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Abstract
In this paper, we present a recurrent neural system named long short-term cognitive networks (LSTCNs) as a generalization

of the short-term cognitive network (STCN) model. Such a generalization is motivated by the difficulty of forecasting very

long time series efficiently. The LSTCN model can be defined as a collection of STCN blocks, each processing a specific

time patch of the (multivariate) time series being modeled. In this neural ensemble, each block passes information to the

subsequent one in the form of weight matrices representing the prior knowledge. As a second contribution, we propose a

deterministic learning algorithm to compute the learnable weights while preserving the prior knowledge resulting from

previous learning processes. As a third contribution, we introduce a feature influence score as a proxy to explain the

forecasting process in multivariate time series. The simulations using three case studies show that our neural system reports

small forecasting errors while being significantly faster than state-of-the-art recurrent models.

Keywords Short-term cognitive networks � Recurrent neural networks � Multivariate time series � Interpretability

1 Introduction

Time series analysis and forecasting techniques process

data points that are ordered in a discrete-time sequence.

While time series analysis focuses on extracting mean-

ingful descriptive statistics of the data, time series fore-

casting uses a model for predicting the next value(s) of the

series based on the previous ones. Traditionally, time series

forecasting has been tackled with statistical techniques

based on auto-regression or the moving average, such as

exponential smoothing (ETS) Hyndman et al. [28] and the

auto-regressive integrated moving average (ARIMA)

Box et al. [8]. These methods are relatively simple and

perform well in univariate scenarios and with relatively

small data. However, they are more limited in predicting a

long time horizon or dealing with multivariate scenarios.

The ubiquitousness of data generation in today’s society

brings the opportunity to exploit recurrent neural network

(RNN) architectures for time series forecasting. RNN-

based models have reported promising results in multi-

variate forecasting of long series Hewamalage et al. [25].

In contrast to feed-forward neural networks, RNN-based

models capture long-term dependencies in the time

sequence through their feedback loops. The majority of

works published in this field are based on vanilla RNNs,

Long-short Term Memory (LSTM) Hochreiter and Sch-

midhuber [26] or Gated Recurrent Unit (GRU) Cho

et al. [13] architectures. In the last M4 forecasting com-

petition Makridakis et al. [35], the winners were models

combining RNNs with traditional forecasting techniques,

such as exponential smoothing Smyl [50]. However, the

use of RNN architectures is not entirely embraced by the

forecasting community due to their lack of transparency,
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need for very specific configurations, and high computa-

tional cost [25, 35, 36].

In this regard, the development of RNN architectures for

time series forecasting can bring serious financial and

environmental costs. As anecdotal evidence, one of the

participants in the last M4 forecasting competition reported

getting a huge electricity bill from 5 computers running for

4.5 months Makridakis et al. [35]. More formally, the

authors in Strubell et al [51] presented an eye-opening

study characterizing the energy required to train recent

deep learning models, including their estimated carbon

footprint. An example of a training-intensive task is the

tuning of the BERT model Devlin et al. [16] for natural

language processing tasks, which compares to the CO2

emissions of a trans-American flight. One of the conclu-

sions of the study in Strubell et al. [51] is that researchers

should focus on developing more efficient techniques and

report measures (such as the training time) next to the

model’s accuracy.

A second concern related to the use of deep machine

learning models is their lack of interpretability. For most

high-stakes decision problems having an accurate model is

insufficient; some degree of interpretability is also needed.

There exist several model-agnostic post-hoc methods for

computing explanations based on the predictions of a

black-box model. For example, feature attribution methods

such as SHAP Lundberg and Lee [34] approximate the

Shapley values that explain the role of the features in the

prediction of a particular instance. Other techniques such as

LIME Ribeiro et al. [47] leverage the intrinsic transparency

of other machine learning models (e.g., linear regression)

to approximate the decisions locally. In contrast, intrinsi-

cally interpretable methods provide explanations from their

structure and can be mappable to the domain Grau

et al. [21]. In Rudin [48], the author argues that these

explanations are more reliable and faithful to what the

model computes. However, developing environmental-

friendly RNN-based forecasting models able to provide a

certain degree of transparency is a significant challenge.

In this paper, we propose the long short-term cognitive

networks (LSTCNs) to cope with the efficient and trans-

parent forecasting of long univariate and multivariate time

series. LSTCNs involve a sequential collection of short-

term cognitive network (STCN) blocks Nápoles et al. [39],

each processing a specific time patch in the sequence. The

STCN model allows for transparent reasoning since both

weights and neurons map to specific features in the prob-

lem domain. Besides, STCNs allow for hybrid reasoning

since the experts can inject knowledge into the network

using prior knowledge matrices. As a second contribution,

we propose a deterministic learning algorithm to compute

the tunable parameters of each STCN block in a deter-

ministic fashion. The highly efficient algorithm replaces

the non-synaptic learning method presented in Nápoles

et al. [39]. As a final contribution, we present a feature

influence score as a proxy to explain the reasoning process

of our neural system. The numerical simulations using

three case studies show that our model produces high-

quality predictions with little computational effort. In short,

we have found that our model can be remarkably faster

than state-of-the-art recurrent neural networks.

The rest of this paper is organized as follows. Section 2

revises the literature on time series forecasting with

recurrent neural networks, while Sect. 3 presents the theory

behind the STCN block. Section 4 is devoted to LSTCN’s

architecture, learning, and interpretability. Section 5 eval-

uates the performance of our model using three case studies

involving long univariate and multivariate time series.

Section 6 concludes the paper and provides future research

directions.

2 Related work on time series forecasting

In the last decade, we observed a constantly growing share

of artificial neural network-based approaches for time

series forecasting. Prominent studies, including Bhaskar

and Singh [7] and Ticknor [53], use traditional feed-for-

ward neural architectures trained with the backpropagation

algorithm for time series prediction. However, in more

recent papers, we see a shift toward other neural models. In

particular, RNNs have gained momentum Kong et al. [29].

Feed-forward neural networks consist of layers of neu-

rons that are one-way connected, from the input to the

output layer, without cycles. In contrast, RNNs allow

connections to previous layers and self-connections,

resulting in cycles. In the special case of a fully connected

recurrent neural network Menguc and Acir [38], the out-

puts of all neurons are also the inputs of all neurons. The

literature is rich with various RNN architectures applied to

time series forecasting. Yet, we can generalize the elabo-

ration on various RNNs by stating that they allow having

self-connected hidden layers Chen et al. [9]. Compared

with feedforward neural networks, RNNs utilize the action

of hidden layer unfolding, which makes them able to pro-

cess sequential data. This explains their vast popularity in

the analysis of temporal data, such as time series or natural

language Cortez et al [14].

A popular RNN architecture is called long short-term

memory (LSTM). It was designed by Hochreiter and

Schmidhuber [26] to overcome the problems arising when

training vanilla RNN models. Traditional RNN training

takes a very long time, mostly because of insufficient,

decaying error when doing the error backpropagation Guo

et al. [23]. The LSTM architecture uses a special type of

neurons called memory cells that mimic three kinds of gate
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operations Hewamalage et al. [25]. These are referred to as

the multiplicative input, output, and forget gates. These

gates filter out unrelated and perturbed inputs Guo

et al. [20]. Standard LSTM models are constructed in a

way that past observations influence only the future ones,

but there exists a variant called bidirectional LSTM that

lifts this restriction Cui et al [15]. Numerous studies show

that both unidirectional and bidirectional LSTM networks

outperform traditional RNNs due to their ability to capture

long-term dependencies more precisely Tang et al. [52].

The Gated Recurrent Unit (GRU) is another RNN model

Cho et al. [13]. In comparison with LSTM, GRU executes

simplified gate operations by using only two types of

memory cells: input merged with output and forget cell

Wang et al. [57], called here update and reset gate,

respectively Becerra-Rico et al. [6]. As in the case of

LSTM, GRU training is less sensitive to the vanish-

ing/exploding gradient problem that is encountered in tra-

ditional RNNs Ding et al. [17].

The inclusion of recurrent/delayed connections boosted

the capability of neural models to predict time series

accurately, while further improvements of their architec-

ture (like LSTM or GRU model) made training dependable.

However, it shall be mentioned that the use of the tradi-

tional error backpropagation is not the only option to learn

network weights from historical data. Alternatively, we can

use meta-heuristic approaches to train a model. There

exists a range of interesting studies, where the authors used

Genetic Algorithm Sadeghi-Niaraki et al. [49] or Ant

Colony Optimization ElSaid et al. [19]. The study in

Abdulkarim and Engelbrecht [1] concluded that, for the

tested time series, dynamic Particle Swarm Optimization

obtained a similar forecasting error compared with a feed-

forward neural architecture and a recurrent one.

It shall be noted that the application of a modern neural

architecture does not relieve a model designer from intro-

ducing required data staging techniques. This is why we

find a range of domain-dependent studies that link various

RNN architectures with supplemental processing options.

For example, Liu and Shen [33] used a wavelet transform

alongside a GRU architecture, while Nikolaev et al. [43]

included a regime-switching step, and Cheng et al. [11]

employed wavelet-based de-noising and adaptive neuro-

fuzzy inference system.

We should mention recent studies on fusing RNN

architectures with Convolutional Neural Networks (CNNs).

The latter model has attracted much attention due to its

superior efficiency in pattern classification. We find a range

of studies [37, 59], where a CNN is merged with an RNN

in a deep neural model that aims at time series forecasting.

The role of a CNN is to extract features that are used to

train an RNN forecasting model Li et al. [32]. Attention

mechanisms have also been successfully merged with

RNNs, as presented by Zhang et al. [61].

From a high-level perspective on time series forecasting

with RNNs, we can also distinguish architectures that read

in an entire time series and produce an internal represen-

tation of the series, i.e., a network plays the role of an

encoder Laubscher [31]. A decoder network then needs to

be used to employ this internal representation to produce

forecasts Bappy et al. [5]. The described scheme is called

an encoder–decoder network and was applied, for example,

by Habler and Shabtai [24] together with LSTM, by Chen

et al. [10] with convolutional LSTM, and by Yang

et al. [60] with GRU.

We shall also mention the forecasting models based on

Fuzzy Cognitive Maps (FCMs) Kosko [30]. Such networks

are knowledge-oriented architectures with processing

capabilities that mimic the ones of RNNs. The most

attractive feature of these models is network inter-

pretability. There are numerous papers, including the

works of [44, 45, 54] or [58], where FCMs are applied to

process temporal data. However, recent studies show that

even better forecasting capabilities can be achieved with

STCNs Nápoles et al. [39] or long-term cognitive networks

Nápoles et al [40]. As far as we know, these FCM gener-

alizations have not yet been used for time series forecast-

ing. This paper extends the research on the STCN model,

which will be used as the main building block of our

proposal.

3 Short-term cognitive networks

The STCN model was introduced in Nápoles et al. [39] to

cope with short-term WHAT-IF simulation problems

where problem variables are mapped to neural concepts. In

these problems, the goal is to compute the immediate effect

of input variables on output ones given long-term prior

knowledge. Remark that the model in Nápoles et al. [39]

was trained using a gradient-based non-synaptic learning

approach devoted to adjusting a set of parametric transfer

functions. In this section, we redefine the STCN model

such that it can be trained in a synaptic fashion.

The STCN block involves four matrices to perform

reasoning: W
ðtÞ
1 , B

ðtÞ
1 , W

ðtÞ
2 , and B

ðtÞ
2 . The first two matrices

denote the prior knowledge coming from a previous

learning process and can be modified by the experts to

include new pieces of knowledge that have not yet been

recorded in the historical data (e.g., an expected increase in

the Bitcoin value as Tesla decides to accept such cryp-

tocurrency as a valid payment method). These prior

knowledge matrices allow for hybrid reasoning, which is

an appealing feature of the STCN model. The third and
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fourth matrices contain learnable weights that adapt the

input XðtÞ and the prior knowledge to the expected output

Y ðtÞ in the current step. The matrices B
ðtÞ
1 and B

ðtÞ
2 represent

the bias weights.

Figure 1 shows how the different components interact

with each other in an STCN block. It is important to

highlight that this model lacks hidden neurons, so each

inner block (abstract layer) has exactly M neurons, with M

being the number of neural concepts in the model. This

means that we have a neural system in which each com-

ponent has a well-defined meaning. For example, the

intermediate state HðtÞ represents the outcome that the

network would have produced given XðtÞ if the network

would not have been adjusted to the expected output Y ðtÞ.
Similarly, the bias weights denote the external information

that cannot be inferred from the given inputs.

Equations 1 and 2 formalize the short-term reasoning

process of this model in the t-th iteration,

Ŷ ðtÞ ¼ f HðtÞW
ðtÞ
2 � B

ðtÞ
2

� �
ð1Þ

and

HðtÞ ¼ f XðtÞW
ðtÞ
1 � B

ðtÞ
1

� �
ð2Þ

where XðtÞ and ŶðtÞ are K �M matrices encoding the input

and the forecasting in the current iteration, respectively,

with K being the number of observations andM the number

of neurons. B1 and B2 are 1�M matrices representing the

bias weights. HðtÞ is a K �M matrix, while W
ðtÞ
1 and W

ðtÞ
2

are a M �M matrices. In these equations, the � operator

performs a matrix-vector addition by operating each row of

a given matrix with a vector, provided that both the matrix

and the vector have the same number of columns. Finally,

f ð�Þ stands for the nonlinear transfer function, typically the

sigmoid function:

f ðxÞ ¼ 1

1þ e�x
: ð3Þ

The inner working of an STCN block can be summarized

as follows. The block receives a weight matrix W
ðtÞ
1 , the

bias weight matrix B
ðtÞ
1 and a chunk of data XðtÞ as the input

data. Firstly, we compute an intermediate state HðtÞ that

mixes XðtÞ with the prior knowledge (e.g., knowledge

resulting from the previous iteration). Secondly, we operate

HðtÞ with W
ðtÞ
2 and B

ðtÞ
2 to approximate the expected output

Y ðtÞ.
This short-term reasoning of this model makes it less

sensitive to the convergence issues of long-term cognitive

networks such as the unique-fixed point attractors Nápoles

et al. [39]. Furthermore, the short-term reasoning allows

extracting more clear patterns to be used to generate

explanations.

4 Long short-term cognitive network

In this section, we introduce the long short-term cognitive

networks for time series forecasting, which can be defined

as a collection of chained STCN blocks.

4.1 Architecture

As mentioned, the model presented in this section is

devoted to the multiple-ahead forecast of very long (mul-

tivariate) time series. Therefore, the first step is splitting the

time series into T time patches, each comprising a collec-

tion of tuples with the form ðXðtÞ;Xðtþ1ÞÞ. In these tuples,

the first matrix denotes the input used to feed the network

in the current iteration, while the second one is the

expected output Y ðtÞ ¼ Xðtþ1Þ. Notice that each time patch

often contains several time steps (e.g., all tuples produced

within a 24-hour time frame).

Figure 2 shows, as an example, how to decompose a

given time series into T time patches of equal length where

each time patch will be processed by an STCN block. This

procedure holds for multivariate time series such that both

XðtÞ and YðtÞ have a dimension of K �M. In this case, K

denotes the number of time steps allocated to the time

patch, whereas M defines the width of each STCN block.

Therefore, if we have a multivariate time series described

by N features and want to forecast L steps, then

M ¼ N � L.

In short, the LSTCN model can be defined as a collec-

tion of STCN blocks, each processing a specific time patch

and passing knowledge to the next block. In each time

patch, the matrices of the previous model are aggregated

Fig. 1 The STCN block involves two components: the prior

knowledge matrices W
ðtÞ
1 and B

ðtÞ
1 , and the learnable matrices W

ðtÞ
2

and B
ðtÞ
2 . The prior knowledge matrices are a result of a previous

learning process and can be modified by domain experts if deemed

opportune
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and used as prior knowledge for the current STCN block,

that is to say:

W
ðtÞ
1 ¼ W W

ðt�1Þ
1 ;W

ðt�1Þ
2

� �
ð4Þ

and

B
ðtÞ
1 ¼ W B

ðt�1Þ
1 ;B

ðt�1Þ
2

� �
ð5Þ

such that Wðx; yÞ ¼ tan hðmaxfx; ygÞ. The aggregation

procedure creates a chained neural structure that allows for

long-term predictions since the learned knowledge is used

when performing reasoning in the current iteration.

Figure 3 shows the LSTCN architecture to process the

time series in Fig. 2, which was split into three time pat-

ches of equal length. In the figure, blue boxes represent

STCN blocks, while orange boxes denote learning

processes.

It should be highlighted that, although the LSTCN

model works in a sequential fashion, each STCN block

performs an independent learning process (to be explained

in the next subsection) before moving to the next block.

Therefore, the long-term component refers to how we

process the whole sequence, which is done by transferring

the knowledge (in the form of weights) from one STCN

block to another. Notice that we do not pass the neurons’

activation values to the subsequent blocks. Once we have

processed the whole sequence, the model narrows down to

the last STCN in the pipeline.

We would like to draw attention to a certain design

analogy between the LSTCN and the LSTM model. We

ought to outline how short-term and long-term dependen-

cies in temporal data are captured in both models to address

this topic. Let us recall that LSTM networks are derived

from RNN networks. An RNN network in an unfolded state

can be illustrated as a sequence of neural layers. The hid-

den layers in an RNN are responsible for window-based

time series processing. In an RNN, the values computed by

the network for the previous time step are used as input

when processing the current time step. Due to the cyclic

nature of the entire process, training an RNN is challeng-

ing. The input signals tend to either decay or grow expo-

nentially. Graves et al. [22] explain that this is referred to

in the literature as the vanishing gradient problem. The

most significant difference between the RNN and the

LSTM model is that the latter adds a forgetting mechanism

at each hidden layer. The LSTM model processes the data

using a windowing technique in which the number of

hidden layers is equal to the length of the window. This

window is responsible for processing and recognizing

short-term dependencies in time series. The forgetting

mechanism in each layer acts as a symbolic switch that

either retains the incoming signal or forgets it. (Please note

that this switch is not binary.) Thus, the forgetting mech-

anism in LSTM adds flexibility that allows the network to

accumulate long-term temporal contextual information in

its internal states, but at the same time, short-term depen-

dencies are also modeled because the processing scheme is

still sequential and windows-based.

Similar to the LSTM model, the LSTCN model analyzes

data in a sequential, window-based manner (see Fig. 3).

The difference is that each STCN block that makes up the

LSTCN model can be viewed as a sub-window. The

Fig. 2 Recurrent approach to process a (multivariate) time series with

an LSTCN model. The sequence is split into T time patches with even

length. Each time patch is used to train an STCN block that employs

information from the previous block as prior knowledge

Fig. 3 Example of an LSTCN

composed of three STCN

blocks. In each iteration, the

model receives a time patch XðtÞ

to be processed and produces an

approximation of the expected

output Y ðtÞ. The weights learned
in the current block are

aggregated (using Eqs. 4 and 5)

and transferred to the following

STCN block as prior knowledge

matrices
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aggregation function Wðx; yÞ can roughly be seen as an

analogy to the forgetting mechanism in an LSTM. Thus, as

a signal is passed through the network, the internal states

HðtÞ of the LSTCN accumulate knowledge of long-term

temporal contextual information. At the same time, the

short-term dependencies in the time series are processed in

a conventional way, in each STCN block (see Fig. 1).

4.2 Learning

Training an LSTCN model means training each STCN

block with its corresponding time patch. In this neural

system, the learned knowledge up to the current iteration is

stored in B1 and W1, while B2 and W2 contain the knowl-

edge needed to make the prediction in the current iteration.

Therefore, the learning problem consist of computing W
ðtÞ
2

and B
ðtÞ
2 given the tuple ðXðtÞ; YðtÞÞ corresponding to the

current time patch. Let us recall that HðtÞ is a K �M

matrix, W
ðtÞ
2 is a M �M matrix, while B

ðtÞ
2 is a 1�M

matrix. The underlying optimization problem is given

below:

min ! f HðtÞW
ðtÞ
2 � B

ðtÞ
2

� �
� Y ðtÞ

���
���
‘2
þk CðtÞ

2

���
���
‘2

ð6Þ

such that

CðtÞ
2 ¼

W
ðtÞ
2

B
ðtÞ
2

" #
ð7Þ

represents the matrix with dimension ðK þ 1Þ �M that

results after performing a row-wise concatenation of the

bias weight matrix B
ðtÞ
2 to W

ðtÞ
2 , while k� 0 is the ridge

regularization penalty. The added value of using a ridge

regression approach is regularizing the model and pre-

venting overfitting. In our network, overfitting is likely to

happen when splitting the original time series into too

many time patches covering few observations.

Equation (8) displays the deterministic learning rule

solving this ridge regression problem,

CðtÞ
2 ¼ UðtÞ

� �>
UðtÞ þ kXðtÞ

� ��1

UðtÞ
� �>

f� Y ðtÞ
� �

ð8Þ

where UðtÞ ¼ ðHðtÞjAÞ such that AK�1 is a column vector

filled with ones, XðtÞ denotes the diagonal matrix of

ðUðtÞÞ>UðtÞ, while ð�Þ�1
represents the Moore–Penrose

pseudo-inverse Penrose [46]. This generalized inverse is

computed using singular value decomposition and is

defined and unique for all real matrices. Remark that this

learning rule assumes that the activation values in the inner

layer are standardized. As far as standardization is con-

cerned, these calculations are based on standardized

activation values. When the final weights are returned, they

are adjusted back into their original scale.

It can be noticed that an STCN block trained using the

learning rule in Eq. (8) is similar to an Extreme Learning

Machine (ELM) Huang et al. [27], which is a special case

of a two-layer multilayer perceptron. However, there are

three main differences between these models. Firstly, the

W
ðtÞ
1 and B

ðtÞ
1 matrices are not random but initialized with

the prior knowledge arriving at the STCN block from

previous learning processes. Secondly, while the hidden

layer of ELMs is of arbitrary width, the number of neurons

in an STCN is given by the number of steps ahead to be

predicted and the number of features in the multivariate

time series. Finally, each neuron (also referred to as neural

concept) represents the state of a problem feature in a given

time step. While this constraint equips our model with

interpretability features, it might also limit its approxima-

tion capabilities.

Another issue that deserves attention is how to estimate

the first weight matrix W
ð0Þ
1 to be used as prior knowledge

in the first iteration. This matrix is expected to be (par-

tially) provided by domain experts or computed from a

previous learning process (e.g., using a transfer learning

approach). In this paper, we simulate such knowledge by

fitting a stateless STCN (that is to say, HðtÞ ¼ XðtÞ) on a

smoothed representation of the whole time series we are

processing. The smoothed time series is obtained using the

moving average method for a given window size. Finally,

we generate some white noise over the computed weights

to compensate for the moving average operation. Equa-

tion (9) shows how to compute this matrix,

W
ð0Þ
1 �N �X> �X þ kX

� ��1 �X>f� �Yð Þ; r
� �

ð9Þ

where �X and �Y are the smoothed inputs and outputs

obtained for the whole time series, respectively, while r is

the standard deviation. In this case, we will use X again to

denote the diagonal matrix of �X> �X if no confusion arises.

The prior bias matrix B
ð0Þ
1 is assumed to be zero since we

use that component to model the external stimulus of

neurons after performing an STCN’s learning process.

The intuition dictates that the training error will go

down as more time patches are processed. Of course, such

time patches should not be too small to avoid overfitting. In

some cases, we might obtain an optimal performance using

a single time patch containing the whole sequence such that

we will have a single STCN block. In other cases, it might

occur that we do not have access to the whole sequence

(e.g., as happens when solving online learning problems),

such that using a single STCN block would not be an

option.
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4.3 Interpretability

As mentioned, the architecture of our neural system allows

explaining the forecasting since both neurons and weights

have a precise meaning for the problem domain being

modeled. However, the interpretability cannot be confined

to the absence of hidden components in the network since

the structure might involve hundreds or thousands of edges.

In this subsection, we introduce a measure to quantify

the influence of each feature in the forecasting of multi-

variate time series. Our proposal is based on the knowledge

structures of the LSTCN model, i.e., the learned weights

connecting the neurons. This implies that our measure is a

model-intrinsic feature importance measure, reflecting

what the model considers important when learning the

relations between the time points. This approach contrasts

with model-agnostic methods that inspect how the varia-

tions in the input data affect the model’s output.

The proposed measure can be computed from W
ðtÞ
1 , W

ðtÞ
2

or their combination. The scores obtained from W
ðtÞ
1 can be

understood as the feature influence up to the t-th time

patch, while scores obtained from W
ðtÞ
2 can be understood

as the feature influence to the current time patch. Let us

recall that W
ðtÞ
1 and W

ðtÞ
2 are M �M matrices such that

M ¼ N � L, assuming that we have a multivariate time

series with N features and that we want to forecast L steps

ahead. Moreover, the neurons are organized temporally,

which means that we have L blocks of neurons, each

containing N units. Equations (10) and (11) show how to

quantify the effect of feature fi on feature fj given a matrix

W ðtÞ that characterizes the interaction among the problem

features,

cðtÞðfi; fjÞ ¼
X

pi2PðiÞ

X
pj2PðjÞ

wðtÞ
pipj

			
			;wðtÞ

pipj
2 W ðtÞ

ð10Þ

such that

PðiÞ ¼ fp 2 N; p�M j ðp mod iÞ ¼ 0g: ð11Þ

The feature influence score in Equation (10) can be nor-

malized such that the sum of all scores related to the j-th

feature is one. This can be done as follows:

ĉðtÞðfi; fjÞ ¼
cðtÞðfi; fjÞPN
k¼1 c

ðtÞðfk; fjÞ
: ð12Þ

The rationale behind the proposed feature influence score is

that the most important problem features will have attached

weights with large absolute values. Moreover, it is expec-

ted for the learning algorithm to produce sparse weights

with a zero-mean normal distribution, which is an appre-

ciated characteristic when it comes to interpretability.

The idea of computing the relevance of features from

the weights in neural systems has been explored in the

literature. For example, the Layer-Wise Relevance Propa-

gation (LRP) algorithm Bach et al. [4] explains the pre-

dictions made by a neural classifier for a given instance by

assigning relevance scores to features, which are computed

using the learned weights and neurons’ activation values. It

should be stated that we do not use neurons’ activation

values in our feature influence score as we intend to pro-

duce global explanations based on the learned weights

only. Similar approaches have been proposed in Nápoles

et al. [41] and Nápoles et al. [42] but applied to LTCN-

based classifiers. In the first study, the feature scores

indicate which features play a significant role in obtaining a

given class instead of an alternative class. This type of

interpretability responds to the question why not?. Con-

versely, the second study measures the feature importance

in obtaining the decision class. The results were contrasted

with the feature scores obtained from logistic regression

and both models agreed on the top features that play a role

in the outcome. Both feature score measures operate on

neural systems where the neurons have an explicit meaning

for the problem domain. Therefore, the learned weights can

be used as a proxy for interpretability.

5 Numerical simulations

In this section, we will explore the performance (fore-

casting error and training time) of our neural system on

three case studies involving univariate and multivariate

time series. In the case of multivariate time series, we will

also depict the feature contribution score to explain the

predictions.

When it comes to the pre-processing steps, we interpo-

late the missing values (whenever applicable) and nor-

malize the series using the min-max method. In addition,

we split the series into 80% for training and validation and

20% for testing purposes. As for the performance metric,

we use the mean absolute error in all simulations reported

in the section. For the sake of convenience, we trimmed the

training sequence (by deleting the first observations) such

that the number of times is a multiple of L (the number of

steps ahead we want to forecast).

The models used for comparison are a fully connected

Recurrent Neural Network (RNN) where the output is to be

fed back to the input, GRU, LSTM and Extreme Learning

Machine (ELM). In the first three models, the number of

epochs was set to 20, while the batch size was obtained

through hyperparameter tuning (using grid search). The

candidate batch sizes were the powers of two, starting from

32 until 4,096. The values for the remaining parameters

were retained as provided in the Keras library. In the case
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of the LSTCN model, we fine-tuned the number of time

patches T 2 f1; 2. . .; 10g and the regularization penalty

k 2 f1.0E--3; 1.0E--2; 1.0E--1; 1.0E+1; 1.0E+2; 1.0E+3g.
In Eq. (9), we arbitrarily set the standard deviation r to

0.05 and the moving window size w to 100. These two

hyperparameters were not optimized during the hyperpa-

rameter tuning step as they were used to simulate the prior

knowledge component. In the case of ELM, we use the

implementation provided in Scikit–ELM [3]. The number

of neurons in the hidden layer was set to M ¼ N � L where

N is the number of features while L is the number of steps

ahead to be forecast. The values for the remaining hyper-

parameters were retained as provided in the library.

Finally, all experiments presented in this section were

performed on a high-performance computing environment

that uses two Intel Xeon Gold 6152 CPUs at 2.10 GHz,

each with 22 cores and 768 GB of memory.

5.1 Apple Health’s step counter

The first case study concerns physical activity prediction

based on daily step counts. In this case study, the health

data of one individual were extracted from the Apple

Health application in the period from 2015 to 2021. In

total, the time series dataset is composed of 79,142

instances or time steps. The Apple Health application

records the step counts in small sessions during which the

walking occurs. The dataset (available at https://bit.ly/

2S9vzMD) contains two timestamps (start date and end

date), the number of recorded steps, and separate columns

for year, month, date, day, and hour. Besides, the day of the

week that each value was recorded is known. Table 1

presents descriptive statistics attached to this univariate

time series before normalization.

The target variable (number of steps) follows an expo-

nential distribution with very infrequent, extremely high

step counts and very common low step counts. Overall, the

data neither follows seasonal patterns nor a trend.

Table 2 shows the normalized errors attached to the

models under consideration when forecasting 50 steps

ahead in the Steps dataset. In addition, we portray the

training and test times (in seconds) for the optimized

models. The hyperparameter tuning reported that our

neural system needed two iterations to produce the

lowest forecasting errors, while the optimal batch size

for RNN, GRU and LSTM was found to be 32.

Although LSTCN outperforms the remaining methods in

terms of forecasting error, what is truly remarkable is its

efficiency. The results show that LSTCN is 2.7E?2

times faster than RNN, 2.3E?3 times faster than GRU,

2.2E?3 times faster than LSTM, and just 2.0E-2 times

slower than ELM. In this experiment, we ran all models

five times with optimized hyperparameters and selected

the shortest training time in each case. Hence, the time

measures reported in Table 2 concern the fastest exe-

cutions observed in our simulations.

Figure 4 displays the distributions of weights in the W1

and W2 matrices attached to the last STCN block (the one

to be used to perform the forecasting). In other words, we

visualize the differences in the distributions of prior

knowledge weights and the weights learned in the last

STCN block. It is worth recalling that the prior knowledge

block in that last block is what the network has learned

after processing all the time patches but the last one. In

contrast, the learned weights in that block adapt the prior

knowledge to forecast the last time patch. In this case

study, most prior knowledge weights are distributed in the

½�0:2; 1:0	 interval, while weights in W2 follows a zero-

mean Gaussian distribution. This figure illustrates that the

network significantly adapts the prior knowledge to the last

piece of data available.

Figure 5 depicts the overall behavior of weights con-

necting the inner neurons with the outer ones in the last

Table 1 Descriptive statistics for the steps case study

Variable Mean Std Min Max

Value 191.63 235.73 1.00 7,205.00

Table 2 Simulation results for the steps case study

Method Error Time

Training Test Training Test

RNN 0.0241 0.0249 5.513 0.444

GRU 0.0236 0.0251 46.002 0.703

LSTM 0.0237 0.0248 44.689 0.933

ELM 0.0234 0.0245 0.010 0.00

LSTCN 0.0221 0.0212 0.0202 0.001

Fig. 4 Distribution of weights for the Steps case study
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STCN block. In this simulation, we averaged the W1 and

W2 matrices for the sake of simplicity, thus resulting in an

average layer. In that layer, inner and outer neurons refer to

the leftmost and rightmost neurons, respectively. Observe

that the learning algorithm assigns larger weights to con-

nections between neurons processing the last steps in the

input sequence and neurons processing the first steps in the

output sequence. This is an expected behavior in time

series forecasting that supports the rationale of the pro-

posed feature relevance measure.

The fact that each neuron has a well-defined meaning

for the problem domain makes it possible to elucidate how

the network uses the current L time steps to predict the

following ones. Using that knowledge, experts could esti-

mate how many previous time steps would be needed to

predict a sequence of length L without performing further

simulations.

5.2 Household electric power consumption

The second case study concerns the energy consumption in

one house in France measured each minute from December

2006 to November 2010 (47months). This dataset (available

at https://bit.ly/3ugv8Pt) involves nine features and

2,075,259 observations from which 1.25% are missing.

Hence, records with missing values were interpolated using

the nearest neighbormethod. In our experiments, we retained

the following variables: global minute-averaged active

power (in kilowatt), global minute-averaged reactive power

(in kilowatt), minute-averaged voltage (in volt), and global

minute-averaged current intensity (in ampere) (Table 3).

The series exhibits cyclic patterns. On the most fine-

grained scale, we observe a repeating low nighttime power

consumption. We also noted a less distinct but still present

pattern related to the day of the week: higher power con-

sumption during weekend days. Finally, we observed high

power consumption during the winter months (peaks in

January) each year and low in summer (lowest values

recorded for July).

Table 4 portrays the normalized errors obtained by each

optimized model when forecasting 200 steps ahead, and the

training and test times (in seconds). The hyperparameter

tuning reported that our network produced the optimal

forecasts with two iterations, while the optimal batch size

for RNN, GRU and LSTM was 4,096, 64 and 256,

respectively. According to these simulations, LSTCN

obtains the best results followed by GRU with the latter

being notably slower than the former. Overall, LSTCN

proved to be 2.3E?1 times faster than RNN, 2.2E?3 times

faster than GRU, and 1.6E?3 times faster than LSTM.

ELM was the second-fastest algorithm and showed com-

petitive results in terms of error compared to LSTCN.

Figure 6 displays the distributions of weights in the W1

andW2 matrices for the last STCN block. These histograms

reveal that weights follow a zero-mean Gaussian distribu-

tion and that the second matrix has more weights near zero

(the shape of the second curve contracts toward zero). In

this case study, the network does not shift the distribution

of weights as happened in the first case study. Actually, the

accumulated prior knowledge does not seem to suffer much

distortion (distribution-wise) when adapted to the last time

patch.

Figure 7 displays the feature influence scores obtained

with Equation (12). These scores were computed after

averaging the W1 and W2 matrices that result from

adjusting the network to the last time patch. In this figure,

the bubble size denotes the extent to which one feature in

Fig. 5 Behavior of weights connecting the inner neurons with the

outer ones in the last STCN block after averaging W1 and W2

Table 4 Simulation results for the power case study

Method Error Time

Training Test Training Test

RNN 0.3326 0.3359 14.56 0.76

GRU 0.0581 0.0547 1373.58 2.21

LSTM 0.0637 0.0581 991.51 2.81

ELM 0.054 0.0581 0.781 0.079

LSTCN 0.0559 0.0531 0.63 0.04

Table 3 Descriptive statistics concerning four variables in the Power

case study: mean value, standard deviation, minimal, and maximal

values (‘‘pwr’’ stands for power)

Variable Mean Std Min Max

Active pwr 1.09 1.06 0.08 11.12

Reactive pwr 0.12 0.11 0.00 1.39

Voltage 240.84 3.24 223.20 254.15

Intensity 4.63 4.44 0.20 48.40
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the y-axis is deemed relevant to forecast the value of

another feature in the x-axis. For example, it was observed

that the first feature (global active power) is the most

important one to forecast the second feature (global reac-

tive power). Observe that the sum of all scores by column

is one due to the normalization step.

Overall, the results indicate that the proposed network

obtains small forecasting errors while being markedly

faster than the state-of-the-art recurrent neural networks.

Moreover, its knowledge structures facilitate explaining

how the forecasting was made, using feature relevance

explanations.

5.3 Bitcoin transactions analysis

In this section, we inspect a case study concerning changes

in the Bitcoin transaction graph observed with a daily

frequency from January 2009 to December 2018. The data

set is publicly available in the UCI Repository (https://bit.

ly/3ES71M1). Using a time interval of 24 hours, the con-

tributors of this dataset Akcora et al. [2] extracted daily

transactions and characterized them. In total, we have

2,916,697 observations of six numerical features (the

remaining ones were discarded).

Due to the nature of this dataset, we do not observe

typical statistical properties (there are no seasonal patterns,

the data are not stationary, the fluctuations do not show

evident patterns and features are not normally distributed).

Table 5 depicts descriptive statistics for the retained

features.

Table 6 shows the errors obtained by each optimized

network when forecasting 200 steps ahead, and the training

and test times (in seconds). After performing hyperpa-

rameter tuning, we found that the optimal batch size for

RNN, GRU and LSTM was 4,096, 128 and 64, respec-

tively, while the number of LSTCN iterations was set to

Fig. 6 Distribution of weights for the Power case study

Fig. 7 Feature influence in the Power case study

Table 5 Descriptive statistics (mean, standard deviation, minimum

and maximum value) of variables in the Bitcoin dataset

Variable Mean Std Min Max

Length 45.01 58.98 0.00 144.00

Weight 0.55 3.67 0.00 1,943.75

Count 721.64 1,689.68 1.00 14,497.00

Looped 238.51 966.32 0.00 14,496.00

Neighbors 2.21 17.92 1.00 12,920.00

Income 4.47e?09 1.63e?11 3.00e?07 5.00e?13

Table 6 Simulation results for the Bitcoin case study

Method Error Time

Training Test Training Test

RNN 0.3003 0.3146 32.81 1.56

GRU 0.0653 0.0918 2596.92 5.07

LSTM 0.0664 0.0872 3488.91 6.96

ELM 0.0591 0.1 2.2199 0.254

LSTCN 0.0583 0.0774 1.56 0.09

Fig. 8 Distribution of weights in the Bitcoin case study
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eight. In this problem, the LSTCN model clearly outper-

formed the remaining algorithms selected for comparison.

When it comes to the training time, LSTCN is 2.1E?1

times faster than RNN, 1.7E?3 times faster than GRU,

2.2E?3 times faster than LSTM, and 1.4 times faster than

ELM. Similarly to the other experiments, ELM was the

second-fastest algorithm; however, it obtained the second-

worst score in terms of the test error.

Figure 8 shows the distribution of weights in the first prior

knowledge matrix and the matrix computed in the last

learning process. This figure illustrates how the weights

become more sparse as the network performs more itera-

tions. This happens due to a heavy ‘2 regularization with

k ¼ 1:0E þ 3 being the best penalty value obtainedwith grid

search. However, no shift in the distributions is observed.

Figure 9 shows the feature influence scores obtained for

the Bitcoin case study. Similarly to the previous scenario,

these scores were computed after averaging the W1 and W2

matrices that result from adjusting the network to the last

time patch. The relevance scores suggest that the sixth

(income), the second (weight) and the third (count) features

have the biggest influence in the forecasting.

Overall, it should be highlighted that the intention of the

proposed feature score is to provide the LSTCN with

intrinsic interpretability, as opposed to model-agnostic

measures of feature importance. In general, model-intrinsic

explanations are preferred when the fidelity of the expla-

nations to the model is an important factor for the user

Rudin [48]. In practice, our approach can help the practi-

tioners elucidate the degree to which each feature influ-

ences the forecasting. Comparing the quality of our model-

intrinsic explanations with model-agnostic explanations

would require specific application and the availability of

experts to measure satisfaction, informativeness, useful-

ness, trust, etc. Doshi-Velez and Kim [18]. This is an

interesting step to take into account in the future work of

this research line.

6 Concluding remarks

In this paper, we have presented a recurrent neural system

termed Long Short-term Cognitive Networks to forecast

long time series. The proposedmodel consists of a collection

of STCN blocks, each processing a specific data chunk (time

patch). In this neural ensemble, each STCN block passes

information to the next one in the form of prior knowledge

matrices that preserve what the model has learned up to the

current iteration. This means that, in each iteration, the

learning problem narrows down to solving a regression

problem. Furthermore, neurons and weights can be mapped

to the problem domain, making our neural system

interpretable.

The underlying model aims at solving an optimization

problem, which is practically realized with ridge regres-

sion. The natural limitation of such a solution is that we

may encounter computational issues in ultra-high dimen-

sional spaces. The literature of the domain suggests solving

these issues with the help of dimensionality reduction

algorithms (see [12, 55, 56]).

The numerical simulations using three case studies

allow us to draw the following conclusions. Firstly, our

model performs better than (or comparably to) state-of-

the-art recurrent neural networks. It has not escaped our

notice that these algorithms could have produced smaller

forecasting errors if we had optimized other hyperpa-

rameters (such as the learning rate, the optimizer, the

regularizer, etc.). However, such an increase in perfor-

mance would come at the expense of a significant

increase in the computations needed to produce fully

optimized models. Secondly, the simulation results have

shown that our proposal is noticeably faster than GRU

and LSTM, which are popular recurrent models for time

series forecasting, and comparable to ELM. Such a

conclusion is particularly relevant since our primary goal

was to design a fairly accurate forecasting model with

fast training time rather than outperforming the fore-

casting capabilities of these recurrent models. Finally, we

have illustrated how to derive insights into the relevance

of features using the network’s knowledge structures

with little effort.

Future research efforts will be devoted to exploring the

forecasting capabilities of our model further. On the one

hand, we plan to conduct a larger experiment involving

more univariate and multivariate time series. On the other

hand, we will analytically study the generalization prop-

erties of LSTCNs under the PAC-Learning formalism. This

seems especially interesting since the network’s size

depends on the number of features and the number of steps

ahead to be forecast.

Fig. 9 Feature influence in the Bitcoin case study
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41. Nápoles G, Jastrzebska A, Salgueiro Y (2021) Pattern classifi-

cation with evolving long-term cognitive networks. Inf Sci

548:461–478. https://doi.org/10.1016/j.ins.2020.08.058
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