
S.I.: LSNC & OUA

Learning from data streams for automation and orchestration of 6G
industrial IoT: toward a semantic communication framework

Shiva Raj Pokhrel1

Received: 4 May 2021 / Accepted: 5 February 2022 / Published online: 19 March 2022
� The Author(s) 2022

Abstract
Established methods of communication are based mainly on Shannon’s theory of information, which purposefully over-

looks semantic elements of communication. The future wireless technology should promise to facilitate many services,

based on content, needs, and semantics, precisely customized to network capabilities. This gave rise to significant concern

for Semantic Communication (SC), a novel paradigm considering the message’s meaning during transmission. Federated

learning (FL) and Asynchronous Advantage Actor Critic (A3C) are the two emerging distributed and artificially intelligent

approaches that provide diverse and possibly massive network coverage for data-driven SC solutions of industry 4.0

automation. Although SC is still in an early development stage, FL-empowered architecture has been recognized as one of

the most promising solutions to meet the ubiquitous intelligence in the anticipated sixth-generation (6G) networks. This

paper identifies industry 4.0 automation needs that drive the convergence of artificial intelligence and 6G for learning from

data streams. We develop a novel SC framework based on the FL and A3C networks and discuss its potential along with

transfer learning to address most of the new difficulties anticipated in 6G for industrial communication networks. Our

proposed framework has been evaluated with extensive simulation results.

Keywords Asynchronous advantage actor critic (A3C) � Federated learning (FL) � Industry 4.0 � Machine learning �
Semantic communication (SC) � Smart manufacturing and automation � Transfer learning (TL).

1 Introduction

Fifth generation (5G) wireless communication networks

are rapidly being launched on a large scale worldwide [1].

The academic and industry research community has

already started investigating the advancements of the cel-

lular technologies for the next decade, i.e., the sixth gen-

eration (6G) [1, 2]. The semantic communication (SC)

paradigm has received much attention for next-generation

advancements [3–5]. SC has a great potential to disrupt

current technical problems in existing communication

systems based on the possibility of improved performance

and effectiveness with the communication from the second

level (complementing the impeding issues at the first level

communication identified by Shannon and Weaver [6]) in

6G.

6G networks are anticipated to follow a much more

comprehensive strategy, catalyzing creative technologies

and intelligent infrastructure while conducting prompt and

highly effective/productive data collection, transmission,

learning, and analyzing everywhere at any moment in time

[7]. 6G should concentrate in specific on a modern concept

of ubiquitous artificial intelligence for goal-oriented com-

munication, an ultra-flexible infrastructure that facilitates

human-level knowledge, semantic processing, and intelli-

gence into all facets of communication networking.

With SC in 6G, the mechanism underlying SC can be

the semantic information considering the significance and

veracity of the original content (since it may be both

instructive and factual). But defining such semantic infor-

mation or representing semantic characteristics with a

specific mathematical model is a highly non-trivial task,

making the direct coupling with the first level (Shannon/

Weaver communication framework) infeasible.& Shiva Raj Pokhrel
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One of the main challenges when developing an AI-

based SC network design for a realistic future 6G system

is;

How to integrate distributed data processing and col-

laborative learning for semantic communication through

an extensive range of heterogeneous wireless devices?

To this end, federated learning (FL) [8, 9] and Asyn-

chronous Advantage Actor Critic (A3C) [10] are now two

evolving distributed AI approaches. They allow data-dri-

ven AI and machine learning (ML) over a vast amount of

dispersed data residing on mobile devices and collaborative

learning via knowledge sharing. Thanks to their capability

to share knowledge bases, perform model training and

learning on diverse and potentially huge scale networks, FL

has already drawn tremendous attention while maintaining

all relevant information localized [11–13].

One of the representative industry verticals considered

in this paper is smart manufacturing in industrial IoT net-

works. In particular, we focus on a cellular-based smart

factory characterized by IoT integration and related ser-

vices in intelligent manufacturing. We believe that

advancements of ultra-reliable low-latency communication

(URLLC) and massive machine-type communications

(mMTC) proposed in 5G by adopting the SC paradigm will

be the two key enablers for future Cellular-based factories

automation [14].

Smart manufacturing of Industry 4.0, marks the transi-

tion from traditional to highly connected digital technolo-

gies in industrial settings as shown in Figs. 1 and 2. As

demonstrated in Figs. 1 and 2, this may include the use of

Industrial IoT machines, intelligent computation, dis-

tributed learning, self-curing networks, and automated

industry for smart manufacturing [15]. Such use cases

demand highly reliable and minimal latency goal-oriented

communication, which the standard 5G approaches cannot

support [2].

This research work has been motivated by the issue of

how to make industry machines and robots, shown in

Fig. 2, (i) learn (understand and adapt) efficiently in a new

environment, (ii) perform human-level learning based on

solid comprehension (semantic learning) and (iii) transfer

their experience or share knowledge-base between sender

and receiver to enable all intelligent devices to use prior

knowledge and semantics effectively.

We present an FL design for edge intelligence in

industry 4.0 systems to tackle the challenges mentioned

above thru Continuous Federated Reinforcement Learning

(CFRL) approach (extending relevant insights from

[10, 16]). We suggest an information fusion-based

approach to update a standard global model and knowl-

edge-base implemented at the network edge. Then, effec-

tive methods of transfer learning (TL) [17] are applied for

consistent human-level cognitive intelligence and semantic

learning for the best fitting in the industry 4.0 systems.

Industry 4.0 relies entirely on seamless real-time com-

munication. Therefore, we consider the forthcoming 6G-

based factory automation and orchestration using edge

intelligence and modern machine learning for contexts.

Fig. 1 A high-level view of industry 4.0 evolution and applications.

In this work, we focus on the need for semantic communication to

automate and orchestrate machines and robots. See the comparison of

survey works later in Table 1

Table 1 Summary of the survey works on edge intelligence (c.f. Fig 1)

Refs. Theories Remarks Perspective

[18] Edge intelligence Training/inference systems, DL for edge optimization and application Macro-level

[19] Edge intelligence Device-cloud-edge coordination, Optimization in training/inference Macro-level

[20] Edge intelligence Offloading, Edge caching/training/inference Micro-level

[21] Federated intelligence Training/inference systems, DL for edge optimization and application Macro-level

[22] Deep learning Device-cloud-edge coordination, Optimization in training/inference Micro-level

[23] IoT big data Offloading, Edge caching/training/inference Micro-level

[24] Intelligent networking Offloading, Edge caching/training/inference Micro-level

This work Asynchronous actor-critic Comprehensive edge intelligence with federated and transfer learning Micro &

Macro
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Without an ultra-reliable and low latency link, industrial

networks cannot collect or process data on the floor, cre-

ated by IoT sensors or on edge. This incomplete knowledge

base (without background information, environments, and

semantics) could not be used for surveillance or regular

maintenance. Technicians cannot see issues occurring in

real-time, so both SDN and automation-based systems

often fail to work correctly. To ease the communication

issues, we consider a novel SC-based smart factory envi-

sioning 6G and focus only on the learning and automation/

orchestration aspect of the industry 4.0 system with edge

intelligence.

1.1 Contributions

Our main contributions in this work are outlined as

follows:

• We develop a Semantic Communication Framework

with continuous federated reinforcement learning

(CFRL) capabilities considering successful features of

human cognitive neuroscience and semantic learning.

It enables industrial machines and robots to carry out

continuous learning from data streams in the edge-intelli-

gent industry 4.0 process automation/orchestration.

• We are designing a new knowledge fusion method for

learning from data streams aimed at IIoT automation

and orchestration. It can integrate previous experience,

environmental factors, and expertise of continuously

learning machines (for revealing the semantic and

pragmatic meaning) and create a standard paradigm for

SC-based edge-intelligent manufacturing systems.

• Two successful methods to learning transition are

proposed and evaluated for transfer learning to allow

machines to respond efficiently to new settings. The

proposed methods and CFRL framework have been

assessed with extensive experiment results.

A novel distributed, asynchronous reinforcement learn-

ing (recommender-like) system is developed in this paper

using the asynchronous advantage actor-critic approach,

which combines ideas from TL, A3C, and FL. Our core

idea is to keep the machine preferences and/or interactions

as local knowledge/learning and adopt integrated local, on-

machine, and complementary global models. For example,

the training procedure for the global model could only be

based on the loss gradients of the local learnings.

Fig. 2 Industry 4.0 automation and orchestration is relying on

URLLC and mMTC. Without an ultrareliable and low latency link,

industrial networks cannot collect or process data on the floor, created

by IoT sensors or on edge. This knowledge could not be used for

surveillance or regular maintenance. Technicians are unable to see

issues occurring in real-time, so both software-defined networking

and automation-based systems cannot work correctly. To ease the

communication issues, we consider a 6G-based smart factory and

focus only on the learning and automation of the industry 4.0 system

using edge intelligence
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2 Related works and theories

Shannon and Weaver theory for reliable communication is

essentially mature and established by now [25]. With 5G

and advances in technology, all wired and wireless com-

munication can be ultra-reliable. The communication per-

formance at the first level can be enhanced quantitatively

but improving the performance qualitatively seems extre-

mely challenging and close to impossible simply by

adjusting first level communication parameters [26, 27].

Modern communication systems have smart endpoints,

which implies intelligence, capability, and diversity. It is

known that diversity suggests (potential) misunderstand-

ings [26] and therefore, we shall now start investing in

schemes/algorithms to make the endpoints more reliable

for detecting/correcting misconceptions—the tenets of se-

mantic communication.

One may consider a general model of semantic com-

munication where two intelligent interacting agents, sender

and receiver, communicate with each other, and the sender

wants to accomplish some goals while the receiver is trying

to help the sender. We can easily generalize this process at

time t in terms of interacting agents where Agent: States (t)

� Inputs (t) = States (t?1) � Outputs (t). However, there is

an uncertainty associated with the receiver, where the

sender does not know the receiver and vice-versa. This

needs more attention as it creates a new class of problems

and new challenges.

To this end, along the lines of other researchers

[5, 6, 26], we believe that the focus should be toward goal-

oriented communication, where the sender always attempts

to reach the predefined goal with the help of the receiver.

However, ‘‘how shall we model and quantify this mecha-

nism?’’ is an open problem in the field. Classical approa-

ches of modelling/capturing the dynamics by combining

some functions of the state of the sender/receiver with their

interaction tasks fail in such a semantic-uncertainty setup,

which mandates the need for any advice/suggestion from

the third agent (such as Knowledge base). The knowledge

base, for instance, can pose the tasks for the sender/receiver

interaction and judges the success. It can act as another

referee agent in keeping track and determining whether the

state evolution reflects goal-oriented achievements or not,

thus incrementally building more experiences for the

knowledge base. In this way, we can see that semantic

communication can deal with uncertainly at the endpoints,

which is impractical simply by using information theory

fundamentals.

We attempt to bridge the gap using recent findings and

the current state-of-the-art edge intelligence with relevant

insights from the above discussions. Edge intelligence is

exceptionally rich in literature (which (potentially) helps to

build the knowledge base for the proposed semantic com-

munication); see the summary of survey works in Table 1

and the references therein (viz. [18–24]). Of particular

relevance to this work are the three closest theories—TL,

FL, and A3C [10]. FL differs from usual distributed

learning as it uses non-IID and unbalanced, massively

distributed data over limited communication resources.

A3C determines error using the rewards produced in the

state transition, which is different from FL that determines

error based on the error in the output (like general NN)—

details are discussed as follows.

2.1 Asynchronous advantage actor critic (A3C)

The A3C algorithm developed by Google’s DeepMind

community [10] has splashed by obsoleting the standard

deep reinforcement learning (DRL) algorithms. It was

faster, simpler, more robust, and attained much better

scores on the standard DRL tasks. In contrast to other DRL

approaches, A3C functions well in both continuous and

discrete spaces of operation. Therefore, it has now become

the most reliable DRL algorithm for new challenging

issues with complex spaces of states and actions.

A high-level architecture of A3C is as shown in Fig. 3

and the three A‘s of A3C are discussed as follows:

Asynchronous. In contrast to conventional DRL tech-

niques, in which a single agent represented by a single

neural network interacts with a single environment, A3C

uses multiple incarnations (see Fig. 3) to facilitate the

learning process. A global network in A3C and several

worker agents have their own set of network parameters.

Each of these agents communicates with their own copy of

the world, whereas the other agents communicate with their

surroundings. This works better than having a single agent

(beyond the speed of getting more work done) because

each agent’s experience is independent of the others’

experience. It is worth noting that the overall expertise

available for training becomes more diverse and

asynchronous.

Advantage. From our Policy Gradient implementation

perspective, the updated policy used the discounted returns

from a series of interactions to inform the agent which of

their acts were ‘great’ and which were ‘negative’. The

system can then be modified with an advantage to promote

better and deter actions adequately. The perspective to use

advantage estimates rather than merely discounted returns

is to enable the agent to determine not about how decent

their actions have been but how much smarter they were

than expected. Rationally, this allows the system to con-

centrate on where the network’s predictions have been

sorely missing.

Actor-Critic. It provides the best of both policy gradient

and Q-learning approaches. In the scenario of A3C, both a
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value function V(s) (how good a particular state is to be in)

and a policy pðsÞ (a set of probability outputs for action)

will be estimated. These will each be distinct layers sitting

at the top of the network, fully connected. Pragmatically,

the agent uses the value estimate (the critic) to more

intelligently update the policy (the actor) than conventional

methods of policy gradients.

Our framework implements federated multi-machine

learning through the fusion of knowledge. Google first

proposed federated learning, which demonstrated its

effectiveness through experiments on different datasets [8].

The datasets are collected and stored at multiple network

end nodes in federated learning systems. A learning model

is trained from the decentralized datasets at a centralized

global server location [28]. Unlike the traditional standard

learning method, where multiple edges simultaneously

learn, our framework adopts A3C and the first training

method, then fuses knowledge to reduce dependence on the

communication quality.

2.2 Transfer learning

As discussed above, upon identifying an expert machine,

the learning agent utilizes the transferred DQN model from

the expert machine [29] and its current native DQN model

to produce an aggregate DQN model [30]. Given the

transfer rate r 2 ½0; 1�, the new Q-learning agent can

therefore be mathematically interpreted as1

Qnewðs; aÞ ¼ rQtransferðs; aÞ þ ð1 � rÞQcurrentðs; aÞ: ð1Þ

In a distributed cooperative 6G empowered IIoT multiple

machines system, the policy vector of all agents can be

updated by:

Ptþ1ðstÞ ¼

p1
tþ1

..

.

pitþ1

..

.

pMtþ1

0
BBBBBBBB@

1
CCCCCCCCA

¼

arg maxa1fQ1
tþ1ðs1

t ; a
1
t Þg

..

.

arg maxaifQi
tþ1ðsit; aitÞg

..

.

arg maxaMfQM
tþ1ðsMt ; aMt Þg

0
BBBBBBBB@

1
CCCCCCCCA
:

3 Our proposed methodology

3.1 CFRL framework for semantic
communication with extended A3C

CFRL will reduce the training period without losing

accuracy of decision functionality on industrial edge

computing systems. CFRL allows the use of the edge-

computing configuration to understand the policies and

goals desired. It comprises an edge server consisting of a

knowledge base, groups of settings, and one or more

robots/machines. Moreover, we are developing a federated

learning framework using relevant insights from A3C for

the fusion of local models into a global model shared at the

knowledge base of an edge server. The edge server main-

tains local fusion models into a mutual environment, and

then, the mutual environment develops the aforementioned

semantic communication capabilities with changes in the

settings.

As illustrated in Fig. 4, CFRL is a lifetime learning-

cum-communication framework of industry network

automation/orchestration systems. Compared to the stan-

dard A3C that simultaneously updates policy network

parameters, the recommended information fusion solution

is more appropriate for the proposed SC framework using

the federated architecture. The presented technique will be

capable of fusing asynchronous evolutionary models for

goal-oriented communication. At the very same time, the

method of modifying parameters has some environmental

requirements. At the same time, the new knowledge fusion

idea considers the embodiment of the semantics and

therefore has very little or no environmental impact. Using

a generative network and dynamic weighting approach,

knowledge incorporation and building can be done evolu-

tionarily in lieu of A3C (which only produces a decision

model during learning and provide recommendations).
1 After each learning stage, r will slowly be decreased to minimize

the influence from the expert machine model on the new DQN model.

Fig. 3 An abstract view of the overall architectural design diagram

for A3C
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Unlike A3C, the training environment will be highly

dynamic in the proposed CFRL framework for the intended

goal-oriented communications as shown in Algorithm 2.

State of the agents can be considered as uncountable with

more uploading of the training environments. The structure

of the policy’s hidden layers can be in different actors, and

even it could be in a different network setting. Typically,

training results fuse in the knowledge base of the edge

server. Based on the shared model, the robots are contin-

ually trained in new environments. In upload and download

procedures, robots/machines and the edge server have

continuous interactions. Therefore, the proposed SC

framework is best suited to edge intelligence for future

industry 4.0 automation/orchestration systems where the

environment is uncountable. In fact, the proposed frame-

work can be applied from a lifelong learning perspective.

However, the answer to a question: ‘‘Why does natural

(human) communication differ so much from such a

designed communication?’’ requires further investigations.

This is beyond the scope of this work.

Fig. 4 A high-level view of the proposed CFRL framework. In an

industrial environment, through reinforcement learning, the

robots/machines learn to automate specific new tasks in the new

environment and obtain the private local model. Local models may

also be the product of several robots, not only from one robot working

in various settings. After that, Robots must transfer the local model to

the knowledge base of the edge server. By fusing local models into

the global model, the knowledge base of the edge server evolves the

global model. Motivated by the transfer learning approach, at the

knowledge base of the edge server, the robot/machine uses successor

features to transfer the strategy to a new environment

15202 Neural Computing and Applications (2022) 34:15197–15206
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3.2 Federated learning for knowledge fusion

For a local server in the machine, the initial Q-network must be

defined when the machine downloads the global model from the

knowledge base of the edge server. Such an initial Q-network is

capable of reaching the goal and avoiding specific automation/

orchestration tasks. Observe in Fig. 4 and Algorithm 3 that the

CFRL will reduce the training time for machines and learn their

automation/orchestration tasks. In our experimental setting, the

knowledge base of the edge server does not automatically fuse

the local model every time a machine uploads it but fuses at a

defined rate. So in Algorithms 1, 2 and 3, as shown in Fig. 4, we

apply the computing flow of the CFRL algorithm for both

knowledge function and model transfer learning [31].

It is known that uncertainty is the embodiment of con-

fidence. Therefore, we use information entropy to define

confidence in this work (along the line of that of [16]). In

particular, the confidence for a machine i (information

entropy) is given by [16, Eq. 1]

Confi :¼ � 1

logn

Xm
j¼1

Scoreji
Pm
j¼1

Scoreji

:log
Scoreji

Pm
j¼1

Scoreji

8>>><
>>>:

9>>>=
>>>;

ð2Þ

where n is the size of local networks andm is the size of actions

of a machine. Using Eqn. 2, the memory weightage of the

machine i and knowledge fusion can be computed as [16,

Eqs. 4–6],

dwi ¼
1 � Confi

Pn
i¼1

1 � Confi

ð3Þ

Labelj ¼ Score � ðConf1;Conf2; . . .;ConfnÞT ð4Þ

HH ¼ arg min
H

1

M

XM
i¼1

ðyi � hHðxiÞÞ2 ð5Þ

Using the error ðyi � hHðxiÞÞ2
in the training process, see in

Algorithms 2 and 3, Eqs. 4 and 5 are the main aim of the

learning process.

3.3 Transfer learning for sharing knowledge

Different methods have been proposed to transfer rein-

forcement learning in the literature. We found that there are

two approaches applied in the specific task when a machine

learns to automate those tasks. One promising approach is

taking the global model as a starting actor in the network,

which attains a good score initially but is quite unstable.

Another system would be using the global model as a

feature extractor in transfer learning. The latter method

increases the dimension of the features, and it can improve

the effect stably. One problem with the latter approach is to

solve in the experiment: the structural difference between

the input layer of the global network and local network.

With an underlying Markovian decision cycle consisting

of action space, device space, transition matrix, we follow

the former approach and consider the DRL problem in

factory automation/orchestration. After taking action, a

reward is received at any state for the given policy and

discount factor. The Q-function gives appropriate action

for any given policy p,

Qpðs; aÞ ¼ E

"X1
t¼0

ctR
�
st; at

����s0 ¼ s; a0 ¼ a;p

#
ð6Þ

where R(s, a) is the reward perceived at state s 2 S when

action a 2 A is taken, and 0\c\1 is the discount factor.

Assuming that the reward satisfies 0\Rðs; aÞ\1, the

optimal policy pH has the Q-function QHðs; aÞ

QHðs; aÞ ¼ R
�
s; a

�
þ c E

s0 � Tðs0js; aÞ
a0 � pðajsÞ

h
QHðs0; a0Þjst ¼ s

i

ð7Þ

where T is the transition matrix T ¼ fTa
s;s0 ; s 2 S; a 2 Ag

and Ta
s;s0 is the transition probability from s to s0. Eq. (7)

satisfies optimized conditions of the Bellman equation.

It is worth noting that it is a contraction mapping for the

Q-function above and has a special fixed-point structure for

optimum Q-function. We use the max-square error metric,

MSqðQÞ, which quantifies the excellence of Q-learning as

follows:

MSqðQÞ :¼max
s;a

�
QHðs; aÞ � Qðs; aÞ

�2
where

Qðs; aÞ ¼R
�
s; a

�
þ c E

s0 � Tðs0js; aÞ
a0 � pðajsÞ

h
Qðs0; a0Þjst ¼ s

i

ð8Þ

We have the following intuition underneath Algorithm 4.

Whenever a new machine trained offline is installed into a

new IIoT network under similar conditions, their optimal
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Q-function and evolution would always be identical. It is

beneficial to use the transferred target, a better target,

therefore consistently helpful to accelerate the rate of

convergence in the overall learning process.

4 Performance evaluation

In this section, we plan to address the following three

critical questions.

• How can our SC framework reduces training time

substantially despite losing automation/orchestration

accuracy and effectiveness in 6G-enabled edge-com-

puting systems?

• How successful is the knowledge fusion algorithm in

stimulating the global model and goal-oriented

evolution?

• How successful is the transfer learning strategies for SC

in exploiting typical pattern to a particular automation/

orchestration task?

To answer the first question, we are conducting experi-

ments to compare the performance of the standard

approach with that of the CFRL framework. For the second

question, we are performing experiments to compare the

performance of generic models and the global model of

transfer reinforcement learning.

4.1 Simulation test-bed setup

Four different training settings are considered to illustrate

other consequences among the comprehensive approach of

the training and the CFRL framework, considering

automation/orchestration in the navigation of a moving

machine or a robot. There are no obstacles except the walls
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Fig. 5 With the training approach of environment 1, CFRL has an

exactly similar result as that of the standard method. This is because

there is no sharing of the learning models from the old machines to

new machines for the anticipated industry automation/orchestration
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CFRL Approach outperforms Standard Method

Fig. 6 In the training procedure of Environment-2, CFRL (black

curve) demonstrated the global model sharing. CFRL obtains better

rewards in less time when compared with the standard approach (red

curve)
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Fig. 7 In Environment 3, CFRL evolves the global model demon-

strated excellent results (black curve). Observe that CFRL obtains

better rewards in less time when compared with the standard approach

(compare red and black curves). However, CFRL is not performing as

well as the standard method when learning time is longer than 50

milliseconds
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in Environment 1. There are four fixed poles as obstacles in

Environment 2 and four moving poles as obstacles in

Environment 3. In particular, there are both dynamic and

static barriers in Environment 4. The observation area is

between 0.1 m and 5 m.

4.2 Evaluation of CFRL framework

We have carried out three environments, and the output of

CFRL is in Figs. 5, 6, and 7 in accordance with the per-

formance of generic methods. In Environment 2 and

Environment 3, CFRL increased the automation/orches-

tration decision accuracy and reduced training time for the

6G automated edge-intelligent system. The improvement

can be observed in Figs. 6 and 7, which is highly efficient

compared with the global shared model.

CFRL is very effective in learning policy for all SC

constraints and industry automation/orchestration consid-

ered. It enhances the ability of our learned model to gen-

eralize across commonly faced environments and

situations. Experimental results show that CFRL is able to

minimize training time without compromising accuracy

loss in the automation/orchestration process for the pro-

posed SC-based intelligent industrial network computing.

4.3 Evaluation of knowledge fusion approach

Table 2, we present comparative and quantitative results of

our knowledge fusion approach for the SC framework.

Observe in Table 2 that the federated learning approach

with the shared model reduces training time on a continual

learning basis. In fact, it can be found that standard process

models are only capable of making excellent decisions in

specific settings. In contrast, the CFRL-based model with

knowledge infusion is capable of making the best decisions

in a variety of different settings. Overall, the presented

information fusion method is therefore successful and

highly efficient for the SC framework.

4.4 Evaluation of transfer learning algorithm

We performed a quantitative analysis to validate and

equate the two transfer learning methods. The result

appears in Fig. 8. From the figure, it can be observed that

all strategies to transfer learning will successfully increase

the performance of reinforcement learning and hence

boosts the performance of the proposed SC framework.

The parameter transfer approach has faster learning speed

(red curve), and the feature extractor approach has more

excellent evolution stability (black curve).

5 Conclusion

We developed a novel edge-intelligence-based semantic

communication framework for 6G. It is based on federated-

learning-based 6G networking for the automation/orches-

tration systems of industry 4.0 networks. The proposed

intelligent networking approach can effectively use prior

knowledge and adapt rapidly to a changing environment

and system semantics. We also presented a knowledge

fusion algorithm in the framework and provided insights

into transfer-based learning. Our approach allows models

to fuse as well as share the model to evolve asynchronously

using knowledge-base. Using knowledge based on policy

tests, we have evaluated our design and the framework

extensively. It is worth noting that our method has con-

strained requirements and limitations for a full-fledged SC

of machines/robots. The extension of the developed

framework to handle the intended dimensions of SC flex-

ibly requires further investigations and is left for future

work. Nevertheless, the developed edge-intelligent 6G

framework is an initial innovation to offer a broader range

Table 2 Results of the extensive experiments to demonstrate the

efficiency of knowledge fusion in the CFRL approach

Models Training time Average score Average score of last five

Model 1 1 hr 32 mins 1370 1540

4 hrs 48 348

7 hrs �960 �936

33 min 2675 3500

Model 2 3.5 hrs 65 790

6.5 hrs 230 140

37 mins 2900 3120

Model 3 3 hrs 178 �250

5hrs 322 1999
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of industry 4.0 services, and further advancements will be

remarkable.
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