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Abstract
Large amount of data are generated from in-situ monitoring of additive manufacturing (AM) processes which is later used

in prediction modelling for defect classification to speed up quality inspection of products. A high volume of this process

data is defect-free (majority class) and a lower volume of this data has defects (minority class) which result in the class-

imbalance issue. Using imbalanced datasets, classifiers often provide sub-optimal classification results, i.e. better per-

formance on the majority class than the minority class. However, it is important for process engineers that models classify

defects more accurately than the class with no defects since this is crucial for quality inspection. Hence, we address the

class-imbalance issue in manufacturing process data to support in-situ quality control of additive manufactured compo-

nents. For this, we propose cluster-based adaptive data augmentation (CADA) for oversampling to address the class-

imbalance problem. Quantitative experiments are conducted to evaluate the performance of the proposed method and to

compare with other selected oversampling methods using AM datasets from an aerospace industry and a publicly available

casting manufacturing dataset. The results show that CADA outperformed random oversampling and the SMOTE method

and is similar to random data augmentation and cluster-based oversampling. Furthermore, the results of the statistical

significance test show that there is a significant difference between the studied methods. As such, the CADA method can be

considered as an alternative method for oversampling to improve the performance of models on the minority class.

Keywords Class-imbalance � Melt-pool defects classification � Aerospace application � Additive manufacturing �
Polar transformation � Random forests

1 Introduction

Additive manufacturing (AM) is ‘‘a process of joining

materials to make objects from 3D model data, usually

layer upon layer, as opposed to subtractive manufacturing

methodologies’’ [15]. It leads (1) to manufacture products

that have complex geometries and designs (2) to produce

light-weight customized products as well as (3) to reduce

the cost and lead time [4, 31]. However, there are still some

persisting problems with AM, such as porosity and cracks.

To address these problems, in-situ process monitoring has

been used for quality inspection [13]. One of the ways of

in-situ monitoring is to capture the process with cameras

(for instance melt-pool), and then use the captured data to

analyse the deviations in the process to find out irregular-

ities (checking defects) in welding. Using this data, several

research studies focused on finding more efficient ways for

quality inspection with prediction modelling to reduce the
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manual time-consuming verification process

[4, 10, 11, 21, 33].

When using these prediction models, it is important for

process engineers that a model correctly classifies images

with defects more accurately compared to those ones with

no defects since this is crucial for quality inspection. Large

amount of data are generated from the monitoring pro-

cesses and such data can be used to train models. However,

one of the problems is that a high volume of these process

data does not have any defects (majority class), and a lower

volume of data has defects (minority class). Furthermore, it

is expensive and time-consuming to collect more defect

images since it involves a manual labelling process. Using

the imbalanced datasets, standard classifiers often provide

sub-optimal classification results i.e. better performance for

the majority class than for the minority class. Therefore, we

aim to address the class-imbalance issue in manufacturing

data to support in-situ quality control of additive manu-

factured components.

One of the approaches to address the class imbalance

problem is by using resampling approaches to obtain the

required class balance [20, 22]. Two resampling approa-

ches are undersampling and oversampling. In the under-

sampling approach, the size of the majority class is reduced

to balance with the minority class. The undersampling

approach is conventional and simple. However, it suffers

from some information loss for the majority class. In the

oversampling approach, the size of the minority class is

increased to balance with the majority class. This approach

does not lose any information in the majority class. How-

ever, replicating the original data (i.e., digital images in our

case) randomly for oversampling might miss different sub-

class distributions in a single class. In this case, a cluster-

ing-based oversampling approach has been shown to be

suitable since it helps to identify sub-class distributions in a

single class by clustering images.

Hence, we choose the oversampling approach with

clustering to balance our datasets. We propose an over-

sampling method, cluster-based adaptive data augmenta-

tion (CADA) to improve the performance of classifiers for

the minority class. Unlike existing clustering approaches,

the proposed method oversamples by learning from mis-

classified instances. We believe that identifying sub-class

distributions in a single class using clustering together with

learning from misclassified instances improve the perfor-

mance of classifiers. The rationale behind this assertion is

that there might be some clusters of images that are easier

to classify than other clusters. Hence, if we can get some

information regarding these images, we can choose which

clusters need to be oversampled instead of oversampling

every cluster (i.e., the adaptivity aspect in CADA). For the

performance comparison of the proposed method, we use

random oversampling (ROS), random data augmentation

(RDA), cluster-based oversampling (COS) and synthetic

minority oversampling technique (SMOTE).

For extracting features from images, in our previous

study [10], we conducted a study to explore several hand-

crafted feature extraction methods with small sample

datasets to use them in the current study. In the latter study,

we investigated the performance of random forests (RF)

models using the polar transformation (PT), the histogram

of oriented Gradients (HOG), the HARALICK descriptors,

the local binary patterns (LBP), and naive XY-projections.

The results show that PT was better compared to other

methods for our use-case image datasets. Hence, we use

that study knowledge [10], PT for feature extraction and

RF for building the models in our current study. More

details of the previous study and results can be found in

[10].

2 Aim and scope

This paper aims to address the class-imbalance issue in

manufacturing data to support in-situ quality control of

additive manufactured components. For this, we propose an

adaptive augmentation approach (a data-centric approach),

CADA, for oversampling to deal with the class-imbalance

issue. We compare the proposed method with selected

state-of-the-art oversampling methods. For the experi-

mental investigations, we use melt-pool image datasets

which are captured while manufacturing using the Laser

Melt Deposition (LMD) method. The setup of the LMD

experiment and robot control parameters are out of the

scope of this study. Furthermore, the scope is limited to

investigate and compare the performance of the oversam-

pling methods, and hence only one classifier is selected to

train the models. For the generalization of the proposed

method, we use publicly available casting manufacturing

image data for quality inspection.

3 Related work

Class-imbalance occurs in classification tasks when some

classes have considerably more instances than other clas-

ses. These classes are typically called majority and

minority classes, respectively. The class-imbalance issue is

a very important problem in many domains such as fraud

detection, medical diagnosis, and industrial manufacturing

[20]. It arises due to limited access to data collection for

certain reasons [29]. Wang et al., have stated that class-

imbalance is one of the challenges with surface defects

datasets since they are generally small because it is costly

to collect more samples [32]. That study gave an example

that the ratio of no-defects and defects can be highly
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imbalanced ranging with 9:1 proportions. Hence, it is dif-

ficult to use standard classification algorithms since they

can be overwhelmed by majority classes and ignore the

minority classes [7]. One of the approaches to address the

class-imbalance is to use data-centric approaches (also

known as pre-processing approaches) [20, 22]. For

instance, Cateni et al., have adapted a resampling approach

for the class-imbalance to inspect defects on the surface of

metal sheets that are captured by cameras [5].

Undersampling approaches such as random undersam-

pling and cluster-based oversampling have been used to

obtain the class balance [20, 22, 28, 34]. However, the

information loss of the majority class is a problem when

using undersampling approaches. Furthermore, there might

be another issue with undersampling in some applications

where the majority class has very few samples. Hence,

undersampling of this class may result in reducing the size

of datasets even further which might make it difficult to

train an accurate classifier.

Oversampling approaches have been introduced to

increase the size of the minority class to obtain balanced

class datasets. Initially, random oversampling to duplicate

samples for the minority class has been used. However,

overfitting is the main issue with using this method [18]. To

overcome this issue, SMOTE has been introduced by

Chawla [6]. Bach et al., conducted a comparative study

with SMOTE and provided insights into this method [2].

Nafi et al., have conducted a study with SMOTE and

generalized adversarial networks (GAN) to address class-

imbalance issues. The authors of that study state that

SMOTE interpolated images are blur compared to GAN’s

generated synthetic images [30].

Cluster-based approaches have been used for oversam-

pling to learn complexities when a single class has different

sub-class data distributions [23]. Although clustering could

be helpful when identifying sub-class distributions in a

single class for oversampling, there might be some clusters

of images that are easier to classify than the other clusters.

Hence, if we can get some information regarding the

clusters (for instance, which type of images are needed for

a classifier to learn better in the minority class) then we can

choose which clusters need to be oversampled instead of

oversampling every cluster. Furthermore, if we replicate

the images by choosing images randomly from these

clusters, overfitting could be an issue similar to random

oversampling. Hence, in our proposed method, we apply

rotation augmentation on images to avoid overfitting.

There are eight studies reported in [20] which have

addressed the class-imbalance issue in infrastructure and

industrial manufacturing. Out of these, we found one

related study which adapted a resampling approach for

class-imbalance to inspect defects on the surface of metal

sheets captured by cameras [5]. Furthermore, Houtum

et al., proposed the adaptive weighted uncertainty sampling

(AWUS) to address the class-imbalance issue in an addi-

tive manufacturing application (direct-energy-deposition).

The authors have conducted thorough experiments using 28

datasets and concluded that AWUS reduces the number of

necessary annotations compared to random sampling [21].

Although machine learning (ML) technologies have been

applied in design and other applications such as automation

control systems and telecommunications [14], adopting

these ML technologies in AM has been introduced recently

[17, 24]. Hence, there are challenges with AM data such as

data labelling, small sample sizes, and class-imbalance

which need to be addressed effectively to build accurate

models for quality inspection.

4 In-situ quality control of AM component
in aerospace use case

Laser melt deposition (LMD) is one of the popular AM

processes. A part is built by melting a surface with a laser

beam while simultaneously applying metal wire or powder

in the LMD process [12]. For quality assurance, this pro-

cess in captured with a camera. This captured data contains

melt-pools that are created when the material is melted

with a laser beam. Robot control parameters (for instance,

the distance of nozzle in relation to the substrate and the

wire feed rate) are adjusted in order to have a improve the

quality of welding. The recorded melt-pool video will later

be used to manually analyze the deviations (instability) in

the welding process that could lead to defects. Since this

instability of welding process data used as an indicator for

defects, we refer this as defects classification task.

The criteria to identify non-defective (good) from

defective (bad) melt-pool images are as follows:

• Stubbing: The welding process is considered as bad if

the distance of nozzle is too small or the wire feed is too

high.

• Dripping: Dripping is considered as bad welding. It

arises if the height is too large or the wire feed is too

low, since the wire melts very quickly.

• Smooth metal transfer: This is considered as good

welding means that the process of melt-pool is

stable when the distance and wire feed speed are

adjusted perfectly.

By looking at images guided by the above criteria, process

engineers check the defects (in-site quality control) visu-

ally to learn about the robot control parameters in order to

have better quality of manufacturing. However, the gained

knowledge regarding defects or their potential causes is not

often stored and re-used for future production pipelines.

Furthermore, the visual inspection process is prone to
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human-inaccuracy due to the time consuming and tedious

work it requires. Therefore, we aim to support in-situ

quality control with an attempt to automate the manual

inspection using melt-pool data to speed up defect analysis.

5 Methods

In this section, we present our proposed method and other

oversampling methods for performance comparisons. Fur-

thermore, we describe the methods that we use for feature

extraction, clustering and classification.

5.1 Oversampling techniques

5.1.1 The proposed method (CADA)

CADA oversamples by learning from misclassified

instances of the minority class from a classifier that is

trained on imbalanced datasets. The assumption is that

identifying the misclassified instances of minority classes

provides data understanding (for example, which instances

are hard to classify), which then serves as input for an

adaptive data augmentation instead of a random sampling

approach for oversampling.

We have three phases in the CADA oversampling pro-

cess; Fig. 1 shows the schematic workflow. First, we build

a classifier using an original imbalanced dataset. We use

the existing RF method to build the classifier. For this, we

randomly select 70% of data to train and 30% of data to

validate the model with n number of experimental runs (we

choose n to be 10 in our experiments which is proportional

to the size of the dataset and is computationally feasible).

For each experiment, we identify misclassified samples

(false positives) that we pass forward to Phase 3.

In Phase 2, we cluster the minority class using the

existing Affinity Propagation clustering algorithm. Since

we have an image dataset, we first need to extract features

from the images for clustering. For this purpose, we did

some preliminary investigations using deep features

extracted by pre-trained models (i.e., VGG16 and

ResNet50) and also with handcrafted feature extraction

methods. By manually inspecting clusters, we ended up

choosing VGG16 for extracting the deep features from the

minority class. The idea with clustering is to find clusters

whose sample images have been repeatedly misclassified

the most, and which have more instances of misclassified

images (identified in Phase 1) compared to the original

images. Furthermore, the benefit of clustering is to pin-

point those original images which are similar to these

identified misclassified images to have them both aug-

mented in Phase 3.

In Phase 3, we use rotation augmentations of images for

oversampling. We choose image rotations as they suit our

studied datasets and application. Instead of oversampling

all clusters, we select the clusters which are identified in

Phase 2 to balance the class distribution of minority class

with the majority class to form a new training dataset.

5.1.2 SMOTE

In the synthetic minority oversampling technique

(SMOTE), the minority class is oversampled by generating

synthetic samples based on the original data. SMOTE

performs linear interpolation in minority class samples that

are close to each other. A brief explanation of SMOTE is as

follows. First, it takes each minority class (let’s call the first

sample ioriginal) and then searches for its nearest neighbours

(samples) of the minority class. The default number of

nearest neighbours parameter k is 5 (given in the original

paper) [6]. We also used the default value for this param-

eter in our study. Second, depending on the size of the

oversampling, it selects the samples randomly from the k

nearest neighbours (let’s call the first sample from k

ineighbour). Third, it takes the difference between the sample

ioriginal and its neighbour sample ineighbour. Later, this dif-

ference is multiplied by a random number which is selected

from 0 and 1, and is added to the sample ioriginal to create a

new synthetic sample inew as shown in the following

equation.

inew ¼ ioriginal þ randð0; 1Þ � ðineighbour � ioriginalÞ ð1Þ

5.1.3 Random oversampling

In random oversampling (ROS), the samples are added by

replicating randomly selected samples from the minority

class with replacement. We choose a random image from

the original minority dataset until the required number of

images needed to balance the minority class with the

majority class are reached. The process of repetition of the

same data can induce a bias towards training data and is

prone to overfitting. This method has been widely used for

comparison studies for oversampling techniques

[6, 8, 20, 22, 28].

5.1.4 Random data augmentation

In random data augmentation (RDA), new samples are

instantly created by randomly rotating images. The RDA

rotates an image clockwise with a given number of degrees

[27]. We rotate an image that is chosen randomly and then

we add the rotated image for oversampling to balance the

dataset. We choose the number of rotations of each image
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based on the size of the samples which are needed to

achieve the desired balance.

5.1.5 Cluster based oversampling

Cluster-based methodologies have been used for both

undersampling and oversampling [1, 8]. In cluster-based

oversampling (COS), the minority class is initially clus-

tered and then oversampling is performed based on the

clustered images. In our study, we use the affinity propa-

gation clustering method proposed in [16]. Once images

are clustered, we augment these images by applying rota-

tion. Our approach differs from existing methods in which

the same images are selected randomly from the clusters

for oversampling. We believe that oversampling the same

images might induce overfitting similar to ROS.

5.2 Feature extraction technique: polar
transformation

Original images are transformed to polar coordinate system

using the Cartesian-to-polar transformation (PT). The pixel

number, contrast and calibration are copied to the PT

images. The PT uses x-coordinate values of an image in the

Cartesian space to calculate the radius r and the y-coordi-

nate values to represent the angel, theta h.
The center point in the original image needs to be

specified for PT [19]. For this, let us denote the original

image dimensions as (M, N) with the coordinates (X, Y).

The center point which PT uses to calculate the distance to

is M
2

� �
; N

2

� �� �
for gray-scale images [10]. After this, the PT

operates on this new center treating it as the origin (0,0),

and we choose 360 degrees data (x-values start from 0 to

positive radius values). The polar transformed image has a

height of 360 due to the circular scan, and the width

depends on the original image dimensions. For our exper-

iments, we extract the XY-projections of the polar trans-

formed image, which are then concatenated to form the

final feature vector input for training a classification model.

We believe that PT is useful to extract shape features

from images containing round shaped objects. In our pre-

vious study, we investigated PT’s applicability for feature

extraction using a melt-pool image dataset and a public

dataset of shapes [10]. The results suggest that PT is suit-

able for shape object images and performed better com-

pared to other feature extraction techniques (Histogram of

Oriented Gradient, the HARALICK descriptors, the Local

Binary Patterns and the naive XY-projections of images).

Fig. 1 Schematic workflow of the proposed method (CADA)
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Hence, we selected PT for this work to extract features

from the studied datasets.

5.3 Clustering: affinity propagation

The affinity propagation (AP) clustering algorithm is based

on a concept of message passing between data samples

until convergence [16]. For example, a dataset is described

with a small number of exemplars (most representatives of

other samples). The messages sent between pairs represent

the suitability for one sample to be an exemplar of the

other. This information is updated in response to the values

from other pairs, and it continues to update iteratively until

the final exemplars are selected to give the final clusters.

The reason for choosing this algorithm is that it selects the

number of clusters based on the data. Hence, we do not

require to determine the number of clusters beforehand.

5.4 Classifier: random forests

We use RF to construct image classification models, a brief

description of its underlying concept is as follows: RF is an

ensemble method that is a combination of multiple meth-

ods which can handle can handle nominal, categorical and

continuous data [3]. Hence, it is used for both regression

and classification. The RF method contains several deci-

sion trees and each tree represents a model. The tree is built

using a deterministic algorithm by selecting random sam-

ples and a random set of variables from the training dataset.

For this, two hyperparameters of RF are needed to build a

forest. These are (1) Ntree: the number of trees to grow in

the forest, and (2) Mtry: the number of features which are

randomly selected for all splits in a tree.

6 Experimental design

The experiment aims to determine which sampling method

improves the performance of the classifier for the minority

class for quality inspection of products. In this section, we

present our experimental design which includes datasets

description, sampling techniques, hyperparameter config-

urations, evaluation procedure, performance measures and

experimental setup.

6.1 Datasets

We used three labelled binary image datasets for the

experiments. The first and second datasets (D1 and D2)

contain melt-pool images of additive manufacturing pro-

cess in aerospace engineering. The images of D1 and D2

are selected from two layers of the welding process. The

first layer is used for training and the second layer is used

as a test dataset. Both layers have melt-pool images with

the same characteristics, however, we add synthetic sam-

ples to the first layer (train data D1) to train the model, and

we evaluate the performance of the model on a real-world

scenario using the second layer data (unseen test data D2).

The first dataset D1 contains 50 grey images for training

and the second dataset D2 has 140 images for training. D2

is an extension of D1, hence, D1 is a subset of D2. The

reason for this selection of sample sizes is that we want to

explore small datasets since the size of the minority class

samples are generally small and it is costly to collect more

samples. The test set for both D1 and D2 has 78 images.

The output of these D1 and D2 datasets has two classes

which are good (no defect) or bad (defective) melt-pool

samples are shown in Fig. 2.

The third dataset D3 has grey scale product images (of

size 512x512) from casting manufacturing process and it is

publicly available1. These images are used for quality

inspection by inspecting casting defects. The casting

defects are defined as undesired irregularity in a metal

casting process such as blow holes, pinholes, shrinkage

defects, pouring metal defects etc. Although D3 has 1300

images, we select 140 images for training and 70 images

for testing similar to D2 since we want to simulate the

experiments in the same manner as we did with our domain

dataset D2. We use clustering for both classes and then

randomly select samples for D3 (out of 1300). The labels of

D3 are whether the casting is without a defect or has a

defect as shown in Fig. 3.

6.2 Sampling techniques

We use the proposed method CADA, SMOTE, ROS, and

COS for oversampling of the minority class. These meth-

ods’ details are presented in Sect. 5. The sample size of the

majority class is selected based on the availability of defect

images (minority class) and the percentage of synthetic

Fig. 2 Melt-pool images: (Left) image with a defect and (right) image

without any defect

1 https://www.kaggle.com/ravirajsinh45/real-life-industrial-dataset-

of-casting-product.
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samples for our domain. The idea is to use the smallest

possible size of the minority class samples since we do not

have enough defect images. This is the reason that we

investigate the performance of models using different size

datasets (D1 and D2) by changing the ratio of synthetic

samples (50%, 60%, 70%, 80%) for oversampling. We

choose the number of augmented samples for these ratios

based on the size of our studied datasets.

6.3 Hyperparameters and configuration
selection

We selected the number of trees (Ntree hyperparameter)

for RF to be 130. The reason for choosing this number is

that in a previous study, it states that increasing the number

of trees can decrease the forest error rate [9, 25]. These two

studies [9, 25] have studied Ntree hyperparameter and

provided some insights about setting the Ntree parameters,

based on these, we choose the value of 130 for Ntree. For

the Affinity Propagation clustering algorithm, we choose

the default settings of Python Sklearn module2.

6.4 Evaluation procedure

For each studied dataset, we have a training set to train the

model which includes synthetic augmented data for the

minority class using each of the studied sampling tech-

niques. For testing the model, we have a separate test set

which does not have any synthetic or augmented data. In

other words, the test set has all original samples. The

reason for this type of evaluation procedure is to evaluate

the performance of the model on a real-world scenario

using unseen test data since the training sets have synthetic

samples. For example, using the cross-validation approach

includes evaluation on synthetic samples which is not

suitable for our case.

6.5 Performance metrics

We use the Area Under the Curve (AUC), sensitivity and

F-score to evaluate the studied models’ performance. In the

following, we describe these metrics briefly.

AUC: this gives the measure of the classifier ability to

distinguish between classes. The higher the value of AUC

is, the better is the performance of the classifier to differ-

entiate between positive and negative classes. We use this

measure to identify which model has better performance to

distinguish the classes when using different oversampling

method.

Sensitivity: this refers to the true positive rate and

measures how well a positive class is predicted. The reason

for choosing this measure is that predicting the positive

class (defect) is more important than predicting the nega-

tive class (no defect) in our case. Furthermore, we inves-

tigate which sampling method gives better sensitivity since

we oversample the positive class.

Sensitivity ¼ TP

ðTPþ FNÞ ð2Þ

Where TP is true positive (positive class and positive

prediction) and FN is false negative (positive class but

negative prediction). In our case, the positive class repre-

sents an image with defects and the negative class represent

an image with no defects.

F-score: this measures the harmonic mean of precision

and recall, and it is used for imbalanced classification.

Since the baseline model uses imbalanced data, we choose

F-score to establish a fair performance comparison

between the baseline model and the other studied models.

F � score ¼ ð2 � Precision � RecallÞ
ðPrecisionþ RecallÞ ð3Þ

Where Precision, shown in Eq. 4, summarizes the fraction

of samples that are assigned to the positive class which

belongs to the positive class. The recall is the same as the

sensitivity.

Precision ¼ TP

ðTPþ FPÞ ð4Þ

6.6 Experiment setup

We used the following procedure, which is also shown in

Fig. 4, to conduct the experiments. We start by applying

sampling methods on imbalanced data for oversampling

the minority class. Since we have image datasets, we

extract features using polar transformation from each

sample (image). Subsequently, we build classification

models using RF and evaluate the performance of the

models on the test dataset (which is original and does not

Fig. 3 Casting product images: (Left) image with a defect and (right)

image without any defect

2 https://scikit-learn.org/stable/modules/generated/sklearn.cluster.

AffinityPropagation.html
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have any synthetic data) using the selected evaluation

metrics. We repeat the aforementioned procedure for all

studied oversampling methods to determine the best-per-

formed models.

7 Results and analysis

In this section, we present the experimental results for the

use-case melt-pool image datasets (D1 and D2), and the

casting manufacturing image dataset (D3). Table 1 shows

the sensitivity of models for D1, D2 and D3 when changing

the percentage of augmented data. Figure 5, 6 and 7 show

the bar plot for the sensitivity results which are also shown

numerically in Table 1. These results show that when using

CADA, the model yields the best sensitivity compared to

the baseline and other methods for D1 and D2. Further-

more, the model with COS has the same sensitivity as the

model with CADA when the percentage of augmented data

is 80%. For D3, the model with CADA yields the best

performance compared to other methods when the per-

centage of augmented data is 50% and 60%. The models

with CADA, COS and RDA methods have the same per-

formance when augmenting 70% and 80% of the data in

D3.

Table 2 shows the F-score for D1, D2 and D3. Table 3

shows the area under curve (AUC) for D1, D2 and D3. The

F-score and AUC results for D1 show that the model with

CADA outperformed the baseline model, ROS, RDA,

SMOTE, and it has the same performance as the model

with COS when the percentage of augmented data is 80%.

For D2, the model with CADA yields the best F-score and

AUC compared to other methods. Similar to D1, the

F-score of D3 shows that the CADA model outperformed

the baseline model, ROS, RDA, SMOTE models and has

the same performance as the COS model when the per-

centage of augmented data is 80%. The AUC of D3 shows

that CADA, SMOTE and RDA model have the same AUC

when the percentage of augmented data is 50% and 60%.

For the rest (70% and 80%), the CADA model yields the

best AUC compared to other methods.

7.1 Analysis

Since we oversample the minority class, the sensitivity

gives us an idea of how accurate the minority class is

classified when using the oversampling methods. Hence,

we present the analysis for sensitivity results. Figure 5, 6

and 7 show the bar plots for the sensitivity (recall) of all

datasets. The percentage of augmented data or the ratio of

synthetic samples is varied to observe how the ratio of

augmentation affects the performance of the models. The

bar plots for the F-score and AUC results are shown in

Appendix A.

Ratio 50–50 and 40–60: The minority class is over-

sampled with 50 and 60% of synthetic samples for all

datasets. The 50 and 40% are the percentages of original

images. From the sensitivity plots (Fig. 5, 6 and 7), we can

observe that the CADA model has better sensitivity com-

pared to all the methods. The augmented data based on

learning from misclassified instances and clustering clearly

improve the performance of the models. By analysing the

misclassified images of D1 and D2, we observed that the

appearance of defect melt-pool images is very close to the

images with no defects. We learned that these images are

difficult to classify. Hence, we augmented this type of

images when training to be able to accurately classify

them. Due to the confidentiality of datasets D1 and D2, we

did not include any of these images in the paper apart from

Fig. 4 Experiment setup
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the examples in Fig. 2. Nevertheless, we have the third

dataset D3 where we have also observed similar patterns.

The dataset D3 has casting product images and an example

of images is shown in Fig. 3. Figure 8 shows an example of

these images.

Ratio 30–70 and 20–80: The minority class is over-

sampled with 70 and 80% of synthetic samples for all

datasets. For the ratio of 30–70%, when we have a sample

size of 50 (dataset D1), the CADA model performed better

than other models as shown in Fig. 5. However, when we

have the ratio of 20–80 for D1, the CADA and COS models

classified the same number of true positives. For D2,

CADA and RDA models classified the same number of true

positives. When the percentage of augmented data is high,

there will be very few original samples. For instance, for

the ratio 20–80% of D1, we have 5 original images and 20

synthetic samples for the minority class. In this case,

CADA, COS and also ROS (as shown also in D1, D2, D3

cases) can have the same performance since all these three

methods use image rotation to augment synthetic samples.

7.2 Statistical analysis

We performed statistical analysis to see if there is any

significant difference between the performance of the

studied oversampling methods regardless of the data aug-

mentation ratio. For this analysis, we use the sensitivity,

F-score and AUC results of all the methods (baseline, ROS,

RDA, SMOTE, COS and CADA). For the statistical sig-

nificance test of more than two samples, we used Friedman

Table 1 Sensitivity for dataset D1, D2 and D3

% Baseline ROS RDA SMOTE COS CADA

Sensitivity for dataset D1

50 0.6889 0.7778 0.8000 0.7111 0.7778 0.9111

60 0.7111 0.8000 0.7556 0.7556 0.8444 0.9111

70 0.6667 0.6889 0.8444 0.7111 0.8667 0.9111

80 0.4444 0.5778 0.7333 0.5778 0.8222 0.8222

Sensitivity for dataset D2

50 0.8889 0.8667 0.9111 0.9111 0.8889 0.9778

60 0.8444 0.9111 0.9111 0.9111 0.9111 0.9556

70 0.7333 0.7778 0.9556 0.7556 0.8889 0.9556

80 0.6889 0.7556 0.9333 0.7333 0.8222 0.9333

Sensitivity for dataset D3

50 0.7429 0.6000 0.7714 0.7429 0.6857 0.8000

60 0.5429 0.6000 0.7429 0.7143 0.7429 0.8000

70 0.4571 0.5429 0.7714 0.6000 0.7714 0.7714

80 0.2571 0.3143 0.7143 0.5429 0.7143 0.7143

Fig. 5 Sensitivity results for D1

Fig. 6 Sensitivity results for D2

Fig. 7 Sensitivity results for D3
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statistical test [26]. The Friedman test is a non-parametric

test that ranks the methods for each dataset based on their

performance. The statistical hypothesis is:

Ho: All models which are constructed with baseline,

ROS, RDA, SMOTE, COS and CADA perform equally

well with respect to predictive performance.

Ha: There is a significant difference between models

which are constructed with baseline, ROS, RDA, SMOTE,

COS and CADA methods.

From the Friedman test, we obtained a p value which is

less than a significance level of 0.05, see Table 4. Hence,

we reject the null hypothesis and thus, we infer that there is

a significant difference between models when constructed

with datasets using the studied oversampling methods.

Furthermore, we conducted the Nemenyi test for pairwise

comparison to see individual differences. Table 4 shows

the Nemenyi test results with bold p values where we have

pairwise significance difference.

8 Discussions

We have performed the investigations of these methods

using three datasets. Two datasets are from our domain and

the third one is publicly available. Hence, one must con-

sider that our observations are based on these datasets.

Since we have studied two different sample sizes (50

samples in D1 and 140 samples in D2 & D3) and different

ratios of augmentation for oversampling, one can get an

idea of the studied oversampling methods to choose them

to balance datasets.

There is a similarity between ROS and RDA in that,

both methods use a random sampling approach. However,

the ROS method replicates the same samples that are

selected randomly, and the RDA method applies rotations

on the images that are selected randomly. As shown in the

results, ROS is not an efficient way for oversampling in our

case. RDA is a better option compared to ROS if one wants

to choose random sampling approaches. Regarding the

SMOTE method, it has better performance than ROS in

some cases. However, it still does not seem to be suit-

able for the studied datasets. One may observe that

SMOTE has the same AUC as CADA and RDA when

having 60% augmentation for dataset D3 in Table 3.

However, this model with SMOTE classified more nega-

tive samples correctly than the positive class, consequently,

it yields low sensitivity (recall) compared to CADA and

RDA.

From COS, we learned that balancing samples based on

the size of the clusters for oversampling does not really

help us getting better performance on the minority class.

The reason is that some clusters are easier for a model to

classify even though it has a smaller number of images than

the other clusters. Hence, in this case, balancing the sam-

ples based on cluster size does not contribute either to

improve the performance of models. However, this might

be not the case when we augment a higher percentage of

data (70 and 80%) and have a small number of original

samples for oversampling. Hence, the COS method could

be suitable in such cases.

With respect to CADA, we observed that it performed

the best for 50 and 60% augmentation of the minority class,

Table 2 F-score for dataset D1, D2 and D3

% Baseline ROS RDA SMOTE COS CADA

F-score for dataset D1

50 0.8052 0.8642 0.8675 0.8205 0.8642 0.9318

60 0.8101 0.8675 0.8395 0.8395 0.8941 0.9318

70 0.7895 0.8052 0.8941 0.8205 0.9070 0.9318

80 0.6154 0.7123 0.8250 0.7123 0.8810 0.8810

F-score for dataset D2

50 0.9302 0.9176 0.9425 0.9425 0.9195 0.9778

60 0.9048 0.9425 0.9425 0.9425 0.9425 0.9663

70 0.8354 0.8642 0.9663 0.8500 0.9195 0.9663

80 0.8052 0.8500 0.9545 0.8354 0.8916 0.9545

F-score for dataset D3

50 0.8254 0.6774 0.8060 0.8000 0.7164 0.8116

60 0.7037 0.7368 0.7879 0.7813 0.7761 0.8000

70 0.6154 0.6786 0.8182 0.7368 0.8182 0.8308

80 0.4091 0.4783 0.7813 0.7037 0.8065 0.8065

Table 3 Area under the curve for dataset D1, D2 and D3

% Baseline ROS RDA SMOTE COS CADA

AUC for dataset D1

50 0.8293 0.8737 0.8697 0.8404 0.8737 0.9253

60 0.8253 0.8697 0.8475 0.8475 0.8919 0.9253

70 0.8182 0.8293 0.8919 0.8404 0.9030 0.9253

80 0.7222 0.7586 0.8364 0.7586 0.8808 0.8808

AUC for dataset D2

50 0.9293 0.9182 0.9404 0.9404 0.9141 0.9737

60 0.9071 0.9404 0.9404 0.9404 0.9404 0.9626

70 0.8515 0.8737 0.9626 0.8600 0.9141 0.9626

80 0.8293 0.8626 0.9515 0.8515 0.8960 0.9515

AUC for dataset D3

50 0.8429 0.7143 0.8143 0.8143 0.7286 0.8143

60 0.7714 0.7857 0.8000 0.8000 0.7857 0.8000

70 0.7143 0.7429 0.8286 0.7857 0.8286 0.8429

80 0.6286 0.6571 0.8000 0.7714 0.8286 0.8286
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and it performed similar to COS and RDA for 70 and 80%

augmentation. Hence, in summary, the CADA method is

suitable in all cases. This can be attributed to learning from

misclassified images for oversampling. However, when we

have very few original samples, there is a chance that we

get all the images as misclassified. Hence, we might not get

any information regarding the images which are difficult to

classify. In such cases, both COS and RDA can be con-

sidered suitable as shown in the results.

Regarding data augmentation in CADA, we selected

clusters that have repeated misclassified images. Further-

more, we manually inspected the identified misclassified

images for a better understanding of minority samples as it

not only helps us to have a better classification of these

samples but also gives us an idea on what type of welding

process irregularities contribute to the generation of these

images. In this study, this kind of analysis is deemed fea-

sible since we have a small number of samples. For larger

datasets, the identification of clusters for augmentation can

be automated by having a weighted combination of the

number of repeatedly misclassified images and the relative

ratio of these images in each cluster (i.e., the clusters which

have more misclassified images) in order to rank the

clusters for per-priority data augmentation. We will look

into the applicability of CADA for larger datasets (given

their availability) in future work. Furthermore, we believe

that CADA will be used to improve the training set even if

it is balanced in other applications, and we will look in to

this aspect in future work.

Regarding the studied datasets, we observed that there

are many image variations in the dataset D3 compared to

the rest of the datasets (D1 and D2). This makes it harder to

achieve better performance for the models, for example, we

obtain the maximum sensitivity of 80%. We believe that

the model needs more training data to improve its perfor-

mance as we did for D1, which is a subset of D2. Never-

theless, our intention is to investigate how the proposed

method can be generalized to other datasets when com-

pared to other oversampling methods. Hence, we choose

the casting manufacturing process dataset D3. Thus,

improving the accuracy of models when using D3 was not

our aim in this study.

Fig. 8 Defective examples in the D3 dataset. The top row: images which are difficult to classify. The below row: images which are easier to

classify

Table 4 Statistical hypothesis tests: probability (p values)

Methods Sensitivity F-score AUC

Friedman Test

All methods 1.05x10�8 1.68x10�7 1.57x10�6

Nemenyi Pairwise Test

CADA-baseline 1.50x 10�7 7.30x 10�7 2.40x 10�6

CADA-ROS 0.0003 0.0002 0.0019

CADA-RDA 0.61046 0.43037 0.43040

CADA-SMOTE 0.0028 0.0028 0.0136

CADA-COS 0.30144 0.17584 0.24600

COS-baseline 0.0035 0.0230 0.0273

COS-ROS 0.24600 0.36324 0.57410

COS-RDA 0.99650 0.99650 0.99950

COS-SMOTE 0.57409 0.74874 0.88520

SMOTE-baseline 0.33160 0.50131 0.36320

SMOTE-ROS 0.99426 0.99106 0.99430

SMOTE-RDA 0.27288 0.43037 0.71590

RDA-baseline 0.0004 0.0042 0.0094

RDA-ROS 0.08065 0.13776 0.36320

ROS-baseline 0.68165 0.86222 0.71590
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9 Conclusions

In this study, we proposed the cluster-based adaptive data

augmentation (CADA) method for oversampling to address

the class-imbalance issue in machine learning for manu-

facturing data for in-site quality control of products. We

investigated the applicability of the proposed method using

datasets from additive manufacturing and casting manu-

facturing by changing the ratio of augmentation. Further-

more, the proposed method is compared with the selected

state-of-the-art oversampling methods (ROS, RDA, COS

and SMOTE) to determine its applicability. The experi-

mental results show that CADA performed better compared

to ROS, SMOTE and equal to RDA and COS. Further-

more, we observed that CADA performed the best for 50

and 60% augmentation of the minority class, and it per-

formed similar to COS and RDA for 70 and 80% aug-

mentation. These results show that the CADA method is

suitable in all cases when we are changing the ratio of

synthetic samples. Therefore, the CADA method can be

considered as an alternative method for oversampling to

improve models’ performance on the minority class. Future

work could be investigating the applicability of the pro-

posed method on larger image datasets in other applica-

tions even if they are balanced to improve training datasets

and improve models’ performance. Furthermore, we will

include more than one classifier for performance compar-

ison together with data augmentation methods in future

work.

A Appendix

Figure 9, 10 and 11 show bar plots for F-score results.

Figure 12, 13 and 14 show bar plots for AUC results.

Fig. 9 F-score results for D1

Fig. 10 F-score results for D2

Fig. 11 F-score results for D3

Fig. 12 AUC results for D1
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