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Abstract
In this article, we want to discuss the use of deep learning model to predict potential vibrations of high-speed trains. In our

research, we have tested and developed deep learning model to predict potential vibrations from time series of recorded

vibrations during travel. We have tested various training models, different time steps and potential error margins to

examine how well we are able to predict situation on the track. Summarizing, in our article we have used the RNN-LSTM

neural network model with hyperbolic tangent in hidden layers and rectified linear unit gate at the final layer in order to

predict future values from the time series data. Results of our research show the our system is able to predict vibrations

with Accuracy of above 99% in series of values forward.
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1 Introduction

Deep learning systems are widely applied in many fields of

modern technology due to high precision and many pos-

sible applications. Intelligent transportation is related to the

variety of developments in technology. We can read about

many interesting models used to predict or simulate

vibrations. In [8] was proposed a model of vibration

analysis for elements joined by friction. Neural networks

were used to predict ground vibration in [3]. As a result,

warning system for geological activities was developed.

Similarly in [4] was presented how to use heuristic model

to help on prediction of blast-produced ground vibration. A

model composed for open-pit mine vibrations prediction

presented in [12] was also based on neural network.

Deep learning models are very often used in diagnostic

purposes for variety of technical systems. In [11] was

presented how to evaluate displacement from data to

improve transportation systems. Model presented in [5] was

developed to help on fault detection in residual generator

from collected data. There are also very interesting models

of machine learning devoted to the topic of vibration anal-

ysis in means of transport. In [10] was presented an idea to

evaluate vibration of high-speed railway by using deep

learning. The model proposed in [13] was oriented on effect

of vibrations that come from trains to urban areas. This topic

was explored in [17] to show various aspects of such

vibrations. Results presented in [21] described how energy

consumption analysis may help in prediction of interior

noise in a high speed. A wide spectrum of numerical

experiments for various urban trains was presented in [7]. In

[18] was presented an analytical approach to use neural

networks for simulation of dynamical elements in moving

vehicles. Among models used in analysis of time series,

Recurrent Neural Networks (RNN) are presented in many

efficient applications. An idea discussed in [20] has been

developed for application of RNN in traffic noise prediction.

Results presented in [6] show how to model RNN to infer

global temporal structure. Presented results show that this

type of neural networks can well adapt to variety of exam-

ples. In [19] was discussed efficiency of RNN in stochastic

time series analysis, while results of [16] show solution to

improve long time series processing with fuzzy granulation.
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In this article, we want to discuss application of deep

learning model to predict potential vibrations of high-speed

trains from time series of recorded travels. In our work, we

have prepared a novel lightweight solution for predicting

the future train vibrations using time series data provided

as an input. What is more, the proposed model performs

not only well in terms of training and evaluation times but

also in high Accuracy terms. Our proposed prediction

model is developed using Recurrent Neural Network

(RNN) with Long Short-Term Memory (LSTM) neurons.

We have examined which training model would help to

better train this system, and as a result, we propose to use

NAdam training algorithm. Tests were also done for dif-

ferent configurations of the developed classifier. We have

tested how many readings in a time proposed classifier can

need to work with highest potential efficiency. We have

also tested how long would it be necessary to train the

classifier to work with assumed efficiency. Because we are

working with time series data, we have decided to use

LSTM neurons in our architecture as they have the best

ability to remember past values and thus predicting trends.

Other neuron types are ineffective because of great

regression in performance in both training time and

Accuracy standpoint. Results of our findings are compared

and discussed to draw conclusions for future work on

efficient predictors of long time series of sensor readings.

2 Deep learning model

The research in our project is oriented on prediction of

possible vibrations in high-speed trains by using deep

neural network model. We have developed a model of

Recurrent Neural Network to analyze signal from the high-

speed train. In Fig. 1 is presented a sample explanation of

our research assumptions. We assume that high-speed train

is moving at regular speed on the track. During motion

vibration signal is read from suspension sensors and pro-

cessed by developed LSTM-RNN to decide if the train is

stable as visible in Fig. 2. If the system discovers mal-

function or difference from regular situation on the track, it

sends warning to the operator. As a result, driving of such

high-speed train becomes more safe and easier.

2.1 Data

In order to develop our system, we have used the dataset

provided by Enfang Cui [2]. This collection consists of 200

hours of metro train vibration energy harvesting data col-

lected at intervals of 2 minutes. After simple data analysis,

we have spotted that values range is quite similar across the

whole range and the differences are small. Thus, we have

decided to use standard Minimum-Maximum scaling

algorithm for our data preprocessing to fit them into the 0-1

range. This preprocessing helped the network results to be

rescaled to the original shape. For our experiments, this

collection was split into the train/test subsets with the ratio

of 70:30.

2.2 Recurrent neural network

Because we are working with the time series data, we have

decided to use Recurrent Neural Network in order to allow

it to learn the dependencies of values in time and that way

give us better results. In our RNN model, we have used one

Input layer followed by 8 LSTM layers and finally 2

standard layers. For all hidden layers, we have used

Hyperbolic Tangent activation function, and for the output

Fig. 1 In our research, we assume that high-speed train or metro is moving on the truck and sensors are reading vibrations from suspension

system. Recordings are analyzed by our developed deep learning model to help operator during driving
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layer we have decided to use ReLU function as we are

dealing with the value prediction which can be higher than

the maximum value of the training set so we do not want to

be restricted by -1 to 1 range that the Tanh function gives

us. In some cases, better results could be given by using

leaky ReLU or ELU activation functions; however, in this

dataset it is not needed because vibrations could not be

negative, especially when using ReLU is much more

computational heavy and one of our goals was to reduce

the training times to the minimum. The final architecture is

shown in Fig. 3, while LSTM neuron model is presented in

Fig. 4.

Each of LSTM neurons works with memory recall

ability mathematically modeled as:

ft ¼ rðWf ½ht�1; xt� þ btÞ; ð1Þ

it ¼ rðWi½ht�1; xt� þ biÞ; ð2Þ

ot ¼ rðWo½ht�1; xt� þ boÞ; ð3Þ

ĉt ¼ tanhðWc½ht�1; xt� þ bcÞ; ð4Þ

ct ¼ ft � ct�1 þ it � ĉt; ð5Þ

Fig. 2 Sample diagram of the data processing in a system. Power

(D) is sent to the train, and then, data (B.1) from the train (C.1) are

sent to the neural network (B.2) which transmits predicted values to

the control system (C.3). It decides how much power can be

recovered from recuperation (C.2). Secondly, it also decides what

energy reserves are stored in batteries (C.4). In the meantime, the data

from the train sensors go to the cloud (A.1) where it is processed

(A.2) so that they can be added to the database to enable improved

learning of the next version of the neural network classifier. After

approval by the technical laboratory (A.3), data are loaded to train

(A.4) and replace the old version of system knowledge

Fig. 3 Applied Recurrent

Neural Network model. We

have set 8 LSTM layers for 1

input layer and 7 hidden layers.

For all hidden layers, we have

used hyperbolic tangent

activation function, and for the

output layer we have decided to

use ReLU

Fig. 4 Applied Long Short-Term Memory (LSTM) neuron model
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ht ¼ ot � tanhðctÞ; ð6Þ

where we assume: xt as input time series array, ft forget

gate activation function, it input/update gate activation

value, ot output gate activation value, ht hidden state, ~c t

cell input activation, ct cell state, while other symbols are

W,b weights matrices and bias, r sigmoid activation

function, tanh hyperbolic tangent activation function. For

calculations, we assume c0 ¼ 0 and h0 ¼ 0.

3 Model training

After conducting experiments to get the best possible

Accuracy of our predictor, we have used NAdam opti-

mization algorithm. Because of high performance and short

training times, it is widely used in machine learning

research. To improve model Accuracy and reduce training

even more, we have used learning rate decay. It allowed

Table 1 Comparison of results

for using different neural

network architectures

Architecture Accuracy (%)

Bi-LSTM 99.14

LSTM 99.12

ANN 88.11

Gru-RNN 99.081

Fig. 5 Comparison of training results between different tested algorithms. For each of the algorithms, we can see results of Accuracy and Loss

function change in training. In blue line, we can see results on train data, while in orange we can see results on test data
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deep neural network to first quickly adapt to the given

problem and then slowly polish the final efficiency.

NAdam formula can be described as follows. First we need

to compute values ai and bi which are later used for

computing correlations âi and b̂i:

ai ¼ h1ai�1 þ ð1 � h1Þzi; ð7Þ

bi ¼ h2bi�1 þ ð1 � h2Þz2
i ; ð8Þ

where h1 and h2 are constant hyper-parameters and z is a

current gradient value of the error function. Correlations

are described as follows:

âi ¼
ai

1 � hi1
ð9Þ

b̂i ¼
bi

1 � hi1
ð10Þ

After that the formula for updating weights is defined as

follows:

xiþ1 ¼ xi �
g
ffiffiffiffi

b̂i
p

þ c
âi; ð11Þ

where c is a small, constant value and g is a learning rate.

Next we apply NAG formula to classical Adam using

equations below:

xi ¼ xi�1 � g
h1ai�1

h2bi�1 þ ð1 � h2Þz2
i þ c

� g
ð1 � h1Þzi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2ai�1 þ ð1 � h2Þz2
i þ c

p

ð12Þ

Finally, we modify Adam algorithm update rule; thus, we

need to change equations for âi and xi:

âi ¼ð1 � h1Þzi þ h1iþ1ai ð13Þ

xi ¼xi�1 � g
âi

ffiffiffiffiffiffi

h2i

p
þ c

ð14Þ

We have used Mean Squared Logarithmic Error as fitness

function for our model, since it gave well understanding of

the training process for this type of data.

Lðy; ŷÞ ¼ 1

N

X

N

i¼0

ðlogðyi þ 1Þ � logðŷi þ 1ÞÞ2 ð15Þ

4 Experiments

Specification of our computer is as follows:

• CPU AMD Ryzen Threadripper 2950X 16 cores/32

threads

• GPU 29 NVidia RTX 2080 8GB

• RAM 64GB

Because in our work we are dealing with time series data,

we have chosen empirically to use Recurrent Neural Net-

work (RNN) with Long Short-Term Memory (LSTM)

neurons. However, to ensure that our choice was correct we

have done a comparison between RNN-LSTM, classical

artificial neural network (ANN) and other types of RNN

models. Results are shown in Table 1. We can see that in

our tests models which use Long Short-Term Memory

neurons are having the best Accuracy. Our proposed model

is giving result similar to Bi-LSTM; however, from our

experiments we see that training of our model was much

shorter, what gave us a big advance and justified our choice

to present this idea as a main result of our research in this

project.

4.1 Finding the best training algorithm

In our experiments, we searched for the best training

algorithm for this dataset. To do this, we have conducted

series of experiments running the same network architec-

ture training by different methods of optimization. Results

are found in Table 4 and more detailed description can be

found below:

Table 2 Comparison of using

different time step (10 is equal

10 readings) during RNN

training (calculated after 1
3

of

NAdam iteration training)

Time Step Accuracy (%)

10 96.41

11 89.27

12 97.26

13 90.48

14 49.41

15 91.22

16 97.59

17 89.94

18 97.56

19 49.44

20 98.29

21 93.07

22 98.20

23 50.50

24 50.44

25 91.71

26 98.17

27 50.49

28 50.21

29 50.28
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• Adamax Network did learn to predict values with an

Accuracy of 96.29-,

• Adam Network reached 97.78% Accuracy; however, it

struggled to correctly predict the highest and the lowest

values,

Fig. 6 Results of training measured in changes to Accuracy using different time steps for proposed RNN architecture. In blue line, we can see

results on train data, while in orange we can see results on test data
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• RMSprop Results were better than Adam and reached

98.60%; however, the network had the same troubles

with the highest and the lowest values as the Adam

algorithm.

Fig. 7 Results of Loss function using different time steps for the RNN architecture. In blue line, we can see results on train data, while in orange

we can see results on test data
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• NAdam Predictor reached over 99.12% making it the

best fitting algorithm for our task.

More results containing charts of changes to Loss functions

and Accuracy in time domain are found in Fig. 5. As we

can see, some did not learn any valuable dependencies

Fig. 8 Results of Accuracy and Loss function in training for prediction of using different error margins. In blue line, we can see results on train

data, while in orange we can see results on test data

cFig. 9 Results of searching for how many future values should the

network predict. In blue line, we can see results on train data, while in

orange we can see results on test data
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transforming all data into the same, constant values. In

some cases, it worked; however, the Accuracy was very

high reaching over 95%. Finally, we have chosen NAdam

as the training algorithm due to the best Accuracy. In

numerical experiments, we have divided our data into

70:30 for training and testing in our experiments. K-fold

cross-validation has been used for training data. The model

was trained in configuration with reshuffled training data at

each iteration of applied training algorithm.

4.2 Searching for the best time step

To improve Accuracy on time-changing data even more,

we had to find the best time step for our proposed predictor.

Results are shown in Table 2, and charts are presented in

Figs. 6, 7. As we can see, proposed RNN-LSTM is very

sensitive to changing the time step value. For example,

changing it from 20 to 19 resulted in almost 50% reduction

in Accuracy; however, further reduction to 18 increased it

again. Because of that, we have tested some different

configurations, and finally, we have chosen the time step

value of 20 as it gave us the best results. In Table 2, we can

see how the number of calculations improves decision

processes in the proposed system. We can see that the

number of iterations above 10 does not influence much this

process. After experiments, we have concluded that 10

iterations are a minimum to make the system both flexible

to input data and maintain prediction ability well.

4.3 Computing overall Accuracy based on error
margin experiments

Our architecture predicts future time series values with a

very high Accuracy. As shown in Figs. 8, 9 and Table 3, if

we allow the network to have an error margin of 5% of the

real value predictor Accuracy reaches about 75.66% which

leads to the conclusion that proposed network architecture

is very accurate with most of its predictions. However, if

we step up the margin to 10%, the Accuracy stays around

99.12%. That implies that proposed RNN-LSTM network

correctly predicts the overall trend, but it is still not intel-

ligent enough to be ideal in terms of the exact value for

time series. On the other hand, stepping even more gives us

the Accuracy of 100% so we can conclude that this net-

work is a good fit for the given problem.

4.4 Training times

During our numerical experiments, despite logging mod-

el’s performance in terms of Loss and Accuracy, we have

also tested training times. Results are shown in Table 4. As

we can see, different optimization algorithms have also

much different training times, which can lead us to confirm

our choice of NAdam training algorithm for machine

learning applications of time series data.

4.5 Non-machine learning prediction methods

In this section, we want to compare our proposed approach

to statistical method. We have, therefore, implemented

various measures. Sample Moving Average (SMA) for

vibration prediction from readings is calculated as:

SMA ¼

X

n

i¼1

ci

n

ð16Þ

where n is number of assumed factors, ci is i-th value.

Exponential Moving Average (EMA) for vibration pre-

diction from readings is calculated as:

EMAi ¼ Yi � aþ EMAi�1 ð17Þ

where EMA0 ¼ Y0 and Y is a value from the i-th value of

the set taken into account, a - is 2
n�1

where n is the number

of values of the set.

Linear Trend Line for vibration prediction from readings

is built for the number of detected cases as:

Table 3 Comparison of using

different error margins (for

NAdam)

Error margin Accuracy (%)

0.05 75.66

0.1 99.12

0.15 99.91

0.2 99.99

0.3 100.0

0.4 100.0

0.5 100.0

0.6 100.0

0.7 100.0

0.8 100.0

Table 4 Comparison of Training Times and Accuracy for each

algorithm

Algorithm Accuracy Training Time

Adamax 97.29% 56 min 3.90 s

Adam 97.78% 56 min 7.82 s

RMSprop 98.60% 48 min 32.06 s

NAdam 99.12% 48 min 35.86 s
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LTL ¼ a � xþ b ð18Þ

where Xi is i-th value of the set, X is arithmetic mean of the

set, Yiis i-th value of the set, Y is arithmetic mean of the set.

Directional coefficient a of the trend line and free expres-

sion b are calculated as

a ¼

X

n

i¼1

ðXi � XÞ � ðYi � YÞ

X

n

i¼1

ðXi � XÞ2

b ¼ Y � a � X

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð19Þ

Results of vibration prediction are presented in Fig. 10.

The violet line represents the data from sensor, while light

blue exemplifies the LTL. Red and green chart constitutes

Exponential Moving Average and Sample Moving Aver-

age, respectively. EMA and SMA have the same value of a

’’step’’; therefore, we display them on the same charts.

Fig. 10 Sample results of prediction from statistical methods. On

vertical, we can see vibration readings from sensors, while on

horizontal we can see interval. The violet line represents sensor

readings, while light blue represents trend line. Red represents result

from Exponential Moving Average and green line represents result

from Sample Moving Average
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5 Conclusions

In Fig. 11, we see comparison between original sensor

readings and results of prediction from our developed deep

learning system. When we analyze results, we can see that

original readings without prediction and dumping system

show higher fluctuations in each interval than our proposed

deep learning model. As a result, we see that application of

neural network is very efficient in analysis of data samples.

For our experiments, we have selected RNN with LSTM as

Fig. 11 Sample results of prediction. On vertical, we can see vibration

readings from sensors, while on horizontal we can see interval. In red,

we can see original recording from sensors on the track. In blue, we

can see how proposed RNN-LSTM model predicts vibration on the

track. In black, we can see difference between them, what represents

possible response from suspension system to keep the high-speed

train stable
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initial test has shown better results than for standard

architecture. We have selected NAdam training model as

the most efficient training algorithm in our research case.

This selection was based on comparative analysis, which

results were discussed in section of experiments. We have

compared various error margins and prediction intervals.

Results have shown that our model is efficient in case of

error at level above 0.1 which is very good results. As a

summary of our research experiments, we can conclude

that proposed deep learning architecture is interesting

design for data collections with sensor readings in time

intervals.

In Table 5, we can see comparisons to other models.

Our proposed model is working very well. Proposed

LSTM-RNN has reached lowest value MSE among com-

pared solutions. For compared MAE, proposed model is

second among all compared. Therefore, we can see that

proposed model is working very well with time series data.

Our model is based on RNN with LSTM neurons, while

other is using attention mechanisms or random sampling

ideas. Results show that proposed by us simplified pro-

cessing gives MSE and MAE lowest than other presented

models. These results confirm efficiency of our idea. We

have also tested other configurations in our experiments.

After some simple testing with changing the layers type

from ReLU to ELU, we have experienced no gain in

Accuracy (in some cases even up to 1% decrease), what’s

more the training time performance was highly decreased

coming about 1/4 times longer than the ReLU. The reason

is because of the higher computational complexity of ELU

function and adding more negative data which are not only

unusable for this model as all values should be above zero,

but also creates additional noise. Therefore, we decided to

present the proposed architecture as our final model in this

task. Our proposed model has three sensitive points. One of

them is time as we have to assume how many individual

sensor readings we can take, so that both proposed neural

network can properly predict and the relevant systems can

react. The self-learning method may turn out to be another

problem, i.e., when excessively monotonous sections of the

route may influence neural network. The last vulnerable

point is reality itself, as long as we can very accurately

predict standard train runs, we cannot be sure whether they

will always be like that, as heavy construction works near

the traction can affect the entire system.

6 Final remarks

In our article, we proposed vibration prediction model by

the use of LSTM-RNN deep learning architecture. We

collaterally presented optional applications of those pre-

dictions to create a system allowing to decrease sensible

vibrations to satisfying extent. As the entire architecture

was developed based on the data from telegraphic sensors

during a drive, the model was devised in regard to that sort

of transport. However, being obtained with accurate mea-

sures and equipment, we will be able to recreate the sys-

tems on the rules of a different transport, including air

transport, road transport and water transport. In the future,

we are willing to focus on adaptive ability, which will yield

in further development in deep learning models for smart

transport.
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