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Abstract
In this work, we conduct an experiment to analyze the feasibility of a continuous authentication method based on the

monitorization of the users’ activity to verify their identities through specific user profiles modeled via Artificial Intelli-

gence techniques. In order to conduct the experiment, a custom application was developed to gather user records in a

guided scenario where some predefined actions must be completed. This dataset has been anonymized and will be available

to the community. Additionally, a public dataset was also used for benchmarking purposes so that our techniques could be

validated in a non-guided scenario. Such data were processed to extract a number of key features that could be used to train

three different Artificial Intelligence techniques: Support Vector Machines, Multi-Layer Perceptrons, and a Deep Learning

approach. These techniques demonstrated to perform well in both scenarios, being able to authenticate users in an effective

manner. Finally, a rejection test was conducted, and a continuous authentication system was proposed and tested using

weighted sliding windows, so that an impostor could be detected in a real environment when a legitimate user session is

hijacked.
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1 Introduction

Computer security or cybersecurity is one of the main

issues and research topics since the origins of Information

Technologies (IT). Cybersecurity refers to the protection

mechanisms supplied to an IT system in order to preserve

integrity, confidentiality, and availability of its resources

[1, 2]. Over the years, a wide variety of security measures

have been developed in order to protect different types of

assets, from physical devices to software services and data.

Many of such measures need the combination of Artificial

Intelligence (AI) techniques with real-time data processing

in a Big Data environment. Our research group has

demonstrated its expertise in this field, and we have pro-

posed an intrusion detection system (IDS) based on Arti-

ficial Intelligence techniques [3, 4]. Specifically, we used

unsupervised neural networks (Self Organizing Maps) to

detect and isolate anomalous network events that are

potentially hazardous. In the present work, we study the

feasibility of a second-phase authentication system by
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fjnovoa@udc.es

Minia Manteiga

manteiga@udc.es

1 CIGUS CITIC - Department of Computer Science and

Information Technologies, University of A Coruña, Campus

de Elviña s/n, 15071 A Coruña, Spain

2 CIGUS CITIC - Department of Nautical Sciences and Marine

Engineering, University of A Coruña, Paseo de Ronda 51,

15011 A Coruña, Spain

123

Neural Computing and Applications (2022) 34:11691–11705
https://doi.org/10.1007/s00521-022-07061-3(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-7133-6623
http://orcid.org/0000-0003-4693-7555
http://orcid.org/0000-0002-9257-2131
http://orcid.org/0000-0002-5126-6365
http://orcid.org/0000-0003-3629-8120
http://orcid.org/0000-0002-7711-5581
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-022-07061-3&amp;domain=pdf
https://doi.org/10.1007/s00521-022-07061-3


analyzing the users’ interaction with the computer, using

just a common pointing device.

Authentication systems [2] are one of the most extended

security mechanisms, and almost every computer system or

service relies on them to check the users’ identity, so that

access permissions could be granted to them according to

their profile. This authentication process can be defined as

a two-step procedure where an entity provides an identifi-

cation to the system, and the system carries out a verifi-

cation to confirm the correspondence between such an

identification and the entity [5]. Through this process, it is

possible to prevent and detect an identity theft, granting

access and privileges to a legitimate user, and denying

them to a dishonest user. This process can be done by

means of different factors [6], being the most common

ones:

• The users ability to authenticate themselves using some

data or information that, theoretically, nobody else

should know, apart from the users themselves and the

authentication system. This is the case of a user/pass-

word scheme, a personal identification number (PIN) or

even secret question/answer models.

• The authentication system provides the user with a

device, which must be used to confirm the identity.

There are many suitable daily-used devices, such as an

identity card, a bank card, a smartphone or even an

email account or a telephone number. Additionally,

there are some specific devices (i.e., smart cards) that

may be issued by the authentication entity.

• This process can be also based on biometric features,

inherent to the user and typically invariant over time,

such as fingerprint, voice, palm veins, iris or retina.

• Novelty systems can also use some features derived

from the users’ behavior during its interaction with an

IT system [7], such as the type of applications used, the

websites visited, keystroke patterns or mouse move-

ments [8–11].

• Additionally, some systems also rely on the location of

the user; that is, they keep track of the user movements.

In this case, not only geographic locations of mobile

devices could be used, but also Media Access Con-

trol (MAC) or Internet Protocol (IP) address are also

suitable.

During the last years, classic authentication schemes have

evolved towards a multi-factor verification process [12],

where user identity is proven through different comple-

mentary factors that enhance the overall system robustness

and security. This progress was possible due to the popu-

larization of smart devices, such as phones, tablets or

watches. Smart devices are able to provide a confirmation

code to strengthen the primary authentication factor, usu-

ally based on a user/password scheme.

Despite this progress, once the user is granted with

access and privileges using these schemes, there is no way

to detect any identity theft over an open session. To miti-

gate this issue, the user could be periodically asked for

authentication. However, the usage of a common

scheme for this purpose becomes unfeasible, since it would

interrupt the users’ sessions repeatedly. An alternative or

complementary way to do this, is to use the users’ behavior

as a second-phase authentication oriented to the continuous

monitorization of the interaction between the user and the

system [13]. In this sense, common input/output devices

such as keyboards or pointing devices, are the most

immediate choices to test [8]. Asking again for a password

or sending an SMS code to verify that the users’ identity

could be triggered in case the continuous monitorization

detects an anomaly on the users’ behavior, but it could also

raise an alert to the system administrators.

Some works in the literature have studied interaction

features for authentication purposes in many different

ways, from various devices (such as keyboards, pointing

devices or touch-screen) to specific purpose schemes (such

as monitoring the interaction just during the login phase or

primary authentication by means of a graphical password).

Regarding authentication through mouse movements, most

of these works have conducted the study in a guided sce-

nario, in which raw movements were collected and pro-

cessed to extract spatial and temporal behavioral features

based on actions (e.g. distances, angles, speed, accelera-

tion, etc.) that were used to feed different Artificial Intel-

ligence techniques, such as statistical models [11], classic

Artificial Neural Networks [7, 9, 14], Support Vector

Machines [10], Decision Trees [13], or Random Forests

[15]. Furthermore, over the last years more sophisticated

methods based on Deep Learning have been used in order

to address authentication through interaction features,

mostly for mobile and wearable devices [16–18].

In this work, we explore the usability of mouse behavior

oriented to a second-phase authentication mechanism, that

would monitorize users’ activity over their sessions in

order to assess the legitimacy of such a session. Mouse

dynamics have the advantage of being not intrusive and not

that sensitive as keystroke dynamics, which quite fre-

quently involve critical information, such as passwords or

banking information. To this purpose, we have collected

mouse interaction via an ad-hoc application in a guided

environment, extracting representative characteristics and,

based on them, we have built specific user profiles using

different Artificial Intelligence techniques, from base

methods, such as Artificial Neural Networks (ANNs)

[19, 20] or Support Vector Machines (SVMs) [21], to more

advanced ones, such as those based on Deep Learn-

ing (DL) [22, 23]. In addition, the same procedures were

applied to the Balabit Mouse Challenge Dataset [15], a
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public dataset that has been studied by different authors

and that we used as a reference benchmark in order to

assess the performance of our authentication schemes.

The remainder of this paper is organized as follows.

Section 2 defines the problem statement and the objectives

we aim to accomplish. Section 3 describes the datasets

used to conduct the experiments, and how data was treated

and preprocessed. The procedures used to build user pro-

files and the method proposed to perform continuous

authentication are presented in Sects. 4 and 5, whereas the

results obtained during the experimentation are presented

in Sect. 6. Finally, in Sect. 7 we draw some conclusions

from the work carried out in this paper, and discuss pos-

sible future lines of work.

2 Problem statement and objectives

A continuous authentication scheme requires not only a

non-intrusive way to monitorize the user, but also a robust

set of features that allow to accurately verify the users’

identities in near-real-time. Hence, we have to take into

account these aspects in order to build a feasible authen-

tication mechanism, otherwise it will not be suitable for

real environments. The main goals that we pretend to fulfill

in this work can be summarized as follows:

• Develop a data acquisition procedure that is completely

transparent to the user, so that it does not interfere with

the users’ activities. Therefore, data must be gathered in

an effective manner, without disturbing the user or

introducing an excessive computational overhead to the

system. This also means that data collection must be

lightweight enough to be able to efficiently send them

through the communications network.

• Identify a set of relevant or key features that can be

used to unequivocally verify the users’ identities

through their behavior on the use of a common pointer

device. Since our goal is to develop a second-phase

authentication mechanism, the identity that has to be

verified is already known (the legitimate owner of the

active user account). Thus, the activity being monitor-

ized during a particular session can be checked against

a pre-built user profile for the true owner of the account

in order to detect any session hijacking.

• The entire process, from data acquisition to identity

verification must be carried out in near-real-time, so

that identity usurpation can be prevented. Therefore, the

methods selected, while computationally feasible,

should not compromise the accuracy of the authentica-

tion process. In particular, both the feature extraction

process as well as the identity verification through the

pre-built user profiles are critical steps regarding

performance, and they must be accomplished in a short

period of time.

It should be also taken into account that a real environment

may have to authenticate multiple users at the same time

(potentially thousands of users), so the entire process needs

to be scalable. Hence, in the mid-term, we are facing a Big

Data scenario where Data Mining methodologies will be

required in order to achieve such scalability. In particular,

we can point to a series of relevant processes, such as data

acquisition on the client device, data transmission over a

computer network, and feature extraction and identity

verification through such features in an ad-hoc computing

platform, as well as user profile updates. All of them must

be handled in distributed computing platforms.

To summarize, this is a complex process that requires

many different components that must be appropriately

orchestrated in order to achieve a near-real-time, accurate,

and scalable solution capable of authenticate users through

mouse dynamics in a transparent manner. The present work

focuses on analyzing the feasibility of mouse behavioral

features as a second-phase authentication mechanism

intended for continuous monitorization of the users’

activity by means of Artificial Intelligence techniques. Any

further development, such as a parallel and distributed

implementation or its integration in a real environment, are

well beyond the scope of this work and they are proposed

as future work.

3 Data acquisition and treatment

In order to analyze the capabilities of mouse behavior as an

authentication factor, we firstly decided to define a guided

scenario where the user is exposed to different test cases

oriented to frequent user interactions: read some texts of

different sizes, so that the user has to scroll down; try to

replicate some predefined shapes, such as circles or curves;

close different pop-up windows that are randomly placed

all over the screen; click on a button once the mouse

pointer is randomly placed in the screen, so that the user

has to locate it; and, forced waiting periods, where the

application seems to be frozen. To this purpose, we

developed an ad-hoc application that guides the user

through these test cases and collects mouse movement data

in a transparent manner to the user. These data include

mouse position in the screen and a timestamp for each

event, which are persisted to log files together with infor-

mation that allows us to identify the owner of such a

session.

Our application was circulated among 27 volunteers

who completed the list of test cases, so that we can rely on

the origin and authenticity of their data. Such a dataset also
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includes captures made with different types of pointing

devices that work with different DPI (dots per inch) reso-

lutions, as it would occur in a real environment. As a result,

we were able to gather more than 1.5 million mouse events

from three different user sessions, so that we could check

data variability over time, allowing us to successfully

conduct the experiment. In order to anonymize the dataset,

and since our research group has an extensive background

in the Big Data Astronomy field, we decided to use star

names instead of user names, and therefore we named this

set the Constellation Mouse Movements. Such a dataset is

available to the community,1 so that it can be used to

conduct further studies on behavioral authentication based

on mouse movements.

On the other hand, we have also used the Balabit Mouse

Challenge Dataset [15], which is a public dataset that has

been widely studied by different authors. Such a dataset

gathers mouse events from ten users over remote desktop

sessions, collecting mouse positions and timestamps

among other information. It is divided into two different

subsets: the training sample contains legitimate user ses-

sions that are intended for algorithm training; and, the test

sample, which provides data on sessions of unknown users

along with an estimation of their identities. Such predic-

tions were made by a number of models built during the

actual challenge, so that such labels may not be completely

reliable. Therefore, we decided to focus on the training set,

which allowed us to test our techniques using external data

that has not been gathered by our own system, and in a

non-guided scenario. This dataset allows us to demonstrate

the capability of the extracted features and the proposed

methods to carry out the authentication process in a real

and general-purpose environment.

3.1 Feature extraction

The raw data that was collected in both scenarios must be

processed in order to extract those features relevant to the

problem that can be appropriately handled by the machine

learning techniques that will be presented in Sect. 4. To

this purpose, we analyzed different proposals from the

literature that used features of a diverse nature, mainly

based on movement properties [10, 11, 14] such as

velocities, accelerations, and angle variations, but also

others based on movement analysis by means of time

series. In this work, we focused on the first type of features,

since we pretend to study the feasibility of mouse move-

ment as an authentication factor for general purpose, rather

than to mimic a specific pattern. Accordingly, we have

selected a number of reference features from [14], which

are summarized in Table 1.

In addition, we also considered some new features,

derived from the previous ones: absolute values, computed

for most of the reference features described above; a

decomposition of some features into basic components,

such as horizontal velocity which was split into velocity

towards left and velocity towards right, for a clear physi-

ological reason; we divided each session into different

sequences of consecutive movements (hereinafter,

chunks2) and took the first event of each one as the refer-

ence to compute the following quantities with respect to it:

distances, slope angle of tangent, curvature, and curvature

rate of change; finally, we compute the curvature and the

curvature rate of change with respect to the origin. These

features are fully described in Table 2.

For the purpose of continuous monitoring, these char-

acteristics are structured in two types of temporally

sequential chunks as follows: on the one hand, we defined

time-based chunks lasting one, two and five seconds, which

gather a variable number of events for each one. On the

other hand, size-based chunks were defined which contain

exactly 100, 200, and 500 events, respectively. Non-over-

lapped chunks were used in both cases, which provided six

different scenarios that were tested independently.

3.2 Feature preprocessing

Once the features have been extracted, they must be

appropriately treated before they are analyzed or used to

train any machine learning technique. To this purpose, the

following operations were performed:

• Firstly, outlying events were detected and removed for

each user, so that they cannot affect the analysis of the

data. Such occurrences can be due to a lack of

concentration, distractions, or even correspond to an

unrepresentative mood of the user.

• Then, the mean value was computed for the features

contained within each chunk, which allows us to obtain

representative information about it. This preprocessing

step was skipped during the preparation of the data for

the deep learning techniques (see Sect. 4) because they

are able to work with chunk-based features that were

configured as a hyper-parameter.

• Finally, all the features were scaled to the interval 0; 1½ �
following a minimum-maximum approach.

1 The Constellation Mouse Movements dataset can be found in:

https://lia2.udc.es/web/form_submission/constellation_dataset.php.

2 These sequences of movements within a session that we refer to as

‘‘chunks’’ can be also found in the literature as ‘‘windows’’. We

decided to use the term ‘‘chunk’’ to avoid confusion with the concept

of ‘‘sliding window’’ introduced in Sect. 5.
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3.3 Feature selection

Once the features have been treated, we proceed to analyze

them in order to identify a number of relevant features. In

this case, we focused on a recursive feature elimination

method [24] based on Extra-Trees (ERT, [25]) that was

also combined with a cross-validation procedure. The

overall process was repeated many different times, and it

demonstrated that all the 31 features were relevant enough

in almost all the cases, so that they should be taken into

account by the machine learning procedures that will be

discussed in Sect. 4.

4 Methods used to create user profiles

In order to define a continuous authentication scheme,

user’s identity must be verified using the behavioral fea-

tures described above, defining unique user profiles capable

of detecting whether it is the user who is logged in or an

impostor. To this purpose, different Artificial Intelligence

techniques were explored, from classical methods such as

Support Vector Machines (SVM, [21]) or Multi-Layer

Perceptrons (MLP, [19, 20]) to Deep Learning (DL) tech-

niques, such as Convolutional Neural Networks (CNN,

[22]) or Long Short-Term Memory (LSTM, [23])

networks.

A user-based approach was followed in order to train

and evaluate each of these techniques, and to find the

model or profile more suitable for a particular user. Two

samples of data are defined for each user: the own user

records and a random selection of other users records. This

allows us to guarantee that both samples are balanced and

to avoid overfitting/underfitting. As a reminder, all the 31

behavioral features were used, and both datasets (Con-

stellation and Balabit) were tested using time-based chunks

(one, two, and five seconds) and size-based chunks (100,

200, and 500 events), so that twelve different full experi-

ments were conducted as it is detailed below.

Each of the proposed techniques requires different

hyper-parameters to be appropriately set, which are sum-

marized in Table 3. In order to determine the best config-

uration for each one, a grid-search procedure was followed.

It was combined with a cross-validation procedure to

guarantee the generalization of the models, where each

model was trained up to 10 times with a random selection

of train/test samples (90% training, 10% test). In addition,

the entire process was repeated a hundred times so that the

sample of non-user data could be rebuilt with different

records to avoid any bias and properly test the performance

and generalization of these models.

For the deep learning models, the architecture design

has been included as an additional variable, where not only

the hyper-parameters of each type of neural network are

configured, but also the number of layers for each type, and

even the combination of different types in the same

architecture (e.g., [26, 27]). In this case, tests have been

carried out with convolutional and recurrent neural net-

works, using the Long Short-Term Memory (LSTM)

architecture in the second case. The idea behind this con-

figuration where both networks are combined is, on the one

hand, to exploit the temporal locality of the data through

convolutional layers, which are in charge of extracting

increasingly higher-level characteristics at each step; and,

on the other hand, identify patterns over time through

recurrent neural networks.

It should also be noted that by hyper-parameterizing the

number of layers for each type of networks, not only the

capability of these networks to work together has been

tested, but also the independent operation of each one,

since the number of layers can be set to zero. As a result of

this approach, after running the grid-search procedure, a

single deep learning model is obtained as the combination

of the two types mentioned above (see Fig. 1). The final

parameters can be seen in Table 3.

Regarding the data used for experimentation, both

datasets were used to perform the training and to measure

their performance through a cross-validation proce-

dure (see Sect. 6.1). In addition, the Constellation dataset

was also used to conduct a rejection test, whose results are

discussed in Sect. 6.2, since it requires a set of non-legit-

imate users that are not part of the system (outsiders),

whereas the Balabit dataset was not used due to the limited

user data available.

Finally, note that Deep Learning techniques are able to

handle chunk-based features through a hyper-parameter,

namely, the number of timesteps. Consequently, raw

Table 1 Reference features from [14]

Feature Definition

Horizontal velocity hvi ¼ xi�xi�1

ti�ti�1

Vertical velocity vvi ¼ yi�yi�1

ti�ti�1

Tangential velocity tvi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hv2
i þ vv2

i

p

Tangential acceleration tai ¼ tvi�tvi�1

ti�ti�1

Tangential jerk tji ¼ tai�tai�1

ti�ti�1

Distance from the origin l0i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
i þ y2

i

p

Slope angle of the tangent from the origin h0
i ¼ arctan yi

xi

� �

Curvature ci ¼ h0
i �h0

i�1

l0i �l0
i�1

Curvature rate of change dci ¼ ci�ci�1

l0i �l0
i�1

where xi and yi are the mouse positions and ti the timestamp for a

given record i within the session
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feature values can be used instead of average chunk values

as in classical techniques. In contrast, Deep Learning

techniques represent a high cost in computational resour-

ces, reason why the overall process to both find the hyper-

parameters and evaluate the models were cut to ten times,

instead of a hundred times.

5 Continuous authentication scheme using
a weighted sliding window

It must be stressed that none of the models proposed above

can work by themselves outside an environment responsi-

ble for orchestrating the entire process: collect and process

the mouse data to obtain the features, integrate the afore-

mentioned models and build a continuous authentication

system that, based on the predictions obtained for each

chunk, identifies possible intrusions. Please note that the

design and implementation of such a platform is beyond

the scope of this work. This section intends to just show an

example of continuous authentication using a sliding

Table 2 Custom features
Feature Definition

Absolute horizontal velocity abs hvi ¼ jhvij
Horizontal velocity towards left

hvli ¼
jhvij if hvi\0

0 otherwise

�

Horizontal velocity towards right
hvri ¼

jhvij if hvi [ 0

0 otherwise

�

Absolute vertical velocity abs vvi ¼ jvvij
Vertical velocity downwards

vvdi ¼
jvvij if vvi\0

0 otherwise

8

<

:

Vertical velocity upwards
vvui ¼

jvvij if vvi [ 0

0 otherwise

�

Absolute tangential acceleration abs tai ¼ jtaij
Tangential deceleration

tadi ¼
jtaij if tai\0

0 otherwise

�

True tangential acceleration
tati ¼

jtaij if tai [ 0

0 otherwise

�

Absolute tangential jerk abs tji ¼ jtjij
Positive tangential jerk

tjpi ¼
jtjij if tji\0

0 otherwise

�

Negative tangential jerk
tjni ¼

jtjij if tji [ 0

0 otherwise

�

Distance from the chunk reference
lcri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xcr � xið Þ2þ ycr � yið Þ2
q

Slope angle of the tangent from the chunk reference hcri ¼ arctan yi�ycr
xi�xcr

� �

Absolute curvature abs ci ¼ jcij
Curvature within the chunk ccri ¼ hcri �hcri�1

lcri �lcr
i�1

Absolute curvature within the chunk abs ccri ¼ jccri j
Absolute curvature rate of change abs dc0

i ¼ jdc0
i j

Curvature rate of change within the chunk dccri ¼ ci�ci�1

lcri �lcr
i�1

Absolute curvature rate of change within the chunk abs dccri ¼ jdccri j
Curvature from the origin c0

i ¼
h0
i �h0

i�1

l0i

Curvature rate of change from the origin dc0
i ¼

c0
i �c0

i�1

l0i

where xi and yi are the mouse positions and ti is the timestamp for a given record i within the session
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window procedure, where the assessments are based on an

average of the predictions given by the models described

above. Note that each individual prediction is the result of

processing a single chunk, as described in Sect. 4. The

entire process is explained in the next paragraphs and

illustrated by Fig. 2, which shows a scenario where the

legitimate user is using the computer for a certain period of

time, and then an impostor takes control over the session.

Table 3 Hyper-parameters
Technique Hyper-parameter Best configuration

SVM Kernel Gaussian

Regularization parameter (C) 10

Kernel coefficient (c) 10

MLP Number of hidden layers 1

Neurons in the hidden layer 20

Learning rate (a) 0.001

Activation function Hyperbolic tangent

DL

CNN Number of filters 64

Kernel size 3

Padding ‘‘Same’’

Pool size 2

Number of timesteps 100

Number of layers 2

LSTM Units 32

Dropout rate 0.35

Number of timesteps 100

Number of layers 2

Fully conn. ANN Neurons 50

Fig. 1 Deep learning architecture overview. The model uses two 1D

convolutional neural layers, where f is the number of filters, k is the

size of the kernel, and p is the padding. A pooling layer is applied to

the output of each layer, where p is the size of the kernel. Both types

of layers use a stride of 1. n is the number of neurons in the fully-

connected layer and the number of units in the 1D recurrent neural

network. For dropout layers, d is the dropout rate
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The prediction of whether the user is the legitimate one

or an impostor is shown through a set of gray bars, which

take continuous values between 0 and 1. Such bars repre-

sent the confidence that each one of the chunks provides

about the legitimacy of the user. The continuous authen-

tication procedure uses a sliding window that computes the

mean of the predictions in two different ways:

(a) A classical arithmetic mean (x), where each predic-

tion that falls within the window interval is weighted

equally:

x ¼ 1

n

X

n

i¼1

pi; ð1Þ

where n stands for the size of the sliding window,

and pi represents the prediction for the ith chunk.

(b) A weighted mean (xw), in which the latest predic-

tions in the interval take a larger weight value:

xw ¼
Pn

i¼1 piwi
Pn

i¼1 wi
; ð2Þ

where wi represents the weight for the ith prediction.

Such a weight can be determined as wi ¼ i=m, being

m the mitigating factor that is used to control the

effect of weighting, and i=m 2 N. This way, the

lower is m, the more weight is applied to the most

recent chunks of the window.

The results for both classical and weighted sliding windows

are represented with blue and orange lines, respectively. A

value for the kth window represents the average value

(weighted or not) of the predictions between the kth and

ðk � nÞth chunks. As the comparison between both types of

means shows, the weighted one has a faster response to

new predictions, helping to detect an impostor earlier when

it takes control of the device, but being also more sensitive

to false negatives.

In addition to the different types of weighting, the size

of the sliding window has also been tested. In this case, the

larger the size of the window, the more ‘‘memory’’ it has

about the user’s behavior. Note that although with smaller

windows reactivity is reinforced, it is also more prone to a

false negative output.

The last parameter to configure is the authentication

threshold, which is used to detect a possible identity theft

when the value of the sliding window is below such a

threshold. In Fig. 2, the red dotted horizontal line repre-

sents the threshold, and the vertical dotted line represents

the moment when the impostor user takes control over the

session. Using these two lines, the graph can be divided

into four zones, which represent a kind of confusion

matrix: the upper left part would represent the area of the

true positives, where it is the legitimate user who is using

the device and the continuous authentication system pre-

dicts so; the lower right area corresponds to the situation

where the impostor takes control and the system is able to

detect that it is not the legitimate user who is in control

(true negative); the upper right area represents the worst

possible case, when the impostor is in control and the

authentication method determines that it is the legitimate

user (false positive); and, finally, when the value of the

sliding window falls in the lower left area, the system

would be identifying the legitimate user as an impostor

(false negative), and it would be asking again for the pri-

mary authentication credentials. Despite being an

Fig. 2 Example of continuous authentication using the Deep Learning

model for user Nash (Constellation dataset). While the first 395

iterations correspond to the user’s own test data, the rest of the

iterations belong to user Altair. An authentication threshold of 0.5 and

a window size of 50 were used
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undesirable situation, it is obviously preferable that the

system forces the user to authenticate again using the pri-

mary method in exceptional moments, even if it is the

legitimate user (false negative), than a false positive situ-

ation where the impostor can use the device without being

detected.

This method was evaluated using both datasets, so that

an outsider (external user not known by the system) was

used in the Constellation dataset, and an impostor which is

part of the system (another legitimate user different from

the model owner) was used in the Balabit. The overall

results are presented in Sect. 6.3.

6 Results

Once the models have been appropriately configured, their

performance was evaluated through different widely-used

metrics such as precision, recall, or the F1 � score [28].

Firstly, a cross-validation procedure was performed in

order to obtain the base results that demonstrate that the

proposed methods are able to authenticate the legitimate

users. Then, a rejection test was carried out on the legiti-

mate user models built in the previous stage, so that we can

evaluate their capability of detecting and prevent session

usurpation by an outsider user. In addition, an overview of

the performance of the continuous authentication

scheme described in Sect. 5 is also shown. Finally, since

computing time is one of the main issues in a continuous

authentication scheme like the one we are proposing, we

have measured evaluation times for these models.

6.1 Cross-validation

As it was stated above, all the scenarios were indepen-

dently tested for both datasets, using the different chunk

configurations proposed as well as the methods described.

This led us to a large amount of results that will be sum-

marized in this section.

Firstly, time-based chunks were found to perform

slightly worse than the fixed-size approach. This is due to

the high variability on the number of records available per

chunk: sometimes the user makes many moves within a

short time frame, but in some cases, such as a waiting

period in a loading window, the user does not make any

movement for several seconds. Therefore, using time-based

chunks seems not suitable for such situations, whereas

fixed-size have proved to perform better and to be more

stable.

For this reason, we decided to focus on the latest type of

chunks (fixed-size). We found that they performed simi-

larly for the different sizes that were taken into account

(100, 200, 500). However, since our goal is to authenticate

users in a continuous manner over the entire user sessions,

using small-sized chunks will allow us to carry out the

authentication process in a more frequent manner than

using larger sizes, while reducing the computational cost of

the entire process. Hence, we are presenting the results

obtained for each one of the proposed techniques using

fixed-size chunks of 100 events for both datasets.

Regarding authentication, the main objective is to

minimize false positives; that is, to detect any intrusion into

the system, which can be efficiently measured through

False Positive Rate (FPR) or precision score. However,

false negatives must also be taken into account because

repeatedly rejecting a legitimate user can lead to a dis-

ruption of the users’ activities and may be annoying.

Consequently, False Negative Rate (FNR) or recall score

can be used to minimize false negatives and, finally, both

aspects can be evaluated at the same time through the F1 �
score or Area Under the Receiver Operating Characteristic

curve (AUC-ROC). Table 4 summarizes the performance

of the proposed models through the average value for these

metrics.

On the one hand, we started analyzing the Constellation

dataset (see Table 4), where we obtained average scores

above 0.85 for those metrics that are intended to be max-

imized, while for the FPR and FNR, which are intended to

be minimized, we obtained average values below 0.14, and

0.10 respectively. This means, in general terms, that the

proposed methods are capable of authenticating the users

achieving a good performance, especially for the Deep

Learning models. To further illustrate this behavior, Fig. 3

Table 4 Average performance for the evaluated metrics range during

the cross-validation procedure

Model

DL MLP SVM

Constellation dataset

Metric F1 � score 0.9218 0.8976 0.8876

Precision 0.9001 0.8902 0.8728

Accuracy 0.9185 0.8964 0.8842

Recall 0.9473 0.9073 0.9060

AUC-ROC 0.9615 0.9494 0.9397

FPR 0.1111 0.1146 0.1376

FNR 0.0527 0.0927 0.0940

Balabit dataset

Metric F1 � score 0.9691 0.9593 0.9577

Precision 0.9594 0.9594 0.9543

Accuracy 0.9679 0.9593 0.9574

Recall 0.9795 0.9595 0.9615

AUC-ROC 0.9900 0.9877 0.9880

FPR 0.0441 0.0409 0.0466

FNR 0.0205 0.0405 0.0385
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shows the average F1 � score for each user. Although it

presents some user-dependent variability, it always takes

values above 0.80. Two different facts that could lead to

certain degree of confusion among users can be pointed

out: users were asked to complete exactly the same test

cases, which required common actions such as replicate

some shapes or clicking on specific items; and the number

of available records can considerably vary from one user to

another, mainly because of the pointing device used, but

also due to their different behavior on mouse usage.

On the other hand, once our authentication scheme was

successfully proven in the guided scenario which included

some mandatory mouse actions, the next step was to ana-

lyze its performance in a non-guided scenario with totally

free movements. To carry it out, we decided to use the

Balabit dataset because it was obtained by an external

system and, as we mentioned before, it was widely ana-

lyzed by other authors, allowing the comparison of the

results obtained by our system to those others [15]. In

general terms, the performance of our models was found to

be particularly good for the Balabit dataset, obtaining

scores above 0.95 for those metrics that are intended to be

maximized, scores below 0.05 for the ones intended to be

minimized (FPR and FNR), whereas the average F1 �
score is always above 0.90 for all users. Figure 4 illustrates

these results and demonstrates that if we compare them

with those published in [15], a substantial improvement is

found. In particular, columns ‘‘MM’’ in Table 4 of the

mentioned paper [15] contain results for features based on

mouse movements, providing average values for accuracy

and AUC-ROC metrics of 0.79 and 0.86, respectively.

6.2 Rejection test

Besides the cross-validation test described above, a second

validation step has been carried out. As it was mentioned

above, the objective of this phase is to detect fraudulent use

of the system by an external or outsider user, who is not

part of the system. Therefore, we used data records from 7

users in the Constellation dataset that were not used during

the training process of the methods, so that they can be

considered as true outsider users.

Therefore, those users that were not considered during

the training and cross-validation tests, will be now tested

against the legitimate user models built in the previous

stages (see Sect. 4). Since we are exclusively using novel

user data to perform this test, the metrics used are limited

to: true negative rate, which measures those cases where

the impostor users are detected as so; and, false positive

rate, which measures the acceptance of impostor users as

legitimate ones.

Table 5 shows the average results obtained for this test.

The overall performance marginally decreases when com-

pared to the cross-validation results presented in Sect. 6.1,

although the DL methods continue to perform slightly

better. However, this subtle worsening could be expected,

since the data used in this test belong to new users that

Fig. 3 Constellation user comparison in the cross-validation Fig. 4 Balabit user comparison in the cross-validation
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were never presented to the models during the training

phase. In addition, it must be also emphasized that in our

dataset all the users were required to complete exactly the

same actions and, therefore, some confusion was also

expected to an extent.

6.3 Continuous authentication test

In this section, we discuss the results obtained during the

experimentation using the sliding window procedure for

continuous authentication described in Sect. 5, which are

summarized in Figs. 5, 6 and 7.

On the one hand, Fig. 5 shows different comparisons of

the continuous authentication procedure, by applying

weighted windows with different sizes and thresholds to

DL predictions. In summary, smaller windows increase the

speed of the system’s response to changeable values,

allowing more sensitivity to erratic predictions. On the

other hand, they also allow a faster detection of an

impostor, so that they are more robust to false positives or

false negatives. This happens at the cost of a slower

response to detect a true negative case. The thresholds are

used to determine when the procedure must intervene to

avoid an intrusion: the larger value it takes, the higher

security is. The downside is that a large value makes the

system more likely to trigger the primary authentication

mechanism to a legitimate user due to a wrong prediction

(false negative), which can be annoying. However, when it

takes small values, interruptions are minimized at the

expense of less security. At this point, it must be taken into

account that the value of a single window falling below the

threshold is enough to ask for the primary authentication

credentials. In this way, as it can be seen in the example,

the impostor would be quickly detected even using a

window size of 10 chunks and a threshold of 0.5.

On the other hand, Figs. 6 and 7 show the results for two

different users of the Constellation dataset and the Balabit

dataset, respectively. In both cases, a weighted window

with the predictions of the proposed models (DL, MLP,

and SVM) were used, as well as a window size of 25 and a

threshold of 0.5. As it can be observed, although in both

cases the values of the weighted windows are in the correct

areas (true positive, and true negative) most of the time, a

better performance is appreciated with the Balabit dataset.

This was our expectation according to the results obtained

in the cross-validation tests that were performed and

reported previously.

It must be pointed out that, in order to implement an

operational system, these parameters must be appropriately

defined in order to minimize false negatives and, espe-

cially, false positives. In addition, it must be taken into

account that they strongly depend on the similarity between

the legitimate user and the impostor, as well as on the

effectiveness of each user’s models, so that their parame-

ters may differ.

Finally, the continuous authentication test has also been

tested using an outsider user as impostor. Most of the

graphs between legitimate users and outsiders maintain a

behavior similar to Fig. 6, with the DL model being the one

that behaves best in general terms, as supported by the

results shown in Sect. 6.2. In certain cases, the subtle

worsening mentioned in the rejection test can be seen in

Fig. 8. Despite this, a significant decrease in the values

obtained by the sliding window is still observed when the

outsider takes control, allowing for the detection of

impostor users even in more complicated scenarios. In fact,

this can be reinforced by increasing the detection threshold,

so that the continuous authentication system is more sen-

sitive to potential window prediction drops.

6.4 Performance time measurement

As it was previously stated, computing times are one of the

main concerns for a continuous authentication system, in

which near real-time is a requirement in order to become

fully operational when integrated into a real environment.

Therefore, in this section we report the execution times

measured for each one of the proposed models when pro-

cessing a different number of chunks to make a prediction

about the legitimacy of the user.

Table 6 shows the execution times measured for all

three models that were used to perform the authentication

when they have to process data in two scenarios: around an

hour of user time; and, near three hours of user time. As it

can be observed, the fastest method is the MLP, which can

carry out the process in the order of milliseconds,

demonstrating an outstanding performance with respect to

the other methods. Despite the SVM and DL techniques are

considerably slower than MLP, they can be perfectly used

for a continuous authentication system, since all of them

are capable to process all the data gathered in an hour of

user time in less than a second. However, it must be

pointed out that the number of users that the system has to

analyze concurrently must be taken into account in order to

Table 5 Average rate of true negatives (TNR) and false posi-

tives (FPR) for the rejection test conducted

Model

DL MLP SVM

Metric TNR 0.8664 0.8427 0.8362

FPR 0.1336 0.1573 0.1638
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determine which method should be used for a particular

organization or platform.

7 Conclusions and future work

In this work, a full experiment was conducted in order to

assess the capability of behavioral mouse movement fea-

tures in order to authenticate the user by means of Artificial

Intelligence techniques. Firstly, a non-intrusive mouse

movement monitorization tool was developed and

deployed to 27 users so that we could conduct the

experiment in a guided scenario, where each user was

asked to complete a number of tests that involved different

mouse actions. Then, based on the information that was

gathered, a wide variety of mouse movement features were

extracted, studied, and processed in order to build unique

user profiles using three different AI techniques: MLP,

SVM, and DL.

The performance of these methods was analyzed fol-

lowing three different approaches. First, a classical cross-

validation procedure was carried out to assess the authen-

tication capability of the features and the techniques to

authenticate users according to their mouse movement

Fig. 5 Example of continuous authentication using different window sizes - It exemplifies the same case explained in Figure 2, but using only the

weighted approach with window sizes of 10, 25, and 50; and three different thresholds of 0.5, 0.7, and 0.9

Fig. 6 Example of continuous authentication with the three proposed techniques applied to Constellation dataset and using the weighted

approach with a size of 25 - The first 94 iterations correspond to the Kuma user (legitimate user), while the rest belong to Arcturus
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behavior. In general terms, all the techniques proved to be

successful, but MLP and, especially, DL demonstrated to

perform slightly better. Then, a rejection test was con-

ducted in order to assess the capability of these methods to

detect a non-legitimate user that is not part of the sys-

tem (i.e. an outsider user), obtaining consistent results with

respect to cross-validation. Finally, a continuous authenti-

cation test was also carried out in order to simulate a

regular working environment where an impostor takes

control over the session of a legitimate user. To this pur-

pose, a sliding window procedure was proposed and

Fig. 7 Example of continuous authentication with the three proposed techniques applied to Balabit dataset and using the weighted approach with

a size of 25 - The first 396 iterations correspond to the user7 (legitimate user), while the rest belong to user12

Fig. 8 Example of continuous authentication with the three proposed

techniques applied to Constellation dataset and using an outsider user

as impostor. The first 229 iterations correspond to the Tyl user, the

rest of the iterations belong to user Zaniah. An authentication

threshold of 0.5 and a window size of 25 were used

Table 6 Comparison of execution times for the models used

Method Chunks User time (ha) Execution time (s)

MLP 3600 1 0.003

10,000 2.75 0.009

SVM 3600 1 0.995

10,000 2.75 3.085

DL 3600 1 0.607

10,000 2.75 1.601

aUser times were estimated according to the average user time per

chunk
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applied to carry out the authentication process, which

proved to be effective on minimizing false negatives, while

being able to identify false positives (impostor users) in a

short period of time. Additionally, performance times were

measured to verify that it is feasible to implement such a

system in a real-time working environment.

The scope of this work did not cover the design and

implementation of an entire authentication system, which

is therefore proposed as future work. Such a system would

integrate the authentication methods proposed in this work,

as well as other future improvements, into a real-time

platform that would be responsible for the entire authen-

tication process, orchestrating all of the required compo-

nents: data acquisition, data storage, feature extraction,

feature preprocessing, authentication via AI-based user

profiles, as well as a notification system that could trigger

some action when an identity usurpation is detected. Due to

the enormous volumes of data that must be handled, such a

platform would require the use of a Big Data solution

capable of processing such data in real-time or near real-

time, such as a queue-based and streaming-based systems

(e.g. Apache Kafka, Apache Spark or Eclipse Mosquitto).

Additionally, such user profiles must be updated over time,

so that the models are periodically adapted to variations in

the user’s behavior (e.g. temporal or permanent injury) or

to changes in physical devices (e.g. acquisition of a new

pointing device), and some trigger mechanisms must be

proposed and studied in order to automatize such an update

process. This update of the modules does not require real-

time processing, but it is computationally expensive due to

the vast amounts of data that must be handled, requiring

also a Big Data solution that provides distributed com-

puting capabilities, such as Apache Spark or Apache

Hadoop.
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