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Abstract
Quality of Service (QoS) is the key parameter to measure the overall performance of service-oriented applications. In a

myriad of web services, the QoS data has multiple highly sparse and enormous dimensions. It is a great challenge to reduce

computational complexity by reducing data dimensions without losing information to predict QoS for future intervals. This

paper uses an Induced Ordered Weighted Average (IOWA) layer in the prediction layer to lessen the size of a dataset and

analyse the prediction accuracy of cloud QoS data. The approach enables stakeholders to manage extensive QoS data better

and handle complex nonlinear predictions. The paper evaluates the cloud QoS prediction using an IOWA operator with

nine neural network methods—Cascade-forward backpropagation, Elman backpropagation, Feedforward backpropagation,

Generalised regression, NARX, Layer recurrent, LSTM, GRU and LSTM-GRU. The paper compares results using RMSE,

MAE, and MAPE to measure prediction accuracy as a benchmark. A total of 2016 QoS data are extracted from Amazon

EC2 US-West instance to predict future 96 intervals. The analysis results show that the approach significantly decreases the

data size by 66%, from 2016 to 672 records with improved or equal accuracy. The case study demonstrates the approach’s

effectiveness while handling complexity, reducing data dimension with better prediction accuracy.

Keywords Computational complexity � Time-series forecasting � Cloud QoS � Deep neural network � Complex prediction �
OWA � Service level agreement

1 Introduction

Cloud computing has a dynamic and uncertain nature in

which a consumer can request services based on their

business demand [1]. The uncertainty makes it pivotal for

the service provider to proactively manage the risk of

possible Service Level Agreement (SLA) violations [2].

Quality of Service (QoS) is the primary indicator to mea-

sure the performance of service-oriented applications. QoS

illustrates the functional and non-functional attributes of

services that are encapsulated within a Service Level

Agreement (SLA) formed between a consumer and the

provider. Implementation of these QoS parameters, such as

security, availability, reusability, and others, ensures ade-

quate service quality and management, resulting in a

trusted relationship among stakeholders [3]. The service

provider has an SLA breach when it fails to meet the

promised target for agreed SLA metrics. The service pro-

vider is liable for SLA violation penalties, including ser-

vice credit, penalty fees, licence extension, and support.
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The SLA violation influences the reputation and trust of the

service provider, which could impact potential new con-

sumers. One possible way to mitigate the risk of SLA

violation is the QoS prediction.

Several approaches have tried to predict QoS parameters

to avoid SLA violation optimally. Most of these approa-

ches adopted collaborative filtering methods [4–6] to find

the relationship between services and consumers [7]. Li

et al. [4] proposed a time-aware cloud service recommen-

dation algorithm based on a Time-aware Matrix Factori-

sation (TMF) model for QoS prediction. The approach used

a collaborative filtering method in matrix factorisation to

predict QoS parameters. The predicted results are then

passed to a temporal smoothing method to obtain final-time

aware QoS predictions for service recommendations.

Hussain et al. [5] used a user-based and item-based col-

laborative filtering method with an enhanced K-NN algo-

rithm to predict future QoS parameters to avoid SLA

violation. Discussed approaches tried to find optimal QoS

prediction using user-based or item-based filtering meth-

ods. The approaches attempted to make an informed

decision for SLA violation; however, they could not

accommodate complex QoS predictions. The approaches

were unable to prioritise a particular set of QoS parameters

over another. Nagarajan and Thirunavukarasu [8] proposed

a service context-aware cloud broker method in another

approach which pulls service features from cloud services

using relevant data and evaluates service similarity using

QoS parameters. The matrix factorisation concept addres-

ses the cold start problem and forecasts higher QoS values

for arriving customers. Shadabfar et al. [9] proposed a

susceptible-exposed-infected-vaccinated-recovered

(SEIVR) model to predict the spread of COVID-19. The

authors considered multiple variables – transmission,

recovery, and mortality. Sioofy Khoojine et al. [10] pro-

posed an autoregressive network model to predict COVID-

19 disease in another method. The discussed approaches

work well in different problems, including healthcare,

cloud and web services. However, in a complex nonlinear

service-oriented framework where the QoS parameters are

distributed widely across the distributed network, it is very

difficult for the decision-maker to prioritise a certain set of

data to make a complex prediction.

Machine learning (ML) algorithms are widely used in

predictive models that allow a complex nonlinear rela-

tionship between responsive variables and predictors.

Neural networks are data-driven algorithms that learn

patterns from the dataset [11]. The main issue for different

supervised learning algorithms is the specific requirements.

To get optimal prediction results, the training dataset needs

to be pretty good with a low avoidable bias. Furthermore,

the training set needs to generalise very well to the

development set. Besides that, it has been observed that the

computational complexity significantly increases with an

increase in a training dataset [12]. Different gradient des-

cent optimisation techniques such as RMSProp, Adamax

[13], and Adam are commonly used to address computa-

tional complexity problems. Deep autoencoder [14] is used

to reduce the dimensionality of the input in a labelling

layer [15, 16]. Most machine learning methods have con-

vergence issues towards the global minimum. Moreover, it

is challenging to manage high-order datasets of varying

time intervals, such as QoS data. Like the traditional pre-

diction methods, ML algorithms do not have any mecha-

nism to assign variable weights to different intervals and

reduce data dimensions without losing any information.

Furthermore, the computational complexity increases with

an increase in data dimensions [12].

Computational complexity defines the number of com-

putational resources required to solve a specific problem by

systematic algorithm application [17]. Computational

complexity is commonly categorised into time and space

and ordered into P, NP, NP-complete and NP-hard [18]

problems. Different approaches try to address the issue,

such as Scutari, Vitolo and Tucker [19] analysed the time

complexity of Bayesian network structure with the greedy

search. The study found that considering closed-form

estimators for local distribution with few parents can sig-

nificantly impact the complexity of a network. In another

experiment, Alizadeh, Allen and Mistree [20] found that

Multivariate Adaptive Regression Splines, Kriging and

response surface models are optimal methods to reduce

time complexity for large problems. Prediction methods

with multiple variables increase their computational com-

plexity much faster than the growth of a dataset [21].

Moreover, it is a big challenge for the decision-maker to

prioritise a specific set of data in extensive data for non-

linear prediction without losing any information [12].

Yager [22] introduced the OWA operator in a neural

network to overcome the high dimensionality of a dataset.

The OWA operator is the parameterised class of the mean

type aggregation operator [23]. The approach reorders

inputs before feeding them to the network. The process

reduces input size significantly, consequently reducing the

computational complexity. Building on the same concept,

Cheng et al. [12] used the approach in the ANFIS model to

handle a large dataset of the TAIEX stock index and pre-

dict future indexes. Bo et al. [24] used the same method by

combining the IOWA layer with the Fruit Fly algorithm to

predict vegetable price prediction. Although discussed,

OWA approaches work well for different simple reordering

and decision-making processes. However, the approaches

cannot handle the complex reordering of input—QoS

parameters in complex SLA management. In our recent

experimental work [25–27], multiple OWA operators are

combined with Analytic Hierarchy Process (AHP),
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Adaptive Neuro-Fuzzy Inference Systems (ANFIS) and

different fuzzy clustering methods to accommodate the

complexities of prediction data. The experimental results

demonstrated high efficiency and better accuracy. The

approach in [28] assists CSP selection by combining QoS

and QoE.

To address the limitations of above discussed approa-

ches, the paper uses the induced ordered weighted aver-

aging (IOWA) layer in neural network structure. The

distinctive features of the paper are as follows:

• The paper proposes a novel hybrid prediction model

using the IOWA operator with multiple neural network

methods for optimal QoS prediction.

• Existing QoS prediction approaches are unable to

handle the complex relationships between parameters.

The approach prioritises a specific data set from a big

dataset for complex prediction.

• The method has the feature to reduce data size without

losing any information to improve the complexity and

retain accuracy.

• Unlike existing approaches, the approach can accom-

modate the custom requirements of the decision-makers

for complex predictions.

To achieve above objectives, the paper combines the

IOWA operator with nine neural network methods—Cas-

cade-forward backpropagation (CFBP), Elman backpropa-

gation (EBP), Feedforward backpropagation (FFBP),

Generalised regression (GR), Nonlinear autoregressive

exogenous (NARX), Layer recurrent neural network

(LRNN), Long short-term memory (LSTM), Gated recur-

rent unit (GRU) and a combination of LSTM-GRU

method. The paper analyses the prediction accuracy of the

real cloud QoS dataset extracted from the Amazon EC2

US-West IaaS instance. Prediction accuracies are com-

pared using a benchmark of RMSE, MAD and MAPE. The

rest of the paper is organised as follows: Sect. 2 discusses

related literature and preliminaries. Section 3 discusses the

proposed approach. Section 4 demonstrates the evaluation

results, and finally, Sect. 5 concludes the paper with future

research directions.

2 Preliminaries

This section discusses preliminaries and related studies that

highlight the QoS prediction in a service-oriented

environment.

2.1 QoS prediction approaches

Several approaches have used various methods to predict

QoS parameters. Smahi, Hadjila, Tibermacine and

Benamar [29] proposed a Deep AutoEncoder (DAE)-based

Matrix Factorization model for predicting the QoS of Web

services. Gao et al. [30] applied a memory-augmented

autoencoder for IoT time-series data. The model uses a

clustering technique for input gathering to mitigate the data

sparsity problem and enhance web QoS prediction accu-

racy. It also considers the influence of services/users’

geographical characteristics to achieve accuracy [31].

Boutaba et al. [32] discuss the role of machine learning

methods in QoS prediction. The survey highlights network

management of traffic prediction, resource management,

network security and QoS and QoE management. It also

identifies parameters for QoS prediction and QoE factors to

control the network-related problems. Rehman et al. [33]

proposed a medical QoE (m-QoE) prediction model for

ultrasound video streaming. The approach used Multilayer

Perceptron Neural Network to extract device features to

predict medical applications’ QoS. Hussain et al. [34]

analysed different soft computing approaches to predict

QoS to form a viable SLA. Haytamy and Omara [3] pro-

posed a Deep Learning-based Service Composition

framework (DLSC). The approach assists cloud consumers

to predict QoS-based services of cloud providers. The

framework implements the LSTM deep learning method

compounding with a Particle Swarm Optimization (PSO)

algorithm. LSTM predicts the possible QoS values and is

fed into the PSO, where the best service provider selection

is made based on the resources required and minimised

cost function of the consumer. Integration of Induced

Ordered Weighted Average (IOWA), Weighted Average

(WA), and Fuzzy time series are used to provide a novel

prediction approach in the neural network framework [26].

The strategy has the advantage to manipulate diffi-

cult nonlinear predictions in the neural network architec-

ture. Moreover, the technique also anticipates nonlinear

statistical data. Using an ANFIS model, Harandizadeh et al.

[35] created a novel hybrid intelligence system, ANFIS-

PNN-ICA, that combined an adaptive neuro-fuzzy infer-

ence system (ANFIS) with a polynomial neural network

(PNN), improved using the ICA algorithm i.e. Imperialism

competitive algorithm for forecasting TBM performance.

In another approach [27] authors proposed a unique clus-

tered Induced Ordered Weighted Averaging (IOWA)

Adaptive Neuro-Fuzzy Inference System (ANFIS), (CI-

ANFIS) model. The approach used fuzzy time series pre-

diction model to minimise data dimension and manages the

cloud QoS nonlinear correlation. The approach incorpo-

rates a fuzzy neural network architecture for optimum

forecasting results and an intelligent sorting method to

handle prediction uncertainties.

Liu and Chen [36] defined two QoS prediction approa-

ches in dynamic Cloud Manufacturing (CMfg). The per-

sonalised clustering approach uses textual and rating
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information to find the task similarity through a clustering

algorithm. There is some probability of inaccuracy in

predicting QoS values. However, the amalgamation of both

prediction approaches has addressed the issue. Chen et al.

[37] proposed a self-adaptive resource allocation frame-

work that allows dynamic allocation of services on request.

The process runs in an iterative feedback loop utilising an

iterative QoS prediction model and a POS-based runtime

decision algorithm. The model makes resource provision-

ing decisions based on iterations and repetitive feedback.

The prediction model predicts QoS values in iterations, and

the resultant value is then fed to the decision algorithm to

find out the future automatic resource allocation procedures

[38]. Liu and Chen [39] introduced a hybrid QoS prediction

approach for dynamic cloud manufacturing prediction. The

approach used a similarity enhanced collaborative filtering

method for better prediction results and then applied a

case-based reasoning method to better extract users and

service details. The Bayesian function raises the accuracy

of the proposed approach and reduces data uncertainty. To

represent user-service interactions, Ma et al. [40] intro-

duced a neural network-based framework called GCF

(Generic Collaborative Filtering). The approach performs

dropout regularisation to reduce the bias caused due to

continuous values considered by QoS. It also decreases the

high variance due to low-rank assumptions from a wide

range of values.

Li et al. [41] formulated a Bayesian network model for

cloud service prediction. First, the approach correlates the

QoS parameters and hardware details from the infrastruc-

ture and platform layers. It then used a Bayesian network

algorithm to predict future QoS parameters better. Hussain

et al. [21] applied various neural network algorithms and

compared them with stochastic methods to analyse the

prediction accuracy at different intervals. Xu et al. [42]

proposed a Neural Fusion Matrix Factorisation model for

QoS predictions. The approach merged neural networks

with the matrix factorisation technique to conduct nonlin-

ear collaborative filtering for consumer and service latent

selected features. Huang et al. [43] modelled an optimisa-

tion-based allocation mechanism in a cloud data centre

depending on the user requirements. The approach initially

assigns the arriving virtual machines that request from

mobile devices. Users are then assigned to suitable physical

machines depending on their hardware resource usage and

the data centre’s throughput status. CPU usage criteria are

defined to determine which virtual machines are reassigned

before and after allocation. Hussain et al. [25] presented a

CQoES architecture for centralised Quality of Experience

(QoE) and Quality of Service (QoS). The approach enabled

cloud users in locating the best service provider by taking

into account their top priorities. It also aided the service

provider in intelligent resource management and decision-

making for finite resources. The model used a combination

of AHP, IOWA, POWA and Collaborative Filtering using

KNN methods for evaluation that facilitates cloud stake-

holders to establish a long-term, mutually beneficial rela-

tionship. Fu et al. [44] proposed a QoS prediction method

using an improved nearest neighbour method for cloud

service recommendation. The approach used the quantisa-

tion method to represent the stable status of services and

users and then applied a NearestGraph method to get better

prediction results. Keshavarzi et al. [45] proposed an

enhanced time-aware QoS prediction method to avoid SLA

violations in the cloud. The proposed approach employed a

modified k-medoids algorithm to cluster data. The pro-

posed approach addresses the cold start problem by using

DTW Barycenter averaging algorithm. Zou et al. [46]

proposed a neural network-based technique for temporal-

aware service QoS prediction. The approach combined the

binarisation facility and the similarity features for better

temporal feature representation of users and services.

Deep learning models of Gated Recurrent Units (GRU)

learn and extract temporal features across entities. Param-

eter optimisation is then used to train the DeepTSQP

model to forecast undefined service QoS. Gao et al. [30]

used the time series data of IoT sensors to predict the

deviation in the system’s behaviour and possible anomaly

detection. The authors [47–49] applied different deep

learning models such as LSTM, GRU and RNN to cloud

QoS data. Alkalbani and Hussain [50] applied multiple

machine learning methods such as SVM, KNN, Decision

Tree and others to analyse cloud QoS data for optimal

service discovery. Chowdhury et al. [51] proposed a QoS

prediction model using Hybrid filtering and a Hierarchical

prediction process. The hybrid filtering approach seeks to

find a group of users and services similar to a target user.

The hierarchical prediction process used hierarchical neu-

ral regression to forecast the QoS value properly. A com-

parative analysis of related approaches is presented in

Table 1.

The comparative analysis shows that although the

above-discussed approaches forecast QoS parameters to

help the decision-maker in the decision-making process.

However, many drawbacks include managing nonlinear

relationships, manipulating high dimensional datasets, and

handling complex nonlinear predictions where different

QoS parameters have additional weightage. Moreover, the

approaches were unable to control the complex reordering

of the decision-making parameters. They did not focus on

aspect data reduction without any information loss. The

proposed paper presents the IOWA layer in the neural

network to address these shortcomings, as discussed in

Sect. 3.
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2.2 OWA operator and families

The Ordered Weighted Averaging (OWA) operator intro-

duced by Yager [23] is a family of mean-type operators.

The OWA operator allows the aggregation realisation

between the two extremes of OR and the AND [52, 53].

The operator is defined as follows:

Definition 1 The OWA operator of dimension n is a

mapping OWA: Rn ? R that has an associated weighting

vector W ¼ w1;w2;w3; . . .. . .;wnð Þ such that wi e [0,1],

i = 1,….., n and
Pn

i¼1 wi ¼ 1. The operator is presented as:

OWA x1; x2; x3; . . .. . .; xnð Þ ¼
Xn

i¼1

wiyi ð1Þ

where y1; y2; y3; . . .; ynð Þ is the reordered set of

x1; x2; x3; . . .; xnð Þ from largest to smallest.

Another family of OWA operators is the Induced OWA

(IOWA) operator. The IOWA operator [54] introduced by

Yager and Filev is an aggregation operator that uses an

induced variable to reorder input variables. The IOWA

operator is defined as:

Definition 2 The IOWA operator of dimension n is a

function IOWA: Rn ? R, to which the weighting vector W

of dimension n, W ¼ w1;w2;w3; . . .. . .:;wnð Þ is associated

such that wi e [0,1], i = 1,….., n and
Pn

i¼1 wi ¼ 1. It is

defined to aggregate with the second set of arguments—

induced variables ui such that:

IOWA u1; j1; u2; j2; . . .. . .; un; jnð Þ ¼
Xn

a¼1

waka ð2Þ

where k1; k2; k3; . . .. . .; knð Þ is the input argument

a1; a2; a3; . . .. . .; anð Þ reordered based on an ordered

inducing variable u1; u2; u3; . . .. . .; unð Þ.

Table 1 Comparative analysis of existing approaches

Methods Prediction method used Manage

nonlinear

relationship

Manipulate

high

dimensional

dataset

Handle

variable

QoS

weights

Control complex

reordering of

decision making

parameters

Data reduction

without losing

any information

Haytamy

and

Omara [3]

Deep Learning-based Service

Composition framework (DLSC)

4 4 7 7 7

Smahi et al.

[29]

Deep AutoEncoder (DAE)-based Matrix

Factorization model

7 7 7 7 7

Liu and

Chen [32]

Dynamic Cloud Manufacturing (CMfg)

prediction approaches

7 4 7 7 7

Chen et al.

[33]

Self-adaptive resource allocation

framework

4 7 7 7 7

Li et al. [36] Bayesian network model 7 7 7 7 7

Fu et al.

[37]

Novel nearest neighbour method for cloud

service recommendation

4 4 7 7 7

Keshavarzi

et al. [38]

Enhanced time-aware QoS prediction

model using K-medoids

7 4 7 7 7

Ma et al.

[40]

Generic Collaborative Filtering 7 7 7 7 7

Xu et al.

[42]

Neural Fusion Matrix Factorisation model 7 7 7 7 7

Huang et al.

[43]

Optimization-based allocation

mechanism

4 4 7 7 7

Zou et al.

[46]

Neural network-based temporal-aware

service QoS prediction model

7 7 7 7 7

Chowdhury

et al. [51]

Context-aware hierarchical QoS

prediction with hybrid filtering

4 4 7 7 7

Proposed

CI-ANFIS

IOWA-ANFIS using minimax disparity

approach with fuzzy c-means,

subtractive clustering and grid

partitioning

4 4 4 4 4
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2.3 Neural network prediction methods

This study analysed nine neural network methods to

compare their prediction accuracy with the proposed

approach. The methods are discussed as follows:

• Feedforward backpropagation network: A type of

neural network also referred to as multi-layer percep-

tron that feedforward the values, calculate the error and

propagate it back to the previous layer. The network

comes with a hidden layer. Signals from the input layer

are sent to neurons of the hidden layer in a weighted

form which is further processed by the activation

function. The output of each neuron is then sent to the

output layer. The formulation of the network is

presented as follows:

O ¼ fo wb þ
Xk

i¼1

wo
i fh wb

i þ
Xm

j¼1

wh
ijxj

 ! !

ð3Þ

where fo, fh is the activation function in the output

layer and hidden layer, respectively, wb is the weight

from bias to output, wb
i represents a weight from bias to

hidden layer.

• Cascade-forward backpropagation network: In this

type of neural network, there is a connection from the

input and every preceding layer to the subsequent

layers. The method accommodates a nonlinear relation-

ship between the input and the output. The formulation

of the network is presented as follows:

O ¼
Xn

i¼0

fow
i
ixi þ fo wb þ

Xk

i¼1

wo
i fh wb

i þ
Xm

j¼1

wh
ijxj

 ! !

ð4Þ

where wi
i is the weight from the input layer to the output

layer, fo, fh is the activation function in the output layer

and hidden layer, wb is the weight from bias to output

and wb
i is the weight from bias to the hidden layer.

• Elman backpropagation network: This is a feedforward

neural network with an extra layer of recurrent

connection with tap delay. The network is comprised

of four layers. The first and second layers are the input

layer and hidden layer. The third layer is the undertake

layer that memorises the hidden layer output, and

finally, the fourth layer is the output layer. The

formulation of the network is presented as follows:

O ¼ TF wOut � f wh � x k � 1ð Þð Þ þ wIn � u k � 1ð Þð Þð Þ
ð5Þ

where TF is the transfer function, wOut is the weight of

the hidden layer to the output layer, x k � 1ð Þ is the

output of the undertaking layer, wh is the weight of the

undertaking layer to the hidden layer, wIn is the weight

of the input layer to the hidden layer, u k � 1ð Þ is the

input of neural network.

• Generalised regression neural network: This is a

probabilistic neural network with a radial basis layer

and a special linear layer. The method does not need the

training process. Instead, it approximates the arbitrary

function between input and output vectors. The

approach is mostly used for function approximation.

The generalised regression (GR) neural network com-

prises four layers: input, pattern, summation, and

output. The formulation of the GR neural network is

presented as follows [55]:

O ¼ Sums

Sumw
ð6Þ

O ¼
Pn

j¼1 exp � ðin�ajÞtðin�ajÞ
2r2

� �� �

Pn
i¼1 wipi

ð7Þ

where Sumw is the weighted sum of the pattern layer

outputs, Sums is a simple summation of the pattern layer

outputs, r is a smoothing parameter, in is the input to

the network, aj is the pattern vector for neuron j, w is

the connection weight of a particular neuron to related

neurons in the summation layer, and O is the network

output.

• NARX: The nonlinear autoregressive exogenous

(NARX) is a nonlinear autoregressive method that is

widely used for time series prediction. The method is

designed as a feedforward time-delay neural network

that considers the same series of previous data. The

method only takes the output neuron’s feedback instead

of the hidden neurons. The method can be mathemat-

ically represented as follows:

O t þ 1ð Þ ¼ f o tð Þ; � � � ; o t � doð Þ; in tð Þ; . . .; in t � dinð Þ½ �
ð8Þ

O t þ 1ð Þ ¼ fo bo þ
XNh

k¼1

wkofk bh þ
Xdin

j¼0

wjhin t � jð Þ
 "

þ
Xdo

i¼0

wiho t � ið Þ
!#

ð9Þ

where in(n), o(n) are the input and output of the model

at time interval t, din � 1; do � 1 is the input and output

delay, wjh;wko;wih represents the weights of input,

hidden, and output layers, bh; bo are biases of hidden

and output layers.

• Layer recurrent neural network (LRNN): This is similar

to a feedforward neural network excepting for recurrent

connection with tap delay associated in each layer to
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have a finite dynamic response to the input dataset. The

method is also widely used in different time series

prediction analyses. The formula of the current RNN

state is presented as:

ht ¼ tanh Winhint þWhhht þ bhð Þ; ð10Þ
Ot ¼ Whoht þ bo ð11Þ

where, in,o represents input and output sequence,

h represents hidden vector sequence at time interval t,

tanh is the activation function used in the hidden layer,

W represents weight matrices

• LSTM: The long short-term memory (LSTM) network

is the extended version of the recurrent neural network

developed by Hochreiter and Schmidhuber [56]. The

standard recurrent neural networks cannot learn when

the time lags are more than 5 – 10 distinct time steps

between the observed and target data. The LSTM

method overcomes the vanishing gradients and explod-

ing gradients problems by introducing memory units or

cell states. The typical formulation of a single LSTM

cell is presented as follows [57]:

Int ¼ r WIn � ht�1; xtð Þ þ biInð Þ; ð12Þ

Fgt ¼ r WFg � ht�1; xtð Þ þ biFg
� �

; ð13Þ

Out ¼ r WOu � ht�1; xtð Þ þ biOuð Þ; ð14Þ

Cellt ¼ Fgt � Cellt�1 þ Int � gCellt ; ð15Þ
gCellt ¼ tnjh WCell � ht�1; xtð Þ þ biCellð Þ; ð16Þ
ht ¼ Out � tnjh Celltð Þ; ð17Þ

where W represents weight matrix, In represents input

gate, Fg represents forget gate, Ou represents output

gate, Cell represents memory cell content, ~Cell repre-

sents new memory cell content, tnjh represents a

hyperbolic tangent function, r represents a sigmoid

function, bi represents biases, h represents hidden

vector at time interval t, x is the input. The approach is

commonly used in various time series prediction

problems.

• GRU: The gated recurrent unit (GRU) is a similar

network like LSTM, with a gated unit used to flow the

information within the unit. It has fewer parameters

than LSTM with no output gate and is more efficient

than LSTM for the training process. The general

formulation of the GRU network is presented as

follows:

Ret ¼ sigf WxRext þWyReyt�1 þ biRe

� �
; ð18Þ

Upt ¼ sigf WxUpxt þWyUpyt�1 þ biUp
� �

; ð19Þ

~yt ¼ tnjh Wxyxt þWyy Ret � yt�1ð Þ þ biy
� �

; ð20Þ

yt ¼ Upt � yt�1 þ 1 � Uptð Þ � ~yt; ð21Þ

Re represents reset gate, Up represents update gate, x,y

represents input and output vectors, sigf represents

sigmoid activation function, tnjh represents a hyper-

bolic tangent function, W represents weight matrices,

and bi represents biases.

3 Proposed approach

This section introduces an IOWA layer in neural network

structure to prioritise certain data for complex prediction

[58]. The OWA operator enables aggregate information

without losing any details from it. The proposed approach

informs the prediction model that a certain set of data is of

higher importance than the rest of the data that the existing

methods cannot do. The approach uses the IOWA operator,

where the weightage is assigned based on the inducing

variable. The IOWA operator aggregates not only the

numerical values but can accommodate objects as inter-

vals, which enables the decision-maker to prioritise any

particular set of data and make it ready for any complex

predictions. This paper use cloud QoS data for complex

QoS prediction. However, the approach can perform other

complex predictions such as stock market, IoT sensor data,

web service recommendation prediction and many others.

The key feature of the approach is that it reduces the size of

a dataset significantly without losing any information. This

results in a reduction of computational time and com-

plexity. The IOWA layer in a neural network is defined as

follows:

Definition 6 The IOWA operator in neural network

structure having an of inputs of k dimensions is a mapping

IOWA: Rk ? R defined by the associated weights w of

dimension k such that wi e [0,1] and
Pk

i¼1 wi ¼ 1 the set of

inducing variables of order ui, as presented in Fig. 1 and

Eqs. 22–23.

IOWA� NN u1; x1; u2; x2; . . .. . .:; uk; xkð Þ ¼ AFi ð22Þ

AFi is the activation function which is the sum of the

product of wi and bi which is

AFi ¼
Xk

i¼1

wiyi ð23Þ

where ui; xih i is a set of two tuple input, where ui is

inducing variable associated with the input xi; yi is the

reordered input xi in descending order of the ui;wi is the

associated xi weight, Oi is the actual output of the output

neuron.
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The aggregated results then pass to the system, where it

is compared with the threshold value hi. The information is

passed to the next layer neurons if the value is greater than

or equal to the hi. Otherwise, it drops the information as

presented in the below equation:

AFi � hi;Oi [ 0 ) pass _ AFi\hi;Oi ¼ 0 ) drop ð24Þ

The paper considers an example where the decision-

maker has time-series data and prioritises a certain data set

without losing any information to predict the future interval

to better understand the approach.

Example Let assume a decision maker has five set of input

arguments with following values—x = (xt = 50, xt-1 = 60,

xt-2 = 20, xt-3 = 30, xt-4 = 50). The order of inducing

variables for inputs are arranged as—u = (7, 2, 4, 5, 3). The

paper considers following weights for each interval—

w = (w1 = 0.25, w2 = 0.10, w3 = 0.30, w4 = 0.15,

w5 = 0.20). The inputs are rearranged based on inducing

variable are as follow x = (xt = 50, xt-3 = 30, xt-2 = 20, xt-

4 = 50, xt-1 = 60).

The activation function AF using Eq. 23 is calculated as:

AF = [ (w1 9 xt), (w2 9 xt-3), (w3 9 xt-2), (w4 9 xt-4),

(w5 9 xt-1)].

AF = [(0.25 9 50), (0.10 9 30), (0.30 9 20),

(0.15 9 50), (0.20 9 60)].

AF = 12.5 ? 3 ? 6 ? 7.5 ? 12.

AF = 41.

Fig. 1 IOWA layer in neural

network structure

Fig. 2 IOWA layer in prediction methods

14902 Neural Computing and Applications (2022) 34:14895–14912
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4 Implementation and evaluation

This section presents the performance and efficiency of the

proposed approach and demonstrates the accuracy and

improved computational complexity using a case study.

4.1 Case study

To better understand the approach, the paper considers a

complex scenario where the decision-maker prioritises

certain data sets from large data to make a complex non-

linear prediction. The paper takes an example of cloud

services where the decision-maker (service provider or a

consumer) has a periodic record of QoS data. The decision-

maker wants to prioritise certain data from the rest of the

dataset for the custom requirements. The paper assumes

that a decision-maker wants to analyse the QoS data of a

cloud service for certain hours of a day. The decision-

maker categorises the dataset into three working hours –

peak hours, should hours and off-peak hours. Peak hours

are those working hours when maximum activities of the

business perform. In shoulder hours, some of the business

activities are performed, while in off-peak hours, there are

very few tasks that are performed.

Decision-maker categorises working hours as follows:

• Peak hours (PH): Let’s assume that the decision-maker

prioritises and define working hours from 9:00 AM to

5:00 PM as the peak hours. During these hours, the

decision-maker executes their main task and rarely

compromises on QoS variations.

• Shoulder hours (SH): Let’s assume that the decision-

maker takes two time periods for the shoulder period.

The first period starts from 5:00:00 PM to 9:00:00 PM,

and the second period starts from 5:00:00 AM to

9:00:00 AM.

• Off-peak hours (OH): Let’s assume the decision-maker

hours between 9:00:00 PM to 5:00:00 AM as off-peak

hours.

The decision-maker is very concerned about the QoS

behaviour during peak hours for the next interval, but at the

same time, it also wants to consider the QoS data for all

previous hours as well. The decision-maker prioritises 24 h

as follows – PH\ SH\OH. The symbol ‘\’ means

precede in terms of priority and weightage.

4.2 Experimental setup and dataset

The paper evaluates the approach in MATLAB R2020a,

with a CPU of 1.8 GHz, RAM of 4.00 GB and storage of

1 TB. The Amazon EC2 US-West IaaS instance dataset is

extracted from the PRTG monitoring service Paessler

(www.paessler.com) for seven days from 20–04-2015 to

26–04-2015. The dataset comprised 5 min measurement of

the cloud QoS data. Total of 2,016 records for training to

predict the future eight hours are used. The traditional

neural network used 2,016 records, and when applied the

OWA neural network method, the records were reduced to

672 records for training to predict 96 intervals (peak 8 h) of

the next day.

The approach evaluates EBP, FFBP, CCFBP, NARX,

LR neural networks and their respective OWA methods

Fig. 3 Prediction results of all

methods
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with configuration settings. The approach uses a training

function of TRAINLM, an adoption learning function of

LEARNGDM with two layers. The first layer has 20 neu-

rons, the transfer function for the hidden layer is TANSIG,

and for the output layer, PURELIN is used. Training

parameters are set as 1000 epochs with a maximum fail of

600. For LSTM and OWA- LSTM, the paper uses two

LSTM layers, each with 100 units representing the

dimension of the hidden state. The dropout value is set to

be 0.5 with SIGMOID as an activation function and

ADAM as an optimiser. The model runs through some 50

epochs. The GRU and OWA-GRU models contain three

layers with 100 units each and a dropout value of 0.5. The

activation function is LINEAR, and the optimiser is SGD.

The number of epochs is set to be 50. The LSTM-GRU and

respective OWA approaches consist of two LSTM and two

GRU layers with a dropout of 0.5 each. The activation

function is LINEAR, and the optimiser is ADAM.

4.3 Evaluation

The proposed approach works in two steps – IOWA

aggregation and prediction, as presented in Fig. 2.

IOWA aggregation: Let assume the service provider

have an optimistic behaviour therefore, the OWA weights

are assigned as w1 = 0.55, w2 = 0.35 and w3 = 0.10. The

paper considers the priority of time intervals as an inducing

variable to OWA aggregation. The reordered intervals and

working hours based on inducing variables are as below:

u1= PH = 9:00:00AM to 5:00:00 PM = 96 data

intervals

u2= SH = 5:00:00PM to 9:00:00 PM , 5:00:00PM to

9:00:00 PM= 96 data intervals

Fig. 4 Neural network with respective OWA method
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u3= OH = 9:00:00PM to 5:00:00 AM = 96 data

intervals

Applying Eq. (23), the paper gets the IOWA aggregated

result for each day.

Neural Network Prediction: Let’s consider nine neural

network backpropagation algorithms for the experiment.

For each of the approaches, the paper performs two sets of

experiments. First, the paper predicts the QoS parameter

for future peak hours, that is—27–04-2015, from

9:00:00AM to 5:00:00 PM using the default approach of

the neural network method. The paper applies the proposed

approach with the respective neural network method to

predict future peak hours in the second experiment. The

prediction accuracy of both approaches is measured using

the following accuracy measurement benchmarks:

• Root Mean Square Error (RMSE):

RMSE is one of the most commonly used methods

tomeasure prediction accuracy. It presents how far the

prediction falls from the actual data using Euclidean

distance. RMSE can be calculated using the square root

of the mean of the square of all errors, as presented in

the below equation.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1 Oi � Pið Þ2

N

s

ð25Þ

where O represents the observed data and P represents

the predicted data.

• Mean Absolute Error (MAE)

MAE is another widely used metric to measure

prediction accuracy. The method measures the average

magnitude of the errors in a set of prediction results

irrespective of their directions. MAE can be calculated

by taking the average of absolute error, which is the

absolute difference between the observed and predicted

data where all individual differences have equal

weights. MAE is presented in the below equation.

MAE ¼ 1

n
�
Xn

i¼1

Oi � Pij j ð26Þ

• Mean Absolute Percentage Error (MAPE):

MAPE is the average of the absolute percentage

error of the predicted result. It gives the error result in

terms of a percentage that makes it easier to understand.

MAPE can be calculated as the mean absolute per-

centage error for each observed minus predicted divided

by observed values. MAPE is presented in the below

equation

Ta
bl
e
3

P
re

d
ic

ti
o

n
ac

cu
ra

cy
co

m
p

ar
is

o
n

s

E
B

P
O

W
A

-

E
B

P

F
F

B
P

O
W

A
-

F
F

B
P

G
R

O
W

S
-

G
P

C
F

B
P

O
W

-

C
F

B
P

N
A

R
X

O
W

A
-

N
A

R
X

L
R

O
W

-

L
R

L
S

T
M

O
W

A
-

L
S

T
M

G
R

U
O

W
A

-

G
R

U

L
S

T
M

-

G
R

U

O
W

A
-

L
S

T
M

G
R

U

R
M

S
E

1
7

.8
5

1
7

.8
8

1
7

.7
5

1
7

.7
8

1
8

.0
6

1
8

.1
1

1
7

.9
6

1
7

.9
3

1
9

.1
6

1
8

.0
9

1
7

.7
4

1
7

.7
6

1
3

.8
6

1
2

.1
5

1
7

.1
4

1
2

.9
3

1
3

.4
9

1
2

.6
8

M
A

E
1

7
.3

4
1

7
.3

6
1

7
.3

4
1

7
.3

4
1

7
.5

3
1

7
.6

1
7

.3
9

1
7

.2
6

1
8

.8
6

1
7

.6
8

1
7

.3
8

1
7

.3
7

1
3

.5
8

1
1

.9
1

1
6

.8
3

1
2

.7
4

1
3

.2
4

1
2

.5
0

M
A

P
E

3
.1

0
%

3
.1

0
%

3
.1

0
%

3
.1

0
%

3
.1

0
%

3
.1

0
%

3
.1

0
%

3
.1

0
%

3
.4

0
%

3
.1

0
%

3
.1

0
%

3
.1

0
%

2
.4

0
%

2
.1

0
%

3
%

2
.3

0
%

2
.4

0
%

2
.2

0
%

Neural Computing and Applications (2022) 34:14895–14912 14909

123



MAPE ¼ 100 � 1

N

XN

k¼1

Ok � Pk

Ok

�
�
�
�

�
�
�
� ð27Þ

Table 2 presents the prediction results of each method

for the first six hours. Figure 3 presents the predicted

results of approaches for all intervals of peak hours. Fig-

ure 4 presents each neural network prediction behaviour

with its respective OWA approach. The RMSE, MAE and

MAPE of different methods are presented in Table 3 and

Fig. 5.

The analysis result demonstrates that the approach sig-

nificantly decreases the data size—by 66%, from 2016 to

672 records. From the prediction accuracy perspective, the

proposed approach gives better or equal accuracy in almost

all algorithms. There is a significant improvement in the

GRU method when the approach includes the OWA layer.

The RMSE has improved by 24%, from 17.144 to 12.937.

The MAE has decreased from 16.83 to 12.74. The MAPE

has decreased from 3 to 2.3%. Figure 6 presents a com-

parative overview of all OWA methods. The analysis result

shows that OWA-LSTM gives the optimal prediction result

to all other OWA methods with the RMSE of 12.15, MAE

of 11.91 and MAPE of 2.10%.

5 Conclusion

QoS prediction is one of the key factors to measure the

quality of offered services. In a cloud environment, the

agreed SLA is comprised of multiple offered services with

several QoS parameters. The computational complexity of

the system increases with the size of a dataset. Due widely

spread of huge cloud QoS data, it is challenging to reduce

the size of a dataset without losing any information.

Existing approaches try to address the problem, but they

cannot handle complex nonlinear predictions. The paper

used the IOWA layer to predict nonlinear QoS prediction

in the prediction method. The approach was tested using

nine neural network methods, and their accuracies are

compared with RMSE, MAE and MAPE. The experimental

results demonstrate a notable data size reduction with

better or equal prediction accuracy. The proposed method

has significantly reduced the data size by about 66%, from

2,016 to 672 records, without losing any information. The

GRU method has a significant improvement when the

approach includes the OWA layer. The RMSE has

improved by 24%, from 17.144 to 12.937. The MAE has

decreased from 16.83 to 12.74. The MAPE has decreased

from 3% to 2.3%. The experimental results evidenced that

the approach handled complex nonlinear prediction by

10
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Prediction accuracy comparision using RMSE and MAE

RMSE MAE

Fig. 5 RMSE, MAE for all prediction methods
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reducing data size with better or the same accuracies. In

future, we will evaluate the approach to an extensive data

IoT sensor network to make an informed decision.
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