
ORIGINAL ARTICLE

A novel deep ordinal classification approach for aesthetic quality
control classification

Riccardo Rosati1 • Luca Romeo1,2 • Vı́ctor Manuel Vargas3 • Pedro Antonio Gutiérrez3 •

César Hervás-Martı́nez3 • Emanuele Frontoni1

Received: 19 January 2022 / Accepted: 31 January 2022 / Published online: 2 March 2022
� The Author(s) 2022, corrected publication 2022

Abstract
Nowadays, decision support systems (DSSs) are widely used in several application domains, from industrial to healthcare

and medicine fields. Concerning the industrial scenario, we propose a DSS oriented to the aesthetic quality control (AQC)

task, which has quickly established itself as one of the most crucial challenges of Industry 4.0. Taking into account the

increasing amount of data in this domain, the application of machine learning (ML) and deep learning (DL) techniques

offers great opportunities to automatize the overall AQC process. State-of-the-art is mainly oriented to approach this

problem with a nominal DL classification method which does not exploit the ordinal structure of the AQC task, thus not

penalizing the error among distant AQC classes (which is a relevant aspect for the real use case). The paper introduces a

DL ordinal methodology for the AQC classification. Differently from other deep ordinal methods, we combined the

standard categorical cross-entropy with the cumulative link model and we imposed the ordinal constraint via the thresholds

and slope parameters. Experimental results were performed for solving an AQC task on a novel image dataset originated

from a specific company’s demand (i.e., aesthetic assessment of wooden stocks). We demonstrated how the proposed

methodology is able to reduce misclassification errors (up to 0.937 quadratic weight kappa loss) among distant classes

while overcoming other state-of-the-art deep ordinal models and reducing the bias factor related to the item geometry. The

proposed DL approach was integrated as the main core of a DSS supported by Internet of Things (IoT) architecture that can

support the human operator by reducing up to 90% the time needed for the qualitative analysis carried out manually in this

specific domain.
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1 Introduction

Learning to classify patterns from labeled examples and

predicting discrete classes in a new unseen set is the main

goal of supervised machine learning (ML). Starting from

the notion of statistical learning, different losses can be

potentially tailored for solving specific learning tasks in

different challenging pattern recognition domains, from

industrial [1, 2] to diagnostic applications [3, 4]. In the

context of Industry 4.0, the increasing availability of data,

the advancements in computing power and breakthroughs

in algorithm development have led ML and deep learning

(DL) methodologies to develop appealing solutions in

different industrial areas such as predictive maintenance

[1, 5], decision support system (DSS) [6] and quality

control (QC) [2, 7, 8]. Indeed, the QC task has quickly

established itself as one of the most crucial and challenging

industrial 4.0 scenarios [9], where the main objective is to

detect production issues and classify the quality of the final

product. The quality monitoring of the instrumentation/

products/materials may potentially enable manufacturers to

support the technicians during the process while reducing

resource costs and improving productivity [10].

The application of ML and DL techniques offers great

opportunities to automatize the overall QC process [11].

Indeed, these methodologies for QC have been employed

in several industrial areas, but state-of-the-art is mainly

oriented to present ad hoc rather than vanilla ML solutions

capable of dealing with challenges of this domain, namely

the intrinsic variability of the annotation procedure and the
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difficulty to generalize across different sets. The aesthetic

quality control (AQC) task is a non-metric QC task where

the aesthetic aspect of the material is not measurable and is

based on expert observation. In this domain, the classes of

the target variable often exhibit a natural ordering. How-

ever, the natural ordinal structure of the problem is not

usually exploited and modeled in the learning procedure.

For these reasons, the state-of-the-art solutions include

standard classification and regression models that do not

completely solve the ordinal structure of the AQC task.

This gap in the scientific literature lies the foundations to

introduce a DL-based DSS driven by ordinal constraints for

solving an AQC task. The proposed approach allows

penalizing the misclassification errors that are further from

the correct AQC classes. This outcome is also in line with

the industrial demands in order to provide a DL-based DSS

for AQC that is as aligned as possible with the human

operator (human agency and oversight [12]).

1.1 Aesthetic quality control task

Quality control (QC) is a growing area in Industry 4.0 and a

fundamental step for detecting production issues and for

classifying the compliance of the finished product.

Recently, the increasing amount of data in this scenario

offers a great opportunity for ML and DL techniques to be

the main core of a DSS that is able to automatize the

overall QC process, saving time and resources and maxi-

mizing the performances, while easily generalizing in dif-

ferent contexts. As evidence of this, these methodologies

for QC task have been employed in different domains. In

the fabric and textile industry, DL approaches have been

applied to perform leather and stitching classification,

avoiding the operator visual inspection phase to identify

stitching defects on material surfaces [13]. In the printing

industry, a deep neural network soft sensor has been pro-

posed, which compares the scanned surface to the used

engraving file and performs an automatic quality control

process by learning features through exposure to training

data [14]. In the automotive industry, a DL-based approach

has been adopted for automatic fault detection and isolation

[15] and for the quality control of complex multistage

manufacturing processes, where the product dimensional

variability is a crucial factor and undetected defects can

easily be propagated downstream [16]. All of these solu-

tions focus on quantitative and deterministic analyses: the

dimensional control, the inspection of the roughness of

materials, the patterned fabric defect detection and the test

of production parameters are all measurable evaluation

procedures. In our previous work [17], we dealt with an

unexplored and challenging QC application, which is the

aesthetic evaluation of material, introducing the topic of

aesthetic quality control (AQC) task. In this case, the DL

algorithm should model all those qualitative analyses that

are strictly human dependent, subjective and not directly

measurable: this aspect clearly increases the complexity of

the classification task, and it becomes more and more

apparent as the number of classes to be considered is

higher. As demonstrated, approaching this problem with a

nominal DL classification method (which does not exploit

class order) causes a substantial drop in accuracy perfor-

mance and an increase in misclassification errors even

between widely distant classes, which represents the main

fault from the industrial production perspective. Consid-

ering the ordinal nature of the problem, these issues can be

addressed by overcoming the limitation of the nominal

approach, in which the classes are not arranged in an

appropriate ordered scale, by exploiting the gradual rank of

the dataset classes with specific methodologies for ordinal

classification.

1.2 Ordinal classification

Recently ordinal classification (also called ordinal regres-

sion) methods have been proven useful in different

research areas, including medical research [18–20], com-

puter vision [21–23], finance application [24], and envi-

ronmental management [25]. An extensive review of

ordinal classification approaches was provided in [26].

However, the introduction of these methodologies for

solving an AQC task is not still explored in the ML liter-

ature. It is worth noting that ordinal classification approa-

ches differentiate from the multipartite ranking problems

where learning to rank strategy is applied to automatically

construct a ranking model from training data [27, 28]. The

multipartite ranking problem represents the state-of-the-art

in many information retrieval applications [29]. Although

ordinal classification can be potentially scaled for solving a

multipartite ranking problem, they are pointwise approa-

ches for classifying data, where a naturalistic order is

encoded in the label.

Ordinal classification problems can be easily simplified

into other standard problems using the round prediction of

a regression model or a cost-sensitive penalty. These are

considered standard approaches for solving the ordinal

classification task, with the main limitation that they

assume a distance between class labels which can influence

the performance of the classifier. A specific method based

on a cost-sensitive ordinal hyperplanes ranking algorithm

has been used for human age estimation using face images

[22]. The authors designed the cost of an individual binary

classifier so that the misranking cost can be bounded by the

total misclassification costs.

Another class of ordinal-based approaches is the ordinal

decomposition strategy. Within this category, the multiple

model approaches use several binary classification
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branches to compute a series of cumulative probabilities.

Although this approach introduces a large number of

hyperparameters to be tuned, there are some works [20]

that try to reduce the effect of this problem, by redesigning

the output layer of the conventional deep neural network.

Moreover, in the ordinal decomposition approaches, the

relationships among different binary classifiers are often

neglected. To try to alleviate this issue, it was proposed to

learn an ordinal distribution of the problem and to optimize

those binary classifiers simultaneously [30]. Similarly, a

multiple ordinal regression algorithm to estimate the

preferences of humans was proposed [31]. They maxi-

mized the sum of the margins between every consecutive

class with respect to one or more rankings (e.g., perceived

length and weight). An ordinal decomposition approach

combined with a fully 3D convolutional neural network

(CNN) network was used for assessing the level of neu-

rological damage in Parkinson’s disease (PD) patients and

exploring the potential classification performance

improvement in using ordinal label information [18]. A

standard sigmoid function is provided in the output node,

rather than using a softmax function for the output nodes.

They trained a single convolutional model for solving

simultaneously individual binary classification tasks, which

were treated as multiple fully connected blocks.

The most natural strategy to handle the ordinal structure

extends the standard regression task by assuming that a

latent variable underlies the ordinal classes. In this general

approach, called the threshold model, both the latent

variable and the thresholds, which act, respectively, as a

mapping function and ordinal constraints, need to be

learned from the data. A threshold-based loss function is

designed to model the ordinal values among multiple out-

put variables [32]. The authors applied the kernel trick to

provide a nonlinear extension of the model. Another work

presented a structural distance metric for video-based face

recognition [23]. Here the ordinal problem is designed as a

non-convex integer program problem that firstly learns

stable ordinal filters by projecting video data into a large-

marginal ordinal space and then self-corrected the pro-

jected data in a structure low-rank strategy. A large margin

ordinal regression formulation was also provided as a

feature selection strategy for detecting minimum and

maximum feature relevance bounds by inducing sparsity in

the model [33]. The authors in [34] proposed the intro-

duction of the lp-norm for deriving the ordinal threshold

with class centers with the aim to alleviate the influence of

outliers (i.e., non-i.i.d. noises). Their approach provided an

optimization algorithm and corresponding convergence

analysis for computing the lp-centroid. In [35], two neural

network threshold ensemble models were proposed for

ordinal regression problems. They generated a different

formulation of the learned threshold by generating different

projections for the parameter updating. Another approach

consists in imposing the ordinal constraints on the weights

that connect the hidden layer with the output layer [36].

The formulation allows determining the optimum ones

analytically according to the closed-form solution of the

inequality constrained least-squares problem estimated

from the Karush–Kuhn–Tucker conditions. In [37] is pro-

posed a deep convolutional neural network model for

ordinal regression by considering a family of probabilistic

ordinal link functions in the output layer. These ordinal

link functions fall within cumulative link models (CLMs).

They split the ordinal space into the different classes of the

problem by using a set of ordered thresholds. The thresh-

olds are learned during the training process by minimizing

a loss function that takes into account the distance between

the categories, based on the weighted Kappa index.

Other ordinal approaches include ensemble decision tree

and random forest models [19, 38] based on a weighted

entropy function for selecting the predictors in the tree that

reflect the magnitude of potential classification errors. A

different approach based on conditional ordinal random

field model was proposed for context-sensitive modeling of

the facial action unit intensity by answering the context

question in terms of temporal correlation between the

ordinal outputs [21].

1.3 Limitation of state-of-the-art

Similar to the regression model, the main problem of

standard ordinal classification approaches based on

regression is the lack of a direct relationship between the

prediction error of the regression model and the misclas-

sification error. A different problem arises for the cost-

sensitive penalty approach where there is the need to have a

priori knowledge of the task in order to properly define the

cost matrix. Accordingly, the ordinal binary decomposition

approaches are highly influenced by how the overall

problem is decomposed and how the results of all

decompositions are aggregated into a single final classifi-

cation. Some recent work in literature tried to overcome

these problems by learning a single model for solving

simultaneously individual binary classification tasks.

However, these methodologies only model a static rela-

tionship among the ordinal classes that originate on how

the problem is decomposed in binary subtasks. The

threshold-based models proposed in literature often require

multiple hyperparameters for setting the ordinal probability

thresholds. Indeed, most of the state-of-the-art threshold-

based approaches require highly demanding optimization

procedures, which do not always guarantee optimal con-

vergence and robustness against outliers.

The most related work to our proposal is the paper [37]

that introduced the CLMs and quadratic weight kappa for
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solving an ordinal problem. The main differences with our

work lie in the (i) loss function we adopted, (ii) the dif-

ferent hyperparameters (i.e., slope) we learned in the

learning process, (iii) a different unexplored task we aim to

solve (AQC task) and (iv) the multiple objectives we aim to

achieve, i.e., both an increase in generalization perfor-

mance and also mitigation of unwanted bias related to the

geometry. Indeed, we solved the ordinal problem by

modeling the cumulative distribution of the AQC classes

through the hyperparameters we learn in the CLM. More-

over, in our work, we exploited the standard cross-entropy

loss for solving the ordinal AQC problem. As we shall see

in results section, our deep ordinal model performs favor-

ably over the CLMs for deep ordinal classification in [37].

1.4 Main contributions

To summarize, the main contributions of this paper are:

• the introduction of a deep learning methodology for

ordinal classification specifically tailored for solving a

topical and unexplored challenge on Industry 4.0, i.e.,

the aesthetic quality control classification. We intro-

duced a novel dataset for the evaluation of wooden

stocks. The task at the basis of the overall project

originated from a specific company’s demand;

• the introduction of a deep learning methodology for

ordinal classification based on cumulative link model

and categorical cross-entropy. We demonstrated how

there is a sort of redundancy between the maximization

of an ordinal loss and the modeling of cumulative

distribution. The proposed approach overcomes this

limitation by combining categorical cross-entropy with

the cumulative link model and imposing the ordinal

constraint via the thresholds and slope parameters. The

introduction of the slope is effective in order to model

the transient between adjacent cumulative link

functions.

• the demonstration on how the proposed methodology is

able from one side to reduce misclassification errors

among distant classes (which is a relevant aspect for the

real use case) and from the other side to reduce the bias

factor related to the geometry. This fact has been

demonstrated through an insightful explanation of the

proposed DL behavior on the most discriminative

shotgun parts. The ordinal constraints allow the

network to learn the characteristics that properly

describe the quality of shotgun (i.e., wood grains),

rather than other confounds/bias characteristics (e.g.,

geometry).

The rest of this paper is organized as follows: Section 2

introduces the novel dataset for solving the quality control

task, i.e., the evaluation of wooden stocks; in Sect. 3 the

proposed deep ordinal method is described; in Sect. 4 the

evaluation procedure with respect to the state-of-the-art

models is reported; in Sect. 5 the results are presented; in

Sect. 6 the integration of the proposed approach in a

decision support system is reported; and finally, in Sect. 7

the conclusions, limitations and future work of the pro-

posed approach are discussed.

2 Materials

The QC phase is a fundamental step in the production of a

rifle as the finished product must guarantee high perfor-

mances both at mechanical and aesthetic levels. As regards

the wooden stocks, these items must comply with the

quality requirements related to aesthetics and surface

manufacturing. In particular, the task consists of assigning

a certain grade to each stock according to the wood grain:

this implies a natural order between classes, because the

more rich and fancy the veining pattern, the higher the

quality class for the item. Each different type of rifle model

manufactured by the company is equipped with a stock

belonging to a specific grade class, and this coupling is at

the total discretion of the company according to its market

decisions.

The collected dataset is composed of both left- and

right-side images belonging to different shotguns, for a

total of 2120 RGB images with a size of 1000� 500 pixels.

The stocks have been classified into 4 main grades (1, 2, 3,

4) and their relative minor grades (2-/?, 3-/?, 4-/?),

resulting in 10 different classes. Figure 1 shows an exam-

ple of each of the 10 quality classes and the dataset dis-

tribution. Then, the original images were cropped to

470� 270, in order to focus better on the wooden region

and remove the background. The images were acquired

using a dedicated acquisition bench, composed of an

industrial lamp and a high-definition RGB camera installed

at the top of a photographic box, and annotation software.

3 Method

In this section, we present the proposed deep ordinal

model, which consists of convolutional modules for

extracting feature maps and an ordinal classification mod-

ule (see Fig. 2). The main aspect of the ordinal module is

the integration of the cumulative link model (CLM) in the

output layer, parameterized by slope and thresholds, for

encoding the ordinal nature of the label.
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3.1 Feature extractor

We adopted as feature extractor the convolutional part of

VGG-16 CNN [39] with 13 convolutional layers. Each of

the 5 convolutional blocks has filters with a 3�3 pixels

receptive field and is followed by a ReLU activation

function. For CNN-parameter dimensionality reduction,

max-pooling layers are used after 2 convolutional layers

for the first 2 convolutional blocks and after 3 convolu-

tional layers for the other blocks. The activation of the last

convolutional block is used as the embedded features

(F 2 Rd) learned from the feature extractor and is then fed

to the ordinal classification head, which computes the

output decision of the model. We let x 2 X � Rd and y 2
Y ¼ fy1; y2; . . .; yCg the input space and output space of

C different ordinal classes, respectively.

3.2 Ordinal classification module

The output of the convolutional part of the CNN is fed to a

sequence of 2 fully connected (FC) layers, followed by the

output layer. Dropout regularization layer was inserted

between the first and the second FC layer with a rate of 0.3.

The dropout rate was chosen in the validation stage (see

Table 1). A batch normalization layer was added in order

to stabilize the learning process and reduce the number of

training epochs. The last FC layer has only one neuron as it

provides the model projection in a 1-dimensional space: its

value is used to classify the sample into the corresponding

class according to the threshold model. Inspiring from [37],

Fig. 1 Example of different stocks for each aesthetic quality class belonging to the collected dataset. The relative number of images/stocks is

indicated in the parentheses

Fig. 2 The proposed CLM VGG-16 architecture, which consists of convolutional layers for features extraction and an ordinal head based on

CLM

Table 1 Network hyperparameters and cumulative link model

parameters explored in the validation set

CLM parameters Values

Slope 10, 50, 100

Network hyperparameters

Dropout rate 0.1, 0.3, 0.5

Batch size 8, 16, 32

Learning rate 10�4, 10�3, 10�2
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the threshold-based approach we adopt in the output layer

of the CNN is the CLM. In the CLM formulation [40], the

class order is enforced by the following latent constraint:

f�1ðPðy� yckxÞÞ ¼ tc � f ðxÞ ð1Þ

where c ¼ 1; . . .;C � 1, f�1 : ½0; 1� ! 1 is a monotonic

function (inverse link function) and tc is the threshold

defined for class yc. Hence, the class yc is predicted if and

only if f ðxÞ 2 ½tc�1; tc�.
We integrated in the output layer of the architecture

different forms of CLM exploring many link functions, all

following the form link½Pðy� yckxÞ� ¼ tc � f ðxÞ. They are

defined as follows:

• logit link function defined as follows:

Pðy� yckxÞ ¼
1

1þ e�sðtc�f ðxÞÞ ð2Þ

• probit link function defined as follows:

Pðy� yckxÞ ¼
Z tc�f ðxÞ

�1

sffiffiffiffiffiffi
2p

p e
1
2
x2dx ð3Þ

• clog-log link function defined as follows:

Pðy� yckxÞ ¼ 1� e�esðtc�f ðxÞÞ ð4Þ

where s controls the slope of the CLM. Notice how the

introduction of the slope represents one of the main con-

tributions of the proposed work to control the transient

between each monotonic link function with the purpose to

be adapted according to the specific ordinal problem. It is

worth noting that the function f is learned from the training

data.

3.3 Setting the slope and thresholds parameters

The CLMs are highly influenced by the right choice of the

thresholds and slope. The thresholds represent the cutting

point between adjacent ordinal classes, while the slope

controls the transient of Pðy� yckxÞ. For instance, a small

slope value may lead to a high transient in the CLM that

does not enable the ordinal structure modeling (see Fig. 3).

For that reason, we have explored different formulations

for the optimization of the thresholds

(t ¼ ðt1; t2; . . .; tC�2; tC�1Þ) and the slope (s):

• (A): learning the slope s and the thresholds t from data.

• (B): preliminary fixing the values of the slope s and the

thresholds t;

• (C): preliminary fixing the values of the slope s and

learning the thresholds t from data;

It is assumed that t0 = -1 and tC = ?1, defining C con-

secutive intervals that divide the real line defined by f(x).

In formulation (A), both the slope s and the thresholds

are learned during the training process. In particular, the

threshold is learned from the following equation:

tq ¼ t1 þ
XC�1

c¼2

c2c ; ð5Þ

where t1 is learned to obtain the first threshold, c is learned
to obtain the other thresholds and C is the number of

classes. This formulation for the thresholds ensures that the

constraints t1 � t2 � . . .� tC�1 are fulfilled, which is nee-

ded for obtaining increasing Pðy� yckxÞ with c.

In formulation (B), rather than learning the parameter s

in the training stage, we have tuned this parameter in the

validation stage. Moreover, the imbalanced setting of the

ordinal classes is taken into account by fixing the thresh-

olds instead of learning them during the training stage. In

particular, we set the thresholds according to the prior

probability of each class as follows:

t1 ¼
PN

i¼1 1y¼y1

N
; ð6Þ

cc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðy ¼ ycÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 1y¼yc

N

s
; ð7Þ

where t1 is the value of the first threshold related to the

prior probability of the first class, cc is the vector of the

prior probabilities Pðy ¼ ycÞ associated to each class c ¼
f2; . . .;C � 1g and N is the total number of training points.

In the hybrid formulation (C), only the thresholds are

learnable parameters, while the slope is tuned in the vali-

dation stage.

3.4 Loss function

The loss function was defined in terms of categorical cross-

entropy (CCE) as follows:

Lðŷ; yÞ ¼ �
XC
i¼1

yilogðŷiÞ; ð8Þ

where C is the number of classes indicating the output size,

ŷi is the ith scalar value in the model output and yi is the

corresponding target value.

4 Experimental procedure

4.1 Experimental comparisons

It is worth noting here that the goal of our paper is to

predict the aesthetic quality classes of the rifle models.

Despite the difference in the task definition, we have

decided to perform the experimental comparisons with
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respect to baseline nominal VGG-16 [39] and other state-

of-the-art ordinal DL methodologies, including ordinal

binary decomposition VGG-16 [18] and CLM VGG-16

with weight kappa loss [37]. Figure 4 shows the architec-

tures of the state-of-the-art methodologies employed for

comparisons.

4.1.1 Nominal VGG-16

In the nominal classification, the VGG-16 model presents

the classic architecture, where the convolutional part is

followed by 3 FC layers and the last one has dimension

C as the number of class labels. The output of this last FC

layer is fed to a softmax activation function which maps the

output of the CNN model into a set of probabilities

belonging to each class. The loss function is the CCE loss,

as defined in 3.4.

Fig. 3 The effect of the slope parameter s regularization in logit link function for defining the C � 1 thresholds

Fig. 4 The other state-of-the-art architectures: baseline nominal VGG-16 and ordinal binary decomposition VGG-16
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4.1.2 Ordinal binary decomposition VGG-16

The ordinal binary decomposition (OBD) is an ordinal

approach that consists of decomposing the ordinal problem

into a set of C � 1 binary problems, where each problem c

must determine if y[ yc conditioned to 1� c\C. Fol-

lowing the implementation in [18], the convolutional part

of the VGG-16 is the input of multiple FC blocks, all of the

same dimension. Each block consists of a FC layer, fol-

lowed by a Leaky ReLU activation function and dropout

layer. A final output layer computes the final classification

given by the model solving an individual binary classifi-

cation subproblem. The output of each of the C � 1 FC

blocks has a sigmoid activation function representing the

probability ok ¼ Pðy[ ykkxÞ 2 ð0; 1Þ. The adopted loss

functions include the mean squared error (MSE) defined as

follows:

Lðŷ; yÞ ¼ 1

C � 1

XC�1

k¼1

ðyk � ŷkÞ2; ð9Þ

and the mean absolute error (MAE):

Lðŷ; yÞ ¼ 1

C � 1

XC�1

k¼1

jjyk � ŷkjj; ð10Þ

where C is the number of classes indicating the output size,

ŷk is the predicted probability of the model output to be

greater than yk and yk is the corresponding target value that

is equal to 1 when yi ¼ Cq and 0 otherwise.

4.1.3 Cumulative link model VGG-16 with weighted kappa
loss

Differently from our approach, in the work made by [37]

the CLM structure in the output layer is combined with the

continuous version of the quadratic weighted kappa

(QWK) loss function [41]. We employed the QWK

according to [41] as follows:

QWK ¼ 1�
PN

i;j xi;jOi;jPN
i;j xi;jEi;j

; ð11Þ

where N is the number of training data, Ni is the number of

samples for each i-th class, x is the penalization matrix, O

is the confusion matrix, Eij ¼ Oi�O�j
N , Oi� is the sum of the i-

th row and O�j is the sum of the j-th column. In our

experimental comparisons, linear weights ðxi;j ¼ ði�jÞ
ðC�1Þ,

xi;j 2 ½0; 1�Þ and quadratic weights ðxi;j ¼ ði�jÞ2

ðC�1Þ2, xi;j 2
½0; 1�Þ are considered.

4.2 Experimental design

A transfer learning approach was used to fine-tune the

networks on ImageNet pre-trained weights, in order to

reduce computational time while improving the general-

ization performance [42]. For this reason, all the convo-

lutional layers were frozen. As a preprocessing step, the

mean value was removed for each image. The dataset was

split by a stratified hold-out procedure, i.e., using 60% of

images as training, 20% as validation and 20% as a test.

Images belonging to the same shotgun (front and back)

were maintained in the same set, ensuring that the model

may be able to generalize across different unseen shotgun

stocks. In order to cope with the small dimension of the

dataset and the slight unbalance of the classes, a balanced

data augmentation strategy was performed on the fly on all

the training set samples, applying a horizontal flip to

original images. In this process, we ensure that, during

training, the number of samples per class follows a uniform

distribution, performing an oversampling of the minority

classes. We adopted Adam as optimizer and we explored

the best batch size, the initial learning rate and dropout rate

as network hyperparameters (see Table 1). These network

hyperparameters together with the slope parameter for

formulations (B) and (C) were tuned in a separate valida-

tion set using a grid-search approach. The number of

training epochs was set to 50 while adopting the early

stopping strategy with the patience of 10 epochs monitor-

ing validation loss. All the experiments were performed

using TensorFlow 2.0 and Keras 2.3.1 frameworks on Intel

Core i7-4790 CPU 3.60 GHz with 16 GB of RAM and

NVIDIA GeForce GTX 970. All the code used in the

experiments and the employed dataset is available in a

public repository.1

4.3 Evaluation metrics and error criteria

Both nominal and ordinal metrics were considered to

provide quantitative performance results of the proposed

model. Taking into account the ordinal nature of this

problem, the ordinal metrics are potentially more relevant

for evaluating our ordinal classification task.

4.3.1 Nominal metrics

The correct classification rate (CCR) or accuracy is the

most standard metric for evaluating classification models,

indicating the percentage of correctly classified samples. In

our application context, CCR presents two main problems:

1 https://github.com/rosati1392/AQC_Ordinal.git.
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• all the prediction mistakes are equally penalized,

without considering how much is the deviation from

the ground truth (according to the ordinal scale);

• when in presence of class imbalance, it can become an

unreliable measure of model performance, as it can be

trivially increased by assigning all patterns to the

majority class.

The CCR is defined as follows:

CCR ¼ 1

N

XN
i¼1

1fŷi ¼ yig; ð12Þ

where N denotes the number of test samples, yi is the class

label for sample xi and ŷi is the predicted label for sample

xi.

Other accuracy-based metrics are Top-2 CCR and Top-3

CCR, which are the accuracy where true class matches

with any one of the two or three, respectively, most

probable classes predicted by the model.

Another nominal metric considered is minimum sensi-

tivity (MS), which expresses the lowest percentage of

samples correctly predicted to belong to a certain class:

MS ¼ min

�
Sc ¼

Occ

Oc�
; c ¼ 1; . . .;C

�
; ð13Þ

where O is the confusion matrix, C is the number of classes

and Sc is the sensitivity computed for the class c.

4.3.2 Ordinal metrics

The quadratic weighted kappa (QWK) is a relevant metric

for ordinal problems as it gives a higher weight to the

errors that are further from the correct class. We have

reported the continuous formulation of QWK (for the

results, the values reported are generally those from dis-

crete QWK, while the continuous version is used only for

the state-of-the-art experimental comparison in the training

process [37]) according to Eq. (11).

Other ordinal metrics are 1-off accuracy, which indi-

cates that the predicted label is off at most by 1 adjacent

class from the ground truth one, and MAE, which is the

average absolute deviation of the prediction from the

ground truth, defined as:

MAE ¼ 1

N

XC
i;j¼1

jji� jjjOij; ð14Þ

where N is the number of test samples, C is the number of

classes, and O is the confusion matrix.

5 Results

In Sect. 5.1, we report the predictive performance of the

proposed method for each formulation. Afterward, in

Sect. 5.2 we describe the experimental comparisons with

baseline nominal and state-of-the-art DL ordinal method-

ologies. Finally, in Sect. 5.3 we show results on how the

proposed approach is relevant in order to mitigate the bias.

5.1 Predictive performance for each formulation

The predictive performance of the proposed approach was

provided by tuning the network hyperparameters. It is

worth noting that for formulation A the CLM parameters

were learned in the training set, while for formulations B

and C the slope was tuned in a separate validation set and

kept fixed during the training stage. Table 2 shows the

predictive performance of the proposed approach (in terms

of QWK and MS) for each formulation and for each final

activation. The adoption of these two metrics is related to

the aim of our classification task: we want to maximize the

model performance in the ordinal problem while being

Table 2 Predictive performance

on the test set of the proposed

approach for each formulation

and for each final CLM

activation

Formulations Final activation Slope Thresholds BS LR QWK MS

Experiment A Logit Trainable Trainable 16 10�2 0.926 0.128

Probit Trainable Trainable 16 10�2 0.928 0.205

Clog-log Trainable Trainable 16 10�2 0.892 0.179

Experiment B Logit Fixed Fixed 16 10�2 0.846 0

Probit Fixed Fixed 16 10�2 – –

Clog-log Fixed Fixed 16 10�2 – –

Experiment C Logit Fixed Trainable 16 10�2 0.937 0.231

Probit Fixed Trainable 16 10�2 0.922 0.282

Clog-log Fixed Trainable 16 10�2 0.927 0.282

In bold, we reported the experiment that leads to the best results both in terms of quadratic weight kappa

(QWK) and minimum sensitivity (MS)
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consistent in prediction among all the dataset classes

despite the imbalanced setting.

With respect to these formulations, experiment C

achieved the best results both in terms of QWK (with logit

as CLM link function) and MS (with probit and clog-log).

Notice how in this formulation we fixed and tuned the

optimal slope value in the validation set. This procedure

provides better generalization performance than fully learn

slope and thresholds in the training procedure. Another

relevant aspect is that fixing the thresholds to a preset value

does not allow the model to converge for probit and clog-

log activations. This highlights that the slope parameter has

no effect if the flexibility provided by the threshold model

structure, where the threshold of each class is indepen-

dently adjusted during training, is not guaranteed.

5.2 Experimental comparisons with state-of-the-
art DL ordinal models

Figure 5 shows the test confusion matrices of the proposed

approach and the baseline approach (nominal approach).

The confusion matrix of the proposed method is more

focused on the diagonal, thus penalizing the error among

distant AQC classes.

Table 3 shows the experimental results of our approach

with respect to the baseline approach (nominal approach)

and other state-of-the-art deep ordinal methods (OBD

VGG-16 [18] and CLM VGG-16 [37]). Experiment C was

chosen as the best formulation of our proposed approach

(see Sect. 5.1). Our proposed deep ordinal model outper-

forms the nominal approach in terms of QWK, MS and

1-OFF of about 8%, 68.9%, and 17.4%, respectively. It is

worth noting that QWK, MS and 1-OFF represent the most

important metrics in order to reduce misclassification

errors among distant classes. This requisite fully

corresponds to the original company’s demand, i.e., the

reduction of errors among distant AQC classes. Moreover,

the proposed approach overcomes in terms of QWK, MS

and 1-OFF the OBD [18] of about 1,8%, 282% and 4,3%,

respectively, and CLM [37] of about 0.03%, 37.6% and

1%, respectively.

The comparison with the other ordinal methodologies

and the highest values of QWK, MS and 1-OFF highlighted

how the proposed method is more effective to model the

ordinal structure of the AQC classes by penalizing the

distance of incorrect prediction from the ground truth class.

5.3 Model interpretability and Bias mitigation

From the point of view of a domain expert such as a human

operator who is responsible for AQC task, explanation and

interpretability are key points that may increase the use-

fulness and the trustworthiness of the overall decision

support system (DSS). An explanation, specifically tailored

to the end-users (i.e., human operator) on how the DL

model achieved the prediction, is relevant in order (i) to

uncover valuable information that otherwise would have

remained hidden within the complexity of the model and

(ii) to empower users with powerful new insights. Starting

from this concept, our objective was to encourage the

prediction of the proposed model to be as aligned as pos-

sible with the human annotation. By designing an ordinal

DL methodology, our claim was to penalize large errors

(misclassification errors among distant classes) that do not

usually happen in human annotation. After being demon-

strated this outcome, we would go further by describing

that from one side the model is potentially able to provide

new insights on finer-grained wood patterns that can be

sometimes unseen by a human operator, and from the other

side the model is completely aligned on what the human

Fig. 5 Confusion matrices for nominal and proposed approach
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operator is checking, thus focusing on the aesthetic quality

classification of rifles based on the analysis of wood grains

and avoiding any unwanted bias related to the geometry

and shotgun series [17].

This fact is confirmed by exploring the saliency map of

the proposed ordinal DL approach according to the

approach proposed by [43]. Accordingly, the extracted

saliency maps are constrained to focus on wood grains

rather than the geometrical edges (see Fig. 6). Thus, this

strategy allows alleviating the bias by separating the two

tasks and providing the prediction of quality classes for

each shotgun macro-series model.

The overall methodology allows the network to learn the

characteristics that properly describe the quality of shotgun

(i.e., wood grains), rather than other confounds/bias char-

acteristics (e.g., geometry).

Table 3 Experimental results comparison on the test set in terms of

both ordinal and nominal metrics of the proposed approach with

respect to baseline nominal VGG-16 model (NOM), ordinal binary

decomposition (OBD) implementation for CNN [18] and state-of-the-

art cumulative link models (CLM) for deep ordinal classification [37]

Method Final activation Loss BS LR QWK MS MAE CCR TOP_2 TOP_3 1-OFF

NOM Softmax CCE 16 10�2 0.867 0.167 0.124 0.481 0.731 0.863 0.788

OBD Sigmoid MSE 16 10�2 0.920 0 0.158 0.528 0.783 0.906 0.880

OBD Sigmoid MAE 16 10�2 0.923 0 0.142 0.554 " 0.802 " 0.896 0.887

CLM Logit(th) QWK 16 10�2 0.924 0 0.128 0.424 0.709 0.851 0.875

CLM Probit(th) QWK 16 10�2 0.929 0 0.124 0.429 0.726 0.868 0.908

CLM Clog-log(th) QWK 16 10�2 0.911 0 0.132 0.394 0.670 0.863 0.835

CLM Logit(th) LWK 16 10�2 0.918 0 0.122 0.443 0.715 0.844 0.877

CLM Probit(th) LWK 16 10�2 0.917 0 0.127 0.392 0.698 0.851 0.858

CLM Clog-log(th) LWK 16 10�2 0.909 0 0.135 0.382 0.687 0.849 0.844

CLM Logit(th,slope) QWK 16 10�2 0.925 0.205 0.113 0.460 0.776 0.911 0.894

CLM Probit(th,slope) QWK 16 10�2 0.934 0.180 0.112 # 0.467 0.776 0.910 0.915

CLM Clog-log(th,slope) QWK 16 10�2 0.928 0.051 0.112 # 0.462 0.743 0.858 0.899

Ours Logit(th) CCE 16 10�2 0.937 " 0.231 0.137 0.455 0.774 0.927 " 0.925 "
Ours Probit(th) CCE 16 10�2 0.922 0.282 " 0.140 0.434 0.729 0.901 0.881

Ours Clog-log(th) CCE 16 10�2 0.927 0.282 " 0.137 0.451 0.776 0.927 " 0.889

The best value for each metric is highlighted in bold. For the final activation, the learnable parameters are specified in parentheses, where ‘‘th’’

stands for thresholds

Fig. 6 Saliency maps obtained from test images correctly predicted

by the nominal and proposed approach. In class 1, it can be seen how

the nominal approach is more focused outside the stock, whereas for

the proposed approach the map does not show any hot point because

veins are not relevant in this class. For the higher classes, notice how

the proposed model better focuses on the wood features, following the

attention on the pattern of grains
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6 Aesthetic quality control decision support
system

Taking into account the high variability among different

wooden stocks, the aesthetic quality classification of rifles

stocks based on the analysis of wood grains represents a

challenging and relevant step during the overall production

chain. The function of AQC is to build a method that can

make objective the result of the visual inspections carried

out, which are still purely dependent on the evaluation of

human operators (inter-operator and intra-operator vari-

ability). Thus, the aim is to create a DSS for the automation

of this aesthetic assessment of wooden stock images using

DL techniques, with the purpose of making this control

more reliable, fast and standardized. The integration of the

proposed ordinal DL methodology as the main core of a

DSS for solving AQC tasks is described in Fig. 7.

A container logic was adopted for packaging the DL

model and all its dependencies so the inference phase runs

reliably from one computing environment to another. A

docker image is essentially a snapshot of a container.

Microsoft Azure framework was adopted for providing a

cloud-based environment using virtualized containers. This

environment can ensure hardware and software isolation,

flexibility and inter-dependencies between data collection,

model building and prediction phases. Indeed, the proposed

approach is integrated into a AQC serverless platform

where the predicted quality class is obtained by ingestion

event. The technician may trigger a cloud function that

could invoke the DL model to provide the inference. This

setting may ensure the high scalability of the system while

allowing the continuous fine-tuning of the DL model based

on the new images of riffles available. All the prediction

results were stored in the Azure blob storage and displayed

to the human operator in a GUI interface.

The DSS platform is comprised of the acquisition box,

rifle placement and GUI interface (see Fig. 8). The DSS

platform was also used to collect the employed image

dataset described in Sect. 2. The integration of the pro-

posed DL model in the DSS platform allows us to reduce

up to 90% the time needed for the qualitative analysis

carried out manually in this specific field (inference com-

putation time of our proposed methodology is 4 s for each

image on Intel Core i7-4790 CPU 3.60 GHz with 16 GB of

RAM).

The great flexibility and invariance to environmental

conditions of these techniques will also allow a high level

of replicability of the project, even between companies

with production lines characterized by different processes,

minimizing the impact on the phases before and after the

AQC. We are currently testing the generalization power of

the proposed DL approach in a different company’s pro-

duction chain for supporting the AQC process of the

technician in a different environment and operating

condition.

7 Discussion and conclusions

Our work aims to propose an ordinal deep learning (DL)

approach, specifically tailored for providing the aesthetic

quality classification of shotguns based on the analysis of

wood grains. Being trained on examples annotated by

experts rather than composed of strict descriptive rules, this

model is able, with the necessary training, to generalize

across different unseen shotgun stocks. The proposed DL

methodology is integrated as the main core of a decision

support system (DSS) for solving a challenging aesthetic

quality control (AQC) task in Industry 4.0 scenario.

However, the main advantage of the proposed approach

is not limited to the automatization of the overall AQC

procedure and the minimization of the annotator’s vari-

ability. The proposed DL-based DSS driven by ordinal

constraints was properly conceived to model the natural

ordinal structure of the AQC task while penalizing the

misclassification errors that are far from the correct AQC

classes. The introduction of the slope parameter allows to

model the transient between CLM functions for each

learnable ordinal threshold.

The higher performance obtained by the proposed

method for quality class prediction with respect to a

baseline nominal DL approach and state-of-the-art ordinal

DL workspace Azure Container Registry
Model checking Containerized Model

Azure Kubernetes
Service

Data Analytics
GUI Interface

Azure Blob

Model building Model outcome

Data collection

In
p

ut
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Fig. 7 DSS cloud interface

11636 Neural Computing and Applications (2022) 34:11625–11639

123



DL approaches suggests how the proposed approach rep-

resents a valuable solution for automatizing the overall

AQC procedure. In fact, the experimental findings

demonstrated how a standard CCE together with CLM is

sufficient to model ordinal structure of the label, without

requiring the minimization of an ordinal loss (e.g., QWK).

This is also in line with recent findings in the ordinal

classification literature [44]. Moreover, the ordinal con-

straints allow the network to learn the characteristics that

properly describe the quality of shotgun (i.e., wood grains),

rather than other confounds/bias characteristics (e.g.,

geometry). The experimental results demonstrated how the

impact of the proposed approach both in terms of predic-

tive performance and interpretability is also compliant with

the ethic guidelines by the European Commission (Human

agency and oversight, [12]) in order to provide a DSS

based on DL that is as aligned as possible with the human

operator for supporting the AQC task.

As a result, the potential impact of the proposed

approach could be measured according to (i) introducing an

ordinal DL technique in a challenging and unexplored

Industrial 4.0 scenario, namely AQC task; (ii) ensuring the

robustness of the approach with respect to possible bias

factors, i.e., the network learns the characteristics that

really describe the quality of shotgun; (iii) integrating the

DL in a DSS that can support the human operator by

reducing up to 90% the time needed for the qualitative

analysis carried out manually in this specific domain.

Future work may be addressed to combine domain

adaptation techniques with the proposed approach in order

to generalize across different conditions while providing

the integration in the proposed DSS platform for easier

serialization. Another interesting future direction includes

the possibility to model inter-operator variability by pro-

viding multiple annotations by different operators for the

same image. This direction includes the possibility to

design a multi-task deep ordinal approach to simultane-

ously monitor correlation and variability among raters.
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18. Barbero-Gómez J, Gutiérrez P-A, Vargas V-M, Vallejo-Casas

J-A, Hervás-Martı́nez C (2021) An ordinal CNN approach for the
assessment of neurological damage in Parkinson’s disease

patients. Expert Syst Appl 182:115271. https://doi.org/10.1016/j.

eswa.2021.115271

19. Singer G, Ratnovsky A, Naftali S (2021) Classification of

severity of trachea stenosis from EEG signals using ordinal

decision-tree based algorithms and ensemble-based ordinal and

non-ordinal algorithms. Expert Syst Appl 173:114707. https://doi.

org/10.1016/j.eswa.2021.114707

20. Liu X, Fan F, Kong L, Diao Z, Xie W, Lu J, You J (2020)

Unimodal regularized neuron stick-breaking for ordinal classifi-

cation. Neurocomputing 388:34–44. https://doi.org/10.1016/j.

neucom.2020.01.025

21. Rudovic O, Pavlovic V, Pantic M (2015) Context-sensitive

dynamic ordinal regression for intensity estimation of facial

action units. IEEE Trans Pattern Anal Mach Intell 37(5):944–958.

https://doi.org/10.1109/TPAMI.2014.2356192

22. Chang K-Y, Chen C-S (2015) A learning framework for age rank

estimation based on face images with scattering transform. IEEE

Trans Image Process 24(3):785–798. https://doi.org/10.1109/TIP.

2014.2387379

23. He R, Tan T, Davis L, Sun Z (2018) Learning structured ordinal

measures for video based face recognition. Pattern Recogn

75:4–14. https://doi.org/10.1016/j.patcog.2017.02.00

24. Hirk R, Hornik K, Vana L (2019) Multivariate ordinal regression

models: an analysis of corporate credit ratings. Stat Methods

Appl 28(3):507–539. https://doi.org/10.1007/s10260-018-00437-

7

25. Balugani E, Lolli F, Pini M, Ferrari AM, Neri P, Gamberini R,

Rimini B (2021) Dimensionality reduced robust ordinal regres-

sion applied to life cycle assessment. Expert Syst Appl

178:115021. https://doi.org/10.1016/j.eswa.2021.115021
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