
ORIGINAL ARTICLE

Evading behavioral classifiers: a comprehensive analysis on evading
ransomware detection techniques

Fabio De Gaspari1 • Dorjan Hitaj1 • Giulio Pagnotta1 • Lorenzo De Carli2 • Luigi V. Mancini1

Received: 31 July 2021 / Accepted: 14 February 2022 / Published online: 16 March 2022
� The Author(s) 2022, corrected publication 2022

Abstract
Recent progress in machine learning has led to promising results in behavioral malware detection. Behavioral modeling

identifies malicious processes via features derived by their runtime behavior. Behavioral features hold great promise as

they are intrinsically related to the functioning of each malware, and are therefore considered difficult to evade. Indeed,

while a significant amount of results exists on evasion of static malware features, evasion of dynamic features has seen

limited work. This paper examines the robustness of behavioral ransomware detectors to evasion and proposes multiple

novel techniques to evade them. Ransomware behavior differs significantly from that of benign processes, making it an

ideal best case for behavioral detectors, and a difficult candidate for evasion. We identify and propose a set of novel attacks

that distribute the overall malware workload across a small set of independent, cooperating processes in order to avoid the

generation of significant behavioral features. Our most effective attack decreases the accuracy of a state-of-the-art classifier

from 98.6 to 0% using only 18 cooperating processes. Furthermore, we show our attacks to be effective against commercial

ransomware detectors in a black-box setting. Finally, we evaluate a detector designed to identify our most effective attack,

as well as discuss potential directions to mitigate our most advanced attack.

Keywords Ransomware � Machine learning � Behavioral detection � Evasion

1 Introduction

The problem of automatic malware detection is a difficult

one, with no full solution in sight despite decades of

research. The traditional approach—based on analysis of

static signatures of the malware binary (e.g., hashes)—is

increasingly rendered ineffective by polymorphism and the

widespread availability of program obfuscation tools [1, 2].

Using such tools, malware creators can quickly generate

thousands of binary variants of functionally identical

samples, effectively circumventing signature-based

approaches.

As a result, in recent years the focus of the community

has increasingly shifted toward dynamic, behavior-based

analysis techniques. Behavioral approaches sidestep the

challenges of obfuscated binary analysis. Instead, they

focus on the runtime behavior of malware processes, which

is difficult to alter without breaking core functionality, and

is therefore considered a reliable fingerprint for malware

presence. This strong push toward malware behavioral

analysis, coupled with the recent improvements in the field

of machine learning (ML), has resulted in a multitude of

ML-based behavioral approaches to malware detection.

Popular techniques range from modeling of system call

sequences [3] to full-fledged, fine-grained modeling of

process behavior [4, 5]. At first sight, these techniques

seem to hold great promise: the behavior of malware

& Fabio De Gaspari

degaspari@di.uniroma1.it

Dorjan Hitaj

hitaj.d@di.uniroma1.it

Giulio Pagnotta

pagnotta@di.uniroma1.it

Lorenzo De Carli

ldecarli@wpi.edu

Luigi V. Mancini

mancini@di.uniroma1.it

1 Dipartimento di Informatica, Sapienza Università di Roma,

Rome, Italy

2 Department of Computer Science, Worcester Polytechnic

Institute, Worcester, United States

123

Neural Computing and Applications (2022) 34:12077–12096
https://doi.org/10.1007/s00521-022-07096-6(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0001-9718-1044
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-022-07096-6&domain=pdf
https://doi.org/10.1007/s00521-022-07096-6

differs significantly from that of benign processes and ML-

based behavioral models can easily and reliably exploit this

difference to distinguish between these two classes of

processes. Moreover, behavioral-based approaches are also

able to correctly detect unseen malware samples, as long as

these new samples exhibit some form of anomalous

behavior with respect to benign processes, as showed by

several recent works [4–8]. Finally, behavioral detectors

generally use malware features arising from operations that

are required to achieve the desired malicious behavior, and

therefore are extremely hard to disguise or evade.

This work proposes a new set of techniques to evade

behavioral features used by classifiers to detect malware.

Using these techniques, we show that it is possible to evade

features that are typically considered hard to disguise and

that are inextricably linked to the behavior of malware

processes. Furthermore, we thoroughly assess the robust-

ness of recently-proposed behavioral-based ransomware

detection models against our proposed attacks [4, 5]. We

use ransomware as case study due to both the gravity of the

threat (e.g., [9, 10]), and the fact that—given its highly

distinctive behavioral profile—ransomware is a nearly

ideal target for behavioral-based detection. Our results

show that it is possible to craft ransomware that accom-

plishes the goal of encrypting all user files, and at the same

time avoids generating any significant behavioral features.

Our proposed attacks have fairly low implementation

complexity, do not limit ransomware functionality in any

significant way, and were found to be effective against a set

of academic and commercial anti-ransomware solutions.

Moreover, our attacks are successful even in a black-box

setting, with no prior knowledge of the tools’ inner work-

ings, their training data, or the features used by the ML

model. The core of our approach is an algorithm that

cleverly distributes the desired set of malware operations

across a small set of cooperating processes. While our work

has focused on obfuscating ransomware-related features,

the underlying principles are general and likely to apply to

a wide range of behavioral detectors that analyze the run-

time behavior of different types of malware. To the best of

our knowledge, this is the first instantiation of an efficient,

practical collusion attack in the domain of ransomware.

Finally, we complement our investigation of attacks with a

discussion of potential countermeasures, as well as the

design and evaluation of a detector designed to identify our

most effective attack.

In this paper, which is an extended version of our pre-

vious conference paper [11], we make the following

contributions:

• We perform a comprehensive analysis of characteristic

features typically used to detect ransomware, and define

techniques and criteria for evasion.

• We assess the robustness of current state-of-the-art

behavioral ransomware detectors, showing how it is

possible to design ransomware that completely evades

detection. In particular, we analyze three evasion

techniques: process splitting, functional splitting, and

mimicry.

• We implement and evaluate Cerberus, a proof-of-

concept prototype of a ransomware following our

approach, proving that our evasion techniques are

practical.

• We evaluate our novel evasion techniques against

multiple state-of-the-art ML detectors, as well as

against a leading commercial behavioral detector.

Results show that our techniques are effective and

successfully evade detection, even in a black-box

setting.

• We evaluate the dependence of our attack on the dataset

used. Results show that our evasion techniques are

effective even without access to the dataset used to train

the target classifiers.

• We implement and evaluate a detector for our most

effective attack, functional splitting, showing that it is

possible to train a classifier to accurately detect this

type of attack.

• We study if and how well the functional splitting

detector generalizes on unseen functional-split ran-

somware. Our results show that the classifier is indeed

robust and can generalize, motivating the need for more

complex evasion attacks such as our proposed mimicry

attack.

The remainder of the paper is structured as follows: Sect. 2

provides background on adversarial ML and ransomware

detection. Section 3 describes our novel evasion tech-

niques. Section 4 analyzes features used for ransomware

detection, and discusses general principles for evading

detection. Section 5 describes a proof-of-concept ran-

somware implementing our approach, while Sect. 6 eval-

uates it against a suite of state-of-the-art detection

techniques. Section 7 discusses possible countermeasures

(beyond the ones evaluated in Sect. 7). Section 8 reviews

related work, Sect. 9 discusses the ethical implications of

our work, and Sect. 10 concludes the paper.

2 Background

2.1 Adversarial ML

The core problem of adversarial ML can be stated in a

simplified form as follows. Consider a multi-dimensional

feature space V, where a vector v 2 V may represent

properties (features) of an underlying object of interest o.

12078 Neural Computing and Applications (2022) 34:12077–12096

123

For example, a process may be represented by a vector

encoding the frequencies of certain system calls. Further-

more, consider a classification function f : V ! C mapping

vectors in V to classes in a given set C ¼ c1; . . .; cn. Typ-

ically the goal of an adversarial ML attack is to cause f to

misclassify one or more feature vectors, i.e., forcing the

classifier to make mistakes in mapping objects to labels.

Many classifiers used in security distinguish between a

benign and a malicious object class, i.e., C ¼ fB;Mg. In
this setting, the problem therefore becomes—given a vec-

tor v belonging to class M—to cause f ðvÞ ¼ B. One way to

‘‘trick’’ f is to alter its training dataset, causing it to learn an

incorrect boundary between classes. This constitutes a

poisoning attack [12]. Conversely, adversarial sample

generation consists in picking a victim classifier which has

been trained on a correctly-labeled dataset, and crafting

one or more malicious objects in such a way that they get

classified as benign. In our work, we focus on the latter

attack.

The literature proposes several techniques to generate

adversarial feature vectors directly from a formal repre-

sentation of a target classifier (e.g., [13, 14]). These tech-

niques typically are agnostic to the type of object being

studied, and work purely in feature space. There is then a

second line of work which investigates the complementary

problem, given a successful adversarial feature vector, to

generate a corresponding object (e.g., given the feature

vector that a stealth malware should exhibit not to be

detected, generate the actual binary of the malware). Past

work demonstrates use of adversarial ML to generate

stealth PDF exploits [15–17], Android malware [18–20],

Flash malware [21], and a variety of other dangerous

objects. Our work falls within the realm of adversarial

sample generation. In the rest of this paper, we demonstrate

(1) heuristics to generate adversarial feature vectors for

ransomware behavior, and (2) a proof-of-concept ran-

somware prototype whose behavior generates the target

adversarial feature values.

2.2 Behavioral ransomware detection

The literature presents several recent works on ransomware

detection based on behavioral features [4–7, 22]. UNVEIL

[6] and its successor Redemption [7] detect suspicious

activity by computing a score using an heuristic function

over various behavioral features: file entropy changes,

writes that cover extended portions of a file, file deletion,

processes writing to a large number of user files, processes

writing to files of different types, back-to-back writes.

Similarly, CryptoDrop [22] maintains a ‘‘reputation

score’’—indicating the trustworthiness of a process—

computed based on three main indicators: file type changes,

similarity between original and written content, and

entropy measurement. Additionally, CryptoDrop also uses

deletion and file type funneling (reading/writing a small set

of file types) as secondary indicators.

Our attack is motivated by a review of all the approa-

ches cited above; for evaluation however we selected two

of them, which are described in greater detail in the fol-

lowing. The selection was based on practical considera-

tions: both approaches were published in highly visible

venues, and in both cases the authors kindly provided

enough material (code and/or datasets) and support to

enable us to run their software. Our evaluation also

includes a commercial product from Malwarebytes (dis-

cussed at the end of this section).

2.2.1 ShieldFS

ShieldFS [4] is a technique for identifying ransomware

processes at file-system level and transparently roll back

file changes performed by processes deemed malicious.

Ransomware detection is based on ML models of well- and

ill-behaved processes. Detection is performed at the pro-

cess level by using a hierarchy of random forest classifiers

tuned at different temporal resolutions. Using different

temporal resolutions allows ShieldFS to take into account

both short- and long-term process history when performing

classification, which is crucial to detect code injection-

based ransomware. ShieldFS uses features typically asso-

ciated with ransomware operation for the classifier, such as

#folder-listing operations, #read operations, #write opera-

tions, #rename operations, percentage of file accessed

among all those with same extension and average entropy

of data passed to write operations.

ShieldFS divides the lifetime of each process in up to 28

ticks; ticks do not represent fixed interval of times; instead,

they define fractions of the overall set of files accessed by a

process. Ticks are exponentially spaced; the first tick is

reached when a process has accessed 0.1% of the files on

the filesystem; the last when a process has accessed 100%

of the files. Whenever a certain tick i is reached, ShieldFS

computes the features over multiple intervals. The first

interval covers operations between ticks i� 1 and i. Each

of the remaining intervals ends at tick i and begins further

in the past compared to the previous one. Features com-

puted over each interval are fed to a dedicated model for

classification. Figure 1 (reproduced from [4]) shows the

Fig. 1 Incremental models in ShieldFS (reproduced from [4])

Neural Computing and Applications (2022) 34:12077–12096 12079

123

first six ticks in the lifetime of a process, and the various

intervals covered by each model. A process is considered

malicious if positively detected for K ¼ 3 consecutive

ticks.

ShieldFS also employs a system-wide classifier that

computes and classifies feature values across all processes

in the system. This classifier is however only used to dis-

ambiguate ambiguous results from per-process classifiers.

In other words, if a per-process model over a certain

interval cannot determine whether the process is malicious

or not, system-wide features are computed over the same

interval and fed to the system-wide classifier. When our

attack is successful, individual processes are always clas-

sified as benign with high confidence, and therefore the

system-wide classifier is never triggered.

2.2.2 RWGuard

RWGuard [5], by Mehnaz et al., is a ransomware detector

which leverages multiple techniques: process behavior,

suspicious file changes, use of OS encryption libraries, and

changes to decoy files. We do not discuss decoy and

library-based detection as it is orthogonal to our work.

Compared to ShieldFS, RWGuard uses a relatively simple

detector consisting of a random forest classifier that ana-

lyzes process behavior using a 3 s sliding window. The

features used by the classifier include the number of vari-

ous low-level disk operations performed by each process

under analysis. The behavioral classifier is complemented

by a file monitor component which computes four metrics

after each write operation: a similarity score based on

similarity-preserving hashing, size difference, file type

change, and file entropy. Significant changes in any of first

three metrics and/or high file entropy are interpreted as a

sign of ransomware activity.

The detection process of RWGuard consists of three

steps: when the behavioral classifier detects a suspicious

process activity, the file monitor component is invoked to

validate the initial detection. If both modules agree that the

activity is suspicious, a third module, the File Classification

module, is invoked to assess if the encryption operation is

benign or malicious. Only after all three modules agree on

the maliciousness of the suspicion activity, then the

responsible process is considered malicious. When our

attack is successful, individual processes are classified as

benign by the behavioral module, and the remaining

modules are not invoked.

2.2.3 Malwarebytes

Several commercial anti-ransomware solutions exist; for

our work, we chose to evaluate Malwarebytes’ Anti-Ran-

somware [23]. Differently from most other vendors,

Malwarebytes distributes the beta versions of their ran-

somware detector as a discrete component, i.e., one which

is not integrated with other types of anti-virus technology.

This enables us to evaluate ransomware detection perfor-

mance without having to account for interference from

other malware/virus detection modules. Malwarebytes does

not provide details on the inner workings of their product;

the company however states that their product ‘‘does not

rely on signatures or heuristics’’ [23] and leverages

machine learning [24]. These indications suggest some

type of behavioral classifier. For our evaluation, we use

version 0.9.18.807 beta.

3 Evading behavioral detectors

Behavioral classifiers are designed to use features that are

considered inextricably linked with malicious behavior and

generally not present in benign applications. Our approach

is based on the insight that behavioral detectors collect

these features on a per-process basis to model the behavior

of a given application. For instance, ransomware detectors

profile processes based on features such as entropy of write

operations or number of read/write/directory listing oper-

ations. We exploit this limitation by devising a novel

evasion technique based on distributing the malware

operations across multiple independent processes: each

process individually appears to have a benign behavior.

However, the aggregated actions of all these processes

result in the intended malicious malware behavior. It is

important to note that this is not just a limitation of current

behavioral classifiers, but it is rather an inherent restriction

of process behavioral modeling, as there is no straightfor-

ward way to identify a set of processes working indepen-

dently to achieve a common final goal [25]. While

communication among coordinating processes could be

used to infer cooperation, such communication can be

limited and/or hidden using covert channels. Moreover, it

is possible to employ techniques to avoid hierarchical

relationships between processes (e.g., parent-child) [25].

Section 5 discusses inter-process communication in our

prototype and explains how it can be made completely

stealthy.

The remainder of this section describes our three pro-

posed approaches to evade classification, in increasing

order of complexity: process splitting, functional splitting,

and mimicry.

3.1 Process splitting

is the simplest and most straightforward multi-process

ransomware evasion approach. In process splitting (de-

picted in Fig. 2b), the ransomware behavior is distributed

12080 Neural Computing and Applications (2022) 34:12077–12096

123

over N processes, each performing 1/N of the total ran-

somware operations. Effectively, this approach implements

a form of data parallelism: each individual process per-

forms all the ransomware operations on a subset of the user

files. The intuition is that ransomware classifiers are trained

on traditional, single-process ransomware, which exhibits

extremely high number of operations such as directory

listing, read, and write. Splitting the ransomware over

N independent processes allows to reduce the number of

such operations performed by each individual processes,

since each process only encrypts a subset of all files. If we

split the original ransomware enough times, the number of

operations performed by each individual process-split

ransomware process becomes low enough that the classi-

fier is unable to detect the ransomware.

While this technique is simple, our experiments show it

can be extremely effective even against complex classifiers

(see Sect. 6). Moreover, the approach can be easily tailored

against specific ML models by following a simple process

splitting procedure. Given a trained classifier we want to

evade, we run our ransomware and query the model to

check if it is detected. If the ransomware is detected, we

further split its operations and query the model again. We

continue splitting the ransomware operations over an

increasing number of processes and querying the classifier

until the desired evasion rate is achieved.

3.2 Functional splitting

While process splitting is very effective in reducing the

accuracy of ransomware classifiers, completely evading

detection can be challenging. Indeed, depending on the

robustness of the target classifier, process splitting might

require creating a very large number of processes, which in

turn could be used to detect the presence of ransomware. A

more well-rounded approach to classifier evasion is

Functional Splitting, as illustrated in Fig. 2c. Ransomware

processes perform a set of operations (or functions) to

encrypt user files, such as reading, writing, or directory

listing. When using functional splitting, we separate each

of these ransomware functions in a process group: each

process within the group (called functional split ran-

somware process) performs only that specific ransomware

function. Within each group, we can further apply process

splitting to reduce the number of operations performed by

an individual functional split ransomware process. The

intuition behind the functional splitting approach is that

ML classifiers use groups of features to classify processes.

If a process only exhibits a small subset of the features that

the model associates to ransomware, then it will not be

classified as malicious. Functional splitting takes this

concept to the extreme, having each functional split ran-

somware process only exhibits a single ransomware

feature.

3.3 Mimicry

Functional splitting is extremely effective against current

state-of-the-art ransomware classifiers. Moreover, it does

not suffer from the process explosion issue that affects

process splitting. However, it could be feasible to train an

ML model to recognize this particular evasion attack.

Typical benign processes perform several different types of

functions, therefore an ML model could be trained to dif-

ferentiate between benign processes and functional split

ransomware processes. Indeed, our evaluation shows that

this is in fact possible. In Sect. 6.5, we evaluate a classifier

trained on both normal ransomware as well as on func-

tional split ransomware. Our evaluation shows that such a

classifier is able to detect functional split ransomware with

high accuracy. Furthermore, we show that a classifier

trained on a functional split ransomware with a low number

of inner splits (i.e., each process in a functional group is

split only few times) can generalize and correctly classify

functional split ransomware with high number of inner

splits.

In order to fully evade behavioral ransomware classifiers

and avoid the drawbacks of functional splitting, we propose

a third evasion attack: Mimicry. Rather than splitting ran-

somware processes into individual functional groups, each

ransomware process is designed to have the same func-

tional behavior as a benign process, effectively making it

Fig. 2 Process and functional splitting attacks

Neural Computing and Applications (2022) 34:12077–12096 12081

123

indistinguishable from other benign applications. The

intuition behind the mimicry approach is that behavioral

ML models classify samples based on the expression of a

given set of features. Ransomware processes exhibit some

characteristic features, while different benign applications

exhibit different sets of features to different degrees. By

splitting ransomware into multiple processes—and having

each individual process exhibit only features displayed by

benign processes—it becomes impossible for a classifier to

distinguish between the runtime behavior of mimicry ran-

somware processes and benign processes. Effectively,

mimicry ransomware processes are modeled after benign

processes and exhibit only features that benign processes

exhibit. Moreover, the degree to which each feature is

exhibited by each mimicry process (e.g., how many read/

write operations are performed) is kept consistent with that

of benign processes.

The end result of the mimicry approach is ransomware

processes that act exactly like benign processes. However,

the collective behavior of all the mimicry processes results

in the desired malicious end goal. Section 4 discusses

which features are characteristic of ransomware processes,

and how we can limit the occurrence of each of these

features in order to mimic the behavior of benign

processes.

4 Features discussion

Behavioral classifiers exploit the marked behavioral dif-

ferences between benign programs and malware in order to

detect malicious samples. In the context of ransomware,

such classifiers rely on a wide range of features that all

ransomware programs must exhibit in order to reach their

goal. This section discusses these features and analyze their

robustness to evasion. Many of the features described here

are also displayed by benign processes, and each feature by

itself does not provide strong evidence for or against ran-

somware behavior. However, when considered together,

these features highlight a very unique program behavior

proper of ransomware processes.

4.1 Write entropy

The end goal of ransomware is to encrypt users’ files and

collect a ransom payment in exchange for the decryption

key. Typical encrypted data are a pseudorandom string

with no structure, and exhibit maximum entropy [5], while

structured data written by benign programs are assumed to

have considerably lower entropy. Consequently, entropy of

write operations appears to be a useful feature to differ-

entiate ransomware from benign processes. In fact all state-

of-the-art ML ransomware detectors use entropy of write

operations as a feature, in one form or another [4–7].

Evasion Entropy as a feature for ransomware detection can

be used at different levels of granularity: (1) overall file

entropy [5], (2) average read-write operations differ-

ence [6, 7], and (3) individual write operations [4]. Feature

(1) does not allow accurate differentiation between ran-

somware and benign processes, as nowadays most common

file types are compressed for efficiency, including file types

generally targeted by ransomware such as pdf, docx, xlsx,

video, and image files. Consequently, the overall file

entropy for this file types, as measured by current state-of-

the-art approaches relying on Shannon entropy [26], is

comparable to that of an encrypted file. For what concerns

feature (2), in our research we analyzed several file types

with their associated programs, and found out that in

general benign processes working on compressed formats

exhibit numerous very high entropy reads and writes.

It is worth pointing out, however, that despite the con-

siderations above our dataset also shows a non-negligible

difference in the average entropy of individual file write

operations. Such averages are 0.4825 for benign processes

vs 0.88 for ransomware, with range [0–1]. Despite this

somewhat counter-intuitive result, it is still straightforward

to evade feature (3). Average write entropy can be skewed

simply by introducing artificial, low-entropy write opera-

tions that lower the average write entropy for a ransomware

process, bringing it in line with that of benign processes.

4.2 File overwrite

Different ransomware families use different techniques to

encrypt user files. However, one feature that is common

across ransomware families is that the original file is fully

overwritten, either with the encrypted data or with random

data to perform a secure delete [6]. On the other hand,

benign processes rarely overwrite user files completely.

Therefore, file overwrite is a valuable feature that can be

exploited to classify between ransomware and benign

processes.

Evasion In order to evade this feature, the percentage of a

file overwritten by a single ransomware process must be

limited. Maintaining this percentage within the range

exhibited by benign processes can be easily achieved with

our proposed multi-process ransomware approach. It is

sufficient to distribute write operations to a given file over

multiple ransomware processes, each of which only over-

writes a portion of the file. Each individual process does

not show any suspicious behavior, but the aggregated

action of all the processes still overwrites the whole file.

12082 Neural Computing and Applications (2022) 34:12077–12096

123

4.3 Directory traversal

In order to maximize the amount of damage for the victim,

ransomware typically encrypts every file in any given user

directory. Therefore, ransomware processes issue open

operations for every file in a directory. This behavior is

fairly distinctive and not common in benign processes,

except for some particular cases. Therefore, when coupled

with other meaningful features, directory traversal can

serve as a useful indicator to detect a ransomware process.

Evasion The directory traversal feature can be easily eva-

ded using our multi-process ransomware approach. Indeed,

by setting an upper bound on the number of files each

ransomware process can access in a given directory, it is

possible to heavily reduce the expression of this feature.

4.4 Directory listing

In order to encrypt user files, ransomware first needs to

discover all files of interest. In order to perform file dis-

covery, ransomware issues a very large amount of file

listing operations. While some types of benign processes

also exhibit similar behavior (e.g., Windows Explorer), this

feature can be a valuable indicator of ransomware activity

when coupled with other meaningful features.

Evasion The directory listing feature can be easily evaded

using our multi-process ransomware approach. Indeed,

having multiple processes allows to distribute the listing

operations and therefore limit the incidence of this feature

for each individual process.

4.5 Cross-file type access

Typically, benign processes only access a fixed subset of

file types (e.g., a pdf viewer will access pdf files, but not

docx). On the other hand, a ransomware process will access

all important user files, regardless of their file types, in

order to encrypt them (e.g., pdf, xlsx, jpeg). This cross-file

type access behavior can therefore serve as a useful feature

to detect ransomware operations when coupled with other

meaningful features.

Evasion Cross-file type access can be evaded in a similar

fashion to the directory traversal feature. It is sufficient to

separate ransomware processes into different groups, and

have each process in a group access only a coherent subset

of file types. This is enough to make a ransomware process

indistinguishable from benign processes from the point of

view of file type access.

4.6 Read/write/open/create/close operations

Ransomware accesses and encrypts as many files as pos-

sible on the victim’s directories to maximize the damage

and ensure the payment of a ransom. This behavior results

in an abnormally large amount of file operations such as

read, write, open, close and, for some ransomware fami-

lies, create. Typical benign processes rarely access so

many files in a single run, except for some particular cases

(e.g., files indexer).

Evasion Our multi-process approach allows to evade this

feature. By using multiple coordinated processes to encrypt

user files, each individual process only needs to access a

subset of all user files. By varying the number of ran-

somware processes used, we can limit how many file

operations each individual ransomware process performs.

4.7 Temporary files

Some ransomware families use temporary files as buffer to

encrypt files before overwriting them, or as a temporary

data storage while copying or removing the original

files [5]. While several benign programs also generate

temporary files, this behavior can be useful when used

together with other indicators to detect the presence of

ransomware [5].

Evasion Ransomware does not necessarily need to use

temporary files to encrypt user data. Therefore, the most

obvious and effective way of evading this feature is not

creating temporary files. Regardless, our multi-process

technique can be applied to keep the number of temporary

files generated by each individual process, in line with the

average number of temporary files used by benign

applications.

4.8 File type coverage

For the purpose of ransomware, not all files are equally

important. Some file types are far more likely to contain

important data for the victim than others (e.g., a docx file

vs. a cfg). Ransomware strives to access and encrypt all

files with relevant extensions [4], such as all docx files in a

directory tree, in order to maximize damage. On the other

hand, benign programs typically only access a fraction of

these files.

Evasion While it can be tricky for traditional ransomware

to evade this feature, it is fairly straightforward when using

our proposed approach. A natural consequence of dis-

tributing ransomware over multiple processes is that each

individual process accesses only a fraction of the total user

files. To evade the file type coverage feature, it is sufficient

Neural Computing and Applications (2022) 34:12077–12096 12083

123

to make sure that each ransomware process only accesses

and encrypts a portion of all the files of a given type.

4.9 File similarity

Encrypting a file completely changes its content, since the

original data are overwritten with pseudorandom data.

Typical benign processes rarely alter a file in a way that its

content is overall completely different from the previous

version. On the other hand, ransomware always completely

changes the whole content of a file when encrypting it.

Therefore, overall file similarity before and after write

operations from a given process is a strong feature to detect

ransomware operation [22].

Evasion Traditional ransomware always changes the whole

file, either by encrypting it or by performing a secure delete

operation. Therefore, there does not appear to be a simple

way to avoid file similarity feature. However, our approach

can evade this feature with a technique similar to that

proposed for the file overwrite feature. By having each

ransomware process encrypt only a portion of any given

user file, we preserve the overall file similarity after each

individual write operation, and no individual process

changes the whole file content.

4.10 File-type change

Files are structured data, and most file types are charac-

terized by some magic bytes [27] within the file content.

When a file is fully encrypted, the magic bytes are also

altered, effectively changing the file type signature. Benign

program operations do not generally alter file types. On the

other hand, ransomware operations always do. Therefore,

file type change can be a useful feature to detect ran-

somware operation.

Evasion The file type change feature can be easily evaded,

even by traditional ransomware. Indeed, it is enough for the

ransomware to preserve the original magic bytes of the file.

Even if more complex file-type techniques are used, such

as looking for changes in the overall structure of a given

file, a ransomware can still evade this feature by main-

taining the overall file structure during encryption with

techniques such as format-preserving encryption [28].

4.11 Access frequency

In order to maximize the damage to the victim and mini-

mize the time window to intervene and stop the attack,

ransomware aims to encrypt user files as quickly as pos-

sible. To do so, a typical ransomware performs write

operations on different files in short time windows. Some

ransomware classifiers therefore use the write access

frequency of a process as a feature to differentiate between

benign and malicious processes [7].

Evasion Our analysis indicates that even benign processes

often exhibit high file-write access frequency. Analyzing

the ShieldFS process dataset [4], we found that it is not

uncommon for benign processes to perform write opera-

tions to different files in short time intervals, making this

feature rather weak for ransomware classification. More-

over, using our multi-process approach allows to decrease

the ransomware access frequency to be in line with that of

benign processes, while maintaining a high file encryption

throughput due to parallelization.

4.12 Other features

This section covered what we found to be the most used

and robust features employed by current ransomware

classifiers. Other features were proposed in the literature to

improve detection accuracy. However, we found that these

are either very weak (e.g., file size change [5]), or extre-

mely similar to other features that we already discussed

(e.g., file type funneling [22]). Therefore, evasion is either

not necessary or achieved in a similar way to what is

discussed.

5 Implementation

This section presents the implementation of Cerberus, our

ransomware prototype implementing the mimicry evasion

technique, as well as our re-implementation of the

ShieldFS classifier.

5.1 The cerberus prototype

Splitting ransomware functionality over independent pro-

cesses requires coordination. Ensuring that each ran-

somware process only expresses features typical of a

benign process further complicates the implementation.

Here, we briefly describe Cerberus, a new ransomware

prototype developed to demonstrate the feasibility of our

evasion techniques. The Cerberus prototype implements

both the functional splitting and mimicry attacks. Func-

tional splitting separates ransomware functions in different

functional groups: a process in any given group performs

only the specific ransomware functions assigned to that

group. For instance, ransomware processes in the read-

write functional group only perform read and write oper-

ations. Cerberus implements functional splitting by sepa-

rating ransomware operations in three groups: (1) directory

list, (2) write, and (3) read-rename. Read and rename are

performed in the same functional group mainly for

12084 Neural Computing and Applications (2022) 34:12077–12096

123

implementation convenience. Note that separating read and

write does not require additional open operations, as Cer-

berus uses the Windows API DuplicateHandle() to

share handles to opened file between collaborating ran-

somware processes. We could have considered additional

features for the implementation of functional splitting, as

discussed in Sect. 4. However, since the goal of Cerberus is

merely to prove the feasibility of our evasion techniques,

we considered only the most important features exhibited

by every ransomware family. Section 6.3 shows that the

features considered are enough to evade even commercial

ransomware detectors in a black-box settings.

To implement the mimicry attack in Cerberus, we per-

formed a statistical analysis on the behavior of benign

processes from the ShieldFS dataset (Sect. 6.1), which

contains traces from 2245 unique benign applications col-

lected over a month. Table 2 shows that we can identify a

few behavioral classes that represent most benign processes

in the dataset (notation in Table 1). For our implementa-

tion, we chose the 2nd and 3rd most represented classes:

directory listing-read and read-write-rename. We chose

these because they are highly represented in the dataset of

benign processes, as well as because no ransomware pro-

cess belongs to any of these two classes (all the 383 real

ransomware in our dataset exhibits directory listing, read,

write, and rename operations together). Within each class,

we strive to maintain the same ratio between operations as

exhibited by benign processes. To achieve this, we intro-

duce dummy operations, such as null reads or empty

writes, to maintain the exact operation ratio of benign

processes. As creating a large number of processes at the

same time could be used to detect our evasion technique,

Cerberus’ ransomware processes are generated in a

sequential fashion. It is worth noting that this is not

required, and that in general few ransomware processes can

be generated at a time in order to improve throughput.

It is worth noting that, while our Cerberus prototype

works under Windows systems, an equivalent malware

could be easily implemented in Linux and MacOS in a

similar fashion.

5.2 Ransomware interprocess communication

In order to orchestrate individual processes and achieve the

ransomware’s goal, it is necessary to coordinate them

properly, which requires some form of inter-process com-

munication. For instance, writer processes need to know

the original content of the file to encrypt, which is provided

by reader processes. However, standard inter-process

communication mechanisms such as pipes generate addi-

tional I/O Request Packets (IRP) [29], which are used by

current state-of-the-art detectors to calculate features.

Therefore, using standard inter-process communication

would skew the behavior of the mimicry ransomware

processes, potentially making them easier to detect. The

Cerberus prototype implements a stealthy communication

technique based on direct memory access, which allows us

to avoid generating additional IRP traces for process

communication. In particular, we leverage a feature of the

Windows API that allows processes belonging to the same

user to read/write directly to each other’s address space,

without the need for any special permissions or memory

sharing. This is possible since all ransomware processes are

started by the same user. The only requirement is for the

ransomware processes to know the address range from the

address space of the process they wish to read/write to,

which in our case is passed as an argument during process

creation. This is mostly for implementation convenience,

as we could easily use more sophisticated covert channel

techniques to share the memory address in a stealthy

manner.

A keen observer could make the point that direct

memory access is effective only because current state-of-

the-art detectors use IRP traces to build feature vectors of

processes and that an improved detector could, for

instance, use lower level system call hooks to intercept

direct memory communication. However, multiple works

have shown that detecting communication between several

malware processes can be challenging, as many commu-

nication and covert channel techniques can be employed to

thwart detection [25, 30] (these works are also discussed in

Sect. 8). While there exist works aimed at detecting

memory-based and other types of covert channel commu-

nication [31], the general problem of detecting any covert

channel is still open. Cerberus is merely an experimental

prototype and we did not implement more complex forms

of stealth communication, however, this could be easily

done in a real-world implementation of our attacks.

5.3 ShieldFS

As we could not obtain the original code or a prototype for

ShieldFS due to patenting issues, we re-implemented the

Table 1 Notation

DL: Directory listing operation CL: Close operation

RD: Read operation FRD: Fast read operation

WT: Write operation FWT: Fast write operation

RN: Rename operation FOP: Fast open operation

OP: Open operation FCL: Fast close operation

{X,Y}: Functional group of processes performing op. X and Y

Neural Computing and Applications (2022) 34:12077–12096 12085

123

ShieldFS classifier exactly as described, interacting with

the ShieldFS’s authors to clarify any potential misunder-

standing. We split the ShiedFS dataset in training and

testing set following a 10 : 1 ratio and trained each of the

ShieldFS model’s tiers with the appropriate feature vectors

from benign and ransomware traces. As in the original

paper, we trained multiple classifiers for each of the 28

tiers, covering percentage of file accessed from 0:1% up to

100%. Each classifier is implemented as a random forest of

100 trees. All parameters and details about the setup of the

dataset and the ensemble of classifiers were set following

the original setup in [4]. We validated our implementation

on the training set and obtained results in line with the

original classifier. More specifically we performed a one-

machine-off cross validation, as done in the original paper,

where benign data from one machine is selectively

removed from the training set and used for the testing. The

average accuracy of our classifier came out at 98.6%,

which is slightly higher that the 97:7% overall performance

reported in [4].

6 Evaluation

This section presents the experimental evaluation of our

evasion techniques. In particular, we aim at answering the

following research questions: (1) is our theoretical attack

technique effective in avoiding detection? In Sect. 6.2, we

apply our techniques to traces generated executing tradi-

tional ransomware, and show that process splitting, func-

tional splitting, and mimicry effectively avoid detection;

(2) can our theoretical attack evade detection when

implemented in a real-world setting? In Sect. 6.3, we

evaluate our prototype Cerberus in a virtual machine,

showing that our theoretical attacks can be implemented

and are effective in the real world; (3) do our evasion

techniques generalize, evading classifiers trained on dif-

ferent datasets? In Sect. 6.3 we show that the mimicry

attack, modeled on the ShieldFS dataset and implemented

in Cerberus, successfully evades detection of RWGuard,

which is trained on a different dataset; (4) is our attack

effective in a black-box setting against commercial

behavioral ransomware detectors? Sect. 6.4 shows that

Cerberus successfully evades detection of Malwarebytes

Anti-Ransomware, a leading commercial behavioral ran-

somware detection tool; (5) can a behavioral-based clas-

sifier detect with high accuracy functional-split

ransomware? Can such a detector generalize to unseen

functional split ransomware? In Sect. 6.5, we show that an

appropriately designed and trained detector can detect

functional-split ransomware with high accuracy and that

such model can generalize to unseen functional-split

ransomware.

6.1 Dataset and experimental setup

Our trace-based evaluation leverages a dataset provided to

us by the authors of ShieldFS. Table 3 summarizes this

dataset; further details can be found in [4]. To train our

classifiers, we divided the data on benign processes from

the 11 machines comprising the dataset into: 10 machines

for the training set and one for the testing set. For the 383

ransomware samples, which include different ransomware

families, we use 341 for training and 42 for testing.

In order to test our Cerberus prototype, we created a

realistic virtual machine-based testbed, consisting of a

VirtualBox-based Windows-10 VM. We based the VM

user directory structure and file types on the disk image of

an actual office user. File contents were extracted from our

own machines and replicated as needed. In total, our VM is

comprised of 33,625 files for a total of � 10GB, dis-

tributed over 150 folders.

In all our experiments we use only ransomware pro-

cesses for the evaluation, since the goal is to assess whether

our proposed approaches can successfully evade detectors.

Consequently, for all our experiments we use the accuracy

of each classifier in detecting ransomware processes as

performance metric.

6.2 Trace-based evaluation

This section presents the trace-based evaluation of process

splitting, functional splitting, and mimicry attacks. This

evaluation uses the I/O Request Packets (IRP) traces [29]

of real ransomware from the ShieldFS dataset. The testing

dataset contains 42 unique ransomware samples, which

include different ransomware families. For each ran-

somware, the IRP trace contains the complete list of I/O

operations performed by the ransomware process. Both

ShieldFS and RWGuard extract the ransomware features

used for detection, such as number of read/write opera-

tions, directly from the IRP Traces.

Our evaluation simulates multiple processes by splitting

the IRP trace of a single ransomware in multiple traces,

based on the specific evasion technique under evaluation.

Successively, we compute the feature vector for each

individual trace as if it were an individual ransomware

process. Finally, we query the classifier and compute the

percentage of feature vectors classified as belonging to a

ransomware. Table 1 introduces the notations that we will

use in the remainder of this section.

6.2.1 ShieldFS

This section evaluates the effectiveness of our techniques

against the ShieldFS ransomware detector.

12086 Neural Computing and Applications (2022) 34:12077–12096

123

6.2.1.1 Process splitting As mentioned in Sect. 3.1, pro-

cess splitting evenly splits the operations performed by a

ransomware process over N processes. In a process-split

ransomware, all processes exhibit almost identical behavior

and characteristics. We begin our evaluation by splitting

the original ransomware trace in multiple traces, querying

the classifier in each trace. We increase the number of

traces until complete evasion is achieved. We evaluate

process splitting with 42 unique ransomware traces, which

include different ransomware families. We compute the

feature vector for each process-split ransomware, query the

classifier and compute the percentage of feature vectors

flagged as malicious. Figure 3a illustrates our results. We

can see that ShieldFS accuracy decreases already after a

single split, going from single-process 98:6% accuracy

down to 65:5% on a two-process ransomware. Further

splitting incurs diminishing returns: going from two to ten

processes results in 20:1% accuracy (45:4% decrease), and

going from ten to one hundred processes results in 16:69%

accuracy (3:41% decrease). Completely evading the

ShieldFS classifier requires approximately 11000 pro-

cesses. The requirement of such a large number of pro-

cesses to achieve full evasion is a clear drawback of this

simplistic approach. It is reasonable to imagine a coun-

termeasure that can detect process-split ransomware by

monitoring the process creation behavior at a system-level.

Large swaths of newly created processes that exhibit sim-

ilar behavior can then be clustered and analyzed as if they

were a single process.

6.2.1.2 Functional splitting As discussed in Sect. 4, ran-

somware exhibits several distinctive features. Functional

splitting (see Sect. 3.2) exploits the reliance of current

behavioral classifiers on the presence of most of these

features to detect ransomware. This section evaluates the

effectiveness of evasion based on the lack of expression of

certain features against ShieldFS. The ShieldFS classifier is

trained on six features: #folder listing (DL), #file reads

(RD), #file write (WT), #file rename (RN), file type cov-

erage, and write entropy. Our evaluation focuses on the

four main operations performed by ransomware—DL, RD,

WT, RN—and split ransomware processes based on these

four functional groups. Finally, we assess how each func-

tional split ransomware process performs against the

detector. Note that focusing only on these 4 features makes

it harder to evade the detector, since we make no attempt to

evade the remaining 2 features.j

Differently from process splitting, functional splitting

requires the definition of the set of features that are targeted

for evasion. In our experiments, we first evaluate single

functional splitting, where each functional split process

performs only one type of operation, resulting in four

functional groups (DL, RD, WT, and RN process groups).

Within each functional group, we apply our process split-

ting technique: starting with a single functional split pro-

cess per group, we recursively split it into multiple

processes until complete evasion is achieved. As illustrated

in Fig. 4a, we are able to completely evade ShieldFS by

using 20 functional split processes, 5 for each of the four

functional groups. Note the contrast between Figs. 3a and

4a. With single functional splitting, 4 processes (one for

each functional group) are enough to drop the detector

accuracy down to � 2:5%, compared to the � 7500 pro-

cesses required with process splitting.

The effectiveness of functional splitting can be

explained by analyzing the dataset. There is a significant

difference in behavior, in terms of types of operations

performed, between benign and ransomware processes

over their lifetime. All of the ransomware processes in the

dataset perform DL, RD, WT, and RN types of operations,

while only approximately 19% of benign processes have a

similar behavior. Since the feature expression profile

between traditional and functional split ransomware is so

different, with the latter being closer to benign processes

than traditional ransomware, the accuracy of the classifier

is heavily affected. To validate this hypothesis, we further

study how different functional groups affect the perfor-

mance of the detector. In particular, using combined

functional groups (i.e., processes performing RD and WT,

or DL and RN), rather than single functional groups,

should result in higher detection accuracy as the behavioral

profile of the functional split ransomware gets closer to that

(a) ShieldFS (b) RWGuard

Fig. 3 Evaluation of the process

splitting evasion technique

Neural Computing and Applications (2022) 34:12077–12096 12087

123

of a traditional ransomware. Figure 4b illustrates our

results. This experiment evaluates the accuracy of ShieldFS

considering two different implementations of functional

split ransomware. In the first implementation, the opera-

tions are divided into the two functional groups

{DL,RD},{WT,RN}, while in the second implementation

the two functional groups are {DL,RN}, {RD,WT}. Fig-

ure 4b shows that the initial accuracy of the classifier is

much higher when compared to single functional splitting,

hovering around 80% for {DL,RN}, {RD,WT} and around

70% for {DL,RD},{WT,RN}. However, the accuracy

quickly drops as we apply process splitting within each

functional group, reaching � 0% at 20 processes (10 for

each functional group). The high initial detection accuracy

for Fig. 4b is due to the fact that in the first ransomware

implementation we have the {RD,WT} functional group

and in the second implementation we have the {WT,RN}

functional group. Both these functional groups are always

present in traditional ransomware, therefore the model is

more likely to classify processes that heavily exhibit these

features as malicious. Indeed, we can see that after process

splitting is applied in each functional group—and therefore

the number of operations per functional split ransomware

process decreases—the accuracy for both functional split-

ting implementations quickly falls toward zero.

6.2.1.3 Mimicry Functional splitting evades detection by

preventing the expression of one or more features from

ransomware processes. Mimicry takes this concept one step

further: rather than completely removing a feature, we

model ransomware features so that, on average, they are

identical to those of benign processes. Our mimicry attack

therefore requires the definition of a behavioral model (or

set of behavioral models) of benign processes that the

mimicry processes will follow. We build our model of a

typical benign process by performing an in-depth statistical

analysis on the behavior of benign processes in the

ShieldFS dataset [4], which comprises observations of well

above 1 month of data from 2245 unique benign applica-

tions and � 1:7 billion IRPs. We compute the average

value for the main features used to profile ransomware and

we extract the ratios between different types of I/O oper-

ations performed by benign processes. Finally, we split the

ransomware activity into multiple processes, based on

average feature values and ratios. We evaluate our

approach on the ShieldFS ransomware traces that are part

of our testing set.

We focus on modeling the four main operations per-

formed by ransomware and benign processes—DL, RD,

WT, RN—together with the number of file accessed. Note

that we could easily consider more features in our model-

ing, up to all features described in Sect. 4. However, since

the goal of this evaluation is to prove the effectiveness of

our techniques, it is sufficient to consider the most repre-

sentative features. Table 2 shows the different behavioral

profiles exhibited by benign process, along with how rep-

resented that behavior is in the dataset. As can be seen, the

most represented functional group of benign processes

exhibits all four main operations {DL,RD,WT,RN}, with

(a)Single functional splitting (b) Combined functional splitting

Fig. 4 Evaluation of the

functional splitting evasion

technique against ShieldFS

Table 2 Behavioral profiles exhibited by benign processes and their

presence in the dataset

DL RD WT RN % of processes

U U U U 19.07

U U – – 18.37

– U U U 16.35

– U – – 11.44

U U U – 7.60

– U – U 6.85

– – – U 6.21

– U U – 5.61

U – – – 3.55

– – U U 2.18

U U – U 1.76

– – U - 0.42

U – – U 0.38

U – U – 0.13

U – U U 0.08

12088 Neural Computing and Applications (2022) 34:12077–12096

123

the functional groups {DL,RD} and {RD,WT,RN} being a

close second and third. On the other hand, if we consider

the behavioral profile of ransomware processes, all 383

ransomware samples perform all four main operations.

Given that the first three process behavior groups in

Table 2 are all highly represented, any of them would be a

suitable target for mimicry. For this evaluation, we decided

to use the {DL,RD,WT,RN} functional group. While this

functional group is also representative of most benign

processes, the average number and ratio of operations is

completely different when compared to ransomware. This

functional group seems to be the worst-case scenario for

our mimicry evasion technique. As illustrated in Table 4,

for benign processes in the {DL,RD,WT,RN} group, the

ratio between operations is 1:16:13:1. This means that for

each DL operation, there are 16 RD, 13 WT, and 1 RN

operations, respectively. Moreover, processes in this

functional group access on average about 0:83% of the

total number of user files in the system. We split our ran-

somware traces in the test set by following these averages

and ratios, resulting in 170 mimicry ransomware processes,

and successively query the classifier with each of them. We

replicate this experiment for each of the 42 ransomware

sample in our test set. None of the mimicry processes for

any of the 42 ransomware is detected by the ShieldFS

classifier.

6.2.1.4 Discussion It is worth noting the huge improve-

ment gained with mimicry with respect to process splitting.

In both mimicry and process splitting, each process per-

forms all ransomware operations and therefore exhibits all

the features used by ShieldFS for classification. However,

with 170 process-split ransomware the detection rate of

ShieldFS is about 14%, while with mimicry we are able to

fully evade the detector. In comparison, process splitting

needs almost two orders of magnitude more processes to

achieve full evasion: 11,000 processes.

6.2.2 RWGuard

This section evaluates the effectiveness of our techniques

against the RWGuard ransomware detector.

6.2.2.1 Process splitting We implement process splitting

as in the evaluation against ShieldFS. As illustrated in

Fig. 3b, the detection accuracy for RWGuard follows a

curve similar to that of ShieldFS: the accuracy of the

classifier initially remains stable around the original 99:4%,

until a critical point, after which it quickly decreases to

� 10%. Afterward, both curves exhibit a long tail, with the

detection accuracy very slowly decreasing to zero after 400

processes for RWGuard.

6.2.2.2 Functional splitting The RWGuard detector uses

eight features to classify benign and malicious processes:

RD, WT, OP, CL, FRD, FWT, FOP, and FCL. In this

evaluation, we split the ransomware traces based on all

eight features, and assess how each functional split

Table 3 Dataset details

Type Benign Ransomware

Unique applications 2245 383

Applications training set 2074 341

Applications testing set 171 42

IRPs [Millions] 1763 663.6

Table 4 Ratio between different

operations for various types of

benign processes

Combination DL RD WT RN RD entropy WT entropy File access (%)

RD, RN 0 2 0 1 0.53 0 0.02

WT 0 0 1 0 0 0.42 0.60

DL, RD, WT, RN 1 16 13 1 0.59 0.46 0.83

RD 0 1 0 0 0.46 0 0.03

WT, RN 0 0 5 1 0 0.47 0.02

RD, WT 0 5 1 0 0.29 0.57 1.33

DL, RD, RN 8 39 0 1 0.42 0 0.09

DL, WT 2 0 1 0 0 0.51 0.01

RD, WT, RN 0 6 20 1 0.53 0.28 0.22

DL, RD, WT 3 52 1 0 0.57 0.77 0.17

DL 1 0 0 0 0 0 0.00

DL, RD 1 2 0 0 0.52 0 0.17

DL, WT, RN 1 0 8 2 0 0.39 0.03

DL, RN 45 0 0 1 0 0 0.06

RN 0 0 0 1 0 0 0.03

Neural Computing and Applications (2022) 34:12077–12096 12089

123

ransomware process performs against the detector. We

begin the evaluation with single functional splitting, where

each functional split process performs only one type of

operation, resulting in eight functional groups (one for each

feature). Within each functional group, we apply process

splitting until complete evasion is achieved. As shown in

Fig. 5a, to fully evade the RWGuard classifier we need 64

functional split processes – 8 for each functional group.

We further study how different functional groupings

affect the accuracy of RWGuard. In particular, we evaluate

the accuracy of RWGuard against two different imple-

mentations of functional split. In the first, the operations

are divided into the two functional groups

{OP,WT},{RD,CL}. For the second implementation, we

use the {RD,WT},{OP,CL} functional groups. For the

purpose of grouping, we make no distinction between

normal and fast operations in this experiment. As shown in

Fig. 5b and consistently with our ShieldFS evaluation

(Fig. 4b), we see that the initial accuracy for

{RD,WT},{OP,CL} is much higher than in the single

functional splitting case, starting at approximately 95% for

two processes (one per functional group). This behavior is

to be expected since RD and WT, two of the features with

the highest importance for both detectors, are performed in

the same functional group. Indeed, when we split these

operations in two separate functional groups the accuracy

of RWGuard is much lower, starting at � 4% with only 2

processes ({OP,WT}, {RD,CL} in Fig. 5b).

6.2.2.3 Mimicry We evaluate our mimicry approach

against the RWGuard classifier. As for the ShieldFS eval-

uation, we model ransomware features so they are, on

average, identical to those of benign processes. In partic-

ular, we model the main features used by RWGuard: RD,

WT, OP, CL, FRD, FWT, FOP, and FCL. We split the

ransomware traces in the test set by following the average

operation number and operation ratio performed by benign

processes, which resulted in 10 mimicry ransomware pro-

cesses, and queried the classifier with each individual split

trace. None of the 42 ransomware samples in our test set

was detected by RWGuard.

6.3 Cerberus evaluation

This section evaluates Cerberus, our ransomware prototype

implementing functional splitting and mimicry evasion.

Section 6.2 showed that our evasion techniques are effec-

tive when applied on the traces generated by traditional

ransomware. However, it is still necessary to demonstrate

that a prototype implementation of our techniques would

work in practice. Moreover, in Sect. 6.2 we modeled

mimicry processes based on the benign processes of the

dataset used for the training of ShieldFS and RWGuard. It

is necessary to determine whether our techniques can

generalize to the case where the benign process model is

derived from a surrogate dataset (i.e., a dataset different

from the one used to train the classifier).

6.3.1 ShieldFS

We evaluate Cerberus against ShieldFS in our virtual

machine, both in the functional split and mimicry modes.

Cerberus implements functional splitting with the follow-

ing three functional groups: {DL},{WT},{RD,RN}.

Reading and renaming operations are performed by the

same process group mainly for implementation conve-

nience. It is worth noting that aggregating these two fea-

tures makes it easier for the classifier to detect the

ransomware. By setting Cerberus to use 6 processes per

functional group (18 processes total, which is the closest to

the 20 processes suggested by our trace-based evaluation),

we were able to fully evade the detector: no functional split

process was flagged as ransomware.

We also evaluate Cerberus in mimicry mode against

ShieldFS. We described the details of the mimicry imple-

mentation in Cerberus in Sect. 5.1. The number of pro-

cesses in mimicry mode depends on the average number of

files accessed by the mimicked benign process group in our

dataset. Table 4 shows that {DL,RD} processes access on

average � 0:17% of the total files, while {RD,WT,RN}

(a) Single Functional Splitting. (b) Combined Functional Splitting.

Fig. 5 Evaluation of the

functional splitting evasion

technique against RWGuard

12090 Neural Computing and Applications (2022) 34:12077–12096

123

processes access � 0:22%. In our VM, this results in a

Cerberus run with 470 mimicry processes, which were all

able to evade the ShieldFS detector, fully encrypting the

VM files. This evaluation proves that our attacks are

practical and applicable in realistic settings.

6.3.2 RWGuard

We further evaluate Cerberus against RWGuard in our

virtual machine, both in the functional split and mimicry

modes. An important difference compared to the RWGuard

evaluation in Sect. 6.2 is that functional splitting in Cer-

berus considers only three functional groups, that are:

{DL}, {WT}, and {RD,RN}. Cerberus does not split

RWGuard-specific features (i.e., OP, CL, FOP, FCL, FRD,

FWT). Regardless of this fact, we are able to fully evade

RWGuard with Cerberus set to use 18 functional split

processes in total (6 per functional group), as in the

ShieldFS case.

We also evaluate the mimicry mode of Cerberus against

RWGuard. For this evaluation, Cerberus is trained with the

model of benign processes obtained from the ShieldFS

dataset, while the RWGuard model is trained on the orig-

inal dataset used by the authors in [5]. As before, in our

VM evaluation Cerberus runs with 470 mimicry ran-

somware processes, which are all able to fully evade the

RWGuard detector, fully encrypting the VM files. This

evaluation shows that our evasion techniques can gener-

alize to classifiers trained on different datasets.

6.4 Evaluation against a malwarebytes anti-
ransomware

In previous experiments, the features used by the detectors

(ShieldFS and RWGuard) were known. However, in a real

attack scenario this white-box setting assumption might not

hold true. The last part of our experimental evaluation

focuses on black-box settings where details of the detectors

are not known. In particular, we pitch Cerberus against a

leading commercial ransomware detector: Malwarebytes

Anti-Ransomware. Malwarebytes states that their Anti-

Ransomware tool ‘‘does not rely on signatures or heuris-

tics’’ [23], but rather leverages machine learning tech-

niques [24]. We have no knowledge of the internal

workings of the Malwarebytes classifier, such as which

features it uses for classification, nor of its dataset. This

makes Malwarebytes an ideal detector to test the viability

of our evasion techniques in a black-box setting. We

evaluate Cerberus against Malwarebytes in both the func-

tional split and mimicry modes. For the functional splitting

approach, we continue to set Cerberus to use a total of 18

functional split processes (6 per functional group). All 18

functional split processes successfully evade Malware-

bytes, fully encrypting the VM files.

We also evaluate Cerberus running in mimicry mode

against Malwarebytes Anti-Ransomware. As usual, the

mimicry behavior of Cerberus processes is modeled based

on the ShieldFS benign process dataset. Therefore, Cer-

berus runs with the usual 470 mimicry ransomware pro-

cesses, which all successfully evade Malwarebytes and

fully encrypt the VM files. This last experiment shows that

our evasion techniques are general, are effective on com-

mercial detectors, and work in a black-box setting where

we have no information on the classifier.

6.5 Detecting functional splitting

In this section, we consider the problem of hardening a

behavioral ransomware classifier against functional split-

ting. We focus on functional splitting as this attack is

extremely effective, but results in behavior which, while

avoiding detection by a traditional classifier, arguably

differs significantly from that of benign processes. There-

fore, differently from mimicry—which results in behavior

which is, feature-wise, indistinguishable from benign pro-

cesses—it is conceivable than an appropriately trained

behavioral classifier may gain the ability to detect a func-

tional splitting attack.

To evaluate the above hypothesis, we implemented a

multi-tier random forest classifier using the ShieldFS

architecture (see Sect. 2). For this evaluation, we per-

formed two sets of experiments with different datasets:

1. Complete training set. The testing and training sets

contain normal ransomware samples as well as func-

tional split ransomware samples with up to 50 splits

(i.e., 200 processes for single and 100 for combined

functional splitting). With this experiment we evaluate

whether the model is able to properly classify

traditional ransomware as well as functional split

ransomware with a number of splits seen during

training (i.e., the testing and training set both contain

samples split up to 50 times).

2. Partial training set. The testing set contains normal

ransomware samples as well as functional split

ransomware samples with up to 50 splits. The training

set contains normal ransomware samples as well as

functional split ransomware samples with up to 10

splits. With this experiment we evaluate whether the

model is able to generalize, properly classifying

functional split ransomware with a number of splits

that are much higher than those seen during training.

Figure 6a, b illustrate our results when training with the

complete dataset (1), for single functional splitting and

Neural Computing and Applications (2022) 34:12077–12096 12091

123

combined functional splitting, respectively. As we can see,

the performance of the detector remains consistently above

� 97% for both single and combined splitting for up to 50

splits (i.e., 200 processes for single and 100 for combined

functional splitting). This is in contrast with the original

results of the ShieldFS classifier, where detection accuracy

quickly reached 0 after only 5 splits for single functional

splitting and 10 for combined. These results indicate that

the heavy drop in performance found in the original model

(see Sect. 6.2) is due to the lack of representation of

functional split ransomware in the dataset, rather than

because of intrinsic limitations of behavioral models in

detecting functional split ransomware.

Overall, Fig. 6 highlights that a model trained on a

specific number of splits is able to detect ransomware that

is split that specific number of times. However, it does not

directly address the question of whether such behavioral

model is robust and can generalize in terms of the number

of splits. In particular, in a real-world setting it is not

possible to know in advance how many times a ran-

somware will be split, and train the model accordingly. A

robust ransomware detector should be able to generalize

and detect ransomware beyond what was seen during

training. Figure 7 shows the performance of the behavioral

model trained with the partial training set (2), for both

single and combined functional splitting. As discussed

earlier, the partial training set contains only functional split

ransomware that is split up to 10 times, while the testing set

contains ransomware split up to 50 times. As we can see

from the figure, the model is able to maintain good

detection performance for ransomware with a number of

split that is well beyond what is seen during training. In

particular, the model maintains a 100% detection accuracy

for ransomware split up to 10 times, with an expected drop

in performance for higher (unseen) splits, decreasing to

92% for 25 splits and to � 86% for 50 splits. This behavior

strongly indicates that an appropriately trained behavioral

model can detect with near-perfect accuracy known func-

tional split ransomware, as well as generalize on unseen

ransomware with a number of splits not seen during

training.

The results presented in this section validate our

hypothesis in Sect. 3.3, that behavioral classifiers can be

trained to recognize the distinctive trace of functional

splitting and, therefore, that a more complex attack like

mimicry is required.

6.6 Limitations

While our proposed attacks can be extremely powerful

when designed correctly, there are some limitations that

can apply in real-world applications. The main limitation

of our family of attacks is that they target a predefined set

of features for evasion. While our black-box evaluation

against Malwarebytes Anti-Ransomware shows that our

techniques are effective even without knowledge of the set

of features used by the detector, there needs to be at least a

partial overlap in the features that are targeted for evasion

and the features used by the detector. In real-world settings,

when no knowledge about the target detector is available,

the number of potential features that must be considered

can become potentially large. For functional splitting, a

large number of features to evade means more functional

groups required for the splitting, which results in a larger

number of processes. For mimicry, an increasing number of

Fig. 6 Evaluation of the

functional splitting evasion

technique against a random

forest detector trained on

functional split ransomware

with up to 200 splits

Fig. 7 Evaluation of the functional splitting evasion technique against

a random forest detector trained on functional split ransomware with

up to 10 splits

12092 Neural Computing and Applications (2022) 34:12077–12096

123

target features to evade requires increasingly fine-grained

modeling of benign processes, which can become chal-

lenging. Moreover, if the dataset of benign processes is not

big enough, the modeled behaviors might not be general

enough and can differ from the behavior of benign pro-

cesses on the target system, potentially decreasing the

effectiveness of the attack. Finally, modeling error and

uncertainties related to real systems can further influence

the effectiveness of mimicry [32, 33].

7 Countermeasures

Graph-based malware detection approaches work by

building a provenance graph, which represent data and

control flow relationships between processes and operating

system entities (files, sockets, memory) on a given

machine. Such graphs are then analyzed to detect suspi-

cious behavior using either rules [34] or unsupervised

anomaly detection [35, 36]. These techniques have been

successfully applied to the detection of APTs across long

timescales and different machines. While in principle we

believe that information-flow correlation between pro-

cesses is an interesting direction for a countermeasure,

current proposals have limitations. While these techniques

are successful in detecting APTs, they typically do so only

after multiple (or all) stages of the APT have completed.

While this is acceptable for APTs since the goal is to

eventually reveal their presence, ransomware requires

immediate detection and swift remediation before the

ransomware encrypts user data. Moreover, unsupervised

approaches tend to have low accuracy on machines with

unpredictable, varied workloads—such as user worksta-

tions [36], which are often ransomware targets. Therefore,

we believe further work is necessary to adapt graph-based

threat detection to the class of attacks described here.

Another approach entails identifying synchronized pro-

cess behavior across applications running concurrently in

different machines. This approach leverages the insight that

a ransomware infection typically involves an entire net-

work. Similar approaches, although based on network

traffic, have proven effective for botnet nodes detec-

tion [37]. We note that both the functional splitting and

mimicry attack can, by design, split operations in arbi-

trarily different ways. This enables randomizing the attack

behavior across different machines.

Several works analyze the applicability of Hardware

Performance Counters (HPC) to resilient malware detec-

tion [38, 39]. HPC are hardware components that record

behaviors at the micro-architectural level, such as for

instance load/store operations, cache hits, and misses or

correct/incorrect branch predictions. The rationale is that

malware exhibits very distinct HPC profiles compared to

benign software, and therefore machine learning can be

applied to HPC data to reliably classify benign and mali-

cious applications, including ransomware. While early

works indicated promising results, recent research has

shown that HPC-based approaches are much less effective

than previously suggested and cannot be reliably used to

distinguish malicious software [40, 41].

Finally, many defenses against adversarial attacks—

both theoretical and practical—have been proposed

(e.g., [42, 43]). We posit that the current generation of

behavioral malware detectors exhibits feature vulnerabil-

ity [21], i.e., it is possible to generate malicious behavior

that looks, feature-wise, exactly like benign behavior. This

suggests that increasing the sophistication of the classifier

without rethinking the features, may not suffice to reme-

diate such attacks.

8 Related work

8.1 Ransomware detection

For a review of behavioral ransomware detection tech-

niques [4–7, 22, 23], the reader is referred to Sect. 2.2.

Other proposals focus specifically on randomness of writ-

ten data to identify encrypted content. Data-aware

Defense [44] performs the v2-test on a sliding window of

write operations. Mbol et al. [45] use a test based on the

Kullback-Liebler divergence to detect ransomware con-

verting high-entropy JPEG files to encrypted content.

Depending exclusively on randomness is danger-

ous [46, 47] for reasons pointed out in Sect. 4.1. An

orthogonal line of work focuses on decoy files for ran-

somware detection [48–50]. Such defenses are outside the

scope of our work. We believe decoys are a promising

strategy, but they raise usability concerns, and their evasion

has been poorly studied. Finally, for a discussion of rele-

vant graph-based detection approaches [34–36] see Sect. 7.

8.2 Multiprocessing in existing malware

Several existing ransomware families use multi-processing.

This happens for example in WannaCry and Petya.

Encryption is still performed by one process, while the

others perform non encryption-related auxiliary

tasks [51, 52]. The CERBER ransomware (not to be con-

fused with our Cerberus prototype), despite its name, does

not appear to perform multi-process encryption. While it

has been claimed that CERBER attempts to evade machine

learning, these claims refer to obfuscation of static payload

features [53]. MalWASH [25] and its successor

D-TIME [30] split the malware code into chunks and inject

Neural Computing and Applications (2022) 34:12077–12096 12093

123

an emulator to execute them across a set of benign pro-

cesses. This approach would generate a significant over-

head for compute-intensive ransomware activity.

Conversely, we found that multi-process splitting, com-

bined with mimicry, generates near-zero overhead and

suffices to avoid detection.

8.3 Evasion of ransomware detectors

The work closest in spirit to ours is the critical analysis of

ransomware defenses by Genç et al. [54]. For what con-

cerns behavioral detection, their work is more limited in

scope than ours and consider a smaller set of features.

Furthermore, the work by Genç et al does not incorporate

the notion of mimicry and only focus on simple feature

obfuscation (e.g., avoid changing file types).

8.4 Adversarial sample generation

Generation of adversarial samples for various classes of

malicious programs has been studied. In the mobile mal-

ware domain, Grosse et al. [20] generate malicious

Android app packages which go undetected by a custom

neural network classifier which uses manifest-derived

features. This attack uses Papernot’s method [13] to guide

mutations to app manifests.

Other attacks are not specifically focused on mobile.

Anderson et al. [55] propose the use of reinforcement

learning to guide mutations to malicious executables to

make them undetectable. Rosenberg et al. [56] generate

adversarial malware binaries by altering various static

features using a custom mimicry attack. Hu and Tan [57]

propose the use of generative adversarial networks (GANs,

which have been used in a wide range of applications

[58, 59]) to mutate feature vectors derived from the pres-

ence/absence of imported DLLs and API calls in a malware

binary. [57] does not propose a method to concretely

generate malware binaries, only feature vectors. Finally,

several works propose attacks which mutate the static

structure of PDF-based exploits to prevent their detec-

tion [15–17, 60]. All the works above focus on static fea-

tures, i.e., they alter the appearance of a malicious file

object, but not its run-time behavior.

There is limited work on attacking dynamic (behavioral)

features—i.e., features generated by actions performed by a

process at run-time. Arguably, such features are harder to

attack; indeed, they represent actions that a malware needs

to execute in order to achieve its malicious goals. Rosen-

berg et al. [56, 61] and Hu and Tan [62] proposed methods

to defeat malware detectors trained on dynamically-gen-

erated sequences of API calls. These proposals work by

perturbing the sequence of API calls, chiefly by inserting

dummy calls. While we use dummy calls as part of our

mimicry attack, we also leverage a broader set of capa-

bilities such as distributing calls across processes to reduce

feature expression. This give our technique the ability to

decrease per-process frequencies/counts of certain calls

without slowing down the attack (necessary to defeat the

detectors in our evaluation), or to obfuscate data depen-

dencies between calls (such dependencies are used by some

detectors, e.g., [63]).

9 Ethical considerations

Our work is motivated by the interest in understanding the

limitations of current malware detectors. We believe that

doing so is necessary to ensure that detection algorithms

remain effective against the constantly-shifting threat

landscape. We do not plan to publicly release our ran-

somware prototype (Sect. 5.1), in order to prevent its use in

threat development. However, we do plan to make it

available on a case-by-case basis to reputable research

groups. Prior to publishing our previous conference

paper [11], we also communicated details and results of

our attack to Malwarebytes.

10 Conclusions

We proposed and analyzed a novel practical attack against

behavioral malware detectors. Our attack splits malware

operations across a set of cooperating processes, in such a

way that no individual process behavior is flagged as sus-

picious by a behavioral process classifier.

We concretely defined and implemented this concept in

the ransomware domain. We proposed three novel attacks,

process splitting, functional splitting, and mimicry. Our

methods successfully evade state-of-the-art detectors

without limiting the capabilities of ransomware. However,

we also find that adversarial training is effective against

functional splitting.

To the best of our knowledge, this is the first compre-

hensive evaluation of this attack model, and possible defen-

ses, in the domain of malware and ransomware in particular.

Our work highlights significant limitations in behavioral

detection algorithms and has relevant practical implications

for the current generation of malware detectors.

Funding Open access funding provided by Alma Mater Studiorum -

Universitá di Bologna within the CRUI-CARE Agreement. This work

was supported by Gen4olive, a project that has received funding from

the European Union’s Horizon 2020 research and innovation pro-

gramme under grant agreement No. 101000427, and in part by the

Italian MIUR through the Dipartimento di Informatica, Sapienza

12094 Neural Computing and Applications (2022) 34:12077–12096

123

University of Rome, under Grant Dipartimenti di eccellenza 2018–

2022.

Declarations

Conflict of interest The authors declare that they have no conflict of

interest.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Moser A, Kruegel C, Kirda E (2007) Limits of static analysis for

malware detection. In: Twenty-Third annual computer security

applications conference (ACSAC 2007), IEEE, pp 421–430

2. O’Kane P, Sezer S, McLaughlin K (2011) Obfuscation: the hid-

den malware. IEEE Secur Priv 9(5):41–47

3. Tian R, Islam R, Batten L, Versteeg S (2010) Differentiating

malware from cleanware using behavioural analysis. In: 2010 5th

international conference on malicious and unwanted software,

IEEE, pp 23–30.

4. Continella A, Guagnelli A, Zingaro G, De Pasquale G, Barenghi

A, Zanero S, Maggi F (2016) Shieldfs: a self-healing, ran-

somware-aware filesystem. In: Proceedings of the 32nd annual

conference on computer security applications, pp 336–347

5. Mehnaz S, Mudgerikar A, Bertino E (2018) Rwguard: a real-time

detection system against cryptographic ransomware. In: Interna-

tional symposium on research in attacks, intrusions, and defenses,

Springer, pp 114–136.

6. Kharaz A, Arshad S, Mulliner C, Robertson W, Kirda E (2016)

fUNVEILg: A fLarge-Scaleg, automated approach to detecting

ransomware. In: 25th USENIX security symposium (USENIX

Security 16), pp 757–772

7. Kharraz A, Kirda E (2017) Redemption: real-time protection

against ransomware at end-hosts. In: International symposium on

research in attacks, intrusions, and defenses, Springer, pp. 98–119

8. Piskozub M, De Gaspari F, Barr-Smith F, Mancini L, Martinovic

I (2021) Malphase: fine-grained malware detection using network

flow data. In: Proceedings of the 2021 ACM Asia conference on

computer and communications security, pp 774–786

9. Atlanta Spent \$2.6M to Recover From a \$52,000 Ransomware

Scare. https://www.wired.com/story/atlanta-spent-26m-recover-

from-ransomware-scare/ (2018)

10. WannaCry cyber attack cost the NHS £92m as 19,000 appoint-

ments cancelled. https://www.telegraph.co.uk/technology/2018/

10/11/wannacry-cyber-attack-cost-nhs-92m-19000-appoint

ments-cancelled/ (2018)

11. Gaspari FD, Hitaj D, Pagnotta G, Carli LD, Mancini LV (2020)

The naked sun: malicious cooperation between benign-looking

processes. In: International conference on applied cryptography

and network security, Springer, pp 254–274

12. Biggio B, Rieck K, Ariu D, Wressnegger C, Corona I, Giacinto

G, Roli F (2014) Poisoning behavioral malware clustering. In:

Proceedings of the 2014 workshop on artificial intelligent and

security workshop, pp 27–36

13. Papernot N, McDaniel P, Jha S, Fredrikson M, Celik ZB, Swami

A (2016) The limitations of deep learning in adversarial settings.

In: 2016 IEEE European symposium on security and privacy

(EuroS&P), IEEE, pp 372–387

14. Kantchelian A, Tygar JD, Joseph A (2016) Evasion and hard-

ening of tree ensemble classifiers. In: International conference on

machine learning, PMLR, pp 2387–2396

15. Xu W, Qi Y, Evans D (2016) Automatically evading classifiers: a

case study on pdf malware classifiers. In: NDSS

16. Laskov P et al. (2014) Practical evasion of a learning-based

classifier: a case study. In: 2014 IEEE symposium on security and

privacy, IEEE, pp 197–211

17. Biggio B, Corona I, Maiorca D, Nelson B, Šrndić N, Laskov P,

Giacinto G, Roli F (2013) Evasion attacks against machine

learning at test time. In: Joint European conference on machine

learning and knowledge discovery in databases, pp 387–402

18. Yang W, Kong D, Xie T, Gunter CA (2017) Malware detection in

adversarial settings: Exploiting feature evolutions and confusions

in android apps. In: Proceedings of the 33rd annual computer

security applications conference, pp 288–302

19. Demontis A, Melis M, Biggio B, Maiorca D, Arp D, Rieck K,

Corona I, Giacinto G, Roli F (2017) Yes, machine learning can be

more secure! a case study on android malware detection. IEEE

Trans Dependable Secur Comput 16(4):711–724

20. Grosse K, Papernot N, Manoharan P, Backes M, McDaniel P

(2017) Adversarial examples for malware detection. In: European

symposium on research in computer security, Springer, pp 62–79

21. Maiorca D, Demontis A, Biggio B, Roli F, Giacinto G (2020)

Adversarial detection of flash malware: limitations and open

issues. Comput Secur 96:101901

22. Scaife N, Carter H, Traynor P, Butler KR (2016) Cryptolock (and

drop it): stopping ransomware attacks on user data. In: 2016 IEEE

36th international conference on distributed computing systems

(ICDCS), IEEE, pp 303–312

23. Introducing the Malwarebytes Anti-Ransomware Beta. https://

blog.malwarebytes.com/malwarebytes-news/2016/01/introdu

cing-the-malwarebytes-anti-ransomware-beta/ (2016)

24. Malwarebytes Anti-Ransomware for Business. https://www.mal

warebytes.com/business/solutions/ransomware/ (2019)

25. Ispoglou KK, Payer M (2016) fmalWASHg: washing malware to

evade dynamic analysis. In: 10th USENIX workshop on offensive

technologies (WOOT 16)

26. Lin J (1991) Divergence measures based on the Shannon entropy.

IEEE Trans Inf Theor 37(1):145–151

27. List of File Signatures. https://en.wikipedia.org/wiki/List_of_

file_signatures (2019)

28. Bellare M, Ristenpart T, Rogaway P, Stegers T (2009) Format-

preserving encryption. In: International workshop on selected

areas in cryptography, Springer, pp 295–312

29. I/O request packets. https://docs.microsoft.com/en-us/windows-

hardware/drivers/gettingstarted/i-o-request-packets (2017)

30. Pavithran J, Patnaik M, Rebeiro C (2019) fD-TIMEg: distributed
threadless independent malware execution for runtime obfusca-

tion. In: 13th USENIX workshop on offensive technologies

(WOOT 19)

31. Lv Z, Zhao Y, Zhang C, Li H (2020) Dramd: detect advanced

dram-based stealthy communication channels with neural net-

works. In: IEEE INFOCOM 2020-IEEE Conference on computer

communications, IEEE, pp 1907–1916

Neural Computing and Applications (2022) 34:12077–12096 12095

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.wired.com/story/atlanta-spent-26m-recover-from-ransomware-scare/
https://www.wired.com/story/atlanta-spent-26m-recover-from-ransomware-scare/
https://www.telegraph.co.uk/technology/2018/10/11/wannacry-cyber-attack-cost-nhs-92m-19000-appointments-cancelled/
https://www.telegraph.co.uk/technology/2018/10/11/wannacry-cyber-attack-cost-nhs-92m-19000-appointments-cancelled/
https://www.telegraph.co.uk/technology/2018/10/11/wannacry-cyber-attack-cost-nhs-92m-19000-appointments-cancelled/
https://blog.malwarebytes.com/malwarebytes-news/2016/01/introducing-the-malwarebytes-anti-ransomware-beta/
https://blog.malwarebytes.com/malwarebytes-news/2016/01/introducing-the-malwarebytes-anti-ransomware-beta/
https://blog.malwarebytes.com/malwarebytes-news/2016/01/introducing-the-malwarebytes-anti-ransomware-beta/
https://www.malwarebytes.com/business/solutions/ransomware/
https://www.malwarebytes.com/business/solutions/ransomware/
https://en.wikipedia.org/wiki/List_of_file_signatures
https://en.wikipedia.org/wiki/List_of_file_signatures
https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/i-o-request-packets
https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/i-o-request-packets

32. Chen Z, Zhang B, Stojanovic V, Zhang Y, Zhang Z (2020) Event-

based fuzzy control for TS fuzzy networked systems with various

data missing. Neurocomputing 417:322–332

33. Cheng P, He S, Stojanovic V, Luan X, Liu F (2021) Fuzzy fault

detection for markov jump systems with partly accessible hidden

information: an event-triggered approach. IEEE transactions on

cybernetics

34. Milajerdi SM, Gjomemo R, Eshete B, Sekar R, Venkatakrishnan

V (2019) Holmes: real-time apt detection through correlation of

suspicious information flows. In: 2019 IEEE symposium on

security and privacy (SP), IEEE, pp 1137–1152

35. Manzoor E, Milajerdi SM, Akoglu L (2016) Fast memory-effi-

cient anomaly detection in streaming heterogeneous graphs. In:

Proceedings of the 22nd ACM SIGKDD international conference

on knowledge discovery and data mining, pp 1035–1044

36. Han X, Pasquier T, Bates A, Mickens J, Seltzer M (2020) Uni-

corn: runtime provenance-based detector for advanced persistent

threats. In: Proceedings of the 2020 network and distributed

system security symposium

37. Gu G, Porras PA, Yegneswaran V, Fong MW, Lee W (2007)

Bothunter: detecting malware infection through ids-driven dialog

correlation. In: USENIX security symposium, vol. 7, pp 1–16

38. Demme J, Maycock M, Schmitz J, Tang A, Waksman A,

Sethumadhavan S, Stolfo S (2013) On the feasibility of online

malware detection with performance counters. ACM SIGARCH

Comput Archit News 41(3):559–570

39. Khasawneh KN, Abu-Ghazaleh N, Ponomarev D, Yu L (2017)

Rhmd: evasion-resilient hardware malware detectors. In: Pro-

ceedings of the 50th annual IEEE/ACM international symposium

on microarchitecture, pp 315–327

40. Zhou B, Gupta A, Jahanshahi R, Egele M, Joshi A (2018)

Hardware performance counters can detect malware: myth or

fact? In: Proceedings of the 2018 on Asia conference on com-

puter and communications security, pp 457–468

41. Das S, Werner J, Antonakakis M, Polychronakis M, Monrose F

(2019) Sok: the challenges, pitfalls, and perils of using hardware

performance counters for security. In: 2019 IEEE symposium on

security and privacy (SP), IEEE, pp 20–38

42. Tong L, Li B, Hajaj C, Xiao C, Vorobeychik Y (2017) Hardening

classifiers against evasion: the good, the bad, and the ugly. CoRR,

arXiv:1708.08327

43. Carlini N, Wagner D (2017) Adversarial examples are not easily

detected: bypassing ten detection methods, pp 3–14

44. Palisse A, Durand A, Le Bouder H, Le Guernic C, Lanet J-L

(2017) Data Aware Defense (DaD): Towards a Generic and

Practical Ransomware Countermeasure. In: Secure IT systems

vol. 10674, Springer, Cham, pp 192–208

45. Mbol F, Robert J-M, Sadighian A (2016) An Efficient Approach

to Detect TorrentLocker Ransomware in Computer Systems. In:

Cryptology and Network Security vol. 10052, pp. 532–541.

Springer, Cham

46. De Gaspari F, Hitaj D, Pagnotta G, De Carli L, Mancini LV

(2020) Encod: distinguishing compressed and encrypted file

fragments. In: Network and system security, pp 42–62

47. De Gaspari F, Hitaj D, Pagnotta G, De Carli L, Mancini LV

(2021) Reliable detection of compressed and encrypted data.

arXiv preprint arXiv:2103.17059

48. Genç ZA, Lenzini G, Sgandurra D (2019) On deception-based

protection against cryptographic ransomware. In: International

conference on detection of intrusions and malware, and vulner-

ability assessment, Springer, pp 219–239

49. Moore C (2016) Detecting ransomware with honeypot tech-

niques. In: CCC

50. Moussaileb R, Bouget B, Palisse A, Le Bouder H, Cuppens N,

Lanet J-L (2018) Ransomware’s early mitigation mechanisms. In:

Proceedings of the 13th international conference on availability,

reliability and security, pp 1–10

51. WannaCry Analysis and Cracking. https://medium.com/

@codingkarma/wannacry-analysis-and-cracking-6175b8cd47d4

(2018)

52. ‘‘Petya-like’’ Ransomware Analysis. https://www.nyotron.com/

wp-content/uploads/2017/06/NARC-Report-Petya-like-062017-

for-Web.pdf (2017)

53. Cerber Starts Evading Machine Learning. https://blog.trendmi-

cro.com/trendlabs-security-intelligence/cerber-starts-evading-

machine-learning/ (2017)

54. Genç ZA, Lenzini G, Ryan PYA (2018) Next generation cryp-

tographic ransomware. In: Secure IT systems vol. 11252,

Springer, Cham, pp 385–401.

55. Anderson HS, Kharkar A, Filar B, Roth P (2017) Evading

machine learning malware detection 2017:6

56. Rosenberg I, Shabtai A, Rokach L, Elovici Y (2018) Generic

black-box end-to-end attack against state of the art API call based

malware classifiers. In: International symposium on research in

attacks, intrusions, and defenses, Springer, pp 490–510

57. Hu W, Tan Y (2017) Generating adversarial malware examples

for black-box attacks based on GAN. arXiv:1702.05983 [cs] .

arXiv: 1702.05983. Accessed 2018-09-07

58. Hitaj B, Gasti P, Ateniese G, Perez-Cruz F (2019) Passgan: a

deep learning approach for password guessing. In: International

conference on applied cryptography and network security,

pp 217–237

59. Pagnotta G, Hitaj D, De Gaspari F, Mancini LV (2021) Passflow:

guessing passwords with generative flows. arXiv preprint arXiv:

2105.06165

60. Dang H, Huang Y, Chang E-C (2017) Evading classifiers by

morphing in the dark. In: Proceedings of the 2017 ACM SIGSAC

conference on computer and communications security,

pp 119–133

61. Rosenberg I, Shabtai A, Elovici Y, Rokach L (2018) Query-

efficient gan based black-box attack against sequence based

machine and deep learning classifiers. arXiv:1804.08778 [cs].

Accessed 2018-11-01

62. Hu W, Tan Y (2018) Black-box attacks against RNN based

malware detection algorithms

63. Fredrikson M, Jha S, Christodorescu M, Sailer R, Yan X (2010)

Synthesizing near-optimal malware specifications from suspi-

cious behaviors. In: 2010 IEEE symposium on security and pri-

vacy, IEEE, pp 45–60

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

12096 Neural Computing and Applications (2022) 34:12077–12096

123

http://arxiv.org/abs/1708.08327
http://arxiv.org/abs/2103.17059
https://medium.com/%40codingkarma/wannacry-analysis-and-cracking-6175b8cd47d4
https://medium.com/%40codingkarma/wannacry-analysis-and-cracking-6175b8cd47d4
http://arxiv.org/abs/1702.05983
http://arxiv.org/abs/1702.05983
http://arxiv.org/abs/2105.06165
http://arxiv.org/abs/2105.06165
http://arxiv.org/abs/1804.08778

	Evading behavioral classifiers: a comprehensive analysis on evading ransomware detection techniques
	Abstract
	Introduction
	Background
	Adversarial ML
	Behavioral ransomware detection
	ShieldFS
	RWGuard
	Malwarebytes

	Evading behavioral detectors
	Process splitting
	Functional splitting
	Mimicry

	Features discussion
	Write entropy
	File overwrite
	Directory traversal
	Directory listing
	Cross-file type access
	Read/write/open/create/close operations
	Temporary files
	File type coverage
	File similarity
	File-type change
	Access frequency
	Other features

	Implementation
	The cerberus prototype
	Ransomware interprocess communication
	ShieldFS

	Evaluation
	Dataset and experimental setup
	Trace-based evaluation
	ShieldFS
	Process splitting
	Functional splitting
	Mimicry
	Discussion

	RWGuard
	Process splitting
	Functional splitting
	Mimicry

	Cerberus evaluation
	ShieldFS
	RWGuard

	Evaluation against a malwarebytes anti-ransomware
	Detecting functional splitting
	Limitations

	Countermeasures
	Related work
	Ransomware detection
	Multiprocessing in existing malware
	Evasion of ransomware detectors
	Adversarial sample generation

	Ethical considerations
	Conclusions
	Funding
	Open Access
	References

