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Abstract
The use of aircraft operation logs to develop a data-driven model to predict probable failures that could cause interruption

poses many challenges and has yet to be fully explored. Given that aircraft is high-integrity assets, failures are exceedingly

rare. Hence, the distribution of relevant log data containing prior signs will be heavily skewed towards the typical (healthy)

scenario. Thus, this study presents a novel deep learning technique based on the auto-encoder and bidirectional gated

recurrent unit networks to handle extremely rare failure predictions in aircraft predictive maintenance modelling. The auto-

encoder is modified and trained to detect rare failures, and the result from the auto-encoder is fed into the convolutional

bidirectional gated recurrent unit network to predict the next occurrence of failure. The proposed network architecture with

the rescaled focal loss addresses the imbalance problem during model training. The effectiveness of the proposed method is

evaluated using real-world test cases of log-based warning and failure messages obtained from the fleet database of aircraft

central maintenance system records. The proposed model is compared to other similar deep learning approaches. The

results indicated an 18% increase in precision, a 5% increase in recall, and a 10% increase in G-mean values. It also

demonstrates reliability in anticipating rare failures within a predetermined, meaningful time frame.

Keywords Predictive maintenance � Deep learning � Extremely rare failure � Auto-encoder � GRU network �
Aircraft

1 Introduction

This research is a follow-up to work presented at the 4th

IFAC Workshop on Advanced Maintenance Engineering,

Services, and Technologies (AMEST 2020) [1]. Unsched-

uled aircraft maintenance can cause flight cancellation or

delay due to the unavailability of spares at the failure

location. It can result in unwanted downtime, which

increases the airlines’ operational costs. Reducing the

number of unscheduled maintenance activities through

predictive modelling is an excellent initiative for airlines; it

reduces maintenance costs and increases fleet availability.

According to Airbus [2], by 2025, unscheduled aircraft

grounding for fault repairs could cease due to data analytics

and operational experience. Aircraft health monitoring and

predictive maintenance could enhance the elimination of

unscheduled groundings of aircraft by systematically

scheduling maintenance intervals more regularly to avoid
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aircraft on ground (AOGs) and the associated operational

interruptions [2, 3]. A good predictive model could tell

which aircraft parts need schedule checks and those that do

not need it, but achieving such maintenance accuracy

necessities experience and the right technology [2].

Artificial intelligence (AI) and related technologies,

such as the Internet of Things (IoT), machine learning, and

symbolic reasoning, have recently advanced to the point

where they are causing a paradigm shift in every aspect of

human life, including manufacturing, transportation,

energy, and advertising. Aerospace is one of the industries

that has had the share impact of AI. Aircraft maintenance is

quickly adopting AI to build predictive maintenance

towards ‘‘aircraft smart maintenance’’. Machine learning

algorithms are trained to forecast failure and suggest

appropriate actions depending on the predicted failure,

which is a step towards smart maintenance solutions. The

conditioned-based predictive maintenance provides cost-

saving over time-based preventive maintenance Burijs

et al. [4] as maintenance is done based on the condition of

the component, not time-based as in preventive mainte-

nance. The large amount of data generated from IoT

devices installed in aircraft to monitor various components’

health conditions combined with data analytics through

machine learning can significantly improve aircraft main-

tenance activities.

Applying correct data analytics and training machine

learning algorithms with a vast amount of data can reveal

underlying patterns and trends that are not visible to

humans. The information discovered can support proactive

decision-making, such as recommending the best mainte-

nance actions. Therefore, well-developed machine algo-

rithms are needed to harness relevant information from big

data. As artificial intelligence (AI) and related technologies

continue to advance, data become more available with a

less challenging acquisition, storage, and processing

methods. However, newer analytical challenges are

emerging. One unique challenge is the extremely rare event

prediction when events are infrequent, causing the gener-

ated data to be imbalanced, meaning that there are signif-

icantly fewer data in one class compared to other classes.

Training a traditional machine learning algorithm with a

skewed dataset has been shown to degrade the resulting

model’s performance [4]. Therefore, to develop a robust

machine learning model for predictive maintenance, it is

vital to address imbalanced data before training (data level

approach) or to train the model (algorithm-level approach).

The challenge traditional machine learning algorithms

face with the extremely imbalanced dataset is that they are

built on the assumption that the data distribution is always

balanced, and the cost of misclassification is the same for

all classes [5]. However, that assumption is untrue because

there exist some domains where the data are highly

imbalanced, and the cost of misclassification is high. An

example of such a domain is log data generated by the

aircraft central maintenance system known as ACMS data.

ACMS data are usually imbalanced because aircraft com-

ponent failure rarely occurs during regular flight operations

due to robust safety measures. Apart from the extremely

imbalanced problem, ACMS data pose several analytical

issues: irregular patterns and trends, class overlapping, and

small class disjunct. The standard machine learning algo-

rithm and feature selection or extraction methods become

less effective when extremely imbalanced data with class

overlapping are used for training [6]. Training machine

learning algorithms with imbalanced data has been shown

to degrade data-driven models’ performance, causing

unreliable prognostics [7, 8].

There have been recent improvements in predictive

modelling research from both academic and industrial

perspectives [9]. There are four types of predictive main-

tenance modelling approaches, namely physics-based,

knowledge-based, data-driven-based, and hybrid-based.

The physics-based approach focuses on the equipment

degradation process and necessitates the knowledge of the

underlying physical failure mechanisms of the components

[10]. The physics-based modelling approach’s application

can be seen in [11, 12], where a digital model of equipment

is created to enable the digital-twin (DT) concept in pre-

dictive maintenance applications. DT is the concept where

multi-physics modelling is combined with data-driven

analytics. GE has developed an intelligent IoT-based

monitoring and diagnostics platform based on DT to pre-

dict physical asset future [13]. The advantage of this

approach is that it is applicable even if the dataset is scarce.

Another approach to predictive maintenance modelling

is knowledge-based or expert system modelling. This

approach involves a combination of domain expert

knowledge and computational intelligence techniques. It

stores information from domain experts, and rulesets are

defined based on the knowledge base for interpretation

[14]. The knowledge-based approach has been applied for

predictive aircraft maintenance [15, 16]. The authors

develop a framework and design methodology for the

development of knowledge-based condition monitoring

systems. Knowledge-based approaches are more practical

for a small and basic system. Its implementation in a big,

complicated system, which is difficult and, in some situa-

tions, impossible since domain experts must constantly

update the rules in the event of upgrades or changes, which

is time-consuming.

The data-driven approach involves learning systems’

behaviour directly from already collected historical oper-

ational data to predict the future of a system’s state or

identify and match similar patterns in the dataset to infer

remaining useful life (RUL) or other insights. The data-
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driven modelling methods can be grouped into artificial

intelligence (AI)-based, statistical modelling methods, and

sequential pattern mining modelling methods [17]. AI

methods include machine learning, Bayesian methods, and

deep learning methods. AI-based methods have been

widely used for developing predictive maintenance models

in different industries. Çinar et al. [19] provided a detailed

survey on recent applications of AI in predictive mainte-

nance. The hybrid approach includes a combination of two

or more techniques for estimation to improve accuracy.

Improving accuracy in rare failure prediction requires a

robust hybrid approach. In recent times, deep learning (DL)

models have been shown to produce state-of-the-art per-

formance when trained with large datasets [18, 19] because

of their capability of combining feature extraction with

learning. The advances in machine learning research,

especially using deep neural networks to learn more com-

plex temporal features, make DL suitable for a large log-

based dataset [1]. Other work has shown the effectiveness

of DL models in handling extremely imbalanced datasets,

especially using log-based ACMS datasets to develop air-

craft predictive maintenance models [9].

In this study, a data-driven model is proposed for rare

failure prediction. The model consists of deep neural net-

works, the auto-encoder to detect failures, and bidirectional

gated recurrent unit (BGRU) networks combined with

convolutional neural networks (CNNs) to learn the co-re-

lationships between variables, enhancing the prediction of

rare failure. The effectiveness of the model is evaluated

using real-world log-based ACMS time series data. The

proposed model will help mitigate the effects of unsched-

uled aircraft maintenance, producing systematic condi-

tioned-based predictive maintenance, a step towards a

smart-aircraft maintenance system.

The remainder of this paper is structured as follows:

Section 2 discusses the related work. Section 3 provides a

methodology that shows a detailed architecture of the auto-

encoder, convolutional neural network—CNN, and bidi-

rectional gated recurrent unit—BGRU. Section 4 presents

the experimental set-up and case study. The experimental

result is presented and discussed in Sect. 5. Finally, Sect. 6

presents the conclusion and further work.

2 Related work

Deep learning is a branch of machine learning that consists

of multiple processing layers that use artificial neural net-

works (ANNs) to learn data representations at multiple

levels of abstraction. Deep learning models have dramati-

cally improved the performance of models in a variety of

areas, including large-scale data processing and image

identification, among others [7]. The success has been

attributed to an increase in the availability of data, hard-

ware, and software improvements and many breakthroughs

in algorithm development that speed up training and other

data generalisations [20]. Despite the advances, little work

has been done to investigate the effect of extremely

imbalanced, class overlapping, and small class disjunct on

the network’s architectures. Many researchers have agreed

that the subject of imbalanced data with deep learning is

understudied [21–24]. In deep learning, the ANNs are

trained to find complex structures in a dataset by using a

back-propagation algorithm. The algorithm calculates

errors made by the model during training, and the models’

weights are updated in proportion to the error. The draw-

back of this learning method is that examples from both

classes are treated the same. In that situation where the data

are imbalanced, the model will be adapted more to the

majority class than the minority class, which can affect the

performance of the models [20]. The majority of the deep

learning methods for imbalanced classification have

depended on integrating either resampling or cost-sensitive

into the deep learning process [25]. For instance, Hensman

et al. [26] use random oversampling techniques to balance

the data and then train the balanced data using CNN. Also,

Lee et al. [22] use random undersampling to balance the

dataset for the purpose of pretraining CNN. The use of

dynamic sampling to adjust the sampling rate according to

the class size for training CNN was proposed by Pouyanfar

et al. [27]. Buda et al. [24] investigate the effect of random

oversampling, random undersampling, and two-face

learning across many imbalanced datasets on deep neural

networks. The literature review [20, 24] reveals that most

of the proposed deep learning resampling approaches for

imbalanced problems use image datasets and CNN archi-

tecture. The need to investigate the effect of imbalanced on

other deep learning architectures and to use time series is

still lacking.

On the other hand, several studies have focused on

applying cost-sensitive strategies to solve the problem of

imbalanced classification, which entails changing the deep

learning process to favour both classes during model

training. For example, Khan SH et al. [28] proposed a cost-

sensitive deep neural network that can automatically learn

robust feature representations for both the majority and

minority classes. Also, Zhang et al. [29] propose cost-

sensitive deep belief networks, and Wang H et al. [30]

propose a cost-sensitive deep learning approach to predict

hospital readmission. Also, the use of loss function to

control biases has been shown in Wang S et al. [23]. The

authors proposed a novel loss function called mean false

error and its improved version of mean-squared false error

for learning from an imbalanced dataset. Similarly, a new

loss function called focal loss was proposed by Lin et al.

[31] for dense object detection in image classification. The
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focal loss was proposed to specifically handle the challenge

of extreme data imbalances commonly faced in object

detection problems, where the foreground samples usually

outnumber the background samples. Normally, this type of

problem is mostly solved using the one-stage detection

approach or two-stage detection. The two-stage detection

usually performs at the cost of computation time compared

to one-stage. Lin et al.’s [31] study focused on determining

how the one-stage approach with fast computation time can

achieve a state-of-the-art performance compared to the

two-stage. Their study discovered that the main cause of

performance degradation in one-stage detection is the

imbalanced data problem. The overwhelming background

samples create imbalance, causing the majority class to

account for most of the overall loss. To address that

challenge, Lin et al. [8] proposed a loss function known as

the focal loss (FL) derived from a normal binary cross-

entropy loss. The FL is expressed as follows:

Focal Loss FL p;t
� �

¼ � 1 � ptð Þð Þclog10 ptð Þ ð1Þ

The new FL tries to reduce the impact that the majority

of samples have on the loss by multiplying the cross-en-

tropy loss with a modulating factor - 1 � ptð Þð Þc, where
the hyperparameter c C 0 adjusts the learning rate, the

negative samples are downweighed. Their implementation

shows that using one-stage detection with focal loss by

selecting the right learning rate outperformed the two-stage

approach. The implantation method was only compared

with cross-entropy and tested for imbalance problems in

objection detection. The focal loss was later tested in image

classification by K Nemoto et al. [32]. The authors use

CNN architecture and then compare the performance of

focal loss and cross-entropy loss for image classification.

The open literature lacks a study investigating the focal

loss’s effectiveness on time-series systems’ log-based

datasets, particularly the ACMS dataset.

The identification and prediction of rare failures are

active research subjects that have sparked the creation of a

variety of methodologies [33]. Asset rare failure prediction

is a critical issue that has been approached within various

contexts, such as machine learning and statistics [1, 17].

System log data have widely been used to develop rare

failure predictive models in different domains. For exam-

ple, deep learning has been used to predict rare IT software

failures using a log-based dataset [34]. Panagiotis et al.

[35] developed a failure event model using post-flight

records. The authors used multiple instances learning

approaches to structure the model as a regression problem

to approximate the risk of a target event occurring. Sipos

et al. [36] developed a data-driven approach based on

multiple-instance learning for predicting equipment fail-

ures. Evgeny [10] developed a data-driven rare failure

prediction model using event matching for aerospace

applications. As seen in the previous study by Maren et al.

[1], one of the approaches to identifying and predicting rare

failure is using an anomaly detection approach, which is

framed in the form of unsupervised machine learning,

where the data are divided and labelled as negative and

positive samples. In the case of using an auto-encoder, each

class is treated separately, and the negatively labelled

samples’ low-dimensional features are extracted from

higher-dimensional data using any feature extraction pro-

cesses [1]. Then, rare failures are detected and predicted

based on the reconstruction error. Most of the well-known

traditional or typical data reduction and fault detection

methods are the principal component analysis (PCA),

partial least square (PLS), and independent component

analysis (ICA). These methods use different ways to reduce

data dimensionality, and they have achieved a varying

degree of success on different data distributions [1, 37].

However, they have fundamental limitations to the non-

linear features since they rely on linear techniques. Kernel

tricks have been developed to convert the nonlinear raw

data into linear data, and examples are the KPCA [37] and

KICA [38]. However, they required high computational

power due to kernel function, especially large data [1].

Deep learning (DL) has recently proven superior per-

formance in many areas, such as image classification. Also,

it has widely been used in the finance sector for the analysis

of time-series data [9]. DL can also be utilised for pre-

dictive maintenance. The system installed to monitor an

asset’s state generates extensive time-series data. There-

fore, deep learning algorithms are trained using time-series

data to find patterns to predict failures. Recent develop-

ments in deep learning have made it easy for deep, com-

plex artificial neural networks to automatically extract

features from the original dataset (dimension reduction)

during training [39, 40]. The auto-encoder (AE) [41] is an

example of a deep neural network algorithm that has been

successfully implemented for fault detection and predic-

tion. However, it needs larger data samples and a longer

processing time to achieve higher performance [42].

Advances have been made to tackle slightly rare event

predictions, especially in the aerospace domain, using

machine learning approaches [1, 43, 44]. Deep learning

models have also been developed for rare event predic-

tions. For example, Wu et al. [18] developed a weighted

deep representation learning model for imbalanced fault

diagnosis in cyber-physical systems. Their model is com-

posed of long recurrent convolutional LSTM model with a

sampling policy. Also, Khanh et al. [19] developed a

dynamic predictive maintenance framework based on

sensor measurements. Changchang et al. [45] combined

multiple DL algorithms for aircraft prognostic and health

management. In fact, Burnaev et al. [46] pointed out that
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many aircraft predictive maintenance solutions are built on

basic threshold settings that detect trivial errors on specific

components. On the other hand, the threshold-setting

strategy is prone to producing high false-positive rates,

which lowers model confidence.

Although the approaches mentioned above have suc-

cessfully handled normal fault detection and prediction,

there was a limited study about the application of deep

learning models for extremely rare failure prediction,

especially for predictive aircraft maintenance using the

ACMS dataset. Also, developing a robust predictive model

for costly rare aircraft component failure using a large log-

based dataset is quite challenging because many compo-

nents work together and influence each other’s lifetime.

Another challenge is the heterogeneous nature of the

ACMS log data, including symbolic sequence, numeric

time series, categorical variables, and unstructured text.

Therefore, our approach focuses on extremely rare

failure prediction using log-based aircraft central mainte-

nance system (ACMS) data. Secondly, the work also

concentrates on applying a hybrid of deep learning tech-

niques for performance optimisation. The proposed model

integrates AE with BGRU and CNN to detect and predict

extreme aircraft component replacement. The hybrid

method is designed to address the challenge of irregular

patterns and trends caused by skewed data distributaries,

hence enhancing the prediction of rare failures.

3 Methodology

3.1 Auto-encoder and bidirectional gated
recurrent unit network architecture

This section explains how to combine auto-encoder and

bidirectional gated recurrent unit network designs to

improve predictive model performance using large log-

based, multivariate, nonlinear, and time-series datasets.

3.1.1 The auto-encoder (AE)

As presented in Maren et al. [1], auto-encoder [47, 48] is a

specific type of multi-layer feedforward neural network

where the input is the same as the output neurons. AE aims

to learn the original data’s internal representation by

compressing the input into a lower-dimensional space

called latent-space representation (see Fig. 1). It then uses

the compressed representation to reconstruct the output

while minimising the error for the input data. Training is

done using a back-propagation algorithm with respect to

the loss function. AE comprises three components: encoder

X, latent-space P, and decoder Y. The encoder compresses

the input and produces the latent representation. The

decoder then reconstructs the input only using the latent

representation. An encoder with more than one hidden

layer is called a deep auto-encoder.

The encoding and decoding process can be represented

using the equation as follows:

pi ¼ f ðwp:xi þ btÞ ð2Þ

yi ¼ gðwy:pi þ btÞ ð3Þ

where f(.) and g(.) are the sigmoid functions, wi represents

the weights, and bi represents biases. The following min-

imised loss function is used to train the model:

LðX; YÞ ¼ 1

2n

Xn

i
kxi � yik2 ð4Þ

where xi represents the observed value, yi represents pre-

dicted values, and n represents the total number of pre-

dicted values.

Equation (3) helps in checking the validity of the

resulting underlying feature P.

Figure 1 shows a more detailed visualisation of an auto-

encoder architecture. First, the input data pass through the

encoder, a fully connected artificial neural network (ANN),

to produce the middle code layer. The decoder, which has a

mirrored ANN structure, will produce the output using the

middle-coded layer. The goal is to get an output identical to

the input. Creating many encoder layers and decoder layers

will enable the AE to represent more complex input data

distribution [1].

3.1.2 The bidirectional gated recurrent unit

A bidirectional gated recurrent unit (BGRU) is a recurrent

neural network that has successfully been used to solve

time-series sequential data problems because of its bidi-

rectional learning approach, which enhance the learning of

temporal patterns in the time-series data [49]. Each BGRU

block contains a cell that stores information. Each block is

made up of a reset and update gate, and the cells help

tackle the vanishing gradient problem Janusz et al. [50].

The reset gate determines how to combine new input with

previous memory, while the update gate defines how much

of the previous memory to retain, BGRU comprises two

GRU blocks. The input data are fed into the two networks,

the feedforward and feedback with respect to time, and

both of them are connected to one output layer [51]. The

gates in bidirectional GRU are designed to store informa-

tion longer in both forward and backward directions, pro-

viding better performance than feedforward networks. The

bidirectional approach provides the capability to use both

the past and future contexts in a sequence. BGRU can be

expressed as:
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ht ¼ ht;
�!

ht
 h i

ð5Þ

where ht;
�!

is the feedfoward and ht
 

the backward block

The final output layer at time t is:

yt ¼ rðWyht þ byÞ ð6Þ

where r is the activation function, Wy is the weight, and by
is the bias vector.

As seen in Figs. 2 and 3, each of the GRU blocks is

made up of four components. Input vector xI with corre-

sponding weights and bias, reset gate rI with corresponding

weight and bias Wr;Ur; br, update gate zI with corre-

sponding weight and bias Wz;Uz; bz and out vector ht with

its weight and bias Wh;Uh; bh. Fully gated unit is repre-

sented as follows:

Initially, for t = 0, the output vector is h0 = 0

zt ¼ rg Wzxt þ Uzht�1 þ bzð Þ ð7Þ

rt ¼ rg Wrxt þ Urht�1 þ brð Þ ð8Þ

ht ¼ zt ht�1 þ 1� ztð Þ � ;h Whxt þ Uh rt � ht�1ð Þ þ bhð Þ
ð9Þ

where � is the Hadamard product. W, U, b are parameter

matrices and vectors. rg and £h are the activation func-

tions, rg is a sigmoid function, and [ h is a hyperbolic

tangent.

The BGRU section of the model is designed as follows.

First, the BGRU cells are constructed so that the result of

feedforward is computed (Ft) and the feedback propagation

(Bt) are merged at the first BGRU layer. Four methods can

merge the outcome, concatenation (default), summation,

multiplication, and average. In this study, we will compare

the performance of each merging method. The merging is

represented as follows:

O1
t ¼ concatð Ft

!� �
; Bt
 � �
Þ ð10Þ

Such that Ft
!� �
¼ h1
!
; h2
!
; h3
!
; . . .; ht

!� �

and Bt
 � �
¼ ht
 
; htþ1
 ��

; htþ2
 ��

; htþ3
 ��

; . . .hn
 � �

Second, a fully connected layer is used to multiply the

BGRU network’s output with its weight and bias. Then, a

Softmax regression layer makes a prediction using input

Fig. 1 Auto-encoder

architecture [47]

Fig. 2 BGRU architecture with

forward and backward GRU

layers
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from the fully connected layer. A weighted classification

layer is used to compute the weighted cross-entropy loss

function for prediction score and training target, which

helps tackle the imbalanced classification problem. The

following loss is used:

p;t
� �

¼ � 1� ptð Þcð Þ log2 ptð Þ � hi ð11Þ

where (p;t) represents the estimated probability of each

class, and c� 0 is the discount factor parameter that can be

tuned for best estimation, and hi is the logic weight of each
class (Table 1).

3.1.3 The convolutional neural networks

The use of deep learning approaches to process time-series

data has recently been shown to produce improved results

[52]. One of the deep learning approaches that have been

widely used is convolutional neural networks (CNNs).

CNN’s popularity is attributed to its capability to read,

process, and extract the most important features of two-

dimensional data, contributing to its performance

improvement, especially for image classification [53, 54].

In a scenario where the input data are not images, such data

can be transformed to suit CNN [55]. Time-series data are

one of those data structures that can be transformed for

CNN applications. As seen in Fig. 3, with a time-series

dataset of length M and width N, the length is the number

of timesteps in the data, and the width is the number of

variables in a multivariate time series. In transforming the

time-series data for CNN [56, 57], a 1D convolutional

kernel would be of the same width (number of variables).

The kernel will then move top to down performing con-

volutions until the end of the series. The time-series ele-

ments covered at a given time (window) are multiplied

with the convolutional kernel elements, the multiplication

result is added, and a nonlinear activation function is

applied to the value. The resulting value becomes an ele-

ment of the next new filtered series. The kernel then moves

forward to produce the next value. Max-pooling is applied

to each of the filtered series of vectors. The vector’s largest

value is chosen, which is used as an input to a regular, fully

connected layer (Fig. 4).

There is no out-of-the-box or specified rule-of-thumb

technique to constructing the framework of BGRU with

CNN. Standard artificial neural network structure usually

consists of an input layer, one or more hidden layers, and

an output layer. The number of hidden layers and neurons

used to achieve an optimal solution varies per situation,

and it is usually a trial-and-error process. The most com-

mon approach is the use of K-fold cross-validation, as seen

in [58–60]. However, for evaluation, some k number of

nodes need to be defined, which can be obtained by a

simple formula,

Mk ¼
Ms

aðMi þM0Þ
ð12Þ

Fig. 3 A GRU block with an

update and reset gate, sigmoid

and hyperbolic tangent

Table 1 Proposed BGRU architecture

Layer (type) Output shape Param #

Bidirectional (Bidirectional multiple 8256

Bidirectional_1 (Bidirection multiple 7872

Repeat_vector (RepeatVector) multiple 0

Bidirectional_2 (Bidirection multiple 4800

Bidirectional_3 (Bidirection multiple 12,672

time_distributed (TimeDistri multiple 585

Total params: 34,185

Trainable params: 34,185

Non-trainable params: 0
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where Ms is the total number of samples in the training

data, Mi andM0 are a number of input and output neurons,

respectively, and a is the scaling factor. For example, if a is
set between two to ten, it means we can calculate eight

different numbers to feed into the validation process to

obtain an optimal result. The number of parameters to train

is computed as Eqs. 5–11, the number of inputs in the first

layer equals the defined window size, and the number of

folds to use in the cross-validation. The subsequent layers

have a number of outputs of the previous layer as input. A

simulation is conducted, and the training and testing errors

are plotted over the number of neurons in the hidden layer.

The number of neurons is chosen that minimises the test

error while keeping an eye on overfitting. Because the

problem is formulated as binary classification and the data

are extremely imbalanced, we use a modified loss function

(Eqs. 6–10) and Softmax as the final activation function.

3.2 Proposed method

3.2.1 AE–-CNN–BGRU network

Our goal is to create a model that can identify and predict

rare failures using a large log-based dataset. The main idea

is to separate the prediction of rare failure from its detec-

tion, as shown in Fig. 5. As a result, the proposed model

uses two stages: auto-encoder for detecting unusual failures

and BGRU and CNN architectures for forecasting future

instances of that failure.

The BGRU was chosen in the design because it can

capture a long dependency in both directions (forward and

backwards) to allow for successful learning. The rationale

for the method selection is based on the dataset’s charac-

teristics (i.e., heterogeneous and time series in nature).

Recurrent neural networks (RNNs) are commonly used to

train time-series datasets; nevertheless, RNNs suffer from

vanishing gradient difficulties and have a short-term

memory. When using a gradient-based learning strategy

with back-propagation to train a deep multi-layer RNN

(feedforward network), the problem of vanishing gradients

emerges [61]. Each iteration of the method updates the

weight of each ANN in proportion to the partial derivatives

of the error function with respect to weight. The problem

develops when valuable gradient information cannot be

propagated back to the model’s input layer from the out-

layer [62]. The gated recurrent unit (GRU) networks were

designed to capture long-time dependencies in sequence

learning and to manage the gradient vanishing problem

using modified hidden layers or gates in order to overcome

the vanishing gradient problem in RNN.

Convolutional neural network (CNN) uses a process

known as convolution when determining a relationship

between available variables in the dataset [20]. For

example, in convolutional learning, given two functions f

and g, the convolution integral expresses how the shape of

one function is modified by the other. Traditionally, CNNs

were designed to process multi-dimensional data, such as

image classification, not to account for sequential depen-

dencies like in RNNs, LSTMs, or GRUs [63]. Therefore,

the key benefit of adding CNN layers for sequential

learning is its ability to use filters bank [64] to compute

dilations between each cell, also referred to as ‘‘dilated

convolution’’, which in turn allows the network layers in

CNN to understand better the relationships between the

different variables in the dataset, generating improved

results.

As explained in Maren et al. [1], the dataset is extremely

imbalanced; that is, the imbalanced ratio between the

positively labelled and negatively labelled data is less than

Fig. 4 1D CNN for time-series data
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5% of the total. In such an extremely rare problem, tradi-

tional deep learning algorithms are overwhelmed by the

majority class, producing bias result without detriment to

the minority class [41, 65]. Therefore, we proposed AE–

CNN–BGRU to handle the problem differently. The

framework of the proposed model is shown in Fig. 5. The

first AE model is used to detect rare failures using recon-

struction errors at the detection stage. The data are divided

into positively labelled (rare minority class) and negatively

labelled (majority class). The AE model is then trained

with only negatively labelled data (X�ve) by feeding the

encoder layer of AE with the original negatively labelled

data. The latent code, which represents a compresses fea-

ture, is extracted in the middle layer. The decoder layers

will then reconstruct the original data using compressed

latent code as input. After the encode–decode process, a

reconstruction error is known, which also shows the

highest error that is later used for threshold setting. Since

the AE model is first trained using negatively labelled data

when the data are combined (Xt) and fed into the AE

model. An anomaly can easily be detected because any

data point coming from the negatively labelled class is

expected to have a low error, and if coming from a positive

class, the error will be higher. The low error is because it is

coming from the same data used to train the first-section

AE model (as seen in the detection phase of Fig. 5). On the

other hand, when a new data point is from a positively

labelled class, it is expected to have a higher reconstruction

error score which will pick as an anomaly [1].

For example, when a datapoint xt is fed into the AE

model, it will be classified as a fault if the reconstruction

error exceeds a defined threshold; otherwise, it will be

classified as no-fault. Once the faults are identified, the

resulting compressed data are then fed into the next section

of the framework, which is the AE–BGRU or AE–CNN–

BGRU model for the failure prediction. The input data to

the prediction model are the learned latent representation of

the original dataset. To determine a threshold that offers

the best result, we construct a function that iterates through

a loop using precision and recall until the desired threshold

is obtained.

4 Case study and experimental setup

The goal of the experiment is to see how well our proposed

technique handles the infrequent incidences of failure. The

primary research question is whether AE–CNN–BGRU can

beat traditional unidirectional deep learning time-series

approaches with explicit failure detection and additional

training capabilities on an extremely imbalanced dataset.

Another significant question is whether learning in two

directions might increase model performance for rare

failure prediction (feedforward and feedback propagation).

Also, how different does the architecture of deep learning

models treat the input data? A series of experiments are

conducted to answer the questions. A log-based data from

the aircraft central maintenance system, which includes

aircraft failure and warning alerts, are used. The following

experiments are set up.

1. To investigate whether the proposed AE–BGRU model

has a performance advantage over the normal GRU

model in predicting rare aircraft component failure.

2. To investigate whether additional layers of training in

the AE–CNN–BGRU model architecture can improve

model performance.

3. To investigate whether training the proposed model

using an extremely imbalanced dataset in a

Fig. 5 An integrated AE, BGRU, and CNN networks for rare fault detection and prediction
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bidirectional way (forward and backwards) can

improve model performance.

4. To provide a performance analysis of deep learning

architecture for the rare failure prediction via the log-

based ACMS dataset.

The modelling approach is divided into two categories:

binary class and multi-class. We characterised the first

situation as a multi-class classification problem that pre-

dicts all the targeted component failures at once. Second,

we modelled it as a binary classification problem in which

specific functional items are predicted.

4.1 Dataset

As Maren et al. [66] explained, this study uses over eight

years’ worth of data recorded from more than 60 aircrafts.

The dataset is collected from two databases. The first

database is the aircraft central maintenance system

(ACMS) data, which comprises error messages from BIT

(built-in test) equipment (that is, aircraft fault report

records) and the flight deck effects (FDE). These messages

are generated at different stages of flight phases (take-off,

cruise, and landing). The second database is the record of

aircraft maintenance activities (i.e., the comprehensive

description of all aircraft maintenance activities recorded

over time). The dataset is obtained from a fleet comprised

of A330 and A320 aircraft. Some components are identi-

fied by functional item number (FIN) chosen for validation.

The target components are chosen based on their high

practical value and an adequate number of known failure

cases. The other consideration for the choice of the com-

ponent is those that are replaced due to unscheduled. Fig-

ure 6 shows an example of the ACMS dataset.

Data from the year 2011 to 2016 are used for training,

while the remaining data from 2016 to 2018 are used for

testing. The targeted LRUs from the A330 aircraft family

are 4000KS—Electronic Control Unit/ Electronic Engine

Unit, 4000HA—Pressure Bleed Valve, and 438HC—Trim

Air Valve. From A320 are 11HB—flow control valve,

10HQ—Avionics equipment ventilation computer,

1TX1—air traffic service unit.

4.2 Evaluation metrics

In general, ‘‘accuracy’’ is the most important performance

metric in machine classification. However, using accuracy

to measure performance in extreme imbalanced classifi-

cation issues can be misleading since, in order to attain

high overall accuracy, classifiers would be biased towards

the majority class. As a result, various alternative metrics,

like precision, recall, g-mean, and area under the curve, are

used better to evaluate the classifiers’ performance [67].

From Fig. 7, we derive Eqs. (12) to (16),

Accuracy ¼ tpþ tnð Þ=n ð12Þ

) ability to correctly classify all observations.

Precision (p): is the measure of classifier exactness, the

percentage of true-positive predictions made by the clas-

sifier that is truly correct. So, low precision indicates a

large number of false positives.

P ¼ tp=ðtpþ fpÞ ð13Þ

Recall (r) is the classifier completeness measure and is

defined as the percentage of true positives that the classifier

can correctly detect. So, low recall indicates many false

negatives.

R ¼ tp=ðtpþ fnÞ ð14Þ

G-mean measures the root of the product of class-wise

sensitivity; it maximises each class’s accuracy and keeps

the accuracy balanced.

G�mean ¼
ffiffiffiffiffiffiffiffiffiffiffi
P � R
p

ð15Þ

False-positive rate is calculated using the following

equation.

FPR ¼ fp=fpþ tn ð16Þ

Receiver operating characteristic curve (ROC): ROC is

a graphical representation that illustrates the classifier’s

diagnostic ability as the discriminant threshold is varied.

An excellent model has an area under the curve AUC with

a value near one, meaning the model has a good separa-

bility measure.

Assuming we have two classes, the positive and nega-

tive classes ROC curve of those classes’ probability is

discribed in Figs. 8 and 9.

Figure 8 shows the ROC curve for an ideal situation.

The green distribution curve represents the positive class

(component failure), and the black distribution curve rep-

resents the negative class (non-failure). When the two

curves do not overlap, the model has an ideal measure of

separability (that is, the model can correctly distinguish

between positive and negative classes).

Figure 9 depicts a case in which two distributions

intersect. Type 1 and type 2 faults will be introduced in this

instance. The mistake can be minimised or maximised

depending on the threshold value. When the AUC is 0.8,

the model has an 80% chance of correctly distinguishing

between positive and negative data. The weakest separa-

bility measure is when the model AUC = 0. (The model is

reciprocating the classes, which means the model predicts a

negative class as a positive class and vice versa.) When

AUC = 0.5, the model has no ability to distinguish

between classes.
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4.3 Sensitivity analysis for BGRU merge modes

Sensitivity analysis was carried out to determine the best

merging mode that can be used to integrate the outcomes of

the BGRU layers for the proposed model. As shown in

Fig. 10, plotting loss against epoch, the line plot is created

to compare the four merge modes (summation,

concatenation, multiplication, and average). A time-series

data of size 10,000 was generated and trained, using a loss

shown in Eqs. (5–10) and running the BGRU networks for

200 epochs. The result indicates that concatenation (the

green line) is the best merge mode because it has lower loss

values.

Fig. 6 Example of the real

ACMS dataset. Sensitive data

elements have been masked

Fig. 7 Confusion matrix and

ROC curve

Fig. 8 ROC curve for an ideal

situation
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Furthermore, an analysis was carried out to determine

the effect of bidirectional networks as compared to unidi-

rectional ones. Three network architectures were set up for

the analysis: two unidirectional (the forward and the

backwards networks) and the bidirectional network. The

result is shown in Fig. 11; as observed, the GRU forward

and GRU backward show a similar pattern, while

BGRU_concat (green) shows a better loss (low errors). The

comparison result indicates that BGRU can add perfor-

mance improvement, not just merely reversing the input

sequence.

5 Result and discussion

A study is conducted to determine whether training the

model using an imbalanced dataset bidirectionally with

focal loss can improve the minority class’s detection. Two

bidirectional models were considered, the AE–BGRU and

the AE–CNN–BGRU models, and compared with GRU

(baseline); the result is shown in Table 2. The models are

validated using data from two aircraft families, the A330

and the A320 groups; the size of the training dataset is

360575 and 389,829, respectively. The target is to predict

the replacement of aircraft LRU identified by their func-

tional identification numbers (FINs). The validation result

is based on the validation (testing) data, and the size is

dependent on the number of patterns related to each target

component. The targeted number of failures for each

component are 4000KS = 11, 4000HA = 13, 438HC = 9,

11HB = 6, 10HQ = 8 and 1TX1 = 15.

As observed in Table 2, the proposed models show

superior performance compared to the baseline. Consider-

ing the A330 dataset and training the proposed algorithms

to predict each component’s failure, it can be observed

after validation. The result for predicting failure of 4000KS

(the aircraft electronic engine unit) using the AE–BGRU

model records a precision of 72%, recall of 61%, g-mean

67%, and a false-positive rate of 0.091%. AE–CNN–

BGRU model achieves a precision of 90%, recall of 66%,

g-mean of 77%, and a false-positive rate of 0.011%.

Compared to normal GRU with a precision of 60%, recall

0.55%, g-mean 53%, and a false-positive rate of 0.005, a

similar result is seen for the other components, the 4000HA

(pressure bleed valve) and the 438HC (trim air valve).

Using data from the A320 aircraft family: the results

also indicate superior performance for the proposed AE–

BGRU and AE–CNN-BGRU models as compared to uni-

directional GRU. The result for predicting the failure of

11HB (flow control valve) indicates that AE–CNN–BGRU

Fig. 9 ROC curves showing

overlap distributions with

AUC = 0.8

epochs

Lo
ss

Fig. 10 Comparing BGRU merge modes. The figure shows the

analysis to determine the merging mode that can be used for the

BGRU layers in the proposed AE–CNN–BGRU model. The target is

to choose the best merging method (i.e., with lower error)

epochs

Lo
ss

Fig. 11 Comparing GRU with BGRU
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achieved a precision of 66%, recall 59%, g-mean 67%, and

a false-positive rate of 0.019% compared to GRU with a

precision of 61%, recall 51% g-mean 49%, and a false-

positive rate of 0.005. Similar performance is seen for other

components, the 10HQ—Avionics equipment ventilation

computer and 1TX1—Air traffic service unit.

In the six FINs considered, the proposed models show a

significant improvement in reducing the false-positive rate,

which is very important for any predictive maintenance

model acceptability. Also, the AE–CNN–BGRU model

shows an overall improvement of 18% in precision, 5% in

the recall, and 10% in G-mean.

5.1 Measuring the success rate of the proposed
models using A330 aircraft

Figure 12 shows the ROC curve for the proposed models

AE–BGRU and the AE–CNN–BGRU. The ROC curve for

the AE–CNN–BGRU model (Fig. 12b) shows that

AUC = 0.822 indicates that there is an 82.2% chance that

the model will be able to distinguish between positive class

(component failure) and negative class (non-failure). In

contrast, Fig. 12a shows the ROC curve for the AE–BGRU

model with AUC = 0.737, which indicates that the model

has a 73.7% chance of distinguishing between classes.

Also, to measure the model success rate in predicting

extremely rare failure, a confusion matrix was plotted for

both proposed models. Figure 13 shows a confusion matrix

for predicting the failure of the electronic engine unit

(FIN_4000KS). As seen in Fig. 13a AE–BGRU model

predicted eight failures correctly out of the eleven true

failures, and Fig. 13b shows that the AE–CNN–BGRU

model predicted ten out of eleven. This prediction includes

10 flight legs in advance. It can also be observed that the

AE–CNN–BGRU model predicts approximately 94% of

extremely rare failure of components, which is a reasonable

Table 2 Aircraft A330 and A320 rare failure prediction of individual LRUs using ACMS dataset

Aircraft ACMS dataset

LRU’s IR GRU (Baseline) AE–BGRU AE–CNN–BGRU

P R GM FPR P R GM FNR P R GM FNR

A330-Family 4000KS 0.0043 0.60 0.55 0.53 0.005 0.720 0.61 0.67 0.00091 0.909 0.66 0.778 0.00011

4000HA 0.0047 0.41 0.40 0.41 0.008 0.538 0.538 0.632 0.00127 0.769 0.768 0.769 0.000638

438HC 0.0044 0.54 0.51 0.53 0.006 0.666 0.600 0.632 0.00083 0.88 0.610 0.730 0.00027

A320 Family 11HB 0.0028 0.62 0.51 0.49 0.005 0.660 0.58 0.624 0.00019 0.66 0.59 0.671 0.00019

10HQ 0.0031 0.60 0.51 0.55 0.006 0.625 0.49 0.55 0.00028 0.75 0.66 0.707 0.000191

1TX1 0.0064 0.66 0.52 0.58 0.007 0.866 0.764 0.814 0.00029 0.85 0.741 0.860 0.000193

**LRUs represents an aircraft line replacement unit. P is precision, R is recall, GM is g-mean, FPR is a false-positive rate

Fig. 12 ROC curve for FIN_4000KS prediction using (a) AE–BGRU and (b) AE–CNN–BGRU models
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specificity, especially for aircraft maintenance

acceptability.

Similarly, as seen in Fig. 14a, AE–BGRU predicted 7

out of 13, and in Fig. 14b AE–CNN–BGRU predicted 10

out of 13 unplanned replacement of pressure bleed valve

(FIN_4000HA) failures. This prediction includes 10 flight

legs in advance, and it can also be observed that the AE–

CNN–BGRU model shows superior performance. A simi-

lar performance is observed for other components tested.

The general result indicated that the proposed AE–CNN–

BGRU model detected and predicted approximately 80%

of extremely rare failures, which is a reasonable specificity,

especially for aircraft maintenance.

5.2 Measuring the success rate of the proposed
models using A320 aircraft

Figure 15 shows the ROC curve for the proposed models

AE–BGRU and the AE–CNN–BGRU. The ROC curve for

the AE–CNN–BGRU model (Fig. 15b) shows AUC =

0.864, which indicates that there is an 86.4% probability

that the model will be able to distinguish between positive

classes (component failure) and negative class (non-fail-

ure). In contrast, Fig. 15a shows the ROC curve for the

AE–BGRU model with AUC = 0.817, which indicates that

the model has an 81.7% probability of distinguishing

between classes. The result indicated that AE–CNN–

BGRU has an 8% better classification performance com-

pared to AE–BGRU.

Similarly, as seen in Fig. 16a, AE–BGRU predicted 4

out of 6 and Fig. 16b AE-CNN-BGRU 4 out of 6 unplan-

ned replacement of pressure bleed valve (FIN_11HB). This

prediction includes 10 flight legs in advance. A similar

performance is observed for other components tested. The

general result indicated that the proposed AE-CNN-BGRU

model detected and predicts approximately 50% of extre-

mely rare failures.

Although both models predicted 50% of the failure, it

can be observed that the AE–CNN–BGRU model shows

superior performance in terms of recall. A good recall

Fig. 13 Confusion matrix for

FIN_4000KS using (a) AE–
BGRU and (b) AE–CNN–
BGRU model

Fig. 14 Confusion matrix for

FIN_4000HA using AE–BGRU

and AE–CNN–BGRU model
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indicates that the model has a good potential measure of

correctly identifying true positives.

5.3 Sensitivity of AE–CNN–BGRU model
to design parameters

Additional analysis was carried out to determine whether

adding CNN layers to the AE–BGRU network could

improve performance. After the implantation, the result

indicated that there was performance improvement. The

AE–CNN–BGRU model performance improvement can be

accounted to the following factors. First, in training time-

series dataset, especially using BGRU or LSTM, such

networks account for the sequential dependency in a situ-

ation where a correlation exists between the variables in the

given dataset (a process known as autocorrelation); during

training, a normal GRU/LSTM network would treat all the

variables as independent, excluding any relationship that

exists between both observed and latent variables, whereas

CNN uses a process known as convolution when deter-

mining a relationship between available variables in the

dataset [20]. For example, in convolutional learning, given

two functions f and g, the convolution integral expresses

how the shape of one function is modified by the other.

Traditionally, CNNs were designed to process multi-di-

mensional data, such as in image classification, not to

account for sequential dependencies like in RNNs, LSTMs,

or GRUs [63]. Therefore, the key benefit of adding CNN

layers for sequential learning is its ability to use filters bank

[64] to compute dilations between each cell, also referred

to as ‘‘dilated convolution,’’ which in turn allows the net-

work layers in CNN to understand better the relationships

between the different variables in the dataset, generating

improved results.

Fig. 15 ROC curve for predicting 11HB using AE–BGRU

Fig. 16 Confusion matrix for

FIN_11HB using AE–BGRU

and AE–CNN–BGRU model
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5.4 Sensitivity analysis of imbalanced ratio.

A sensitivity analysis was carried out for the imbalanced

ratio on the designed network architecture and the input

data. As observed in Table 2, the six cases considered have

different imbalanced ratios (400KS = 0.0043, 4000HA =

0.0047, 438HC = 0.0044, 11HB = 0.0028, 10HQ =

0.0031, 1TX1 = 0.0064). The components differed not

only in the imbalanced ratio but also in distributions and

failure patterns. As seen in Fig. 17, it can be observed that

the novel model (AE–CNN–GRBU) shows a significant

reduction in the false-negative rate as compared to others,

indicating that it is robust to different conditions of the

dataset. Also, it is observed that the imbalance ratio

impacts the false-negative rate for the test components

from the A330 aircraft family (4000KS—electronic control

unit/electronic engine unit, 4000HA—pressure bleed valve,

and 438HC—trim air valve). For example, 4000HA with

the highest imbalance ratio of 0.0047 has a false-negative

rate of about 0.000639 compared to 4000KS with the

lowest imbalanced ratio and false-negative rate of 0.00011.

The analysis for A320 (11HB—flow control valve,

10HQ—Avionics equipment ventilation computer,

1TX1—air traffic service unit) shows insignificant changes

to the imbalance ratio in terms of false-negative rate.

6 Conclusion and future work

This study presents a novel method for condensing a large

number of logs of aircraft warning and failure messages

recorded by the central maintenance system into a small

number of the most significant and relevant logs. The

reduced log is then used to create a model for aircraft’

predictive maintenance, with an emphasis on predicting

extremely infrequent failures. The proposed model com-

bines an auto-encoder with bidirectional gated recurrent

networks, which work together to deliver correct link

failure/warning signals related to aircraft LRU removal

while also assisting in the detection of abnormal patterns

and trends. The auto-encoder is in charge of detecting

unusual failures, while the BGRU networks (with CNN)

are in charge of making predictions. The proposed tech-

nique is evaluated using real-world aircraft central main-

tenance system (ACMS) data. The evaluation results

indicate that the AE–CNN–BGRU model can effectively

handle irregular patterns and trends, mitigating the imbal-

anced classification problem. Comparing AE–CNN–BGRU

with other similar deep learning methods, the proposed

approach shows superior performance with 18% better

precision, 5% in a recall, and 10% in g-mean. The results

also indicate the model effectiveness in predicting com-

ponent failure within a defined useful period that aids in

minimising operational disruption. By traversing the input

data in a bidirectional manner (feedforward and feedback)

while making the prediction, the AE–CNN–BGRU model

networks can better capture the underlying temporal

structure. For specific types of data, such as in-text clas-

sification and text-to-words prediction in sequence-to-se-

quence learning, the performance advantage of AE–CNN–

BGRU over the unidirectional GRU is reasonable. How-

ever, it was unclear whether employing a bidirectional

strategy to train imbalanced time-series data would

increase model performance because there may not be

enough definite temporal contexts and observable in-text

sequence examples. Our findings reveal that AE–CNN–

BGRU outperforms standard GRU in forecasting

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

IR=0.0043 IR=0.0047 IR=0.0044 IR=0.0028 IR=0.0031 IR=0.0064

4000KS 4000HA 438HC 11HB 10HQ 1TX1

Comparing Models Fals-Nega�ve Rates

GRU (Baseline) AE-BGRU AE-CNN-BGRU

Fig. 17 Sensitivity analysis of

imbalanced ratio against false-

negative rate
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uncommon failure in log-based aircraft ACMS datasets,

answering this topic.

In the future, other AE–CNN–BGRU architectures will

be studied further by translating time data into graphical

representations utilising recurrence plots. The generated

images can be trained with CNN-BGRU to improve their

performance. Other aircraft data can also be imported into

ACMS to improve model training.
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Lévesque M, et al. (2018) A predictive maintenance approach for

complex equipment based on petri net failure mechanism prop-

agation model. In: Proc Eur Conf PHM Soc p. 1

12. Aivaliotis P, Georgoulias K, Arkouli Z, Makris S (2019)

Methodology for enabling digital twin using advanced physics-

based modelling in predictive maintenance. Procedia CIRP

81:417–422. https://doi.org/10.1016/j.procir.2019.03.072

13. Parris CJ. (2016) The future for industrial services - the digital

twin. Infosys Insights pp. 42–9

14. Okoh C, Roy R, Mehnen J (2017) Predictive maintenance mod-

elling for through-life engineering services. Procedia CIRP

59:196–201. https://doi.org/10.1016/j.procir.2016.09.033

15. Phillips P, Diston D (2011) A knowledge driven approach to

aerospace condition monitoring. Knowledge-Based Syst

24:915–927. https://doi.org/10.1016/j.knosys.2011.04.008

16. Ferri FAS, Rodrigues LR, Gomes JPP, De Medeiros IP, Galvao

RKH, Nascimento CL. (2013) Combining PHM information and

system architecture to support aircraft maintenance planning. In:

SysCon 2013 - 7th Annu IEEE Int Syst Conf Proc pp. 60–5. Doi:

https://doi.org/10.1109/SysCon.2013.6549859

17. Berberidis C, Angelis L, Vlahavas I (2004) Inter-transaction

association rules mining for rare events prediction. In: Proc 3rd

Hell Conf

18. Wu Z, Guo Y, Lin W, Yu S, Ji Y (2018) A weighted deep

representation learning model for imbalanced fault diagnosis in

cyber-physical systems. Sensors (Switzerland). https://doi.org/10.

3390/s18041096

19. Nguyen KTP, Medjaher K (2019) A new dynamic predictive

maintenance framework using deep learning for failure prog-

nostics. Reliab Eng Syst Saf 188:251–262. https://doi.org/10.

1016/j.ress.2019.03.018

20. Johnson JM, Khoshgoftaar TM (2019) Survey on deep learning

with class imbalance. J Big Data. https://doi.org/10.1186/s40537-

019-0192-5

21. Pouyanfar S, Tao Y, Mohan A, Tian H, Kaseb AS, Gauen K,

et al. (2018) dynamic sampling in convolutional neural networks

for imbalanced data classification. In: Proc. - IEEE 1st Conf.

Multimed. Inf. Process. Retrieval, MIPR 2018, p. 112–7. Doi:

https://doi.org/10.1109/MIPR.2018.00027

22. Lee H, Park M, Kim J. (2016) Plankton classification on imbal-

anced large scale database via convolutional neural networks

with transfer learning. In: Proc - Int Conf Image Process ICIP

2016; -Augus, pp. 3713–7 doi: https://doi.org/10.1109/ICIP.2016.

7533053

Neural Computing and Applications (2023) 35:2991–3009 3007

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.ifacol.2020.11.045
https://doi.org/10.1016/j.ifacol.2020.11.045
https://doi.org/10.1007/s13748-016-0094-0
https://doi.org/10.1007/s13748-016-0094-0
https://doi.org/10.2139/ssrn.3718065
https://doi.org/10.1016/j.engappai.2018.07.002
https://doi.org/10.1016/j.engappai.2018.07.002
https://doi.org/10.1109/ACCESS.2018.2807121
https://doi.org/10.1016/j.jmsy.2018.01.003
https://doi.org/10.1016/j.jmsy.2018.01.003
https://doi.org/10.1016/j.procir.2019.03.072
https://doi.org/10.1016/j.procir.2016.09.033
https://doi.org/10.1016/j.knosys.2011.04.008
https://doi.org/10.1109/SysCon.2013.6549859
https://doi.org/10.3390/s18041096
https://doi.org/10.3390/s18041096
https://doi.org/10.1016/j.ress.2019.03.018
https://doi.org/10.1016/j.ress.2019.03.018
https://doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.1109/MIPR.2018.00027
https://doi.org/10.1109/ICIP.2016.7533053
https://doi.org/10.1109/ICIP.2016.7533053


23. Wang S, Liu W, Wu J, Cao L, Meng Q, Kennedy PJ. (2016)

Training deep neural networks on imbalanced data sets. In: Proc

Int Jt Conf Neural Networks 2016-Octob, pp. 4368–74. https://

doi.org/10.1109/IJCNN.2016.7727770

24. Buda M, Maki A, Mazurowski MA (2018) A systematic study of

the class imbalance problem in convolutional neural networks.

Neural Netw 106:249–259. https://doi.org/10.1016/j.neunet.2018.

07.011

25. Song J, Shen Y, Jing Y, Song M. (2017) Towards deeper insights

into deep learning from imbalanced data 2: 674–84. https://doi.

org/10.1007/978-981-10-7299-4_56

26. Hensman P, Masko D. (2015) The impact of imbalanced training

data for convolutional neural networks. PhD

27. Pouyanfar S, Tao Y, Mohan A, Tian H, Kaseb AS, Gauen K,

et al. (2018) Dynamic sampling in convolutional neural networks

for imbalanced data classification. In: Proc - IEEE 1st Conf

Multimed Inf Process Retrieval, MIPR 2018, pp. 112–7 doi:

https://doi.org/10.1109/MIPR.2018.00027.

28. Khan SH, Hayat M, Bennamoun M, Sohel FA, Togneri R (2018)

Cost-sensitive learning of deep feature representations from

imbalanced data. IEEE Trans Neural Netw Learn Syst

29:3573–3587. https://doi.org/10.1109/TNNLS.2017.2732482

29. Zhang C, Tan KC, Ren R. (2016) Training cost-sensitive Deep

Belief Networks on imbalance data problems. In: Proc. Int. Jt.

Conf. Neural Networks, vol. 2016- Octob, p. 4362–7. Doi: https://

doi.org/10.1109/IJCNN.2016.7727769

30. Wang H, Cui Z, Chen Y, Avidan M, Ben AA, Kronzer A (2018)

Predicting hospital readmission via cost-sensitive deep learning.

IEEE/ACM Trans Comput Biol Bioinf. https://doi.org/10.1109/

TCBB.2018.2827029

31. Lin TY, Goyal P, Girshick R, He K, Dollar P (2017) Focal loss

for dense object detection. Proc IEEE Int Conf Comput Vis.

https://doi.org/10.1109/ICCV.2017.324

32. Keisuke Nemoto , Ryuhei Hamaguchi , Tomoyuki Imaizumi SH.

Classification of rare building change using cnn with multi-class

focal loss Keisuke Nemoto , Ryuhei Hamaguchi , Tomoyuki

Imaizumi , Shuhei Hikosaka Satellite Business Division , PASCO

CORPORATION ( Japan ) 2018:4667–70

33. Salfner F, Lenk M, Malek M (2010) A survey of online failure

prediction methods. ACM Comput Surv. https://doi.org/10.1145/

1670679.1670680

34. Zhang K, Xu J, Min MR, Jiang G, Pelechrinis K, Zhang H. (2016)

Automated IT system failure prediction: a deep learning

approach. In: Proc - 2016 IEEE Int Conf Big Data, Big Data

2016, pp. 1291–300. https://doi.org/10.1109/BigData.2016.

7840733

35. Korvesis P, Besseau S, Vazirgiannis M. (2018) Predictive

maintenance in aviation: Failure prediction from post-flight

reports. In: Proc - IEEE 34th Int Conf Data Eng ICDE 2018,

pp. 1423–34. Doi: https://doi.org/10.1109/ICDE.2018.00160

36. Sipos R, Wang Z, Moerchen F. (2014) Log-based predictive

maintenance, pp. 1867–76

37. Kallas M, Mourot G, Anani K, Ragot J, Maquin D (2017) Fault

detection and estimation using kernel principal component anal-

ysis. IFAC-PapersOnLine 50:1025–1030. https://doi.org/10.1016/

j.ifacol.2017.08.212

38. Lee J-M, Qin SJ, Lee I-B (2008) Fault detection of non-linear

processes using kernel independent component analysis. Can J

Chem Eng 85:526–536. https://doi.org/10.1002/cjce.5450850414

39. Ismail Fawaz H, Forestier G, Weber J, Idoumghar L, Muller PA

(2019) Deep learning for time series classification: a review. Data

Min Knowl Discov 33:917–963. https://doi.org/10.1007/s10618-

019-00619-1

40. Guo S, Yang T, Gao W, Zhang C (2018) A novel fault diagnosis

method for rotating machinery based on a convolutional neural

network. Sensors (Switzerland). https://doi.org/10.3390/

s18051429

41. Park P, Di Marco P, Shin H, Bang J (2019) Fault detection and

diagnosis using combined autoencoder and long short-term

memory network. Sensors (Switzerland) 19:1–17. https://doi.org/

10.3390/s19214612

42. Liu R, Yang B, Zio E, Chen X (2018) Artificial intelligence for

fault diagnosis of rotating machinery: a review. Mech Syst Signal

Process 108:33–47. https://doi.org/10.1016/j.ymssp.2018.02.016

43. Dangut MD, Skaf Z, Jennions IK (2020) An integrated machine

learning model for aircraft components rare failure prognostics

with log-based dataset. ISA Trans 113:127–139. https://doi.org/

10.1016/j.isatra.2020.05.001

44. Burnaev E. (2019) Rare failure prediction via event matching for

aerospace applications. In: 2019 3rd Int Conf Circuits, Syst

Simulation, ICCSS 2019, pp. 214–20. https://doi.org/10.1109/

CIRSYSSIM.2019.8935598

45. Che C, Wang H, Fu Q, Ni X (2019) Combining multiple deep

learning algorithms for prognostic and health management of

aircraft. Aerosp Sci Technol 94:105423. https://doi.org/10.1016/j.

ast.2019.105423

46. Burnaev E. (2019) Rare failure prediction via event matching for

aerospace applications

47. Baldi P (2012) Autoencoders, unsupervised learning, and deep

architectures. ICML Unsupervised Transf Learn. https://doi.org/

10.1561/2200000006

48. Le Q V. A Tutorial on Deep Learning Part 2: Autoencoders,
Convolutional Neural Networks and Recurrent Neural Networks.

Tutorial 2015:1–20

49. Farzad A, Gulliver TA. (2019) Log message anomaly detection

and classification using auto-B/LSTM and auto-GRU, pp. 1–28

50. Konar A. (1999) Artificial intelligence and soft computing.

https://doi.org/10.1201/9781420049138

51. Savoy J, Gaussier E. (2010) Information retrieval. https://doi.org/

10.4324/9781351044677-24

52. Livieris IE, Pintelas E, Pintelas P (2020) A CNN–LSTM model

for gold price time-series forecasting. Neural Comput Appl

32:17351–17360. https://doi.org/10.1007/s00521-020-04867-x

53. Debayle J, Hatami N, Gavet Y. (2018) Classification of time-

series images using deep convolutional neural networks, 23 doi:

https://doi.org/10.1117/12.2309486

54. Jafari G, Shirazi AH, Namaki A, Raei R. (2011) Coupled time

series analysis: Methods and applications. vol. 13. Doi: https://

doi.org/10.1109/MCSE.2011.102

55. Lu W, Li J, Wang J, Qin L (2020) A CNN-BiLSTM-AM method

for stock price prediction. Neural Comput Appl 33:4741–4753.

https://doi.org/10.1007/s00521-020-05532-z

56. Zhao B, Lu H, Chen S, Liu J, Wu D (2017) Convolutional neural

networks for time series classification. J Syst Eng Electron

28:162–9. https://doi.org/10.21629/JSEE.2017.01.18

57. Ouhame S, Hadi Y, Ullah A (2021) An efficient forecasting

approach for resource utilisation in cloud data center using CNN-

LSTM model. Neural Comput Appl 33:10043–10055. https://doi.

org/10.1007/s00521-021-05770-9

58. Munna MTA, Alam MM, Allayear SM, Sarker K, Ara SJF (2020)

Prediction model for prevalence of type-2 diabetes complications

with ANN approach combining with K-fold cross validation and

K-means clustering, vol 69. Springer, Berlin

59. Applications C. Mathematical and computational applications,

2011;16:702–11.

60. Jiang P, Chen J (2016) Displacement prediction of landslide

based on generalised regression neural networks with K-fold

cross-validation. Neurocomputing 198:40–47. https://doi.org/10.

1016/j.neucom.2015.08.118

61. David Dangut M, Skaf Z, Jennions I. (2020) Rescaled-LSTM for

predicting aircraft component replacement under imbalanced

3008 Neural Computing and Applications (2023) 35:2991–3009

123

https://doi.org/10.1109/IJCNN.2016.7727770
https://doi.org/10.1109/IJCNN.2016.7727770
https://doi.org/10.1016/j.neunet.2018.07.011
https://doi.org/10.1016/j.neunet.2018.07.011
https://doi.org/10.1007/978-981-10-7299-4_56
https://doi.org/10.1007/978-981-10-7299-4_56
https://doi.org/10.1109/MIPR.2018.00027
https://doi.org/10.1109/TNNLS.2017.2732482
https://doi.org/10.1109/IJCNN.2016.7727769
https://doi.org/10.1109/IJCNN.2016.7727769
https://doi.org/10.1109/TCBB.2018.2827029
https://doi.org/10.1109/TCBB.2018.2827029
https://doi.org/10.1109/ICCV.2017.324
https://doi.org/10.1145/1670679.1670680
https://doi.org/10.1145/1670679.1670680
https://doi.org/10.1109/BigData.2016.7840733
https://doi.org/10.1109/BigData.2016.7840733
https://doi.org/10.1109/ICDE.2018.00160
https://doi.org/10.1016/j.ifacol.2017.08.212
https://doi.org/10.1016/j.ifacol.2017.08.212
https://doi.org/10.1002/cjce.5450850414
https://doi.org/10.1007/s10618-019-00619-1
https://doi.org/10.1007/s10618-019-00619-1
https://doi.org/10.3390/s18051429
https://doi.org/10.3390/s18051429
https://doi.org/10.3390/s19214612
https://doi.org/10.3390/s19214612
https://doi.org/10.1016/j.ymssp.2018.02.016
https://doi.org/10.1016/j.isatra.2020.05.001
https://doi.org/10.1016/j.isatra.2020.05.001
https://doi.org/10.1109/CIRSYSSIM.2019.8935598
https://doi.org/10.1109/CIRSYSSIM.2019.8935598
https://doi.org/10.1016/j.ast.2019.105423
https://doi.org/10.1016/j.ast.2019.105423
https://doi.org/10.1561/2200000006
https://doi.org/10.1561/2200000006
https://doi.org/10.1201/9781420049138
https://doi.org/10.4324/9781351044677-24
https://doi.org/10.4324/9781351044677-24
https://doi.org/10.1007/s00521-020-04867-x
https://doi.org/10.1117/12.2309486
https://doi.org/10.1109/MCSE.2011.102
https://doi.org/10.1109/MCSE.2011.102
https://doi.org/10.1007/s00521-020-05532-z
https://doi.org/10.21629/JSEE.2017.01.18
https://doi.org/10.1007/s00521-021-05770-9
https://doi.org/10.1007/s00521-021-05770-9
https://doi.org/10.1016/j.neucom.2015.08.118
https://doi.org/10.1016/j.neucom.2015.08.118


dataset constraint. In: 2020 Adv. Sci. Eng. Technol. Int. Conf.

ASET 2020, doi: https://doi.org/10.1109/ASET48392.2020.

9118253

62. Kamath U, Liu J, Whitaker J (2019). Deep Learning for NLP and

Speech Recognition. https://doi.org/10.1007/978-3-030-14596-5

63. Lecun Y, Bottou L, Bengio Y, Ha P. (1998) LeNet. Proc IEEE,

pp. 1–46

64. Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature

521:436–444. https://doi.org/10.1038/nature14539

65. Bengio Y, Courville A, Vincent P (2013) Representation learn-

ing: a review and new perspectives. IEEE Trans Pattern Anal

Mach Intell 35:1798–1828. https://doi.org/10.1109/TPAMI.2013.

50

66. David Dangut M, Skaf Z, Jennions I. (2020) Rescaled-LSTM for

predicting aircraft component replacement under imbalanced

dataset constraint. In: 2020 Adv. Sci. Eng. Technol. Int. Conf.,

IEEE; pp. 1–9. https://doi.org/10.1109/ASET48392.2020.

9118253

67. Roc B. (2021) Comparing two ROC curves – independent groups

design. NCSS, LLC, pp. 1–26

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2023) 35:2991–3009 3009

123

https://doi.org/10.1109/ASET48392.2020.9118253
https://doi.org/10.1109/ASET48392.2020.9118253
https://doi.org/10.1007/978-3-030-14596-5
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1109/ASET48392.2020.9118253
https://doi.org/10.1109/ASET48392.2020.9118253

	A rare failure detection model for aircraft predictive maintenance using a deep hybrid learning approach
	Abstract
	Introduction
	Related work
	Methodology
	Auto-encoder and bidirectional gated recurrent unit network architecture
	The auto-encoder (AE)
	The bidirectional gated recurrent unit
	The convolutional neural networks

	Proposed method
	AE---CNN--BGRU network


	Case study and experimental setup
	Dataset
	Evaluation metrics
	Sensitivity analysis for BGRU merge modes

	Result and discussion
	Measuring the success rate of the proposed models using A330 aircraft
	Measuring the success rate of the proposed models using A320 aircraft
	Sensitivity of AE--CNN--BGRU model to design parameters
	Sensitivity analysis of imbalanced ratio.

	Conclusion and future work
	Author contributions
	Availability of data and materials
	References




