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Abstract
Early diagnosis of COVID-19, the new coronavirus disease, is considered important for the treatment and control of this

disease. The diagnosis of COVID-19 is based on two basic approaches of laboratory and chest radiography, and there has

been a significant increase in studies performed in recent months by using chest computed tomography (CT) scans and

artificial intelligence techniques. Classification of patient CT scans results in a serious loss of radiology professionals’

valuable time. Considering the rapid increase in COVID-19 infections, in order to automate the analysis of CT scans and

minimize this loss of time, in this paper a new method is proposed using BO (BO)-based MobilNetv2, ResNet-50 models,

SVM and kNN machine learning algorithms. In this method, an accuracy of 99.37% was achieved with an average

precision of 99.38%, 99.36% recall and 99.37% F-score on datasets containing COVID and non-COVID classes. When we

examine the performance results of the proposed method, it is predicted that it can be used as a decision support mechanism

with high classification success for the diagnosis of COVID-19 with CT scans.
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Abbreviations
CT Computed tomography

BO Bayesian optimization

WHO The World Health Organization

RT-PCR Real-time reverse transcription polymerase

chain reaction

AI Artificial intelligence

DL Deep learning

DNN Deep neural networks

ML Machine learning

IRRCNN Inception recurrent residual neural network

MODE Multi-objective differential evolution

CNN Convolutional neural networks

ANN Artificial neural network

BCNN Bayesian convolutional neural networks

PNN Probabilistic neural network

RBFNN Radial basic function neural network

GRNN Generalized regression neural network

R Correlation coefficient

RMSE Square root of the mean square of the errors

HP Hyperparameters

SVM Support vector machine

GS GridSearch CV

RS Random Search CV

LSTM Long short-term memory

BNN Bayesian neural network

DE Deep ensemble

AF Acquisition function

GP Gaussian processes

RFR Random forest regression

TPE Tree parzen estimators

SM Surrogate model

PI Probability of improvement

EI Expected improvement

UCB Upper confidence bound

kNN K-nearest neighbor
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1 Introduction

Coronaviruses are among diseases that have threatened our

world for years, spreading in the form of epidemics among

most human and animal species. An outbreak of coron-

avirus infection, which severely affected the population in

Wuhan the capital of China’s Hubei Province, began in

December 2019. The World Health Organization (WHO)

proclaimed a worldwide emergency on January 30, 2020,

officially announced a new coronavirus, named COVID-

19, and classified a pandemic on March 11, 2020. The

coronavirus can infect birds, mammals, and humans.

However, bats do not become infected even though they

host the coronavirus [1]. As of October 22, 2021, more than

241 million cases were recorded worldwide, causing the

death of more than 4.9 million infected people. The top

three regions with the highest number of COVID-19 cases

and more than weekly 2 million cases are described on the

official WHO web page as the Americas, South-East Asia,

and Europe, respectively. At the time of the first spread of

COVID-19, the Chinese government announced that the

diagnosis of COVID-19 could be confirmed with real-time

reverse transcription polymerase chain reaction (RT-PCR)

[1]. However, the fact that RT-PCR tests gave extreme

false-negative results made the reliability of these tests

questionable [2]. The inability to detect infected people and

to start the necessary treatment on time increases both the

risk of transmission of COVID-19 and the risk of death

during this process.

COVID-19 tests are done to detect viruses or antibodies.

The diagnosis of COVID-19 is made based on two basic

approaches. The first is laboratory-based approaches that

include nucleic acid testing, antigen tests, and serology

tests. The second approach considers lung imaging-based

diagnostic approaches such as X-rays and computed

tomography (CT) scans[3]. Laboratory tests are performed

on samples obtained through nasopharyngeal swab, throat

swab, and sputum. One of the most common diagnostic

methods used is nasopharyngeal swab [4]. X-rays and CT

scans are used as important diagnostic approaches for the

verification of patients suspected of being infected with the

virus. Since COVID-19 can affect the lungs in a similar

way to many diseases such as pneumonia on images

obtained with X-rays and tomography, a definite positive

COVID-19 result may not be reached based on findings

obtained only from lung images without clinical diagnosis

[5]. Along with clinical diagnoses, a chest CT scan has

high sensitivity in revealing definitive diagnosis of

COVID-19. So, the diagnosis of COVID-19 can be made

by combining the symptoms and laboratory findings of the

infected person with radiological imaging techniques. The

radiological features of COVID-19 can be detected by

X-rays and CT scans, which are radiological imaging

techniques. Radiologists mostly prefer X-ray chest images

for the diagnosis of COVID-19 disease. However, chest CT

scans are used for more accurate detection, since X-ray

devices cannot accurately distinguish soft tissues in chest

images [6].

There has been a considerable increase in studies in the

literature to diagnose COVID-19 from chest CT scans.

Looking at these studies, the diagnostic approaches for

COVID-19 are examined in two general categories. The

first is based on laboratory-based approaches, while the

other is based on medical imaging instruments such as

X-rays and CT scans. When the studies performed are

examined, chest CT-scans are used as a priority tool in the

clinical process because of successful results for the diag-

nosis of COVID-19 [7]. Today, Artificial Intelligence (AI)-

based Machine Learning (ML) and Deep Learning (DL)

technologies are used for the diagnosis of SARS-CoV-2 in

the medical field by using chest CT scans. ML Algorithms

are used to help radiologists make decisions in the process

of diagnosing COVID-19 from images on chest CT-scans.

In addition, Deep Neural Networks (DNN) are preferred by

researchers for imaging-based problems that require fea-

ture extraction, such as the diagnosis of COVID-19.

To summarize the literature studies about CT scans

related to the diagnosis of COVID-19, Alom et al. [8]

studied a total of 425 CT-scans developing the Inception

Recurrent Residual Neural Network (IRRCNN) and

NABLA-N models for COVID-19 detection and segmen-

tation of CT scans, respectively. Silva et al. [9] developed

the Efficient Deep Learning Technique to evaluate each

COVID-19 chest CT scan independently and to process CT

images of different quality when using different CT devi-

ces depending on the environmental conditions. To diag-

nose COVID-19 from chest CT scans and to classify the

lesions by segmenting, the following models were devel-

oped: a Multi-task Deep Learning model by Amyar et al.

[10], Weakly Supervised DL Framework by Wang et al.

[11], a new Deep Transfer Learning model based on

DenseNet201 by Jaiswal et al. [12], a new DL model was

developed using multi-objective differential evolution

(MODE) and convolutional neural networks (CNN) by

Singh et al. [3].

In the literature review for our study, we did not come

across any study in which a Bayes optimization (BO)-based

approach was applied to CT scans. Therefore, the moti-

vation for this paper is to find the hyperparameters (HP)

using BO by both DNN and ML algorithms and to be the

first to illustrate their high performance. What makes our

study important is that it tries to obtain the best models by

finding the most optimum results in a particular search area

while choosing the most suitable parameters for both DNN

and ML. Moreover, it is planned to contribute to real-time
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disease diagnosis by implementing these models on web.

Generalization of models is important for performance in

real-time systems. Ultimately, we have to verify that our

work, which is expected to aid expert opinion, is working

correctly. For this reason, GridSearchCV (GS) [13] is used

as an alternative to BO for parameter optimization of ML

algorithms. This is an important argument that shows that

our study is usable.

We may summarize the contribution of our study to the

field with a few points:

• Providing a decision support mechanism that helps

expert opinion with high accuracy using BO-based

models.

• Showing that datasets created from CT scans can give

different results in terms of model and features.

• Examining the contribution of HP regulation to

performance.

• It offers a fast-integrated approach for real-time disease

diagnosis.

2 Related work

In this part of our study, literature studies published using

BO about COVID-19 data in the field of artificial neural

network (ANN) and DL are presented.

Cabras [14] proposed a semi-parametric approach to

estimate the evolution of COVID-19 disease in Spain. It

combined DL techniques with Bayesian Poisson-Gamma

model. The resulting general model enabled prediction of

the future variation of the disease sequences in all regions

and the results of the final future scenarios. The overall

success rate was found to be 95% in this study. Ghoshal

et al. [15] studied a large number of PA chest radiography

images. They attempted to improve diagnostic performance

by using Dropweights-based Bayesian convolutional neural

networks (BCNN) and DL methods. In comparison with

standard Convolutional Neural Networks and BCNN, the

accuracy rate was shown to be higher (over 92%) for

BCNN. Dhamodharavadhani et al. [16] used SNN models

such as probabilistic neural network (PNN), radial basic

function neural network (RBFNN), and generalized

regression neural network (GRNN), which include the

Bayesian decision rule and the predictors of the Parzen

probability density function. They attempted to predict

future COVID-19 deaths in India using two separate

datasets. In the study, R (correlation coefficient) and

RMSE (square root of the mean square of the errors) were

studied. As a result, PNN was observed to give better

results for both criteria. Ucar et al. [17] adapted Squeeze-

Net for the diagnosis of COVID-19 by combining with BO.

The BO method was used for the optimization of HP. The

proposed method classified three classes of X-ray images

labeled Normal, Pneumonia and COVID. It classified the

data in the normal class with 98.04% accuracy, the data in

the Pneumonia class with 96.73% accuracy, and the data in

the COVID-19 class with 100% accuracy. Arman et al.

[18] optimized the HP values of VGG16, MobileNetV2,

InceptionV3, and Xception architectures using BO to

detect COVID-19 on chest X-ray images. The proposed

method classified three classes of X-ray images labeled

Normal, Pneumonia and COVID. It classified the data in

the normal class with 100% accuracy, the data in the

Pneumonia class with 100% accuracy, and the data in the

COVID-19 class with 98.3% accuracy. Majid et al. [19]

designed a new series network consisting of five convo-

lution layers to replace CNNs. This CNN model was

designed as a deep feature extractor. The inferred deep

distinguishing features were used to feed ML algorithms,

the k-nearest neighbor, support vector machine (SVM), and

decision tree. The HPs of ML models were optimized using

the Bayes optimization algorithm. The best accuracy rate

was achieved at 98.7% with SVM. Stefan et al. [20] pro-

cessed a large number of reasonable hypothetical scenarios

generated by a simulation program with ANN. After

completion of the training phase, Bayesian posterior dis-

tributions were estimated. The network created has three

levels. In the first level, feature extraction was performed

from the observation data, in the second, preprocessed time

series of different lengths were reduced to fixed-size sta-

tistical summaries, and in the third, a Bayesian-based

inference network was used to extract parameters from the

observations with summary statistics. At the end of the

study, the number of newly infected, newly recovered and

new deaths was estimated with 95% success. Ratnabali

et al. [21] proposed a shallow long short-term memory

(LSTM)-based neural network to estimate the COVID-19

risk situation of countries. The BO framework was used to

optimize and design country-specific networks. Each net-

work created with BO was trained using a maximum of

5000 iterations. The data for each country were used sep-

arately to create a country-specific optimized network and

an average of 77.6% accuracy was obtained in country-

specific datasets. Ankur et al. [22] showed that the uncer-

tainty estimation decreases when the amount of training

data is low with Bayesian Neural Network (BNN) and

Deep Ensemble (DE) models. The approach enabled the

basic uncertainties of the estimation for the deep K-Nearest

neighbor (kNN) classifier to be accurately measured.

Diagnosis of COVID-19 from chest X-rays was shown to

measure uncertainty in a superior way compared to the

latest technology. The proposed model was tested on three

different datasets (COVID-19 training, COVID-19 Unseen

and Shoulder). It achieved an accuracy rate of 99.9% for

the first dataset, 60% for the second and 50.1% for the
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third. Gao et al. [23] used a total of 1918 CT scans in their

study where they developed an approach called double-

branched combination network (DCN) with less attention

module for Covid-19 diagnosis and segmentation. The

highest accuracy rate for classification was stated as

96.74%. Panwar et al. [24] have considered three datasets

known as 1) COVID-chest X- ray, 2) SARS-COV-2 CT-

scan, and 3) Chest X-ray Images (Pneumonia). According

to the results obtained, the proposed deep learning model

can detect COVID-19 positive cases within B 2 s, faster

than the currently used RT-PCR tests for the detection of

COVID-19 cases. In their study, He et al. [25], in which

they created a publicly available dataset containing hun-

dreds of CT scans, developed sample efficient deep

learning methods that can obtain high diagnostic accuracy

of COVID-19 from CT scans even when the number of CT

images is limited. Specifically, they propose a self-transi-

tion approach that synergistically integrates comparative

self-supervised learning and transfer learning to learn

powerful and unbiased feature representations to reduce the

risk of overfitting. Wu et al. [26] have developed a new

Joint Classification and Segmentation (JCS) system to

perform real-time and explainable CT chest CT diagnosis

of COVID-19. JCS obtains an average sensitivity of 95.0%

and a specificity of 93.0% on the classification test set.

3 Methodology

3.1 Hyperparameter tuning

HPs have an important place in both ML and DL algo-

rithms as they aim to achieve the best performance in ML

algorithms [17] because ML algorithms rarely contain

parameters. HPs also have an important place in training

algorithms [27]. Especially in CNN studies, it can be time

consuming considering the size of the model, activation

function, optimization algorithm to be used and the struc-

ture of the network [28]. BO is a convenient approach in

studies that take a long time [27, 29].

The HP optimization method is collected under two

headings as manual and automatic search. Manual search is

based on an expert’s experience. As a result of the increase

in the number of hyperparameters and the value range, the

possibility of making an error increases [27]. Trial-and-

error processes slow down the optimization process [28].

HPs optimization were suggested to reduce the possibility

of errors and speed up optimization. HPs optimization aim

to reduce human effort in ML algorithms, to increase

current performances and to make studies repeatable [27].

Three techniques are often used in ML algorithms to

optimize HPs; these are Grid Search CV (GS), Random

Search CV (RS) [27, 28] and Informed search methods,

respectively.

3.1.1 GridSearch CV

The GS method is a full factorial design. It checks all pos-

sible states to optimize parameters [27, 28]. A finite set of

values is created for each HP and the Cartesian products of

these sets are evaluated [27]. Large numbers of HPs and the

search field cause an increase in time [28]. RS is more effi-

cient than GS in a high-dimensional space. However, the RS

method is unsuccessful in training complex models [27].

3.1.2 Bayesian optimization

Bayesian optimization is the most popular informed search

method. It is faster than GS and RS methods. BO [28, 29] is

preferred, especially considering the computational density

encountered in DL algorithms. BO is an approach to

optimize objective functions that take a long time to

evaluate [29–31]. BO is a model-based HP optimization

algorithm [31–33] based on the iterative update of the

function to be optimized.

If we define f : x ! y, y = f(x) and f as D ¼ xi; yif g¼1 a

black-box function, BO is a probability-based surrogate

model (SM) to maximize an acquisition function (AF) that

will decide which point to select [32–34]. An unknown

model (f) is considered to have a black box property if it

does not have a functional form [34, 35], and the opti-

mization problem related to the HPs of this model is as in

Eq. 1.

x� ¼ argmax
x2X

f ðxÞ ð1Þ

The purpose of this optimization problem is to find

global maximization (or minimization) at the sampling

point for the function f. Here X represents the search space

of x. BO is essentially a Bayesian approach based on

Bayes’ theorem. The purpose of Bayesian approaches is to

use the information obtained from the data as prior infor-

mation and to reveal how the existing information will be

updated with the obtained posterior information [36, 37].

Using the Bayesian approach, an SM is created in BO

[27, 28]. As an SM, it usually uses one of the gaussian

processes (GP), random forest regression (RFR) or tree

Parzen estimators (TPE) methods. In studies, GP is pre-

ferred which takes advantage of the properties of normal

distribution and has a stochastic process. GPs are preferred

due to their smooth and well-calibrated uncertainty esti-

mates and closed-form computability properties [33, 33].

GPs predict a distribution for each HP setting rather than a

single value [27, 28]. GP is considered to be the mean of

function l, covariance kernel K, f �GPðl;KÞ. In this
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study, the kernel function of the Matern (v = 5/2), which is

widely used to define the covariance of two points at

dðxi; xjÞ unit distance, was preferred.

K ¼ 1þ
ffiffiffi

5
p

d

q
þ 5d2

3q2

 !

exp �
ffiffiffi

5
p

d

q

 !

ð2Þ

where dðxi; xjÞ is Euclidean distance and q and m are

covariance parameters.

The process of maximizing the posterior process

obtained by combining SM and prior knowledge

[27, 28, 32] in BO is called AF (u). AF enables BO to make

educated predictions [37, 38]. A proper AF should be easy

to assess or maximize, and there should be a tradeoff

between exploration and exploitation. Probability of

Improvement (PI), Expected Improvement (EI) and Upper

Confidence Bound (UCB) are commonly used for AF. PI

was used in this study. If we define the best available

observation as ðxþÞ, which maximizes the possibility of

improvement, Eq. 3 written as

xþ ¼ argmax
x2X

u xjDð Þ ¼ argmax
x2X

f ðxÞ ð3Þ

PI tries to find points that will prevail over the best

available value. The search is terminated when the repeat

count of the algorithm reaches the maximum, and where

U(�) is the normal cumulative distribution function. This

function, defined as PI, tries to find a point where

improvement probability is maximized [27, 28] by adding a

e trade-off parameter [38, 39].

PI xð Þ ¼ P f xð Þ� f xþð Þ þ eð Þ ¼ U
l xð Þ � f xþð Þ � e

rðxÞ

� �

ð4Þ

where e is a parameter that tunes the tradeoff between

exploration and exploitation.

The BO process continues to iterate until the maximum

value is reached. BO makes this search efficient, using all

the information it gets from the optimization history [39].

The pseudo code of BO is given in Algorithm 1.

Algorithm 1 Bayesian optimization

1:for n=1,2,… do
2:select new +1 by optimizing acquisition function 

+1 = argmax ( | )

3: query objective fuction to obtain  +1

4:augment data  +1 = { ( +1, +1)}

5: update statistical model 
6: end for

3.2 Deep neural networks

DL is an ML subfield about algorithms inspired by the

structure and function of the brain called NNA. DNN, on

the other hand, is a tool in which DL applications that

contain layer structures such as convolution, pooling, and

fully connected layer are carried out. Many models were

developed through these layers. The models we used in our

study were developed using these layers. Detailed infor-

mation about these layers can be found in [40]. The models

developed have their own features rather than these layers.

3.2.1 ResNet-50

ResNet-50 network architecture has 4 stages. Each ResNet

[41] architecture performs initial convolution and maxi-

mum pooling using 7 9 7 and 3 9 3 core sizes, respec-

tively. Each layer of a ResNet consists of several blocks. In

our study, 1000 features were extracted by using the

‘‘fc1000’’ layer in this model for feature extraction.

3.2.2 MobileNetv2

MobileNetv2 [42] offers a new CNN layer with the

inverted residual and linear bottleneck layer that provides

high accuracy and performance in mobile and embedded

video applications. Especially developed for devices with

low computing power, this model reduces the complexity

cost of the network. In addition, the model size decreases.

In our study, again 1000 features were extracted by using

the ‘‘logits’’ layer in this model.

Structures of the models are summarized in Table 1.

3.3 Machine learning algorithms

3.3.1 Support vector machine

SVM is one of the basic approaches for supervised learn-

ing. Additionally, it is widely used in classification and

regression applications, and also frequently in clustering

[43, 44], feature selection [45–47], feature extraction

[48, 49], etc. SVM, based on the statistical learning theory

[50, 51], is a distribution independent learning algorithm

since it does not require joint distribution function infor-

mation. The basic working principle of the algorithm is to

determine a hyperplane that can optimally separate the

pixels belonging to two classes from each other [52]. SVM

applies the principle of minimizing the structure risk to

minimize empirical error and learner complexity [50]. In

this study, C, degree, and kernel parameters in SVM were

obtained by the HP tuning process. SVM is demonstrated

in Fig. 1.

Equations (5) and (6) represent formulas for a line or

hyper plane, respectively. SVM should find weights so that

the data points are separated according to a decision rule.
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wxþ b ¼ 0 ð5Þ
y ¼ mxþ b ð6Þ

Here w is a weight vector, x is input vector, b is bias. C is a

parameter that changes depending on the optimization. The

higher the C value, the tighter the margin and care is taken

to minimize the number of misclassifications. As the value

of C decreases, it is allowed to overflow the classes because

it becomes the goal of SVM to keep the margin between

the two classes maximum [53]. The degree parameter

determines the flexibility of the decision boundary. The

lowest order polynomial is the linear kernel, which is not

sufficient when there is a nonlinear relationship between

the features. Also, increasing these parameters leads to

higher training times. Kernel parameters have a very

important influence on the decision-making boundaries.

Kernel parameters select the type of hyperplane. The linear

one uses a linear hyperplane. rbf, sigmoid and poly use a

nonlinear hyperplane.

Table 1 Structure of models

Models Model description Image size Optimization Mini Batch Size

MobileNetv2 32 conv ? 19 residual bottleneck layers 224 9 224 Stochastic Gradient Descent (SGD) 128

ResNet-50 49 conv ? 1 fc layers 224 9 224 Stochastic Gradient Descent (SGD) 128

Fig. 1 Support vector machine

Fig. 2 A simple example of 3-nearest neighbor classification
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3.3.2 k-Nearest neighbor algorithm

kNN algorithm is a nonparametric classification method. It

is a method with simple structure but is effective [54]. The

kNN classifier tries to classify the data by assigning

observation data of unknown classes to the class with the

most similar examples [55]. The first value to be deter-

mined in the kNN algorithm is the distance between data.

The distance measurement methods generally used for this

are: Euclidean, Manhattan and Minkowski methods.

The most used Euclidean distance method in practice,

between sample Xi and Xj is defined as [56]:

ðXi;XjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðXi1 � Xj1Þ
2 þ ðXi2 � Xj2Þ

2 þ . . .þ ðXin � XjnÞ
2

q

ð7Þ

The second value to be determined is the parameter k. It

is effective in determining the number of neighborhoods.

Choosing an appropriate k value for kNN significantly

affects the success of the classification. There are many

ways to choose the K value. However, the simplest is to run

the algorithm with different k values to select the one with

the best performance [57]. Choosing a small value of k will

increase the number of classes and create classes that do

not exist. If the value of k chosen is too large, the classes

will be fewer than they should be and thus the error values

of the classes are increased. In general, larger k values are

more resistant to potential noise in the data and make the

Fig. 3 Flowchart of the BO-

based proposed approach

Fig. 4 CT images that COVID-19 is infected and is non-infected in

the used dataset (Dataset1 and Dataset2)

Table 2 Sample sizes used for Training and Testing in Dataset1 and

Dataset2

Datasets Training Samples Test Samples Total

Dataset 1 558 140 698

Dataset2 1968 492 2460

Mixed Dataset 2527 631 3158

Fig. 5 Confusion matrix for 2-class
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boundaries between classes smoother [58]. In this study,

n_neighboor (k), weights, and metric parameters were

obtained by tuning.

Figure 2 represents the neighborhood for 2 sample

points at k = 2.

If k = 2, the q1 point is largely labeled cluster 2 and the

q2 point is labeled cluster 1.

3.4 Proposed approach

This study consists of three steps. In the first step, DNN

was trained separately with all datasets. The learning rate,

momentum, and L2 regularization parameters needed for

the SGD optimization algorithm used to update the weights

in the training process were found through BO. The

‘‘bayesopt’’ function in MATLAB was used to find these

parameters. The following value ranges were used to find

suitable values for these parameters; Initial Learn Rate:

[1e-2, 1], Momentum: [0.8, 0.98], and L2 Regularization:

[1e-10, 1e-2]. These parameters were run at the given

ranges using BO. The parameter values that provide the

best value for the trained networks at the end of the

operation are recorded for the network. The network cre-

ated with these values was used in the second stage feature

extraction.

The second step is the feature extraction step from DNN

models trained with datasets. DNN feature extraction is

obtained from the activation of the desired layer. Network

activations are used for feature extraction. In the study,

1000 properties of each image in the dataset were extracted

by using the ‘‘Logits’’ layer for MobilNetv2 and the

‘‘fc1000’’ layer for ResNet. Feature extraction was done

separately for each dataset and saved as a *.mat file.

In the last step, the extracted features were classified by

ML algorithms using Python language. BO was used to

find the HPs for the ML algorithms. In addition to the BO

method, the aim was to compare the results by using the

GS method in finding the parameters. Five-fold cross

Table 3 Optimal DNN results obtained by using BO at the experiment1

Models Classes Precision recall f1-score Accuracy Parameters

Learning Rate Momentum L2 Regularization

Dataset1

MobileNetv2 COVID 0.9855 0.9714 0.9783 0.9786 0.01 0.8786 0.000361

Non-COVID 0.9718 0.9857 0.9787

ResNet-50 COVID 0.9459 1 0.9722 0.9714 0.072 0.8807 0.0065

Non-COVID 1 0.9428 0.9705

Dataset2

MobileNetv2 COVID 0.9959 1 0.9979 0.998 0.01 0.8552 0.0004

Non-COVID 1 0.9959 0.9979

ResNet-50 COVID 0.9919 1 0.9959 0.9959 0.0040 0.8996 0.79201

Non-COVID 1 0.9918 0.9958

Mixed Dataset

MobileNetv2 COVID 0.9695 0.9937 0.9814 0.9812 0.00099 0.8003 0.33411

Non-COVID 0.99359 0.9687 0.9810

ResNet-50 COVID 0.9844 0.9875 0.9859 0.9859 0.0065 0.8914 0.0035

Non-COVID 0.9874 0.9843 0.9858

(a) MobileNetv2

(b) ResNet-50
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Predicted Class

CT_COVID1

CT_NonCOVID1
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Fig. 6 Confusion Matrix for Mixed Dataset at the MobileNetv2 and

the ResNet-50
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validation was used to ensure the reliability of these

methods. In the method proposed in the study, SVM and

kNN ML algorithms were preferred. The parameter values

used in these algorithms are C, kernel, and degree values

for SVM. For kNN, n_neighbors (k) are metric and

weights.

The recommended approach is shown in Fig. 3.

4 Results

4.1 Dataset

4.1.1 Dataset 1

The dataset used in the study was taken from the [59]

study. The dataset includes two classes, COVID and Non-

COVID. The COVID-CT-dataset has 349 CT images

containing clinical signs of COVID-19 in 216 patients. The

non-COVID dataset includes 396 CT images. According to

the study, the images in the dataset were confirmed by a

senior radiologist at Tongji Hospital, Wuhan, China, who

diagnosed and treated a large number of COVID-19

patients during the outbreak of this disease between Jan-

uary and April. They also state that the dataset in this study

was collected from articles on COVID-19 taken from

medRxiv, bioRxiv, NEJM, JAMA, Lancet, etc. In our

study, a total of 698 images, 349 from each class, were

used for the classes to contain an equal number of images.

These images were used in DNN as 20% test data.

4.1.2 Dataset 2

The second dataset we used is from the Kaggle. This

dataset includes 1252 CT images of SARS-CoV-2 infection

(COVID-19) and 1230 CT images without COVID-19

(Non-COVID). The dataset was collected from real

patients in hospitals in Sao Paulo, Brazil [60, 61].

Table 4 Findings HPs based on the BO for SVM and kNN algorithms

ML algorithms Datasets Models of features Findings methods Parameters

C Degree Kernel

SVM Dataset1 MobileNetv2 GridSearchCV 0.1 1 rbf

Bayesian Optimization 0.2444 5 rbf

ResNet-50 GridSearchCV 10 1 rbf

Bayesian Optimization 0.01 5 Llinear

Dataset2 MobileNetv2 GridSearchCV 0.1 1 Poly

Bayesian Optimization 0.05 1 Poly

ResNet-50 GridSearchCV 10 1 Poly

Bayesian Optimization 38.12 5 rbf

Mixed Dataset MobileNetv2 GridSearchCV 10 1 rbf

Bayesian Optimization 100 5 rbf

ResNet-50 GridSearchCV 10 1 Poly

Bayesian Optimization 0.02 5 Linear

n_neighbors Metric Weights

kNN Dataset1 MobileNetv2 GridSearchCV 11 Euclidean Uniform

Bayesian optimization 10 Minkowski Distance

ResNet-50 GridSearchCV 3 Manhattan Uniform

Bayesian optimization 4 Manhattan Uniform

Dataset2 MobileNetv2 GridSearchCV 11 Euclidean Uniform

Bayesian optimization 11 Minkowski Distance

ResNet-50 GridSearchCV 5 Euclidean uniform

Bayesian optimization 5 Euclidean Distance

Mixed Dataset MobileNetv2 GridSearchCV 5 Euclidean Uniform

Bayesian optimization 6 Euclidean Distance

ResNet-50 GridSearchCV 3 Manhattan Uniform

Bayesian optimization 4 Manhattan Distance
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An example of the images used for datasets is shown in

Fig. 4. In addition, the sample numbers for these datasets

used in the training and testing phase are given in Table 2.

4.2 Evaluation metrics

The application we developed for our study was written

using MATLAB and Python programs. The computer

where the applications ran had 16 GB of RAM and an I7

processor. In addition, models were run on GeForce 1070

graphics card with GPU. The performance metrics [62] of

our study were obtained using a confusion matrix. The

confusion matrix is the matrix N X N where N is the

predicted number of classes. Since there are 2 classes in

our study, a 2 9 2 matrix is obtained. These metrics are;

accuracy: the ratio of the total number of predictions that

are correct, positive predictive value or precision: propor-

tion of correctly identified positive cases, negative

predictive value: proportion of correctly identified negative

events and sensitivity or recall: proportion of true positive

cases correctly identified. For a 2-class structure, these

values are shown in Fig. 5 for the confusion matrix. Met-

rics are calculated according to Eqs. 8–12.

Se ¼
TP

TPþ FN
ð8Þ

Sp ¼
TN

TNþ FP
ð9Þ

Pre ¼ TP

TPþ FP
ð10Þ

F � score ¼ 2TP

2TPþ FPþ FN
ð11Þ

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
ð12Þ

Table 5 Results obtained by the

SVM and the kNN algorithms

for Dataset1

Classes Precision Recall f1-score Accuracy

MobileNetv2

SVM

Normal COVID 0.9589 1 0.9790 0.9785

Non-COVID 1 0.9571 0.9780

GridSearchCV COVID 0.9589 1 0.9790 0.9785

Non-COVID 1 0.9571 0.9780

Bayesian COVID 0.9589 1 0.9790 0.9785

Non-COVID 1 0.9571 0.9780

kNN

Normal COVID 0.9589 1 0.9790 0.9785

Non-COVID 1 0.9571 0.9781

GridSearchCV COVID 0.9583 0.9857 0.9718 0.9714

Non-COVID 0.9852 0.9571 0.9710

Bayesian COVID 0.9583 0.9857 0.9718 0.9714

Non-COVID 0.9852 0.9571 0.9710

ResNet-50

SVM

Normal COVID 0.9718 0.9857 0.9787 0.9785

Non-COVID 0.9855 0.9714 0.9784

GridSearchCV COVID 0.9583 0.9857 0.9718 0.9714

Non-COVID 0.9852 0.9571 0.9710

Bayesian COVID 0.9583 0.9857 0.9718 0.9714

Non-COVID 0.9852 0.9571 0.9710

kNN

Normal COVID 0.9583 0.9857 0.9718 0.9714

Non-COVID 0.9852 0.9571 0.9710

GridSearchCV COVID 0.9718 0.9857 0.9787 0.9785

Non-COVID 0.9855 0.9714 0.9784

Bayesian COVID 0.9452 0.9857 0.9650 0.9642

Non-COVID 0.9850 0.9428 0.9635
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4.3 Experiments

The experimental studies performed consist of three steps.

4.3.1 Experiment 1

In the first experiment, attempts were made to find HPs of

DNN models by using BO.

In these experimental studies, the optimum values were

found for the Learning Rate, Momentum and L2 regular-

ization parameters for the SGD optimization algorithm

using BO in MobileNet and ResNet models. The results

obtained from these optimum values and models are pre-

sented in Table 3. Bayesopt tool in MATLAB program is

used for BO. This tool uses cross-validation loss as an

objective function for BO.

When Table 3 is examined, an accuracy rate of 97.86%

is achieved in the MobileNetv2 model for Dataset 1. For

Dataset 2, both models provided an accuracy rate of over

99%. Again, precision, recall and f1-score values for this

dataset are over 99%. For the Mixed dataset created by

mixing both datasets, the ResNet-50 model achieved

98.50% success. These ratios are derived from confusion

matrices. The confusion matrix obtained from the models

for the Mixed Dataset is given in Fig. 6.

4.3.2 Experiment 2

In the second experiment, the features obtained from

Dataset 1 and Dataset 2 were classified using SVM and

kNN ML algorithm models. Here again, BO was used to

find HP of these models. In addition, GS was also used to

verify the reliability of the hyperparameter optimization.

The HP found is given in Table 4 separately for each model

and each ML algorithm. Results obtained by HP opti-

mization are given for all datasets in order. Table 5 shows

Table 6 Results obtained by the

SVM and the kNN algorithms

for Dataset2

Classes Precision Recall f1-score Accuracy

MobileNetv2

SVM

Normal COVID 0.9959 1 0.9979 0.9979

Non-COVID 1 0.9959 0.9979

GridSearchCV COVID 0.9959 1 0.9979 0.9979

Non-COVID 1 0.9959 0.9979

Bayesian COVID 0.9959 1 0.9979 0.9979

Non-COVID 1 0.9959 0.9979

kNN

Normal COVID 0.9959 1 0.9979 0.9979

Non-COVID 1 0.9959 0.9979

GridSearchCV COVID 0.9959 1 0.9979 0.9979

Non-COVID 1 0.9959 0.9979

Bayesian COVID 0.9959 1 0.9979 0.9979

Non-COVID 1 0.9959 0.9979

ResNet-50

SVM

Normal COVID 0.9959 0.9959 0.9959 0.9959

Non-COVID 0.9959 0.9959 0.9959

GridSearchCV COVID 0.9959 1 0.9979 0.9979

Non-COVID 1 0.9959 0.9979

Bayesian COVID 0.9959 1 0.9979 0.9979

Non-COVID 1 0.9959 0.9979

kNN

Normal COVID 0.9959 1 0.9979 0.9979

Non-COVID 1 0.9959 0.9979

GridSearchCV COVID 0.9959 1 0.9979 0.9979

Non-COVID 1 0.9959 0.9979

Bayesian COVID 0.9959 1 0.9979 0.9979

Non-COVID 1 0.9959 0.9979
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Table 7 Results obtained by the

SVM and the kNN algorithms

for Mixed Dataset

Classes Precision Recall f1-score Accuracy

MobileNetv2

SVM

Normal COVID 0.9674 0.9939 0.9805 0.97972

Non-COVID 0.9934 0.9647 0.9788

GridSearchCV COVID 0.9703 0.9939 0.9819 0.98128

Non-COVID 0.9934 0.9679 0.9805

Bayesian COVID 0.9703 0.9939 0.9819 0.98128

Non-COVID 0.9934 0.9679 0.9805

kNN

Normal COVID 0.9484 0.9513 0.9499 0.9485

Non-COVID 0.9485 0.9455 0.9470

GridSearchCV COVID 0.9484 0.9513 0.9499 0.9485

Non-COVID 0.9485 0.9455 0.9470

Bayesian COVID 0.9494 0.9696 0.9593 0.9579

Non-COVID 0.9672 0.9455 0.9562

ResNet-50

SVM

Normal COVID 0.9939 0.9908 0.9923 0.9922

Non-COVID 0.9904 0.9935 0.9920

GridSearchCV COVID 0.9938 0.9878 0.9908 0.99064

Non-COVID 0.9872 0.9935 0.9904

Bayesian COVID 0.9938 0.9878 0.9908 0.99064

Non-COVID 0.9872 0.9935 0.9904

kNN

Normal COVID 0.9909 0.9939 0.9924 0.9922

Non-COVID 0.9935 0.9903 0.9919

GridSearchCV COVID 0.9909 0.9969 0.9939 0.99376

Non-COVID 0.9967 0.9903 0.9935

Bayesian COVID 0.9909 0.9969 0.9939 0.99376

Non-COVID 0.9967 0.9903 0.9935

Fig. 7 Confusion Matrix for ResNet features with the kNN algorithm
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the results for SVM and kNN for Dataset 1. Table 6 shows

the results for SVM and kNN for Dataset 2.

For Dataset 1, when we look at the results obtained by

using the features in the models with ML algorithms, an

accuracy rate of 97.85% was obtained by using Mobile-

Netv2 features and SVM. The kNN performance result for

the features extracted from this model is 97.14%. Again for

this dataset, the performance rate for the features obtained

from the ResNet-50 model is 97.85%, while the perfor-

mance rate for Bayesian kNN is 96.42%. For the features

of this model, the highest performance was achieved with

GS with 97.85%.

In the experimental studies for Dataset 2, the success is

over 99%. This performance value is realized as a result of

model training for both models.

4.3.3 Experiment 3

These experimental results were carried out on the Mixed

Dataset obtained by mixing Dataset 1 and Dataset 2. The

results obtained using this dataset are shown in Table 7.

When we examine the table for the Mixed Dataset, the

features obtained from MobilNetv2 and SVM provided a

performance of 98.12%, while kNN achieved a perfor-

mance of 95.78%.

For ResNet-50, the performance achieved with SVM is

99.064%. The performance obtained from kNN is the

highest success rate for the mixed dataset at 99.376%. The

complexity matrix for this model, which provides the

highest accuracy rate, is given in Fig. 7. In addition, the

ROC curves obtained from this experimental result are

given in Fig. 8.

In Table 8, all steps in our study are summarized in

terms of accuracy values.

According to this table, while MobilNetv2 has the

highest accuracy rate obtained as a result of DNN training,

the highest performance dataset is Dataset 2. The SVM

model obtained by using GridSearchCV and BO for

Dataset 1 obtained higher accuracy than kNN. For Dataset

2, the performance is over 99% in all models. As a result of

the training of DNN models, for the Mixed Dataset a

performance value of 98.59% was obtained with the

ResNet-50 model. It is possible to see that for the

Fig. 8 Graphical of the ROC-curve obtained at the experiment3 by the MobileNetv2 and the Resnet-50

Table 8 Accuracy values obtained using the SVM and kNN algorithms by the MobileNetv2 and the ResNet-50

Overall

Accuracy

Models Network SVM kNN

Normal GridSearchCV Bayesian

Optimization

Normal GridSearchCV Bayesian

Optimization

Dataset1 MobileNetv2 0.9786 0.97857 0.97857 0.97857 0.97857 0.97143 0.97143

ResNet-50 0.9714 0.97857 0.97143 0.97143 0.97143 0.97857 0.9629

Dataset2 MobileNetv2 0.998 0.99797 0.99797 0.99797 0.99797 0.99797 0.99797

ResNet-50 0.9959 0.99593 0.99797 0.99797 0.99797 0.99797 0.99797

Mixed Dataset MobileNetv2 0.9812 0.97972 0.98128 0.98128 0.94852 0.94852 0.95788

ResNet-50 0.9859 0.9922 0.99064 0.99064 0.9922 0.99376 0.99376
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properties obtained from MobilNetv2, the performance

rates obtained with SVM are higher than the performance

rates obtained with kNN. For this dataset, a high perfor-

mance rate of 99.37% was obtained for both GridSearchCV

and Bayesian kNN in the classification of the features

obtained from the ResNet-50 model.

5 Discussion

When we look at the studies in this field, it is possible to

see that many studies have been carried out recently. These

studies were conducted on different datasets with different

methods. It is possible to see that all the studies carried out

today, where the disease is defined as a pandemic, make a

certain contribution to the field. Our first aim was to

contribute to these studies in this study. We hope that this

approach, which we have obtained with the use of BO with

DNN and ML algorithms, will be among the studies that

contribute to the field. The results of the studies conducted

on the CT images for COVID-19 and the comparison

table of our approach are given in Table 9.

Table 10 shows the performance of previous publica-

tions and our study with these datasets. Our study is about

COVID-19 diagnosis on CT images. Studies on this subject

continue in the current period. The advantage of our study

is that we use a model that does not require high compu-

tation, such as MobilNetv2. In this way, we think very fast

results can be obtained. As is known, individuals infected

with this disease must be isolated from others very quickly.

We aimed to achieve this with our approach. When other

studies completed in this field are examined, given in

Table 9 COVID-19 classification results in the literature using different methods

Class Subjects Method Prec

(%)

Sens. (%) or

recall

f1-

score

Acc

(%)

Ref

COVID-

19/

normal

73 cases CNN N/A * 90 * 90 * 90 Sing et al. [3]

COVID-

19/

normal

178 pneumonia

247 normal

DL

IRRCNN

N/A N/A 98.85 98.78 Alom et al. [8]

COVID-

19/

normal

1601 pneumonia

1693 normal

Efficient DL N/A N/A 86.19 87.68 Silva et al. [9]

COVID-

19/

normal

449 pneumonia

425 normal

DL

Multi-tasking Learning

N/A 96.00 N/A 94.67 Amyar et al. [10]

COVID-

19/

normal

630 pneumonia

(499 CT training, 131 CT

testing)

DeCoVNet N/A 90.7 N/A N/A Wang et al. [11]

COVID-

19/

normal

1,262 COVID-19

1,230 normal

DenseNet201 96.29 96.29 96.29 96.25 Jaiswal et al. [12]

COVID-

19/

normal

Dataset1:698

349 COVID,349 Non-

COVID

Dataset2:2260

1230 COVID,1230 Non-

COVID

MobileNetv2, ResNet50 and Deep

Features

98.18 98.09 98.12 98.12 Proposed Approach

(MobilNetv2 ? SVM)

95.83 95.75 95.77 95.79 Proposed Approach

(MobilNetv2 ? kNN)

99.05 99.06 99.06 99.06 Proposed Approach

(ResNet-50 ? SVM)

99.38 99.36 99.37 99.37 Proposed Approach

(ResNet-50 ? kNN)

Class, classification; Sens, sensitivity/recall; Spec, specificity; Prec, precision; Acc, accuracy; Ref, reference
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Table 10, high success was obtained in this study. As

mentioned in the experimental results section, we attemp-

ted to show that the performances of the datasets can give

different results by taking separate results for more than

one dataset. Another advantage of our study is that BO was

tested on two models and the results were shown, and the

results were given with Bayes-based ML algorithms using

deep features. In other words, these methods, which are

presented separately in other studies, are presented together

in our study.

6 Conclusions

In this study, a BO-based approach that diagnoses COVID-

19 on CT images is proposed. MobilNetv2 and ResNet-50

models, which are DNN models, were used in the first

stage of the study to find optimum HPs. In the second stage

of the study, feature extraction was achieved using these

models. In our experimental results, two datasets from

different countries were used. A mixed dataset was created

by mixing these datasets and the performances of the

models were shown for this dataset. Among ML algo-

rithms, SVM and kNN algorithms were preferred in our

study because they are the most widely used in this field in

literature reviews. Again, BO was used to select the opti-

mum of some parameter values for these algorithms. In

addition, by using GS, a methods used in HP detection, the

results are given comparatively with BO. A 99.37% suc-

cess rate for the Mixed Dataset was achieved with BO

parameters and the kNN algorithm had high performance.

The study is expected to act as a decision support mecha-

nism that helps experts with diagnosis of this disease. In

future studies, studies carried out with different models and

methods will contribute to this field.
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Table 10 Performance comparison of the COVID-19/normal classification in this study according to the literature

Class Subjects Method Prec

(%)

Sens.

(%)

or recall

f1-

score

Acc

(%)

Ref

COVID-

19/

normal

Dataset 2 DenseNet-201 96.29 96.29 96.29 96.25 Jaiswal et al. [12]

COVID-

19/

normal

Dataset 2 VGG19 94.86 94.04 –- 95.0 Panwar et al. [24]

COVID-

19/

normal

Dataset 1 CNN 93.0 95.0 –- 78.5 Wu et al. [26]

COVID-

19/

normal

Dataset 1 DenseNet-169 –- –- 0.85 0.86 He et al. [25]

COVID-

19/

normal

Dataset1:698

349 COVID,349 Non-

COVID

Dataset2:2260

1230 COVID,1230 Non-

COVID

MobileNetv2, ResNet50 and Deep

Features

98.18 98.09 98.12 98.12 Proposed Approach

(MobilNetv2 ? SVM)

95.83 95.75 95.77 95.79 Proposed Approach

(MobilNetv2 ? kNN)

99.05 99.06 99.06 99.06 Proposed Approach

(ResNet-50 ? SVM)

99.38 99.36 99.37 99.37 Proposed Approach

(ResNet-50 ? kNN)
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