population, (2) fitness function evaluation stage, (3)

exploration stage, (4) exploitation stage, and (5) termina-

tion stage.

For the GGWO algorithm, a hybrid combination of the

GA [42] and the GWO [13] is proposed in this paper. This

hybridization aims to overcome the premature convergence

and the poor exploitation of solutions of the standard GWO

algorithm by using crossover and mutation operations

during the exploitation and exploration stages of the GWO

algorithm. It will optimize the process of searching for the

optimal solutions. The GGWO operating sequence starts by

randomly generating the search agents (wolves) that form

the pack of grey wolves. Each wolf in the pack is assigned

to a position in the vector Vi mð Þ
���!

as follows:
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Fig. 2 Proposed Genetic Grey Wolf Optimization (GGWO) algorithm
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Vi xð Þ
���!

¼ ½v1i xð Þ::v2i xð Þ::vcurntii xð Þ�T i ¼ 1; 2:. . .N ð13Þ

where N is the total number of search agents (wolves),

vcurnt
i

i xð Þ is the position of the ith wolf in the pack, curnti is

the index of the current iteration, and x ranges from 1 to a

predefined maximum number of iterations, xmax.

Several chromosomes represent these solutions. Parti-

tioning a solution into several chromosomes allows diver-

sity during the wolves’ search process for the optimal

solution. In the initial population stage, each solution is

represented by several genes.

GWij. An initial process to generate the random solu-

tions Gwij is applied based on the upper and lower

boundary, as shown in Eq. (14).

GWij ¼ GWLOwj þ r� GWUpj �GWLOwj

� �

ð14Þ

where is a random value ranging from 0 to 1, i = 1, 2…
PSize, PSize is the population size (based on the number of

wolves), and j = 1, 2, …. gn.

Based on the problem’s fitness function, the chromo-

somes with the highest fitness values will gradually sup-

plant the chromosomes with the lowest fitness values.

This paper calculates the fitness function in terms of the

RMSE between the desired and actual outputs. In the

proposed GGWO, the number of rules c in the fuzzy sys-

tem equals the number of genes gn represented, as shown in

Fig. 3.

The reason is that each rule has several parameters to be

optimized that cannot be divided into different genes.

Consequently, the fitness function for a fuzzy rule directly

influences the overall performance of the FS. Suppose that

each parameter of the jth rule in (8) is optimized by the jth

gene; then, these parameters are denoted as the elements of

a gene position vector GW
��!

j for the first-order TSK FSs, as

follows:

GW
��!

j ¼ ½Vj1; rj1; . . .;Vj1; rj1;aj0; aj1; . . .; ajn� ð15Þ

The overall performance of the FS is directly affected by

the genes’ fitness in the fuzzy results. In the fitness function

evaluation stage, each gene’s fitness function is calculated

in the fuzzy rules during each iteration to find the optimal

solution that represents the highest fitness solution

obtained.

The search process terminates when it reaches a pre-

defined maximum number of iterations (xmax). Several

genes represent each solution (grey wolf). To determine

whether a new fuzzy rule should be generated, the rule

strength Uj x~ð Þ is calculated by (11) for each upcoming data

item x~ kð Þ:
q ¼ MaxifUj x~ kð Þð Þi ¼ 1; . . .:c ð16Þ

where c is the number of rules. The rule with the maximum

strength (whose Uj �UThrS) will be generated, where

UThrS 2 0; 1½ � is a predefined threshold.

In GGWO, the newly generated rule will cause new

genes to be developed. When a determination is made that

a fuzzy rule should be generated, the centre and width of

the Gaussian fuzzy set are denoted by:

Vj1 ¼ xi 0ð Þ and rj1 ¼ rinitW i ¼ 1; 2; . . .n ð17Þ

where rinitW is the initial width of the fuzzy set, and

V cþ1ð Þi ¼ xi kð Þ i ¼ 1; 2; . . .n ð18Þ

r cþ1ð Þi ¼ H �
Xn

j¼1

xip kð Þ � vip
rip

� 	2
( )

ð19Þ

where H is the overlap degree between two rules ( H[ 0

and is a predefined value). Based on (18) and (19), the

GGWO algorithm’s genes will be initialized for each rule.

Selecting the fitness function is the most crucial step in the

optimization process: it is the guide for evaluating the

population’s solutions. The fitness value for each gene is

calculated as follows:

F it Gwið Þ ¼
Xgn

i¼1

1

ðyi � ŷiÞ2
ð20Þ

The fitness values are assigned different weights. Then,

the fitness function is evaluated for each solution, as shown

below:

Fig. 3 The fuzzy rule representations with their corresponding

parameters
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F it Gwij

� �

¼
XPSize

i¼1

Xgn

j¼1

1

ðyi � ŷiÞ2j
ð21Þ

The search agents (wolves) share the fitness value

assigned to the search space. The search agents return to

the original solutions and choose new solutions, after

which their new fitness values F itðNGwijÞ are evaluated.

Then, these new fitness values are compared with the

previous values. When the new values are greater than the

old ones, the search agents replace the old values with the

new solution values. Otherwise, they retain the old

solutions.

In the wolf social hierarchy sub-stage, the solutions are

classified into different classes based on their fitness

functions, as shown in Fig. 4.

The solution with the highest fitness function is the

alpha wolf (the leader), the solution with the second-best

fitness is the beta wolf, and the one with the third-best

fitness is the delta wolf. All other solutions are considered

omega wolves (the lowest-ranked wolves), following the

three different types. Each iteration of the search process

consists of two main stages: an exploration stage and an

exploitation stage. In the exploration stage, the wolves’

main goal is to search and encircle the prey.

Fig. 4 Proposed fitness

evaluation algorithm (social

hierarchy)
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In the exploration stage of the proposed GGWO, the GA

processes of crossover and mutation are applied to each

population to increase the search’s diversity and to over-

come the premature convergence of the standard GWO

algorithm and its poor exploitation of solutions. In the

standard GWO algorithm, a random variable a~ is varied

from [0 to 2] to determine the prey’s location and the alpha

wolves.

As shown in Fig. 2, during the prey encirclement sub-

stage, the parent solution Ps is assigned to the highest fit-

ness values using (19) and the Neighbour solution Ns is

assigned randomly using roulette wheel selection [43].

Then, a crossover is conducted between Ns and Ps. The Ns

and Ps. solutions are combined to produce one or more

children, based on the value of a crossover rate (CR),

which is predefined parameter. To determine the nearest

solution to the parent, GGWO calculates the value of D~

based on a~. and r~1 using Ns, as own in Fig. 5.

The mutation operation is used during the search process

for prey (solutions) as defined in the following algorithm:

where Newij is the new solution generated, PSij is the

parent solution, aij is a random number in the range

[- 1,1], and RSij is the random solution selected.

In the exploitation stage, the top three wolves (a, b, and
d) determine the optimum prey location. The top three

solutions obtained are calculated as follows:

vSi xð Þ ¼ vS;1 xð Þ. . .vS;2 xð Þ. . .vS;i xð Þ
h i

; S 2 a; b; df g ð22Þ

The selection process for the three-vector solutions are

calculated as follows:

F ita va xð Þ
� �

¼ Maxi¼1::nF itai v
a
i xð Þ

� �

jva xð Þ 2 Vi xð Þ ð23Þ

F itb vb xð Þ
� �

¼ Maxi¼1::nF itbi vbi xð Þ
� �

jvb xð Þ
2 Vi xð Þ va xð Þ


 �

ð24Þ

F itd vd xð Þ
� �

¼ Maxi¼1::nF itdi v
d
i xð Þ

� �

jvd xð Þ
2 Vi xð Þn va xð Þ; vb xð Þ


 �

ð25Þ

where the following condition must be applied:

F ita va xð Þ
� �

[F itb vb xð Þ
� �

[F itd vd xð Þ
� �

ð26Þ

A uniform crossover operation is applied between the

three vectors to select and update their positions and the

prey’s position, as shown in Fig. 2. Finally, the best three

wolves make the other wolves (omega x) update their

positions according to the best three wolves’ positions.

After attacking the prey with several wolves, the GGWO

checks the mobility of the prey. When the agents (wolves)

confirm that the prey is at location (X0,Y 0), the leader agent

decreases the value of a~, which leads to a decrease in A~, to

begin the attacking process.

5 Experimental evaluation

This study evaluated the proposed GGWO algorithm’s

effectiveness through several simulated experiments and

analytical results, as shown in the following subsections.

The algorithms were applied on an Intel(R) Core (TM) i7

CPU with 16 GB RAM and 2.81 GHz clock speed using

MATLAB R2019a.

The parameters used in the experiments to evaluate the

proposed GGWO algorithm can be categorized into com-

mon parameters, which are the GA and GWO’s parameters

defined to achieve a balance between convergence and

number of genes\solutions.

The main goal of the GGWO algorithm is to optimize

the parameters of the fuzzy rules generated for TSK-FSs.

These parameters are problem dependent like H: the

overlap degree between two rules, UThrS; rinitW : the

thresholds used, Uj : the maximum strength. These

parameters are optimized during the implementation, and

experiment five shows the influence of changing these

parameters on the performance of the algorithms.

Fig. 5 Crossover operation on

the (GGWO) algorithm
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To guarantee the fairness of the comparative results, the

values of the parameters used in all algorithms are set the

same as follows: The maximum number of iterations is

500; the population size is 30. The crossover and mutation

rate is 0.7 and 0.01, respectively. The main parameters are

set as shown in Table 1.

In addition, an experiment is implemented to test the

influence of changing the parameter crossover rate on the

accuracy and time of classification in different problems

used through the evaluation, as shown in Figs. 6 and 7.

As shown from Figs. 6 and 7, it is concluded that

choosing a CR rate of more than 0.6 improves the classi-

fication accuracy, but it starts to be stable in accuracy

degree when CR’s value is from 0.7 to 0.9. However,

increasing simulation time is shown when the CR exceeds

0.7. The results displayed in the figures confirm that the

value of 0.7 seems to be an acceptable comprise between

accuracy and timing, as this value is adapted in the most

published work.

Table 1 GGWO parameters
Parameter Value Parameter Value

Number of generations (cycle) 500 Crossover rate CR 0.7

Population size PSize 30 Mutation Rate @ 0.01

Maximum number of iterations Maxit 500 Number of genes/solutions gn 6
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5.1 Experiment one: test the efficiency
of the proposed GGWO using benchmark
functions

The performance of the GGWO algorithm is evaluated

using some standard benchmark functions [13]. In this

experiment, the GGWO algorithm is tested using nine

benchmark functions due to space limitations. F1, F2;F3 ,

F4; and F5 are unimodal functions while F8, F9, F10; and

F11 are multimodal functions. These functions were

selected both for their simplicity and to allow GGWO’s

results to be compared with other algorithms’ results. The

nine functions are listed in Table 2. The best solution (Fmin)

obtained for F8 is 418.9829 � 5, while the Fmin for the

other functions is zero. The dimensions of the nine func-

tions are 30, and the boundary of the search space (range)

of each function is listed in Table 2.

The average (Avg) and standard deviation (StD) are

calculated for each function using thirty runs, as shown in

Table 3. To verify the obtained results, GGWO is com-

pared with Original GWO [13], IGWO [21], PSO [8], GSA

[12], and MGWO [23].

Results’ analysis for experiment one: The exploitation and

exploration stages of GGWO are tested using unimodal and

multimodal functions, respectively. As shown in Table 3,

the proposed GGWO algorithm outperforms all the other

algorithms on the unimodal functions f1, f2, f3, and f4,

reflecting the superiority of GGWO in the exploitation

stage. In function f5, the average value obtained by GGWO

is better than other algorithms, while the standard deviation

obtained by IGWO is better than GGWO. The superiority

of GGWO’s results occurs from the usage of the GA

operators (crossover and mutation) in the exploitation stage

in the GGWO algorithm. In addition, GWOA achieves

competitive results on the multimodal benchmark functions

compared to GWO [13], IGWO [21], PSO [8], GSA [12],

and MGWO [23]. Most of the competitive algorithms

suffer from becoming trapped in local optima; in contrast,

the combination of GA and GWO in the proposed GGWO

enhances the search process during the exploration stage

and makes the algorithm reach the optimal solution within

a reasonable time compared to GWO [13], IGWO [21],

PSO [8], MGWO [23], FCM-RDpA [37], MBGD-RDA

[36], and TSKFNN [38] algorithms as shown in Fig. 8.

From the results obtained in Fig. 8, it is found that the

simulation time of the GGWO algorithm is less than that of

the GWO algorithm due to the crossover and mutation

operation implemented in GWO, which determines the

position of a Grey wolf faster.

5.2 Experiment two: test the efficiency
of the proposed GGWO in TSK-FS
optimization

This experiment uses an optimization example to test the

performance of GGWO. The results obtained are compared

with those obtained by other optimization algorithms using

the same examples. The RMSE is the metric used to

Table 2 Benchmark functions
Unimodal test functions Range

F1 Xð Þ ¼
Pn

i¼1

x2i
[- 100,100]

F2 Xð Þ ¼
Pn

i¼1

jxij þ
Qn

i¼1

jxij
[- 10,10]

F3 Xð Þ ¼
Pn

i¼1

Pi

j¼1

xj

 !2 [- 100,100]

F4 Xð Þ ¼ maxifjxij; 1� i� ng [- 100,100]

F5 Xð Þ ¼
Pn�1

i¼1

½100ðxiþ1 � x2i Þ
2 þ ðxi � 1Þ2

30,30]

Multimodal test functions Range

F8 Xð Þ ¼
Pn

i¼1

�xiSin þ
ffiffiffiffiffiffi

jxij
p [- 500, 500]

F9 Xð Þ ¼
Pn

i¼1

x2i � 10Cos 2pxið Þ þ 10
 � [- 5.12, 5.12]

F10 Xð Þ ¼ �20 exp �0:2
ffiffi
1
n

q
Pn

i¼1

x2i

� �

� exp 1
n

Pn

i¼1

Cos 2pxið Þ
� �

þ 20þ e
[- 32, 32]

F11 Xð Þ ¼ 1
4000

Pn

i¼1

x2i �
Q

i¼1

cos xiffi
i

p
� �

þ 1
[- 600, 600]
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evaluate the algorithms on the fuzzy control examples, as

shown below.

5.2.1 Example 1: nonlinear plant-tracking control

In this example, the plant to be controlled is described by

y k þ 1ð Þ ¼ y kð Þ
1þ y2 kð Þ þ u3 kð Þ ð27Þ

where - 2 � y kð Þ� 2, y (0) = 0, u(k) is the control input,

and - 1 � y kð Þ� 1. The main goal is to control the output

u(k) to track the following desired trajectory:

yd kð Þ ¼ sin
pk
50

� 	

: cos
pk
50

� 	

1� k� 250 ð28Þ

using a fuzzy controller system. In ANT [11], the ACO

was used to select the consequent part of TSK-FSs from a

predefined discrete set but could not track the trajectory in

(26). The designed fuzzy controller inputs are yd k þ 1ð Þ
and y kð Þ: And the output is u(k). For this tracking problem,

RMSE is used for performance evaluation, where

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P249

k¼0ðyd k þ 1ð Þ � y k þ 1ð ÞÞ2

250

s

ð29Þ

In this experiment, the optimization process is imple-

mented through fifty runs and the maximum number of

iterations is set to 500. The threshold UThrS is set to 0.0004.

The average number of fuzzy rules (genes) is 6.

Figure 7 shows the RMSEs of the proposed GGWO

algorithm compared to the PSO [8], GWO [13], IGWO

[21], ANT [11], HCMSPSO [9], FCM-RDpA [37],

MBGD-RDA [36], and TSKFNN [38] algorithms. To

verify the performance of GGWO through comparisons

with other algorithms, the number of rules and the

threshold UThrS are set to the same values in all simula-

tions, and the algorithms were limited to a maximum of

500 iterations. Figure 9 reveals the significant superiority

of GGWO over the GWO-based, PSO, and ANT colony

algorithms.

In addition, the tracking control results of GGWO and

other algorithms using a first-order TSK-type fuzzy con-

troller are compared and reported in Table 4.

Table 4 shows the averages (Avg) and standard devia-

tions (StD) of the RMSEs over 50 runs. The GGWO

achieves the smallest average RMSE. Moreover, Fig. 10

shows the RMSE values of each iteration obtained by

different algorithms during the first-order TSK-type fuzzy

system’s optimization.

The obtained results demonstrate the increased capa-

bility of the proposed GGWO algorithm compared to the

PSO [8], GWO [13], IGWO [21], ANT [11], and

HCMSPSO [9] algorithms. These results occur because of
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the previous modifications to the standard GWO algorithm.

Figures 11 and 12 show the initial distributions of the

fuzzy sets for the two input variables and the fuzzy sets’

distributions after optimization by GGWO.

The * represents the fuzzy rules in the input space while

the circles and ovals determine the distribution of the rules

among the input space. Figure 11 shows the initial distri-

butions of the fuzzy rules in the input space. Then, the final

distributions of the rules in the input space are optimized

after implementing the GGWO algorithm, as shown in

Fig. 12.

Figure 13 shows the best fuzzy control results of the

GGWO on Example 1, showing the desired and the actual

tacking output using the GGWO algorithm.

5.2.2 Experiment three: testing the accuracy of the GGWO
algorithm when applied to three real datasets

This experiment uses different datasets taken from the UC

Irvine Machine Learning Repository, namely, Abalone

[44], Airfoil [45], and PowerPlant [46]. Abalone dataset is

used to predict the age of Abalone from physical mea-

surements by cutting the shell through the cone, staining it,

F1 F2 F3 F8 F9 F10

GGWO 2.679978 3.06895725 12.5916444 3.38219086 3.70621796 4.5962379

FCM-RDpA 2.979978 3.39895725 12.7816444 3.73219086 4.10621796 5.0362379

MBGD-RDA 2.829978 3.23395725 12.6866444 3.55719086 3.90621796 4.8162379

TSKFNN 3.72854 3.991943 18.14876 3.974623 4.369778 4.956931

IGWO 3.82854 4.091943 18.24876 4.124623 4.519778 5.106931

GWO 4.5917 5.13199 18.929381 4.740592 5.749758 5.822691

MGWO 4.211394 4.5011373 18.63198396 4.5370853 4.9717558 5.6176241

PSO 5.05087 5.1833099 20.06514386 5.6887104 6.38223138 5.88091791

0

5
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m

e(
S)

Fig. 8 Simulation Time of GGWO Compared to other algorithms
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Fig. 9 Performance of GGWO

compared to other GWO-based

algorithms in Example 1

Table 4 Tracking control

(RMSE) by different

ALGORITHMS ON Example 1

GGWO FCM-RDpA MBGD-RDA TSKFNN HCMSPSO IGWO GWO PSO ANT

Avg. 0.033 0.039 0.036 0.04 0.04 0.044 0.041 0.045 0.059

StD. 0.012 0.012 0.011 0.008 0.008 0.0139 0.012 0.017 0.011
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and counting the number of rings through a microscope.

This task consumes time and effort, so other different

measurements have been used to easily predict the age.

Abalone dataset consists of eight input variables: sex,

length, diameter, height, whole weight, shucked weight,

viscera weight and shell weight; however, the first input

variable is neglected because it is a trichotomous variable.

The output variable is the number of rings that predict the

age of Abalone. The dataset contains 4177 samples.

Table 5 summarizes the properties of the three datasets

used in the experiments.

This experiment’s main goal is to test the accuracy of

the GGWO algorithm when implemented on real datasets.

The proposed algorithm is compared to different algo-

rithms, namely FCM-RDpA [37], MBGD-RDA [36],

TSKFNN [38], DE [47], Artificial Bee Colony (ABC) [48],

which perform unconstrained optimization, as well as with

the C-PSO [10], which performs constrained particle

swarm optimization. The abalone dataset data are divided

as follows: 70% are used as a training set and 30% as a test

set.

Examples of the Abalone dataset’s fuzzy partitions are

illustrated in Fig. 14, where VW, W, M, S, and VS stand

Fig. 10 Root-Mean-Squared-

Error (RMSE) values on each

iteration obtained by different

algorithms in Example 1

Fig. 11 Initial distributions of the rules in the input space by the rule

generation method

Fig. 12 The final distributions of the rules in the input space after

optimization by GGWO

Fig. 13 Fuzzy control results of the GGWO in Example 1
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for Very Weak, Weak, Medium, Strong, And Very Strong,

respectively. The rule base equivalent to the fuzzy parti-

tions of the abalone dataset in Fig. 12 is shown in Table 6.

The grid partitioning is implemented to divide the input

space into a number of fuzzy partitions, each of which is

specified by a membership function for each feature

dimension. Figure 14 illustrates the input space fuzzy

partitions for the Abalone dataset. In the implemented first-

order TSK FSs, the Gaussian membership function repre-

sents the local information efficiently and contain contin-

uous derivatives of the values. The consequent function

Zj xð Þ is set to a linear function of the input variables. The

output of the system is given by Eq. (12).

Samples of the membership functions of the fuzzy par-

titions in the fuzzy rules generated by GGWO are shown in

Fig. 15. The fuzzy rules can be described as shown in

Table 6.

From Fig. 14, as the number of rules (c) increases, the

probability of finding the best solution (Fmin) decreases. To

test the accuracy of GGWO, the average RMSE for training

and testing data in abalone dataset is calculated and listed

in Table 7, along with the number of rules for which it

achieves the best accuracy and the time taken by the

GGWO algorithm to compute all the attributes of the

dataset.

In addition, the average RMSE for the GGWO algo-

rithms and a different number of iterations on Abalone,

Airfoil, and PowerPlant dataset are shown in Figs. 16, 17

and 18, respectively. The results obtained are compared to

FCM-RDpA [37], MBGD-RDA [36], TSKFNN [38],

GWO [13], IGWO [21], and HCMSPSO [9] algorithms.

The previous figures show that the GGWO algorithm

performed the best among the other algorithms in the three

datasets. The TSK-FS were trained well from the GGWO

algorithm during the iteration. These results ensured that

hybridizing the GA with GWO was useful in optimizing

the learning rates, which in turn facilitated achieving

enhanced learning performances.

To guarantee the fairness of the comparative results, the

parameters of all algorithms are equalized as follows: The

maximum number of iterations is 500, the population size

is 30. The crossover and mutation rate is 0.7 and 0.01,

respectively.

In addition, the computational cost in secs for the

GGWO algorithm is calculated and compared with the

algorithms that had the closest RMSE to our results,

namely FCM-RDpA [37], MBGD-RDA [36], and

TSKFNN [38] algorithm. Figure 19 shows the computa-

tional cost in seconds for the GGWO algorithm imple-

mented into Abalone, Airfoil, and PowerPlant datasets.

The results show that the proposed algorithms were the

faster among other algorithms in the three datasets.

Furthermore, to validate the obtained results, the

GGWO results are compared with the results obtained by

(DE) [47], (ABC) [48], and C-PSO [10], as shown in

Fig. 20.

Figure 20 shows that the proposed GGWO algorithm

results are comparable to those obtained by the specifically

designed hybrid algorithms.

5.2.3 Experiment four: test the classification accuracy
of the proposed GGWO-ANN algorithm

An Optimized Artificial Neural Network, proposed in [49],

had been implemented along with GGWO algorithm to

optimize the classification performance for the three data-

sets: Abalone, Airfoil, and PowerPlant. To validate the

proposed GGWO-ANN algorithm, the results obtained are

compared to MRC-TSK-FSC [35], FCM-RDpA [37],

MBGD-RDA [36], SVM [13], and TSKFNN [38] algo-

rithm. Table 8 summarizes the accuracy obtained, in terms

of mean values and standard deviation, when implementing

the ANN in different datasets.

The results show that the classification performance of

GGWO-ANN is promising in the datasets with a relatively

large number of instances. However, in the dataset with a

few instances, as in Airfoil dataset, the accuracy is not the

best among the other algorithms. The recent MRC-TSK-

FSC [35] algorithm outperforms the GGWO-ANN

Table 5 Description of the

datasets used in the experiments
Dataset Instances No. Features No. Features used No. TSK parameters No.

Abalone 4177 8 5 212

Airfoil 1503 5 5 212

PowerPlant 9568 4 4 96

Fig. 14 Examples of fuzzy partitions of the dataset Abalone
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performance. A deep study for different datasets will be

considered in future work.

5.2.4 Experiment Five: test the influence of the control
parameters rinitW, UThrS, and H on the performance
of GGWO

During the TSK-FS optimization process, GGWO relies on

some selected parameters: rinitW is the initial width of the

Table 7 Optimal number of rules, computational cost, and RMSE

values

Rules Computational time (secs/iteration) RMSE

Train Test

6 1.198 1.9814 1.9967

RM
SE

ITERATIONS

GGWO TSKFNN FCM-RDpA MBGD-RDA

HCMSPSO IGWO GWO

100    1500 50 200 250 300 350   400      450    500

15

12

10

7

5

Fig. 16 Average RMSE for the GGWO algorithms along with

different iterations on PowerPlant dataset compared to other

algorithms

RM
SE

ITERATIONS

GGWO TSKFNN FCM-RDpA MBGD-RDA

HCMSPSO IGWO GWO

0            50    100    150     200      250      300  350   400      450    500

3.2

3

2.8

2.4

Fig. 17 Average RMSE for the GGWO algorithms along with

different iterations on Abalone dataset compared to other algorithms

Table 6 Rule base equivalent to the fuzzy partitions of the abalone dataset in Fig. 12

R1 If 9 1 is S and 9 2 is M and 9 3 is W and 9 4 is W, Then y = 4.312 - 2.0108 9 1 ? 5.409 9 2 ? 18.988 9 3 ? 20.0752 9 4

R2 If 9 1 is VS and 9 2 is W and 9 3 is W and 9 4 is M, Then y = 2.877 - 3.981 9 1 ? 18.431 9 2 ? 5.991 9 3 - 1.312 9 4

R3 If 9 1 is VS and 9 2 is W and 9 3 is M and 9 4 is S, Then y = 3.812 ? 17.889 9 1 - 31.912 9 2 ? 4.521 9 3 ? 6.451 9 4

R4 If 9 1 is W and 9 2 is W and 9 3 is M and 9 4 is S, Then y = 1.561 - 16.609 9 1 ? 10.319 9 2 ? 2.951 9 3 ? 1.981 9 4

R5 If 9 1 is VW and 9 2 is W and 9 3 is S and 9 4 is S, Then y = - 0.0897 - 0.0175 9 1 - 0.018 9 2 - 0.007 9 3 - 0.012 9 4

R6 If 9 1 is M and 9 2 is S and 9 3 is W and 9 4 is W, Then y = 6.471 ? 17.592 9 1–14.401 9 2 ? 9.951 9 3—2.519 9 4

Fig. 15 Sample of membership functions of the fuzzy partitions in fuzzy rules generated by GGWO
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fuzzy set, UThrS is a predefined threshold for rule genera-

tion decision, and H is the degree of overlap between two

rules. These three parameters (rinitW, UThrS, and H) have

large effects on the optimization performance because they

influence the number of generated rules. In other words, the

selection of the UThrS, rinitW , H parameters directly affects

the optimization performance of GGWO. In this experi-

ment, the effects of changing the values of these parame-

ters on the overall optimization performance of the

proposed GGWO are investigated by calculating the

resulting RMSE. The influence of UThrS and H is illustrated

by examining the nonlinear plant-tracking control problem

in Example 1. Figure 21 shows the GGWO performance

for different values of UThrS, and the results are compared

to HCMSPSO [9], C-PSO [10], MGWO [23], and IGWO

[21].

Figures 22 and 23 show the RMSE values obtained by

GGWO when optimizing the nonlinear plant-tracking

control problem using different values of H and UThrS,

respectively. The results are compared to HCMSPSO [9],

C-PSO [10], MGWO [23], and IGWO [21].

As the figures show, the RMSE values remain stable as

the values of UThrS, rinitW and H increase until they reach a

specific value. Subsequently, the RMSE values increase as

the values of UThrS; rinitW ; and H increase. Consequently,

this value can be considered as a threshold value for the

GGWO. In addition, the previous figures show that GGWO

achieves performance gains compared to the other

algorithms.

To evaluate the performance of GGWO, other opti-

mizing algorithms are also tested on the same dataset,

examples and parameters. The experiments showed the

RMSE, simulation time, computational cost, and the final

distributions of the rules for different algorithms. The

smaller RMSE, the less simulation time and the less

computational cost indicate that the algorithm has better

performance. It can be seen from the experiments that

GGWO obtains the smallest RMSE in Abalone, Power-

Plant, and Airfoil datasets and has a better performance

compared to others in running the functions, with less

timing compared to others.

6 Conclusion

This paper proposed a hybrid GGWO algorithm for first-

order TSK-FS optimization. GGWO combines the cross-

over and mutation operations of GA with the exploration

and exploitation stages of GWO. This combination has

been shown to have several advantages: (1) partitioning the

solution into several genes (chromosomes) improved the

diversity search of GGWO; (2) the combination maintains

a balance between solution exploitation and exploration;

(3) the exploration process is accelerated and reaches the

best solution in less time; (4) the GGWO algorithm over-

comes the tendency of premature convergence and the poor

exploitation of solutions in the standard GWO algorithm.

Fig. 20 RMSE for the GGWO algorithms within each fold on abalone

compared to other algorithms

RM
SE

ITERATIONS

GGWO TSKFNN FCM-RDpA MBGD-RDA

HCMSPSO IGWO GWO

6

5.5

5

4.5

4
0 50 100 150 200 250 300 350 400 450 500

Fig. 18 Average RMSE for the GGWO algorithms along with

different iterations on Airfoil dataset compared to other algorithms
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implemented into Abalone, Airfoil and PowerPlant datasets
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Unimodal and multimodal benchmark functions are used to

demonstrate the GGWO’s efficiency. The results validate

that GGWO achieves better values than other nature-in-

spired optimization algorithms. In addition, GGWO is

applied to generating fuzzy rules for TSK-FSs and opti-

mizing the parameters for each fuzzy rule. GGWO tunes all

the free parameters in the designed TSK-FSs. The simu-

lation results show that the GGWO can optimally design

TSK-FSs and achieve higher accuracy than other opti-

mization algorithms. We intend to apply GGWO algorithm

to different multi-objective optimization, multi-constraint

optimization, and dynamic uncertainty.
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Table 8 Classification accuracy of GGWO-ANN compared to different algorithms

Dataset GGWO-ANN MRC-TSK-FSC FCM-RDpA MBGD-RDA TSKFNN SVM

Abalone Mean 0.9838 0.9796 0.9701 0.9781 0.967 0.9676

Std. - 0.0145 - 0.0149 - 0.0141 - 0.012 - 0.0139 - 0.0145

Airfoil Mean 0.7709 0.7909 0.7731 0.7608 0.7644 0.76

Std. - 0.02985 - 0.0287 - 0.031 - 0.0823 - 0.0419 - 0.0391

PowerPlant Mean 0.9631 0.9132 0.8812 0.8986 0.899 0.8909

Std. - 0.0161 - 0.0191 - 0.0131 - 0.0091 - 0.0312 - 0.016

The bold values indicate the best results obtained for the mean values calculated for testing the classification accuracy of the algorithms. The

values show the superiority of GGWO’s results in Abalone and PowerPlant dataset compared to other algorithms, while MRC-TSK-FSC

algorithm outperform the GGWO-ANN performance in Airfoil dataset
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