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Abstract
Cardiovascular diseases (CVD) are the most widely spread diseases all over the world among the common chronic

diseases. CVD represents one of the main causes of morbidity and mortality. Therefore, it is vital to accurately detect the

existence of heart diseases to help to save the patient life and prescribe a suitable treatment. The current evolution in

artificial intelligence plays an important role in helping physicians diagnose different diseases. In the present work, a

hybrid framework for the detection of heart diseases using medical voice records is suggested. A framework that consists of

four layers, namely ‘‘Segmentation’’ Layer, ‘‘Features Extraction’’ Layer, ‘‘Learning and Optimization’’ Layer, and

‘‘Export and Statistics’’ Layer is proposed. In the first layer, a novel segmentation technique based on the segmentation of

variable durations and directions (i.e., forward and backward) is suggested. Using the proposed technique, 11 datasets with

14,416 numerical features are generated. The second layer is responsible for feature extraction. Numerical and graphical

features are extracted from the resulting datasets. In the third layer, numerical features are passed to 5 different Machine

Learning (ML) algorithms, while graphical features are passed to 8 different Convolutional Neural Networks (CNN) with

transfer learning to select the most suitable configurations. Grid Search and Aquila Optimizer (AO) are used to optimize the

hyperparameters of ML and CNN configurations, respectively. In the last layer, the output of the proposed hybrid

framework is validated using different performance metrics. The best-reported metrics are (1) 100% accuracy using ML

algorithms including Extra Tree Classifier (ETC) and Random Forest Classifier (RFC) and (2) 99.17% accuracy using

CNN.

Keywords Aquila optimizer (AO) � Convolutional neural network (CNN) � Deep learning (DL) � Heart disease �
Machine learning (ML) � Metaheuristic optimization

1 Introduction

Cardiovascular diseases (CVDs) are the most worldwide

spread chronic diseases all over the world and represented

the top cause of morbidity and death in the last ten years

globally [1]. According to the World Health Organization

(WHO), there are 17.9 million people died from CVDs

every year representing 32% of all death cases worldwide.

So, day after day, the cases of CVDs are at a rapid rate and

by 2030, the yearly death rate will increase and reach

22.2 million people approximately [2, 3]. The center of

disease control and prevention report confirms the expec-

tations for increasing the mortality rate. It said that every

40 s, one person died due to the CVDs [4]. In Egypt as

well, CVDs are considered as the leading cause of death in

the last 30 years, and in 2017, the CVDs had an estimated

value of 46.2% of all mortality cases [5].

CVDs are an umbrella term including a group of dis-

orders for the heart and blood vessels containing many

types such as (1) congestive heart failure, (2) coronary

heart disease, (3) congenital heart disease, (4) cerebrovas-

cular disease, and (5) rheumatic heart disease [6]. From

five CVDs death, there are four cases resulting from strokes

and heart attacks. So, heart disease can be considered as the

most life-snatching chronic disease and its risk comes from

the silently of the disease. It is not diagnosed until the

symptoms of heart failure (or attack) are recognized [7]. In
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heart disease, the heart fails to do its normal function by

supplying blood to other body parts because of the block-

age of coronary arteries that are responsible for supplying

blood to the heart [8]. The regular heart disease symptoms

include (1) breath shortness, (2) body weakness, (3) con-

fusion, and (4) fainting. This disease risk can be increased

with people with perilous cases including (1) unhealthy

diet, (2) smoking, (3) fitness issues, (4) high blood pres-

sure, (5) exercise deficiency, and (6) high cholesterol level

[9].

The early and accurate prediction for heart disease is

very crucial to enhance the survival rate and reduce the

mortality rate. This will help healthcare professionals in

their decisions by providing an accurate and efficient

diagnosis and treatment for patients to save their lives [10].

One of the approaches for the early and accurate prediction

for heart disease is machine intelligence. This can be

achieved using machine learning (ML) algorithms and

deep learning (DL) approaches [11]. Various types of heart

disease data such as images, waves, and sounds can be used

to perform that [12].

Image data can be analyzed and the features are

extracted, to train the ML (or DL) approach such as CNN,

to determine if the images are belonging to a diseased or

healthy patient [13]. Detecting heart disease can also be

through gathering features obtained from cardiac sounds to

be the input for a DL or ML algorithm beside those cardiac

sounds can be converted into numerical data to be utilized

as an input for a DL approach to check the patient condi-

tion if it had heart disease or not [14]. Another type of data

which have been deployed for heart disease detection and

know the patient condition through analyzing Electrocar-

diogram (ECG) and Electroencephalogram (EEG) waves to

assign the correct label to be the input for the Recurrent

Neural Network (RNN) model or extracting features from

the signals and convert them into a numerical data which

had been used as the input for ML algorithm [15]. ML

algorithms such as support vector machines and decision

trees have an essential role in predicting the existence of

heart disease accurately by analyzing the medical data

whether its voice or images numerically [16–18]. Also, DL

approaches such as convolutional neural networks (CNN)

can analyze them efficiently and can deal with large

datasets [19–21].

1.1 Paper contributions

The current study focuses mainly on developing a hybrid

system from ML algorithms and CNN models to predict

and detect the existence of heart disease accurately based

on the analysis of the medical voice records and images.

The suggested approach will aid healthcare professionals to

improve the provided medical care to patients. The

contributions of the current study can be summarized in the

following points:

• Proposing a hybrid system from ML algorithms and DL

approach for predicting heart disease.

• Analyzing different types of datasets including medical

images and voice records.

• Suggesting a hybrid DL and AO approach for the

learning and optimization processes.

• Reporting state-of-the-art performance metrics com-

pared with other related studies and approaches.

1.2 Paper organization

The rest of this paper is organized as follows: In the next

section, the related studies that have heart disease diagnosis

and prediction processes contributions are described. Sec-

tion 3 depicts the basic concepts regarding voice feature

techniques, ML algorithms, Convolutional Neural Network

(CNN), Metaheuristic Optimization using Aquila Opti-

mizer (AO), Image Augmentation, and Data Normaliza-

tion. In Sect. 4, the suggested approach of this work during

the heart disease learning and optimization phase is dis-

cussed. Section 5 illustrates the experiments and the

reported results of different approaches. Finally, Sect. 6

represents the main conclusion and future work.

2 Related work

In this section, the existing studies and research papers,

related to heart disease diagnosis and prediction processes

based on various types of medical data, are introduced. The

related studies are split into studies that focused on (1) deep

learning approaches, (2) machine learning algorithms, and

(3) hybrid approach.

2.1 Deep learning-based studies

Brunese et al. [22] proposed a methodology for detecting

heart disease using DL and through cardio sounds. They

used deep neural networks (DNN) to extract a set of fea-

tures and analyzed the cardio sounds. They showed if they

belonged to healthy patients or those with heart disease.

176 heartbeats were considered when they performed the

experiments and their results showed that 145 of them

related to heart disease patients and only 31 heartbeats for

healthy patients. The overall accuracy was 98%. Miao et al.

[23] developed a DNN for predicting and diagnosing

coronary heart disease. They used Multi-Layer Perceptron

(MLP), regularization, and dropout. They utilized 303

instances containing attributes from patients at the
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Cleveland clinic foundation and achieved 83.67% accuracy

and 93.51% sensitivity.

Abdel-Alim et al. [24] proposed a heart disease diag-

nosis system using ANN and through classifying several

cases related to heart disorders using heart sounds. The

used dataset contained 850 cases that were partitioned into

650 cases for the ANN training process and the other 200

cases for testing. They utilized different techniques to

perform the diagnosis process such as (1) Fast Fourier

Transform, (2) Discrete Wavelet Transfer, and (3) Linear

Prediction Coding. They achieved a recognition rate of

95%. Ali et al. [19] suggested a smart monitoring system

for predicting heart disease through DL approaches, feature

selection, feature fusion, and weighting techniques on the

used Cleveland and Hungarian datasets. The proposed

approach achieved an accuracy of 98.5%. Zhang et al. [25]

carried out ECG classification using CNNs to identify heart

disease. They deployed the process using a dataset con-

sisting of 102,548 heartbeats and achieved 97.7%, 97.6%,

and 97.6% for positive predictive rate, sensitivity, and F1-

score, respectively.

Zhang et al. [26] suggested an approach for diagnosing

heart disease through signal processing and DL models

which predicted the disease from the ECG signals. The

used dataset contained 8524 single lead episodic ECG

records and reported 0.87 on the F1-score performance

metric. Kwon et al. [27] developed a DL approach for

mortality rate prediction among heart disease patients from

their ECG. The result showed that there are 1026 patients

with a mortality rate among 25,776 cases and that con-

firmed the model achieved accurate results compared to

existing or previous ML models. Sajeev et al. [28] pro-

posed an approach for a heart disease prediction system

that depended on DL models. It could determine the

probabilities of disease risk on the patients. After applying

the performance metrics, they achieved an accuracy of

94% and an Area Under the Curve (AUC) score of 0.964.

Rath et al. [29] carried out heart disease detection on the

ECG samples through the DL model. The utilized model

was depending on LSTM and Generative Adversarial

Network (GAN) to achieve the best efficiency. The results

reported the best accuracy of 99.2%, F1-score of 0.987, and

AUC score of 0.984. Darmawahyuni et al. [30] developed a

framework for detecting coronary heart disease based on

DNN and UCI repository heart disease dataset. They

achieved a specificity of 92%, sensitivity of 99%, and

accuracy of 96%.

2.2 Machine learning-based studies

Jindal et al. [31] proposed a heart disease prediction system

using ML algorithms to predict the condition of the patient

and determine if it had heart disease or not. They depended

on the medical history of each patient in a dataset that

contained 13 medical attributes for 304 patients which

were collected from the UCI repository. They used ML

algorithms such as (1) K-Nearest Neighbor (KNN), (2)

Logistic Regression (LR), and (3) Random Forest Classi-

fier (RFC). From these algorithms, KNN achieved the best

accuracy with a value of 88.52%. Also, they built a model

from the used ML algorithms and it achieved 87.5%

accuracy which was better compared to their related

studies.

Muhammad et al. [32] developed an intelligent com-

putational model for the early and accurate detection and

diagnosis of heart disease based on ML algorithms. They

utilized many ML algorithms such as (1) RFC, (2) Artifi-

cial Neural Network (ANN), (3) Support Vector Machine

(SVM), (4) LR, (5) KNN, (6) Naı̈ve Bayes (NB), (7) Extra-

Tree Classifier (ETC), (8) Gradient Boosting (GB), (9)

AdaBoost (AB), and (10) Decision Tree (DT) on the

Cleveland and Hungarian heart disease datasets that were

available on the UCI repository. They made a comparison

between the algorithms and utilized performance evalua-

tion metrics to show the best algorithms. They were the

ETC and GB with overall accuracy values 94.41% and

93.36% respectively.

Pugazhenthi et al. [33] developed a framework for

detecting ischemic heart disease from medical images

using ML algorithms such as (1) MLP, (2) SVM, and (3)

C5 classifier. The reported results showed that the highest

accuracy was reported by SVM with an accuracy of 92.1%.

Alarsan et al. [34] developed an approach of heart disease

detection based on ECG classification and using ML

algorithms to extract features that were required for the

classification process. They used a dataset that contained

205,146 records for 51 patients. They deployed ML algo-

rithms such as (1) RFC, (2) DT, and (3) Gradient-Boosted

Trees (GDB). The highest accuracy was for the GDB

algorithm which was 97.98%. Nikhar et al. [35] proposed a

methodology for predicting heart disease using ML algo-

rithms on the Cleveland heart disease database which

contains 303 records with 76 medical attributes. They

performed the experiments using NB and DT which

achieved the highest accuracies.

Patel et al. [36] performed a heart disease prediction

system by utilizing ML algorithms and data mining tech-

niques on the Cleveland database of UCI repository which

had 303 instances. The used algorithms are RFC and

Logistic Model Tree (LMT) that performed the prediction

process effectively. Singh et al. [37] proposed a prediction

system for heart disease using ML approaches. They made

a comparison between various ML algorithms such as

KNN, SVM, DT, and LR on a dataset collected from the

UCI repository. The results showed that the highest accu-

racy was achieved by KNN with an overall accuracy of
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87%, SVM with 83%, DT with 79%, and LR with 78%.

Krishnan et al. [38] proposed a prediction system for the

probabilities of heart disease based on ML approaches such

as DT and NB. They used data from the UCI repository that

contained 300 instances with 14 clinical parameters. The

DT algorithm had the highest accuracy with 91%.

2.3 Hybrid-based studies

Pasha et al. [39] proposed a framework for predicting

cardiovascular disease using DL techniques and different

algorithms such as (1) SVM, (2) DT, (3) KNN, and (4)

ANN. They collected the dataset that contained attributes

related to heart disease from Kaggle. In their work, they

made a comparison between the algorithms to know the

most optimum one which was ANN with an overall

accuracy value of 85.24%. Raza et al. [40] developed a

framework for classifying heartbeat sound signals using

DL approaches. They utilized a recurrent neural network

(RNN) that worked depending on the long short-term

memory (LSTM), dense, dropout, and SoftMax layers.

They also deployed the MLP, DT, and RFC models. The

result showed that RNN is the most efficient one from them

and reported an accuracy value of 80.80%. Arabasadi et al.

[10] proposed a Computer-Aided System (CAS) for heart

disease detection based on a hybrid model using Neural

Networks (NN) and Genetic Algorithms (GA). They used a

dataset containing information of 303 patients and

achieved 93.85% accuracy, 97% sensitivity, and 92%

specificity.

Sajja et al. [41] proposed a DL approach for the early

prediction of cardiovascular diseases depending on CNNs.

They used a dataset from the UCI repository and made a

comparison between the traditional algorithms like (1) LR,

(2) KNN, (3) SVM, (4) NB, (5) NN, and (6) the proposed

approach which reported the best accuracy with 94.78%.

Haq et al. [42] proposed a framework of a hybrid intelli-

gent system for the prediction of heart disease based on ML

algorithms to identify healthy people and heart disease

patients through analyzing the used Cleveland heart disease

dataset. They utilized 3 feature selection algorithms, 7

classifiers performance evaluation metrics, and the cross-

validation method. The result showed that the best-used

algorithms are LR and SVM with accuracies of 89% and

Table 1 Related Studies in (2021 and 2020) Summarization

References Year Approach Pros. Cons. Best performance

Jindal et al.

[31]

2021 Proposed heart disease prediction system using

ML algorithms to predict the condition of the

patient and determine if it has heart disease

or not

Used different algorithms and

achieved a good accuracy

Small

dataset

Accuracy 88.52%

Rath et al.

[29]

2021 Carried out heart disease detection on the ECG

samples through the DL model

Better performance and the utilized

model is depending on LSTM and

GAN

– Accuracy 99.2%,

F1-score 0.987,

and AUC score

0.984

Sharma

et al. [44]

2020 Suggested a framework for heart disease

prediction using DNN on heart disease

Used different ML algorithms,

utilized different optimization

techniques, and Good accuracy

Small

dataset.

Accuracy 90.76%

Muhammad

et al. [32]

2020 Develop an intelligent computational model

for the early and accurate detection and

diagnosis of heart disease based on ML

algorithms

Utilized many ML algorithms, good

accuracy, and good dataset size

– Accuracy 94.41%

Pasha et al.

[39]

2020 Proposed a framework for predicting

cardiovascular disease using DL techniques

and different algorithms like SVM, DT,

KNN, and ANN

Made a comparison between different

algorithms to know the best one

between them when dealing with

this dataset

Low

accuracy

Overall accuracy

equals 85.24%.

Brunese

et al. [22]

2020 Proposed a methodology for detecting heart

disease using DL and through cardio sounds

High accuracy comparing to the other

works

Small

dataset

Overall accuracy

98%

Sajja et al.

[41]

2020 Proposed a DL approach for early prediction

of cardiovascular diseases depend on CNN

Utilized different ML algorithms and

good accuracy

Small

dataset

Accuracy 94.78%

Ali et al.

[19]

2020 Suggested smart monitoring system for

predicting heart disease through DL

approaches

Better accuracy, good dataset size, and

utilized different techniques for the

prediction process

– Accuracy 98.5%

Singh et al.

[37]

2020 Proposed prediction system for heart disease

using ML approaches

Used different ML algorithms and

good dataset size

Accuracy 87%
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88% respectively. Gavhane et al. [43] suggested a predic-

tion framework for heart disease based on symptoms and

using ML algorithms such as NN and MLP. The results

showed that NN was the most accurate algorithm when

applied to the prediction process. Sharma et al. [44] sug-

gested a framework for heart disease prediction using DNN

Table 2 Related Studies in (2019 or before) Summarization

References Year Approach Pros. Cons. Best performance

Raza et al. [40] 2019 Develop a framework for classifying

heartbeat sound signals using the DL

approaches

Utilized different techniques Low

accuracy

Accuracy 80.80%

Alarsan et al.

[34]

2019 Developed an approach of heart disease

detection based on ECG classification and

using ML algorithms

Large dataset, better accuracy. Ad

utilized different ML algorithms

Accuracy 97.98%

Krishnan et al.

[38]

2019 Proposed prediction system for the

probabilities of heart disease based on

ML approaches

Good accuracy and dataset size Accuracy 91%

Kwon et al.

[27]

2019 Developed DL approach for mortality rate

prediction among heart disease patients

from their ECG

A large dataset and accurate

results compared to existing or

the previous ML models

Darmawahyuni

et al. [30]

2019 Developed a framework for detecting

coronary heart disease based on DNN

Good utilized dataset size and

better performance

Specificity 92%,

Sensitivity 99%,

and Accuracy 96%

Sajeev et al.

[28]

2019 Proposed an approach for heart disease

prediction system depend on DL models

Better performance Small

dataset

Accuracy 94% and

AUC score 0.964.

Zhang et al.

[26]

2019 Suggested an approach for diagnosing heart

disease through signal processing and DL

models which predict the disease from the

ECG signals.

Large dataset and good

performance

F1-score 0.87

Zhang et al.

[25]

2018 Carried out ECG classification using CNN

to identify heart disease

Large dataset and good accuracy Positive predictive

rate 97.7%,

sensitivity 97.6%,

and F1-score 97.6%

Miao et al. [23] 2018 Develop a DNN for predicting and

diagnosing the coronary heart disease

Utilized different algorithms and

used a good size for the dataset

Low

accuracy

83.67% accuracy and

93.51% sensitivity

Haq et al. [42] 2018 Proposed a framework of a hybrid

intelligent system for the prediction of

heart disease based on ML algorithms

Utilized 3 feature selection

algorithms, 7 classifiers

performance evaluation metrics,

and cross-validation method

Low

accuracy

Accuracy 89%

Gavhane et al.

[43]

2018 Suggested a prediction framework for heart

disease based on symptoms and using ML

algorithms

Used different ML algorithms Small

dataset

Arabasadi et al.

[10]

2017 Proposed a CAS for heart disease detection

based on a hybrid model from NN and

GA

Good accuracy and used a hybrid

model containing GA

Small

dataset

Accuracy 93.85%,

sensitivity 97%,

and specificity

92%.

Pugazhenthi

et al. [33]

2016 Developed a framework for detecting

ischemic heart disease from medical

images using ML algorithms such as

MLP, SVM, and C5 classifier

Used different ML algorithms and

achieved a good accuracy

Accuracy 92.1%.

Nikhar et al.

[35]

2016 Proposed a methodology for predicting

heart disease using ML algorithms

Used different ML models

Patel et al. [36] 2015 Performed heart disease prediction system

by utilizing ML algorithms and data

mining techniques

Used different ML algorithms and

good dataset size

Abdel-Alim

et al. [24]

2002 Proposed a heart disease diagnosis system

using ANN and through classifying

several valves related heart disorders in

the heart sounds

Good dataset size and used

different techniques to perform

the diagnosis process better

Recognition Rate

equals 95%
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on the heart disease UCI repository. They utilized different

algorithms like (1) KNN, (2) SVM, (3) NB, and (4) RFC

for the classification process. They used Talos optimization

with DNN which led to achieving the best accuracy of

90.76%.

2.4 Related studies summarization

Table 1 summarizes the discussed related studies in 2021

and 2020 while Table 2 summarizes the discussed related

studies otherwise (i.e., 2019 or before). They are ordered in

descending order according to the publication year.

2.5 Plan of solution

The current study proposes a hybrid approach for heart

disease learning and optimization through various phases

(as shown in Fig. 1). In it, the first phase handles the

dataset collection for classifying heart sounds challenge

dataset and medical images. The second phase is

Fig. 1 The Suggested Framework Parts Summarization

Fig. 2 The Steps of Extracting the MFCC Features from an Audio

Record

Fig. 3 The Steps of Extracting the MS Features from an Audio

Record
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preprocessing that data. It includes data augmentation and

scales conversion techniques. The third phase is the opti-

mization phase which involves the structure, learning

process, and data augmentation approaches by utilizing the

pre-trained CNN models and ML algorithms. The fourth

phase includes the numerical and graphical features

extraction techniques. The fifth phase represents the clas-

sification process that is based on DL approaches via

transfer learning and ML algorithms. Finally, The sixth

phase involves measuring the performance of ML and DL

approaches through various experiments and calculated

performance metrics.

3 Background

This section provides the main background that can help

the reader get in touch with the parts of the suggested

hybrid approach. It is divided into the following points:

• Voice feature extraction techniques.

• Machine learning algorithms.

• Convolutional neural network.

• Metaheuristic optimization using aquila optimizer

(AO).

• Image augmentation.

• Data normalization.

3.1 Voice feature extraction techniques

Feature extraction is one of the important steps in the

learning process of the algorithms through minimizing

calculations, the choice of the most optimum features in the

dataset, and the choice of the required information to train

the model with it [45]. The features can be extracted from

different types of data such as audio, images, and waves

[46]. In the current study, the features are extracted

numerically and graphically from the audio records. There

are a lot of audio features extraction techniques but the

used ones in the current study are (1) Mel-Frequency

Cepstral Coefficients (MFCC), (2) Mel-Spectrogram, (3)

Zero Crossing Rate (ZCR), (4) Root Mean Square Energy

(RMSE), (5) Spectral-based, (6) Tonnetz, and (7) Chroma-

based techniques [47].

3.1.1 Mel-frequency cepstral coefficients (MFCC)

Mel-Frequency Cepstral Coefficients (MFCC) is the most

common feature extraction technique used for extracting

audio features and graphical features [48]. In MFCC, the

signal is being framed and the Hamming window is used to

reshape the signal to a very small window [49]. Figure 2

shows the steps of extracting the MFCC features [50]. The

MFCC uses the Discrete cosine transform (DCT) inter-

nally. If the DCT type is 3, then it is named MFCC with the

HTK-style while if the DCT type is 2, then it is named

MFCC with the Slaney-style [51].

3.1.2 Mel-spectrogram (MS)

Mel-Spectrogram (MS) is one of the most efficient tech-

niques for audio processing, extracting features from

audios, and transferring them into feature images [52].

Figure 3 shows the steps of extracting the MS features

[53].

3.1.3 Zero-crossing rate (ZCR)

Zero-Crossing Rate (ZCR) is one of the feature extraction

techniques in which the signal changed from positive to

zero to negative or vice versa for recognizing the voiced

and unvoiced signals. ZCR is based on the idea of counting

the times where the waves go from positive to negative or

vice versa at a specific time [54]. Equation 1 shows how to

calculate the ZCR value.

ZCR ¼ 1

2�Mð Þ �
XM

k¼1

jsign a½k�ð Þ � sign a½k � 1�ð Þj ð1Þ

where k is an index, M is the size and sign(a[k]) can be

calculated using Eq. 2.

sign a k½ �ð Þ ¼
1; if k� 0

�1; if k\0

�
ð2Þ

3.1.4 Chroma-based techniques

There are many chroma-based techniques but the used ones

in the current study are (1) chroma-only, (2) Short-Time

Fourier Transform (STFT), (3) Constant-Q chromagram

Transform (CQT), and (4) Chroma Energy Normalized

Statistics (CENS) techniques. Short-Time Fourier Trans-

form (STFT) is the sequence of Fourier transforms for an

audio signal that allows performing time-frequency anal-

ysis for the situations in which signals frequency compo-

nents change over time. It is a fixed resolution method for

analyzing fixed signals and segmenting them into time

intervals to take the Fourier Transform for every segment

in the signal [55].

Constant-Q chromagram Transform (CQT) is the

wavelet transform technique that transforms the time

domain signal to the time-frequency domain. The center

frequencies of frequency bins are spaced and their Q-fac-

tors are equal. The frequency resolution will be better for

low frequencies whereas the time resolution is better for

high frequencies. The CQT has a better result when the
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logarithmic frequency mapping and low frequencies are

being concerned [56]. Chroma Energy Normalized Statis-

tics (CENS) is the group of scalable sound features utilized

for the sound matching process. It computes the short-time

energy spread signal. CENS is used for extracting chroma

features that capture the melodic and harmonic character-

istics of sounds and represent a short time window of the

sound [57].

3.1.5 Root mean square energy (RMSE)

It is the square root of the average of the summation of

signal amplitude for the short time sound wave energy.

RMSE plays an essential role as a loudness indicator. The

higher the energy, the louder the sound. RMSE has been

utilized in sound segmentation and genre classification

[58]. Computing the RMSE value from the voice records is

faster as it does not require any STFT calculations. How-

ever, using a spectrogram can give a more accurate rep-

resentation of the energy over time as its frames can be

windowed. Equation 3 shows how to calculate the RMSE

value.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
X

k¼1

Nx2k

s
ð3Þ

where N is the number of samples and x is the sampled

signal.

3.1.6 Tonnetz

Tonnetz is used to analyze the tonal centroid features and

audio signals to learn the features that are being extracted

from the audio files [59].

3.1.7 Spectral-based techniques

There are many spectral-based techniques but the used

ones in the current study are (1) spectral centroid, (2)

spectral bandwidth, (3) spectral contrast, (4) spectral flat-

ness, and (5) roll-off frequency techniques. Spectral Cen-

troid is the measure of the spectral shape and position. It

measures the shape of the spectrum for waves to charac-

terize it. It predicts the sound brightness and the frequency

band where most of the energy is concentrated. Hence, the

high value of spectral centroid refers to the more signal

energy to be concentrated within the higher level of fre-

quencies [60].

Spectral Bandwidth is the spectral range of interest

around the centroid. It is derived from the spectral centroid.

The bandwidth is directly proportional to the spreading

energy around the frequency bands. Also, it is the weighted

distances mean of frequency bands that are derived from

the spectral centroid [61]. Spectral Contrast is the differ-

ence between valleys and peaks in the spectrum. It contains

more spectral information and represents the relative

spectral characteristics. It makes sound normalization and

keeps the most peaks for a sound signal constant whereas

making valleys attenuation in the spectrum [62].

Spectral Flatness is the estimation of audio spectrum

characterization and signal energy distribution uniformity

and noisiness of energy spectrum in the frequency domain.

If the spectral flatness has a high value then it indicates that

the spectrum has the same energy for all spectrum bands.

Also, if the spectral flatness is low this means that the

spectral energy has low uniformity in the frequency

domain [63]. Roll-off Frequency is the frequency in which

95% of the energy for each signal is below that frequency.

It is used to differentiate between unvoiced and voiced

speech. The unvoiced speech has a high level of energy in

the high frequency of spectrum [64].

3.2 Machine learning algorithms

ML algorithms are programs with a specific style of

adjusting the parameters (i.e., weights) and have feedback

depending on their previous experience in predicting the

related dataset [65]. In this work, five ML algorithms are

deployed to detect heart disease existence. They are (1)

KNN, (2) DT, (3) AB, (4) RFC, and (5) Extra Trees

Classifier (ETC) ML algorithms.

Fig. 4 A sample of the decision

trees (DT) with its components

15914 Neural Computing and Applications (2022) 34:15907–15944

123



3.2.1 K-nearest neighbour (KNN)

It is one of the most used ML algorithms for versatile

problems such as regression and classification problems but

it is commonly utilized in classification cases [66]. KNN is

one of the most simple and easy algorithms to be imple-

mented. However, it is computationally expensive [67].

The working idea of KNN is based on storing the available

cases and classifying new ones referring to the majority

votes of its k-neighbors [68]. It is measured by the distance

function to find the distances between a query and all cases

in the data. After that, it chooses the closest one to the

query and takes the most frequent label between them [69].

The ‘‘k’’ in the KNN algorithm represents the nearest

neighbors numbers that are utilized for dealing with new

cases. If the ‘‘k’’ value is high, then it overlooks the cases

with a little sample. If the ‘‘k’’ value is low, this means it

can be referring to the outliers [70].

3.2.2 Decision trees (DT)

It is a decision support technique that has a structure like a

tree and consists of three parts. They are (1) leaf nodes, (2)

root nodes, and (3) decision nodes [71]. The algorithm

splits the training dataset into various branches that seg-

regate to other branches. The nodes in the DT represent the

attributes for predicting the outcome and the decision

nodes provide the link into the leaves (as shown in Fig. 4).

The decision nodes and root nodes represent the features

in the dataset [72]. Hence, the DT algorithm provides

various outputs and the highest one will be selected as a

final output. From the DT algorithm, a model, that can

predict the target variable value from learning decision

rules inferred from training data, can be built [73]. The tree

representation of the algorithm helps to understand the

problem and reach the most optimum solution. So, it is

represented as one of the easiest and simplest models for

implementation [71].

3.2.3 Random forest classifier (RFC)

It is an ML algorithm representing a collection of DTs so it

combines multi-DT outputs to have the most accurate

single solution. If a new case that depends on the attributes

of DT is required to be classified, each tree in it will give a

classification and say votes for this case. Then, the forest

selects the highest votes between the trees [74]. RFC

algorithm is very flexible, easy to implement and under-

stand, and can achieve a stable prediction output [75]. The

algorithm makes the training process based on the bagging

method by combining the learning models that will

improve the overall result [75]. Figure 5 shows a sample of

the RFC and its inner components.

3.2.4 Extra trees classifier (ETC)

It is an ML ensemble algorithm that combines various

predictions from many decision trees by averaging them in

the case of regression tasks or through utilizing the

majority votes for classification problems. ETC is related to

Random Forests and bagging. Until the model performance

is stable, the number of additional trees is added to increase

the performance and aggregate the predictions of various

trees to have the most optimum one [76]. ETC is one of the

fastest and most accurate ML algorithms that is based on

randomization and optimization [77].

Fig. 5 A Sample of the Random Forest Classifier (RFC) with its Components
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3.2.5 AdaBoost (AB)

It is a boosting approach that is utilized as an ensemble

algorithm in ML and a supervisory layer for other algo-

rithms. Its work depends on the learning growing sequen-

tially approach. It is done by building the model from

training data and making another model that attempts to

correct any errors that occurred on the first model. Then,

the models are mixed until the training set makes the

prediction efficiently or the maximum number of models

are inserted [78]. AdaBoost changed the set of weak clas-

sifiers to the strong classifiers and predictions were per-

formed based on the average weights of the weak

classifiers. AdaBoost depends on the stump performance

by updating weights and changing the training set

depending on the result of previous ones [79].

3.3 Convolutional neural network (CNN)

Convolutional Neural Network (CNN) is classified as one

of the most deep learning powerful tools that take an input

image, extract features from it using filters (or kernels), and

transfer it to lower dimensions without losing any infor-

mation. CNN demonstrated its ability for classifying ima-

ges effectively so it is the most popular one used for that as

it can learn the intrinsic and latent image features [80].

CNN model has multi-layers starting by the input layer to

convolutional layer, pooling layer, fully connected layer,

batch normalization layer, activation layer, and ending with

the output layer [81]. A CNN’s architecture is composed of

multilayers as follows:

Input Layer contains the input image and holds its pixel

values. Convolutional layer is applied to the input image

and extracts different levels of features using kernels and

filters that have specific widths and heights. It will deter-

mine the output neurons that are connected to a specific

region of the input data. Multiple convolution operations

are applied by sliding the filters on the input to extract

various features levels from the image and stack them to

make the convolutional layer output [82]. Pooling layer

down-samples the input image and reduces the parameters

existing in the image aiming to decrease the training time

and reduce the overfitting without losing important data. It

can also affect the performance of the training process

[83, 84].

Fully connected layer (FC) represents a flattened feed-

forward layer that aids for classification processes after the

pooling process. After the down-sampling and feature

extraction processes, nonlinear combinations of features

are learned as the output of the convolutional layer. All

neurons in the fully connected layer are connected to the

neurons in the last and next layer. It can have a nonlinear

activation function to make predictions and classify the

input data to different classes [85, 86]. Batch normalization

layer is one of the main layers in the CNN architecture that

makes the model perform better and the training process

faster by (1) allowing an extensive range of learning rates

and (2) re-parametrizing the optimization problems that

lead to the process being more stable, smoother, and avoid

the local minimum convergence [87]. Activation layer is

required to get the output of the node through using one of

the different activation or transfer functions including

Sigmoid, Hyperbolic Tangent (Tanh), Rectified Linear

Unit (ReLU), Leaky ReLU, Exponential Linear Unit,

Scaled Exponential Linear Unit, and SoftMax functions

[88, 89].

3.3.1 Transfer learning

It is representing an ML concept where the pre-trained

model that is used for a specific task is reused for another

task. It can be summarized as knowledge transfer [90]. The

main idea about reusing the pre-trained models for a new

task is to have a starting point and have a lot of labeled

training data in a new one that did not have much data

instead of building the model from scratch and creating

these labeled data which is very expensive [91]. Transfer

Learning is very popular in the DL field through its

advantages including better performance and saving much

time during the training process that can lead to rapid

progress [92]. Many pre-trained CNN models were trained

on the ImageNet image database [93] but the used ones in

the current study are VGG16, VGG19, ResNet50,

ResNet101, MobileNet, MobileNetV2, MobileNetV3S-

mall, and MobileNetV3Large.

VGG is one of the popular pre-trained models that is

used for image classification because of its simplicity.

There are many different versions of the VGG architecture

published by Oxford University researchers [94]. Although

of the model simplicity, that is very expensive in compu-

tational and memory cost. The current study uses two types

of VGG depending on the layers which are VGG16 and

VGG19. VGG has a competitive advantage over other

models representing in using only 3� 3 convolution filters.

VGG model achieved 9.9% top-five error on ImageNet

Large Scale Visual Recognition Challenge (ILSVRC) [95].

ResNet is a pre-trained deep residual network model pro-

posed by the Microsoft Research team on the ‘‘Deep

Residual Learning for Image Recognition’’ [96]. ResNet is

a very deep, easy optimization model, and can increase the

accuracy and depth of the model. It used forward and

backward propagation techniques and the ReLU activation

function [97]. ResNet achieved a 7.8% top-five error on

ILSVRC.

MobileNet is one of the recently proposed pre-trained

models with many modifications and advantages over the
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previous models. It is proposed by the Google Research

team [98, 99]. It is suitable for mobile and embedded

applications. It consists of 2 blocks with 3 layers on each

block including a residual block with one stride and other

blocks with two strides. It is utilized depth-wise separable

convolution modules [100]. It can handle many tasks at the

same time and it is considered as the smallest memory size

compared to other models. So, it is simple with no com-

plexity or many parameters that can affect the overall

performance. The model achieved a 0.901 top-five accu-

racy on ILSVRC [101]. Table 3 compares the discussed

and used pre-trained CNN models.

3.3.2 Parameters optimization

It represents an expanded method for changing parameters

(i.e., weights) of the model to report better accurate results

and reduce the losses [103]. The used parameters opti-

mizers in the current study are Adam [104], NAdam [105],

AdaGrad [106], AdaDelta [107], AdaMax [108], RMSProp

[109], SGD [110], Ftrl [111], SGD Nesterov [112],

RMSProp Centered [113], and Adam AMSGrad [114].

3.3.3 Hyperparameters

Loss Function has a critical role in evaluating the proposed

solution and calculating the model errors [115]. So, how

good the model is determined, to try to change the

parameters, to improve the model performance and mini-

mize the overall loss. It can be started as the penalty for

failing to reach the desired output so if the deviation in the

predicted value by the model from the desired value is

large, then the function will give a high loss value and a

smaller number otherwise [116]. The used losses in the

current study are Categorical Crossentropy [117], Cate-

gorical Hinge [118], KLDivergence [119], Poisson [120],

Squared Hinge [121], and Hinge [122].

Batch Size represents the number of data records that are

utilized to train the model in every iteration to ensure the

model generalization, parameters value, and the conver-

gence of loss function. It plays an important role in the

learning process of the model by making it quicker and

more stable [123]. Dropout is a regularization technique

used for training the CNN model on any or all hidden

layers of the architecture. It plays an important role in

preventing the overfitting problem and addressing it to

keep the performance at an optimum level. It can improve

the generalization efficiency in all the data by setting

randomly the output to be 0 for the given neuron [124].

3.4 Metaheuristic optimization using aquila
optimizer (AO)

It is one of the most popular choices for optimization,

modeling, and solving complex problems that are difficult

to be solved using the traditional ways. ‘‘Meta’’ in Meta-

heuristic refers to the higher level that performs better than

the simple heuristics. It utilizes a tradeoff for the global

exploration and local search [125]. Metaheuristic algo-

rithms have essential parts which are diversification and

intensification. Diversification generates various solutions

for exploring the search space whereas intensification

focuses on the search in a local region through exploiting

information where the good solution is found in this region.

Metaheuristic optimization is utilized to find the optimal

solution for many optimization problems that are very

challenging functions based on the correct use of the

optimum algorithm for this case [126].

Aquila Optimizer (AO) is a novel metaheuristic opti-

mization method. The optimization process for the AO

algorithm is presented in four ways which are (1) choosing

the search space through high soar by the vertical stoop

(Eq. 4), (2) discovering the various search space through

contour flight by short glide attack (Eq. 5), (3) swooping by

grabbing prey and walk (Eq. 7), and (4) exploiting through

converge search space by low flight by descent attack

(Eq. 6).

Table 3 Comparing the used

pre-trained CNN models
Name Year Number of parameters Size (MB)

VGG16 [94] 2014 138,357,544 528

VGG19 143,667,240 549

ResNet50 [96] 2016 25,636,712 98

ResNet101 44,707,176 171

MobileNet [98, 99] 2017 and 2018 4,253,864 16

MobileNetV2 3,538,984 14

MobileNetV3Small [102] 2021 2,500,000 21

MobileNetV3Large 5,400,000 –
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where Xðt þ 1Þ is the solution of the next iteration, N is the

population size, t is the iteration number, T is the total

number of iterations, rand is a random number in the range

[0, 1], XRðtÞ is a random solution in the current iteration t,

XbestðtÞ is the best solution in the current iteration t, D is the

dimension space size, LevyðDÞ is the levy flight distribu-

tion function, r1 is a value in the range [1, 20], U equals

0.00565, D1 is a value in the range [1, D], QF is the quality

function, a (and r) equal to 0.1, UB is the upper bound, and

LB is the lower bound. The fixed values are taken from the

original AO paper.

The optimization procedures in AO start by generating a

random predefined set of candidate solutions that are called

population and by the repetition trajectory, the AO search

strategies explore the positions of the best solution (or the

near-optimal one). Every solution updates its position

depending on the best solution in the optimization proce-

dure of the AO [127]. The series of experiments are con-

ducted to enable the AO to validate the optimizer’s ability

to find the best solution for various optimization tasks. AO

performance can be enhanced through combining it with a

flight, mutation, levy, stochastic (and evolutionary) com-

ponents, and global (or local) search [128].

3.5 Image augmentation

Data Augmentation (DA) is a process of augmenting the

dataset and increasing it to a large, rich, and diverse one

[129]. DA can increase the performance of the CNN model

through generalization and the variety of the data that

enables the model to detect or classify any objects on the

image in different orientations and dimensions [130]. This

process is representing a pre-processing step as it is applied

only to the training subset of the dataset to increase its size

and variations. DA can be performed using different

transformation techniques including (1) flipping the image,

(2) zooming it in or out, (3) rotating the image by a specific

degree, (4) shifting the image, (5) cropping the image, (6)

Fig. 6 The 4-Phases Suggested Framework Flow Summarization
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changing the brightness of the image, and (7) shearing the

image horizontally (or vertically) [131].

Flipping can be done by flipping the image vertically (or

horizontally) depending on the object’s location on the

image. Rotation can be done by rotating the image to a

specific degree. Shearing is done by shifting any part of the

image. Cropping can be applied by removing any columns

(or rows) of pixels from the image to see the object in

different locations. Shifting is done by moving the pixels of

width (and height) of the image in only one direction

vertically (or horizontally) without affecting the dimen-

sions of the image. Brightness changing is performed by

changing the image and making it lighter (or darker) to

enable the model to recognize different lighting levels in

the image. Zooming is done by zooming the image in (or

out) within a specific range. Also, it can be applied to each

axis of the image independently [132].

3.6 Data normalization (DN)

Data Normalization (DN) is one of the pre-processing

techniques that change the attribute value to a known range

or scale to improve the performance of ML algorithms.

There are different DT techniques but the used ones in the

current study are (1) Standard Scaler, (2) Min-Max Scaler,

(3) Max-Abs Scaler, and (4) Normalization [133].

3.6.1 Standard scaler

It is one of the DN techniques deployed on the vectors. It

standardizes the features by making the mean equal to zero

and scaling each vector into the unit variance. Equation 8

shows how to calculate it.

out ¼ in-mean

std
ð8Þ

where out is the output image, in is the input image, mean

is the mean value and std is the standard deviation.

3.6.2 Min-max scaler

It transforms the dataset values into a range between 0 and

1 where the smallest value is normalized into 0 and the

largest value is normalized into 1. Equation 9 shows how

to calculate it.

out ¼ in� inmin

inmax � inmin

ð9Þ

where inmax is the maximum value and inmin is the mini-

mum value.

3.6.3 Max-abs scaler

It is similar to the min-max scaler except the values are

mapped into the range between 0 and 1 as it scales and

translates the data features to the range between -1 and 1 by

dividing it by the maximum absolute value. The maximum

value for any feature equals 1. Equation 10 shows how to

calculate it.

out ¼ in

jinmaxj
ð10Þ

3.6.4 Normalization

It is deployed by squeezing the data between 0 and 1 It is

very useful in classification and data containing negative

values [134]. Equation 11 shows how to calculate it.

out ¼ in

inmax

ð11Þ

4 Suggested approach

The current study suggests a framework for heart disease

learning and optimization. It is divided into four major

phases (or layers). They are (1) dataset collection, (2) pre-

processing (segmentation and features extraction), (3)

learning and hyperparameters optimization, and (4) export

and statistics phases. The framework flow is summarized in

Fig. 6

Table 4 The used dataset classes and the corresponding number of

records

Category Number of Records

Murmur 200

Normal 462

Artifact 80

Extra Heart Sound 38

Extrasystole 92

Total 872
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In summary, the input layer accepts the voice records.

These records flow sequentially to the pre-processing phase

which is partitioned into two sub-phases. Its target is to

segment the records into sub-records with equal time

durations and extract the features from them numerically

and graphically. These features and graphs are the inputs of

the third phase. Its role is to learn and optimize the selected

model. The optimized model will be exported in the last

phase. Also, training, validation, and testing statistics and

figures are exported in that phase. The phases are discussed

in the following subsections.

4.1 Dataset collection phase

Classifying Heart Sounds Challenge Dataset [135] is the

used dataset in the current study. It contains two chal-

lenges. The authors combined both of them into one

dataset. It has five classes (i.e., categories). They are (1)

Murmur, (2) Normal, (3) Artifact, (4) Extra Heart Sound,

and (5) Extrasystole. The data reflects voice records with

the extensions ‘‘wav’’, ‘‘aif’’, and ‘‘aiff’’. Table 4 shows the

categories and the corresponding number of records.

4.2 Pre-processing phase

The dataset is pre-processed in two sub-phases. The first

sub-phase is segmenting the records into sub-records with

equal time durations. The second sub-phase is to extract the

features numerically for the ML used techniques and

graphically for the pre-trained CNN models.

4.2.1 Voice segmentation

The records should be segmented to a fixed time duration

such as 1 s or 3 s. The suggested approach in the current

study is to segment the records in different time durations

in both directions and concatenate them. How does this

happen? For each record in the dataset, a specified time

window moves from the beginning on it and segment the

record into sub-records. For example, if the record’s

duration is 9 seconds and the allowed time window is 1

second. Then, there are 9 generated sub-records. Also, if

the allowed time window is 2 seconds. Then, there are 4

generated sub-records. What about the remaining small-

time segment? It is ignored. In the last example, there are

only 4 generated sub-records and hence the remaining 1

second is neglected as it is smaller than the allowed time

window (i.e., 2 seconds). How to get the number of seg-

ments? Eq. 12 shows how to get the number of segments

for a record.

nosegments ¼
j durationrecord

durationwindow

� �k
ð12Þ

Algorithm 1 shows the followed pseudocode function

during the segmentation process for a single record.

What is the suggested allowed time durations for seg-

mentation? It is worth mentioning that the current study

Fig. 7 Example on the segmentation process on a single record for a

specific allowed time duration

Table 5 The used feature techniques and the corresponding number

of extracted numerical features

Technique Number of Extracted Features

MFCC HTK-Style 20 20

MFCC Slaney-Style 20 20

MFCC HTK-Style 40 40

MFCC Slaney-Style 40 40

ZCR 1

Spectral Centroid 1

Spectral Bandwidth 1

Spectral Contrast 7

Spectral Flatness 1

Roll-Off Frequency 1

RMSE 1

Tonnetz 6

Harmoic Tonnetz 6

Mel-Spectrogram 128

Chroma Only 12

Chroma CQT 12

Chroma STFT 12

Chroma CENS 12

Total 321
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suggests segmenting each record with 1s, 3s, 5s, 7s, and 9s

time durations in both directions. Also, the whole seg-

mented records are concatenated in a single dataset. How

the segmentation is done in both directions? For each sub-

record, the voice is reversed. Hence, two sub-records from

a single one can be generated. Figure 7 summarizes this

process. The overall number of generated datasets is 11

(i.e., 2 for each time duration and 1 concatenated).

4.2.2 Numerical features pre-processing

The numerical features are extracted from each segment in

each record. The used numerical voice features extraction

techniques in the current study are (1) MFCC (HTK-style

and Slaney-style), (2) Mel-Spectrogram, (3) ZCR, (4)

RMSE, (5) Spectral-based (spectral centroid, spectral

bandwidth, spectral contrast, spectral flatness, and roll-off

frequency), (6) Tonnetz (normal and harmonic), and (7)

Chroma-based (chroma-only, STFT, CQT, and CENS)

techniques. Table 5 shows the used feature techniques and

the corresponding number of extracted numerical features.

The segmentation process, as mentioned, is applied on

each record for the time windows 1, 3, 5, 7, and 9 in both

directions (i.e., forward and reverse). Also, the whole

segmented records are concatenated in one dataset. The

number of generated numerical datasets is 11. Algorithm 2

Table 6 The generated

numerical datasets with the

correspond number of records

Segment duration (s) Direction Number of numerical records File name

1 Forward 4668 1N

1 Reverse 4668 1R

3 Forward 1348 3N

3 Reverse 1348 3R

5 Forward 572 5N

5 Reverse 572 5R

7 Forward 398 7N

7 Reverse 398 7R

9 Forward 222 9N

9 Reverse 222 9R

Concatenated Both 14,416 Concatenated

Table 7 The generated images for each class

Category Number of images

Artifact 600

Extra heart sound 196

Extrasystole 359

Murmur 1044

Normal 1437

Total 3636
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shows the followed pseudocode function during the

numerical features extraction process for all records. In the

pseudocode.

Table 4 shows the generated numerical datasets and the

corresponding number of records per each.

4.2.3 Graphical features pre-processing

The graphical features are extracted as images from each

segment (i.e., sub-record) in each record similar to the

numerical one. The used graphical voice features extrac-

tion techniques in the current study are (1) MFCC (HTK-

style and Slaney-style), (2) Mel-Spectrogram, (3) Spec-

trogram, and (4) STFT. Table 7 shows the number of

generated images for each category. The number of gen-

erated images for each technique is the same. Fig. 8 shows

samples from each category for each technique.

4.3 Learning and optimization phase

Algorithm 3 shows the pseudocode of the learning and

optimization processes using the pre-trained CNN models

and ML algorithms. It accepts three inputs (1) the selected

model, (2) the dataset, and (3) the experimental configu-

rations (from Table 9 that will be discussed in the experi-

ments section). Inside it, it (1) split the dataset into training,

testing, and validation subsets, (2) checks if the model is an

ML algorithm or not, (3) if the model is an ML algorithm,

it applies the grid search optimization algorithm to find the

best combination that will lead the ML model to the top-1

performance metrics, (4) if the model is a pre-trained CNN

model, it applied the AO metaheuristic optimizer to find

the best solution that will lead the ML model to the top-1

performance metrics.

4.4 Export and statistics phase

In the current phase, the optimized model is exported to be

used in the future or production. Different statistics are

calculated such as accuracy, precision, and F1-score.

Learning curves and figures are generated and stored. The

current study calculates different state-of-the-art
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Fig. 8 Samples from the

extracted images for each

technique and class
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performance metrics. They are accuracy, F1-score, recall,

specificity, the area under the curve (AUC), sensitivity,

intersection over union (IoU), Dice coefficient, and preci-

sion. They are summarized in Table 8.

5 Experiments and discussions

The experiments are divided into two categories (1)

experiments related to the extracted numerical features

using the ML algorithms and (2) experiments related to the

images and extracted graphs using the pre-trained CNN

models.

5.1 Experiments configurations

Generally, Python is the used programming language in the

current study. The learning and optimization environments

are Google Colab (with its GPU) and Toshiba Qosmio

X70-A with 32 GB RAM and Intel Core i7 Processor.

Tensorflow, Keras, NumPy, OpenCV, Pandas, and Mat-

plotlib are the used Python packages [136]. The dataset

split ratio is set to 85% (training and validation) and 15%

(testing). Dataset shuffling is applied. The images are

resized to (100, 100, 3) in RGB. Table 9 summarizes the

configurations of the experiments.

5.2 ML experiments

The current subsection presents and discusses the experi-

ments related to the extracted 321 numerical features using

the mentioned ML algorithms (i.e., DT, AB, RFC, ETC,

and KNN). For each ML algorithm, 11 experiments are

applied on the 1, 3, 5, 7, 9, and mixed durations in the

forward and reverse directions. The algorithms are

optimized using the grid search for 5 cross-validation runs,

to find the best combinations with the highest metrics. The

metrics (i.e., accuracy, precision, recall, and F1-score) are

captured and reported. It is worth mentioning that the

‘‘files’’ word refers to the 1, 3, 5, 7, 9, and mixed durations

shown in Table 4.

5.2.1 K-nearest neighbor experiment

Table 10 shows the summarization of the reported results

related to the KNN experiment. It is sorted in a descending

order concerning the accuracy values. It shows that the

‘‘Ball Tree’’ algorithm and ‘‘Distance’’ weights are the best

among other variations. The ‘‘Max-Abs’’ scaler is reported

as the best one in 7 files while the ‘‘0’’ variance threshold is

reported as the best one in 8 files. The maximum reported

accuracy, precision, recall, and F1-score are 100%, 100%,

100%, and 100% respectively. The segmentation durations

9 in both directions are the best while the concatenated

dataset reported only 99.97%. Figure 9 shows the accu-

racy, precision, recall, and F1-score curves of the different

files.

5.2.2 Decision tree (DT) experiment

Table 11 shows the summarization of the reported results

related to the DT experiment. It is sorted in a descending

order concerning the accuracy values. It shows that the

‘‘Best’’ splitter and ‘‘Entropy’’ criteria are the best among

other variations. The ‘‘Normalize’’ scaler is reported as the

best one in 4 files while the ‘‘0.001’’ variance threshold is

reported as the best one in 4 files. The maximum reported

accuracy, precision, recall, and F1-score are 99.89%,

99.89%, 99.89%, and 99.89%, respectively. The

Table 8 Summarization of the Performance Metrics

Predicted class

Positive Negative

Actual class Positive True positive (TP) False negative (FN) Sensitivity (recall or total positive rate)

TPR ¼ TP
TPþFN

Negative False positive (FP) True negative (TN) Specificity (true negative rate)

TNR ¼ TN
TNþFP

False discovery rate Negative predictive value Accuarcy

FDR ¼ FP
TPþFP NPV ¼ TN

TNþFN

Precision (positive predictive value) False omission rate ACC ¼ TPþTN
TPþTNþFPþFN

PPV ¼ TP
TPþFP FOR ¼ FN

TNþFN
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Table 9 The used experiments configurations

Key ML, DL, or

Both

Range

Dataset sources Both Classifying heart sounds challenge dataset [135]

Dataset size Both 3636 Images and 14,416 extracted numerical features

Categories Both Artifact, extra heart sound, extrasystole, murmur, and normal

Number of classes Both 5

Hyperparameters optimizer Both Aquila optimizer (AO) for DL and grid search (GS) for ML

Train split ratio Both 85%:15%

Shuffle dataset Both True

AO population size DL 10

AO number of iterations DL 15

Number of epochs DL 5

Image size DL (100, 100, 3)

Output activation function DL SoftMax

Early stopping patience DL 5

Pre-trained parameters

initializers

DL ImageNet

Pre-trained models DL VGG16, VGG19, ResNet50, ResNet101, MobileNet, MobileNetV2, MobileNetV3Small, and

MobileNetV3Large

Loss DL Categorical crossentropy, Categorical hinge, KLDivergence, Poisson, Squared hinge, and Hinge

Parameters optimizer DL Adam, NAdam, AdaGrad, AdaDelta, AdaMax, RMSProp, SGD, Ftrl, SGD Nesterov, RMSProp

Centered, and Adam AMSGrad

Dropout range DL [0, 0.6]

Batch size DL 4 to 48 with a step of 4

Pre-trained model learn ratio DL 1 to 100 with a step of 1

Apply data augmentation DL True and False

Rotation range DL 0� to 45� with a step of 1�

Width shift range DL [0, 0.25]

Height shift range DL [0, 0.25]

Shear range DL [0, 0.25]

Zoom range DL [0, 0.25]

Horizontal flip range DL True and false

Vertical flip range DL True and false

Brightness range DL [0.5, 2.0]

Scaling techniques DL Normalize, Standard, Min Max, and Max Abs

Number of features per

Record

ML 321

GS cross validation ML 5

KNN algorithms ML Ball Tree, KD Tree, and Brute

KNN weights ML Uniform and distance

DT, ETC, and RFC criterion ML Gini and entropy

DT splitter ML Best and random

AB, ETC, and RFC No.

estimators

ML 50, 100, and 250

Programming language Both Python

Learning and optimization

environment

Both Google colab (Intel(R) Xeon(R) CPU @ 2.00GHz, Tesla T4 16 GB GPU with CUDA v.11.2, and

12 GB RAM)

Python packages Both Tensorflow, Keras, NumPy, OpenCV, Scikit-Learn, SciPy, Pandas, and Matplotlib
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Table 10 Summarization of the reported results of the KNN experiment

File Accuracy (%) Precision (%) Recall (%) F1 (%) Variance threshold Scaler Algorithm Weights

9N 100 100 100 100 0 Max Abs Ball tree Distance

9R 100 100 100 100 0 Max Abs Ball tree Distance

Concatenated 99.97 99.97 99.97 99.97 0 Standard Ball tree Distance

1N 99.85 99.85 99.85 99.85 0.005 Max Abs Ball tree Distance

3N 99.70 99.70 99.70 99.70 0 Max Abs Ball tree Distance

3R 99.70 99.70 99.70 99.70 0 Standard Ball tree Distance

1R 99.61 99.61 99.61 99.61 0 Max Abs Ball tree Distance

5N 99.30 99.30 99.30 99.30 0 Min Max Ball tree Distance

5R 99.30 99.30 99.30 99.30 0 Standard Ball tree Distance

7R 98.99 98.99 98.99 98.99 0.01 Max Abs Ball tree Distance

7N 97.99 97.99 97.99 97.99 0.01 Max Abs Ball tree Distance

Fig. 9 The accuracy, precision, recall, and F1-score KNN curves of the different files

Table 11 Summarization of the reported results of the DT experiment

File Accuracy (%) Precision (%) Recall (%) F1 (%) Variance threshold Scaler Criterion Splitter

Concatenated 99.89 99.89 99.89 99.89 0.001 Normalize Gini Best

3N 99.70 99.70 99.70 99.70 0.01 Min Max Entropy Random

9N 99.55 99.55 99.55 99.55 0 Standard Entropy Random

5N 99.48 99.48 99.48 99.48 0.01 Min Max Entropy Best

1N 99.36 99.36 99.36 99.36 0.001 Normalize Entropy Best

1R 99.21 99.21 99.21 99.21 0.001 Normalize Gini Best

5R 99.13 99.13 99.13 99.13 0.001 Normalize Gini Best

9R 99.10 99.10 99.10 99.10 0.01 Standard Gini Best

7N 98.99 98.99 98.99 98.99 0 Min Max Entropy Best

3R 98.81 98.81 98.81 98.81 0.005 Standard Entropy Random

7R 97.99 97.99 97.99 97.99 0 Max Abs Gini Best
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Fig. 10 The Accuracy, precision, recall, and F1-score DT curves of the different files

Table 12 Summarization of the reported results of the AB experiment

File Accuracy (%) Precision (%) Recall (%) F1 (%) Variance Threshold Scaler No. Estimators

9N 62.61 62.61 62.61 62.61 0.005 Normalize 100

9R 61.71 61.71 61.71 61.71 0.001 Normalize 50

Concatenated 60.47 60.47 60.47 60.47 0.01 Max Abs 100

1N 59.10 59.10 59.10 59.10 0.01 Min Max 50

7R 56.28 56.28 56.28 56.28 0 Normalize 50

1R 55.74 55.74 55.74 55.74 0.01 Min Max 100

5R 53.15 53.15 53.15 53.15 0 Normalize 100

5N 52.80 52.80 52.80 52.80 0 Normalize 50

3N 50.82 50.82 50.82 50.82 0 Normalize 50

3R 47.18 47.18 47.18 47.18 0.01 Max Abs 250

7N 41.46 41.46 41.46 41.46 0.01 Normalize 50

Fig. 11 The accuracy, precision, recall, and F1-score AB curves of the different files
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Table 13 Summarization of the reported results of the RFC experiment

File Accuracy (%) Precision (%) Recall (%) F1 (%) Variance Threshold Scaler No. Estimators Criterion

3N 100 100 100 100 0.005 Max Abs 50 Entropy

9N 100 100 100 100 0 Normalize 100 Gini

Concatenated 100 100 100 100 0 Normalize 250 Entropy

3R 99.78 99.78 99.78 99.78 0.01 Max Abs 50 Gini

1N 99.61 99.61 99.61 99.61 0.005 Min Max 250 Entropy

7N 99.50 99.50 99.50 99.50 0.005 Min Max 50 Gini

1R 99.49 99.49 99.49 99.49 0.005 Max Abs 250 Entropy

9R 99.10 99.10 99.10 99.10 0.005 Max Abs 50 Entropy

7R 98.99 98.99 98.99 98.99 0.005 Standard 250 Gini

5R 98.95 98.95 98.95 98.95 0 Min Max 50 Entropy

5N 97.55 97.55 97.55 97.55 0.01 Standard 100 Gini

Fig. 12 The accuracy, precision, recall, and F1-score RFC curves of the different files

Table 14 Summarization of the reported results of the ETC experiment

File Accuracy (%) Precision (%) Recall (%) F1 (%) Variance threshold Scaler No. Estimators Criterion

5N 100 100 100 100 0.005 Max Abs 100 Entropy

9N 100 100 100 100 0 Max Abs 100 Entropy

Concatenated 100 100 100 100 0.01 Standard 50 Entropy

3R 99.85 99.85 99.85 99.85 0.01 Max Abs 250 Entropy

1R 99.64 99.64 99.64 99.64 0.001 Standard 50 Entropy

7N 99.50 99.50 99.50 99.50 0 Max Abs 100 Entropy

7R 99.50 99.50 99.50 99.50 0.01 Min Max 250 Entropy

1N 99.49 99.49 99.49 99.49 0 Normalize 50 Gini

3N 99.41 99.41 99.41 99.41 0.01 Max Abs 100 Entropy

5R 99.30 99.30 99.30 99.30 0.005 Min Max 100 Entropy

9R 99.10 99.10 99.10 99.10 0.001 Standard 250 Gini
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concatenated dataset reported the best dataset among oth-

ers. Figure 10 shows the accuracy, precision, recall, and

F1-score curves of the different files.

5.2.3 AdaBoost (AB) experiment

Table 12 shows the summarization of the reported results

related to the AB experiment. It is sorted in a descending

order concerning the accuracy values. It shows that the

‘‘50’’ number of estimators is the best among other varia-

tions. The ‘‘Normalize’’ scaler is reported as the best one in

7 files while the ‘‘0.01’’ variance threshold is reported as

the best one in 5 files. The maximum reported accuracy,

precision, recall, and F1-score are 62.61%, 62.61%,

62.61%, and 62.61%, respectively. The segmentation

duration 9 in the forward direction is the best while the

concatenated dataset reported only 60.47%. Figure 11

shows the accuracy, precision, recall, and F1-score curves

of the different files.

5.2.4 Random forest classifier (RFC) experiment

Table 13 shows the summarization of the reported results

related to the RFC experiment. It is sorted in a descending

order concerning the accuracy values. It shows that the

‘‘Entropy’’ criterion and ‘‘50’’ number of estimators are the

best among other variations. The ‘‘Max-Abs’’ scaler is

reported as the best one in 4 files while the ‘‘0.005’’ vari-

ance threshold is reported as the best one in 6 files. The

maximum reported accuracy, precision, recall, and F1-

score are 100%, 100%, 100%, and 100% respectively. The

segmentation durations 3N, 9N, and concatenated files are

the best. Figure 12 shows the accuracy, precision, recall,

and F1-score curves of the different files.

5.2.5 Extra trees classifier (ETC) experiment

Table 14 shows the summarization of the reported results

related to the ETC experiment. It is sorted in a descending

order concerning the accuracy values. It shows that the

‘‘Entropy’’ criterion and ‘‘100’’ number of estimators are

the best among other variations. The ‘‘Max-Abs’’ scaler is

reported as the best one in 5 files while the ‘‘0.01’’ variance

threshold is reported as the best one in 4 files. The maxi-

mum reported accuracy, precision, recall, and F1-score are

100%, 100%, 100%, and 100% respectively. The seg-

mentation durations 5N, 9N, and concatenated files are the

Fig. 13 The accuracy, precision, recall, and F1-score ETC curves of the different files

Table 15 Summarization of the

reported results of All

Experiment concerning the Top-

1 accuracy

Model File(s) Accuracy (%) Precision (%) Recall (%) F1 (%)

KNN 9N and 9R 100 100 100 100

DT Concatenated 99.89 99.89 99.89 99.89

AB 9N 62.61 62.61 62.61 62.61

RFC 3N, 9N, and concatenated 100 100 100 100

ETC 5N, 9N, and concatenated 100 100 100 100

Table 16 Summarization of the reported results of all experiment

concerning the concatenated dataset

Model Accuracy (%) Precision (%) Recall (%) F1 (%)

KNN 99.97 99.97 99.97 99.97

DT 99.89 99.89 99.89 99.89

AB 60.47 60.47 60.47 60.47

RFC 100 100 100 100

ETC 100 100 100 100
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best. Figure 13 shows the accuracy, precision, recall, and

F1-score curves of the different files.

5.2.6 ML experiments summarization

Table 15 shows the summarization of the best-reported

results related to the ML numerical experiments concern-

ing the top-1 accuracy. Table 16 shows the summarization

of the best-reported results related to the ML numerical

experiments concerning the concatenated dataset. Fig-

ure 14 compares the two tables (i.e., comparison between

the Top-1 and concatenated accuracies). It shows that the

concatenated dataset is better compared to other datasets.

The current study recommends concatenating the seg-

mented records in different time durations and both

directions.

5.3 CNN experiments

The current subsection presents and discusses the experi-

ments related to the images and extracted graphical fea-

tures using the mentioned pre-trained CNN models (i.e.,

VGG16, VGG19, ResNet50, ResNet101, MobileNet,

MobileNetV2, MobileNetV3Small, and Mobile-

NetV3Large) and AO meta-heuristic optimizer. The num-

ber of epochs is set to 5. The numbers of AO iterations and

population size are set to 15 and 10, respectively, and

hence 150 records are reported. The captured metrics are

the loss, accuracy, F1-score, recall, specificity, AUC, IOU

coef., Dice coef., and precision, as mentioned in the

experiments’ configurations subsection [137].

5.3.1 MFCC using slaney experiment

Table 17 shows the summarization of the reported results

related to the MFCC using the Slaney experiment. The

table is sorted vertically in descending order concerning the

accuracies. It shows that the VGG16 model reports the

highest accuracy which is 99.17%. Figure 15 shows the

accuracy, F1-score, recall, specificity, AUC, sensitivity,

IoU, dice, and precision curves of the different pre-trained

CNN models.

5.3.2 MFCC using HTK experiment

Table 18 shows the summarization of the reported results

related to the MFCC using the HTK experiment. The

table is sorted vertically in descending order concerning the

accuracies. It shows that the ResNet50 model reports the

highest accuracy which is 98.25%. Figure 16 shows the

accuracy, F1-score, recall, specificity, AUC, sensitivity,

IoU, dice, and precision curves of the different pre-trained

CNN models.

5.3.3 STFT experiment

Table 19 shows the summarization of the reported results

related to the STFT experiment. The table is sorted

Fig. 14 Comparison between the Top-1 and concatenated accuracies
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Fig. 15 The MFCC using slaney curves of the different pre-trained CNN models

Table 18 Summarization of the reported results of the MFCC using HTK experiment

Model name ResNet50 ResNet101 MobileNet VGG19 MobileNetV3Small VGG16 MobileNetV2 MobileNetV3Large

Loss KLDivergence Poisson Categorical

Crossentropy

Poisson Poisson Poisson Poisson Categorical

Crossentropy

Batch size 40 44 44 28 28 28 16 4

Dropout 0.21 0.6 0.19 0.34 0.32 0.37 0.24 0.53

TF learn ratio 55 66 88 53 54 60 69 20

Optimizer AdaMax SGD SGD SGD RMSProp SGD SGD RMSProp Centered

Apply

augmentation

TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

Scaling

technique

Min Max Max Abs Max Abs Min

Max

Min Max Min

Max

Min Max Min Max

Rotation range 27 N/A 27 N/A N/A N/A N/A N/A

Width shift

range

0.14 N/A 0.21 N/A N/A N/A N/A N/A

Height shift

range

0.11 N/A 0.2 N/A N/A N/A N/A N/A

Shear range 0 N/A 0.06 N/A N/A N/A N/A N/A

Zoom range 0.1 N/A 0.05 N/A N/A N/A N/A N/A

Horizontal flip TRUE N/A FALSE N/A N/A N/A N/A N/A

Vertical flip TRUE N/A TRUE N/A N/A N/A N/A N/A

Brightness

range

1.17-1.48 N/A 0.95-1.07 N/A N/A N/A N/A N/A

Loss 0.09 0.22 0.13 0.22 0.29 0.24 0.27 1.29

Accuracy 98.25% 98.06% 97.53% 96.73% 94.16% 92.28% 90.58% 83.94%

F1 98.27% 98.00% 97.53% 96.70% 94.13% 92.36% 90.50% 83.83%

Recall 98.30% 98.05% 97.53% 96.73% 94.15% 92.72% 90.70% 84.10%

Specificity 98.25% 97.95% 97.53% 96.68% 94.10% 92.03% 90.34% 83.75%

AUC 99.58% 99.51% 99.38% 99.18% 98.54% 98.21% 97.71% 96.03%

Sensitivity 99.67% 99.48% 99.50% 99.69% 97.96% 99.49% 98.33% 94.03%

IoU 98.25% 97.95% 97.53% 96.68% 94.10% 92.03% 90.34% 83.75%

Dice 98.38% 97.86% 97.59% 96.54% 95.62% 92.28% 90.61% 87.94%

Precision 98.57% 98.15% 97.88% 97.05% 95.83% 93.46% 91.80% 88.59%

TP 14,339 14,362 14,343 14,330 14,237 14,189 14,195 13,967

TN 61 70 89 118 211 259 333 577

FP 63 74 89 120 213 288 351 591

FN 1 1 1 1 1 1 1 1
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vertically in descending order concerning the accuracies. It

shows that the VGG19 model reports the highest accuracy

which is 98.78%. Figure 17 shows the accuracy, F1-score,

recall, specificity, AUC, sensitivity, IoU, dice, and preci-

sion curves of the different pre-trained CNN models.

5.3.4 Mel-specgram experiment

Table 20 shows the summarization of the reported results

related to the Mel-Specgram experiment. The table is

sorted vertically in descending order concerning the accu-

racies. It shows that the ResNet50 model reports the

highest accuracy which is 98.68%. Figure 18 shows the

accuracy, F1-score, recall, specificity, AUC, sensitivity,

IoU, dice, and precision curves of the different pre-trained

CNN models.

5.3.5 Specgram experiment

Table 21 shows the summarization of the reported results

related to the Specgram experiment. The table is sorted

vertically in descending order concerning the accuracies. It

shows that the ResNet50 model reports the highest accu-

racy which is 99.00%. Figure 19 shows the accuracy, F1-

score, recall, specificity, AUC, sensitivity, IoU, dice, and

precision curves of the different pre-trained CNN models.

5.3.6 CNN experiments summarization

Table 22 shows the summarization of the best-reported

results related to the performed CNN experiments. It shows

that the best reported overall accuracy from the applied

CNN experiments is 99.17% by VGG16 in the MFCC

using Slaney experiment. The average accuracy is 98.78%.

Applying augmentation and ‘‘Poisson’’ loss function are

recommended by 3 experiments.

5.4 Error analysis

The authors investigated the reasons behind the mis-clas-

sification rates in the reported results and they can be: (1)

the size of the dataset is not large enough, (2) the dataset is

imbalanced as shown in Table 4, (3) there is a similarity

percent between multiple rows after applying the seg-

mentation, and (4) the complexity of some models are not

enough for the generalization.

5.5 Related studies comparisons

Table 23 shows a comparison between the suggested

approach and related studies concerning the same used

datasets.

Fig. 16 The MFCC using HTK curves of the different pre-trained CNN models
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6 Study limitations

The results of the suggested framework are encouraging

but there are still some limitations. First, the use of voice

records only. Second, the selection of only eight transfer

learning CNN models among the available models. Third,

the study did not include the use of Long short-term

memory (or other variations) for data with frequency.

Fourth, the current study does not utilize the Graphical

neural networks which can be used in future studies [146].

However, the results of the current study are promising and

the proposed framework can be applied in hospitals.

7 Conclusions and future work

With the appliance of artificial intelligence in medical

diagnosis, the detection of diseases has become more

accurate. In this work, a framework for the detection of one

of the widely spread diseases (i.e., Cardiovascular diseases)

is proposed. The reason behind this choice is the high

morbidity and mortality rate due to these diseases. The

hybrid framework uses medical voice records for the

detection of heart diseases. The different layers of the

suggested framework are Segmentation Layer, Features

Extraction Layer, Learning and Optimization Layer, and

Export and Statistics Layer. The segmentation Layer is the

layer in which the different records are segmented with

specific durations. A novel segmentation technique using

variable durations forward and backward is proposed. In

the Features Extraction Layer, numerical and graphical

features are extracted from the resulting datasets. These

features are passed to the Learning and Optimization

Layer, where numerical features are passed to 5 different

Machine Learning (ML) algorithms with Grid Search

optimization algorithm, while graphical features are passed

to 8 different Convolutional Neural Networks (CNN) with

Aquila Optimizer (AO) using transfer learning. Different

performance metrics are used in the Export and Statistics

Layer to validate the response of the proposed framework.

The best-reported metrics are 100% accuracy, precision,

recall, and F1 score using ML algorithms such as ETC and

RFC. Also, the proposed approach achieved 99.17%

accuracy using CNN.

Fig. 17 The STFT curves of the different pre-trained CNN models
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Fig. 18 The mel-specgram curves of the different pre-trained CNN models

Table 21 Summarization of the reported results of the specgram experiment

Model name ResNet50 MobileNet ResNet101 MobileNetV3Small MobileNetV2 VGG19 MobileNetV3Large VGG16

Loss Poisson Categorical

crossentropy

Poisson Poisson Squared

hinge

Squared

hinge

Poisson Poisson

Batch size 28 32 40 16 36 28 16 28

Dropout 0.36 0.12 0.46 0.12 0.34 0.11 0.02 0.07

TF learn ratio 67 57 81 44 54 94 40 59

Optimizer SGD AdaGrad AdaGrad Adam AMSGrad SGD SGD

Nesterov

SGD SGD

Nesterov

Apply

augmentation

FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE

Scaling

technique

Min Max Min Max Standard Min Max Max Abs Standard Max Abs Min Max

Rotation range N/A 17 27 9 25 1 N/A N/A

Width shift

range

N/A 0.11 0.08 0.19 0.09 0.09 N/A N/A

Height shift

range

N/A 0.05 0.13 0.13 0.03 0.22 N/A N/A

Shear range N/A 0.02 0.05 0.23 0.09 0.13 N/A N/A

Zoom range N/A 0.17 0.1 0.19 0.13 0.23 N/A N/A

Horizontal flip N/A TRUE FALSE FALSE FALSE FALSE N/A N/A

Vertical flip N/A FALSE FALSE TRUE FALSE FALSE N/A N/A

Brightness

range

N/A 1.13-1.65 1.15-1.31 1.12-1.42 0.86-1.7 0.62-1.31 N/A N/A

Loss 0.21 0.08 0.22 0.24 0.84 0.87 0.25 0.31

Accuracy 99.00% 97.98% 96.86% 95.48% 95.08% 91.89% 90.69% 79.29%

F1 99.00% 98.07% 96.90% 95.57% 95.10% 91.90% 90.28% 77.51%

Recall 99.00% 98.20% 97.07% 95.71% 95.12% 91.92% 91.72% 83.12%

Specificity 99.00% 97.95% 96.75% 95.46% 95.08% 91.89% 89.12% 73.17%

AUC 99.75% 99.55% 99.27% 98.93% 98.78% 97.98% 97.99% 96.26%

Sensitivity 99.83% 99.81% 99.66% 99.33% 98.17% 96.22% 99.12% 96.28%

IoU 99.00% 97.95% 96.75% 95.46% 95.08% 91.89% 89.12% 73.17%

Dice 98.81% 96.08% 95.73% 94.86% 96.05% 93.96% 85.33% 72.98%

Precision 98.97% 96.89% 96.48% 95.64% 96.32% 94.19% 88.14% 77.10%

TP 14412 14399 14295 14373 14367 14156 14236 13907

TN 36 65 105 155 177 292 292 541

FP 36 74 117 165 179 293 395 969

FN 1 1 1 1 1 1 1 1
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Fig. 19 The specgram curves of the different pre-trained CNN models

Table 22 Summarization of the reported results of all experiments

Features MFCC (Slaney) MFCC (HTK) STFT Specgram Mel-Specgram Best Average

Model name VGG16 ResNet50 VGG19 ResNet50 ResNet50

Loss KLDivergence KLDivergence Poisson Poisson Poisson

Batch size 40 40 20 36 28

Dropout 0.56 0.21 0.18 0.4 0.36

TF learn ratio 74 55 81 70 67

Optimizer SGD AdaMax SGD Nesterov SGD SGD

Apply augmentation TRUE TRUE TRUE FALSE FALSE

Scaling technique Standard Min Max Min Max Min Max Min Max

Rotation range 15 27 20 N/A N/A

Width shift range 0 0.14 0.18 N/A N/A

Height shift range 0.04 0.11 0.04 N/A N/A

Shear range 0.04 0 0.06 N/A N/A

Zoom range 0.11 0.1 0.19 N/A N/A

Horizontal flip TRUE TRUE TRUE N/A N/A

Vertical flip TRUE TRUE FALSE N/A N/A

Brightness range 1.0-1.32 1.17-1.48 1.05-1.93 N/A N/A

Loss 0.04 0.09 0.21 0.22 0.21 0.04 0.15

Accuracy 99.17% 98.25% 98.78% 98.68% 99.00% 99.17% 98.78%

F1 99.13% 98.27% 98.80% 98.65% 99.00% 99.13% 98.77%

Recall 99.11% 98.30% 98.81% 98.67% 99.00% 99.11% 98.78%

Specificity 99.79% 98.25% 98.78% 98.62% 99.00% 99.79% 98.89%

AUC 99.86% 99.58% 99.70% 99.67% 99.75% 99.86% 99.71%

Sensitivity 99.11% 99.67% 99.79% 99.63% 99.83% 99.83% 99.61%

IoU 99.03% 98.25% 98.78% 98.62% 99.00% 99.03% 98.74%

Dice 99.17% 98.38% 98.58% 98.74% 98.81% 99.17% 98.74%

Precision 99.17% 98.57% 98.79% 98.88% 98.97% 99.17% 98.87%

TP 3568 14339 14437 14496 14412 14496 12250.4

TN 14370 61 43 48 36 14370 2911.6

FP 30 63 44 50 36 30 44.6

FN 32 1 1 1 1 1 7.2
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7.1 Future work

In future work, the authors will apply the suggested

approach on different datasets types such as waves. Also,

the datasets can be handled and utilized using different

optimization methods. Finally, graphical neural networks

and LSTM networks can be utilized.

Appendix

Table of abbreviations

Table 24 shows the abbreviations and the corresponding

meaning. They are sorted alphabetically in ascending

order.

Table 23 Comparison between the suggested approach and related studies

Study Year Dataset Approach Best Performance

Narváez et al.

[138]

2020 Classifying heart sounds challenge

dataset [135]

ML Algorithms 99.26% using KNN

Raza et al. [40] 2019 Classifying heart sounds challenge

dataset [135]

DL and ML Approaches 80.8% using RNN

Nogueira et al.

[139]

2019 Classifying heart sounds challenge

dataset [135]

DL and ML Approaches 83.22% using SVM

Akram et al.

[140]

2018 Classifying heart sounds challenge

dataset [135]

ML and Localization Algorithms 90.62% using SVM

DEPERLİĞLU

et al. [141]

2018 Classifying heart sounds challenge

dataset [135]

ANN 88.6% using ANN

Banerjee et al.

[142]

2020 Classifying heart sounds challenge

dataset [135]

DL Approach 83% using CNN

Deperlioglu

et al. [143]

2018 Classifying heart sounds challenge

dataset [135]

ANN and CNN 97.90% using CNN

Bilal et al.

[144]

2021 Classifying heart sounds challenge

dataset [135] and PhysioNet 2016

[145]

CNN with 1D-local binary pattern

and 1D-local ternary pattern

features

91.66% for the first dataset and

91.78% for the second dataset using

CNN

Current Study 2021 Classifying heart sounds challenge

dataset [135]

Hybrid (ML and CNN) 100% (ML) and 99.17% (CNN)
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