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Abstract
Soil stabilization is an in situ soil treatment in which soils are mixed with cementitious or other chemical stabilizing agents.

Determining the unconfined compressive strength (UCS) of stabilized soil is a principal task in the design and construction

of the ground improvement. Hence, this study aims to develop a reliable predictive model for the UCS of clay stabilization

with common cementitious binders using the gene-expression programming (GEP) technique. Eleven parameters,

including the soil characteristics, the binder types, the binder contents, the mixing method, and the curing period, were

considered as the independent variables in the model. The research results show that the selected optimal GEP-based model

performs well with an acceptable correlation coefficient (R = 0.951) and low errors (e.g., RMSE and MAE). Besides,

parametric analyses indicate that the plastic index, the percentage of clay, and the total water content have a negative effect

on the UCS of stabilized soil. In contrast, the percentage of silt and sand, the binder types, the binder contents, and the

curing time show a positive effect on the strength of stabilized soil. In addition, the strength of stabilized clay could be

significantly enhanced by combining cement with slag, lime, or fly ash with a reasonable ratio, or by reducing the natural

water content in the soil. The research findings could help engineers choose suitable binder types and cost-effective

methods to optimize the UCS of stabilized clay.
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Abbreviations
ANN Artificial neural network

CoV Coefficient of variation

ET Expression tree

FA Fly ash

GEP Gene-expression programming

GP Genetic programming

MAE Mean absolute error

PI Plastic limit

R Coefficient correlation

RMSE Root mean square error

SD Standard deviation

t Curing time

UCS Unconfined compressive strength

1 Introduction

Soft clay accounts for a high proportion of land in coastal

areas and river deltas across the world [1–3]. The charac-

teristics of soft clay are high plasticity, high natural water

content (even higher than the liquid limit), low shear

strength (\ 40 kPa), and high compressibility [4]. Such a

kind of soft ground is insufficient for supporting the heavy

loads; it leads to high settlement and affects the stability of

infrastructures [5]. Hence, dealing with soft clay has been

challenging for geotechnical engineers [1].
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Soil stabilization is one of the most popular and effec-

tive soil improvement techniques [2]. Cement, lime, fly

ash, and blast-furnace slag are the common additives used

to mix with soft clay [6] to improve the workability and

compaction characteristics, increase the shear strength of

the soil, and reduce the settlement of the ground [7]. Due to

such advantages, soil stabilization with chemical binders

has been applied widely in many countries [8–10].

It has been reported that some factors could affect the

characteristics of soil stabilization, including the soil

characteristics, the type of binders, the binder content, the

water content, the mixing method, the curing time, and

others. Soil characteristics, such as soil type, organic

content, grain size distribution, pH, and natural water

content, affect the ultimate strength of the soil mixing

column [10]. For soft soils, the natural water content is also

an important factor. If the water content is higher than the

liquid limit, the strength of the stabilized soil will decrease

[10]. Moreover, the amount of binder added plays an

essential role in developing the final strength of stabilized

soil [10]. By raising the amount of the stabilization agent,

the UCS of the stabilized soil increases, and the perme-

ability decreases [10–12]. Besides, alternative pozzolans,

such as fly ash, lime, and blast-furnace slag, have been used

in soil stabilization. These pozzolans can increase the

strength and reduce the permeability of treated soil

[13, 14]. Furthermore, the UCS of soil–cement material is

affected by the mixing method and the curing time [10].

Previously, choosing the binder type and the desired

amount of binder has been conducted by creating and

testing a thousand trial specimens. The step requires huge

effort with high cost and time. Especially, this process has

to conduct separately for each project with different input

parameters. Therefore, some studies have suggested pre-

dictive models for the UCS of stabilized soil based on the

common input variables, such as the water to binder ratio,

the binder content, and the curing time [15–20].

The normalized empirical models were used to develop

the predictive equations based on the experimental data.

Abrams’ law applied in concrete technology shows that the

strength of hardened concrete could be predicted through

the water to cement ratio. Liu [21], Horpibulsk [2], and

Cong [3] applied the Abrams’ law in predicting the

strength of soil–cement material based on the ratio of clay

water content (including natural water in clay and water in

cement slurry) and cement content. Horpibulsk [2], Tsu-

chida [22], and Yao [1] also suggested new formats of the

predictive formulas using the empirical models.

However, according to Narendra [5], there are some

limitations in the empirical models. Firstly, these models

are usually developed based on several assumptions, sim-

plifications, and approximations. The normalized empirical

models are developed based on a small volume of

experimental data points, which could be less accurate and

not valid for applying other clay conditions. Furthermore,

the empirical formula provides significant errors when

applied to similar soil properties. In addition, most pre-

dictive formulas consider a few variables, such as the

cement content, the water to cement ratio, and the curing

time, while the effects of soil characteristics and binder

types have not been examined.

It can be seen that an advantage predictive model that

meets these requirements has not been found yet. Fur-

thermore, there are limited published studies considering

the effect of several types of binder additives on the

strength of stabilized clay. As a result, developing a reli-

able model which could apply to a wide range of clay

conditions and consider the effects of common binders by

reliable modeling technologies, such as artificial neural

network and genetic programming, is beneficial.

Artificial neural network (ANN) is a problem-solving

algorithm that simulates the structure of the human brain.

In terms of chemical soil stabilization, there have been

some studies using the ANN models for predicting the UCS

value, such as Das [15], Tinoco [23], Sunitsakul [17],

Abbey [18], Ghorbani [19], and Saadat [20]. The predictive

formulas developed based on the ANN models are more

accurate than nonlinear multivariable regression or multi-

ple regression analyses with high performance [24].

However, ANN is considered to be a ‘‘black box’’ program.

The predictive equations are developed based on the

complex transfer functions, such as logistic sigmoid and

hyperbolic tangent sigmoid functions. As a result, the

ANN-based predictive functions are limited in their

application as they cannot be used conveniently to calcu-

late the output using the input values [24].

Genetic programming (GP) is a kind of supervised

machine learning technique that applies the principles of

Darwin’s evolution theory [25]. It is another alternative

approach to behavior modeling. Gene-expression pro-

gramming (GEP) is a branch of GP that develops a solution

to a problem using a computer program [26], and it is the

method that has been used commonly in geotechnical

engineering [27]. In GEP, populations are also selected

based on fitness function and presented with a gene through

several operators [28]. GEP is able to make strong pre-

dictive functions without a preliminary assumption about

the possible structure of functional connection [29]. The

GEP model is a robust, powerful, and accurate predictive

tool. In addition, the GEP-based formulas are transparent

and more practical than the ANN-based equations. Hence,

the proposed predictive equations formulated from the

GEP model could be ready to apply in practice. As a result,

the GEP technique was used to develop a model for pre-

dicting the UCS of soil stabilization based on a compre-

hensive database gathered from the literature.
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The study focuses on clay stabilization with different

cementitious binders, including ordinary Portland cement

(CEM I), quick lime, fly ash Types C and F, and blast-

furnace slag. Both wet and dry mixing methods were

considered. The research results apply to determine the

UCS in the laboratory condition only. The GEP technique

was applied to generate a predictive model. A parametric

study was also conducted to examine the effects of each

variable, the effects of binder types, the combination of

binders, and the total water content on the UCS of stabi-

lized clay.

Within the scope of this study, the effect of the chemical

composition of clay, including the content of CaO and

SO4
2-, organic content, and pH of the soil, was excluded.

The specimen preparation processes, such as the size and

shape of the mold, the sample making and curing methods,

were assumed to be similar. These parameters could be

analyzed in subsequent studies.

2 Data preparation

The database used in this study was gathered from several

experimental studies in the literature. The experimental

data related to the UCS of clay stabilization were chosen

consistently based on the following criteria. The study

examined the chemical-treated clayey soil only, while

sandy soil was not considered in this research. Common

types of chemical binders used to stabilize soil, including

cement (CEM I), quick lime, fly ash (Type F and Type C),

and blast-furnace slag, were all selected. The UCS results

from the studies with similar sample making and testing

standards were chosen.

Table 1 shows the selected data sources available from

reliable published journal articles, including Bolton [30],

Ge [31], JGS [32], Xiao [33], Naveena [6], Asgari [34],

Correia [35], Oh [36], Tastan [37], Kwan [38], Consoli

[39], Kassim [40], and Abbey [18]. The database includes

the experimental data for soil stabilization applied for some

types of clay in different countries, such as Japan, Singa-

pore, Thailand, Malaysia, India, Australia, the UK, the

USA, Portugal, Iran, Brazil, and Taiwan. Finally, approx-

imately 1183 data points were selected for developing a

GEP-based formula for estimating the strength of soil

stabilization.

The number of independent variables was chosen based

on the literature review and several trials. In this research,

eleven independent variables considered in the predictive

model are:

• Group 1 represents the soil characteristic: the plastic

index (PI), the percentage of clay (Clay), the percentage

of silt (Silt), the percentage of sand (Sand);

• Group 2 represents the mixing method and curing time:

the total water content (Total water), the curing period

(Age). The total water content includes the natural

water content in the clay and the water used to mix with

binders.

• Group 3 represents the binder types and binder content:

the lime content (Lime), the cement content (Cement),

the fly ash Type F content (FA F), the fly ash Type C

content (FA C), and the slag content (Slag).

Table 2(a) and (b) presents the range of variables from

the dataset. Table 3 (a) and (b) shows the statistical anal-

ysis, including the maximum, minimum, range, mean,

standard deviation (SD), and coefficient of variation (CoV)

of all variables. The maximum value of the total water

content is 265%, while the longest curing period is

360 days. The highest percentages of lime, cement, fly ash

Type F, fly ash Type C, and slag used are 20%, 100%,

34.5%, 30%, and 42.5%, respectively. The maximum

achievable strength in this study is approximate 6000 kPa.

Table 1 Sources of experiment

data from the literature
Reference Nation Clay type Binder type Dataset

Bolton [30] Australia and Thailand Clay Lime, cement 57

Ge [31] Taiwan Kaolinite Cement, slag 76

JGS [32] Japan Clay Lime 10

Xiao [33] Singapore Marine clay Cement, fly ash F 41

Naveena [6] India Sandy clay Lime, cement, fly ash F 352

Asgari [34] Iran Clay Lime, cement 135

Correia [35] Portugal and Japan Clay Cement, slag 15

Oh [36] Australia Clay Lime, cement 33

Tastan [37] The USA Clay Fly ash F and C 26

Kwan [38] Australia Clay Cement, fly ash F, slag 73

Consoli [39] Brazil Sandy clay Lime 60

Kassim [40] Malaysia Clay Lime 45

Abbey [18] The UK Clay Cement, fly ash C, slag 260
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It indicates that the database could represent a wide range

of input variables. Besides, the high volume of data (1183

data points) brings outstanding results in comparison with

previous studies.

3 Model development

3.1 Gene-expression programming

Gene-expression programming (GEP) was developed by

Ferreira [41]. It consists of two parts: a linear chromosome

of fixed length and parses trees in different sizes and shapes

(expression trees—ETs) [41, 42]. It also contains a

terminal set, function set, fitness functions, and termination

functions [43]. GEP evolves several genes (sub-ETs) rep-

resented as tree-like structures, and they are connected by a

linking function.

The main elements of GEP are expression trees (ETs),

genes, and chromosomes. The GEP model is expressed by

ET, which includes some sub-ETs (genes). Each gene

contains several chromosomes, while each chromosome

could be an input variable, constant value, or function [44].

Each GEP gene is composed of a head and a tail. The head

of the gene contains mathematical functions and terminal

symbols, while the tail contains terminal symbols like

constant values or variables [45]. Constant values are used

to adjust the equations in the model.

Table 2 Range of variables

from input and output data
Reference Input variables

PI (%) Clay (%) Silt (%) Sand (%) Total water (%) Age (Days)

(a)

Bolton [30] 61–65 35–69 8–28 3–57 77.5–105.5 7–168

Ge [31] 53 69 25 6 151.2–200 3–56

JGS [32] 47.4–59.4 45.5–71.9 26.1–44.6 1–9.9 90.2–160 7–28

Xiao [33] 43 45.9 47.7 6.4 120–200 7–150

Naveena [6] 24–78 22–31 14–27 42–64 21.3–265 7–56

Asgari [34] 9 15 39 46 16.5–20.5 7–60

Correia [35] 28 10 71 19 96–177 2.5–28

Oh [36] 38 35 8 57 71.5–74.8 7–56

Tastan [37] 30–34 15–55 10–42 3–75 31–63 7

Kwan [38] 47 25 70 5 100–115 3–271

Consoli [39] 9 4.3 42 53.7 14 28–360

Kassim [40] 28–50 11–44 27.7–68.2 0.4–43.2 33–121 7–56

Abbey [18] 12–34 30–60 30–60 10 36–106 7–56

Reference Input variables Output

Lime (%) Cement (%) FA F (%) FA C (%) Slag (%) UCS (kPa)

(b)

Bolton [30] 0–15 0–15 0 0 0 34–1422

Ge [31] 0 2.3–11.3 0 0 12.8–42.5 106–4008

JGS [32] 10–20 0 0 0 0 250–3720

Xiao [33] 0 13.1–100 0–34.5 0 0 199–5840

Naveena [6] 0–10 0–35 0–30 0 0 48–1676

Asgari [34] 0–9 0–7 0 0 0 230–5360

Correia [35] 0 6.8–20.3 0 0 2.3–6.8 90–1995

Oh [36] 0–15 0–15 0 0 0 42–445

Tastan [37] 0 0 0–30 0–30 0 45–490

Kwan [38] 0 3.8–15 0–11 0 0–11.3 14–1572

Consoli [39] 3–11 0 0 0 0 200–3520

Kassim [40] 0–12 0 0 0 0 25–413

Abbey [18] 0 0–20 0 0–10 0–6.7 7–1300

PI: plastic index, FA: fly ash, UCS: unconfined compressive strength
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The main operators of GEP are selection, mutation,

transposition, and crossover, which are similar to tradi-

tional GP. They allow the program to produce the next

generation with better fitness scores [46]. The explanation

and detail of the GEP structure, as well as its operators,

could be accessible through the studies of Soleimani [47],

Gandomi [24], and Shahmansouri [28].

For setting up the GEP modeling, it is necessary to

define the function set, terminal set, fitness function, con-

trol variables, and termination condition for obtaining a

solution. GEP then randomly creates an initial population.

Chromosomes in that population are converted into an

expression tree (ET) by combining terminal and function

sets. Next, the fitness function is applied to evaluate each

predicted output. If that value does not meet the desired

output, chromosomes or genes are evolved through genetic

operators (selection, crossover, and mutation) to create new

mutagenic generations [48]. That process is stopped when

the predicted output meets the desired quality output.

Figure 1 illustrates an example of the GEP solution with

two sub-ETs. Each sub-ET contains nine chromosomes,

and the head length is five. It expresses the mathematical

equation as:

y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d1 � 7þ ln
d3
d2

� �� �

s

þ cos d3 þ
sinðd0 � d4Þ

d4

� �

ð1Þ

where y: dependent variable (output); d0, d1, d2, d3, and d4:

independent variables (inputs).

Recently, many studies have shown that the GEP model

is more efficient than GP and comparable with the black-

box ANN models [24]. Besides, Mousavi [49] developed

the GEP model to predict the compressive strength of

concrete with more accuracy than traditional models.

Leong [44] applied the GEP technique to predict the UCS

of fly ash-based geopolymers and evaluate the effect of

each parameter on the UCS of geopolymers. Leong [50]

then applied the ANN and GEP models to identify the

contribution of input variables on the UCS of soil–fly ash

geopolymer. In the research of Mohammadzadeh [43], the

GEP-based model was developed to predict the coefficient

of consolidation for the compression index of fine-grained

soils based on the input variables such as the liquid limit,

plastic limit, and initial void ratio. The GEP model was

applied to estimate the UCS of geopolymer concrete based

on ground granulated blast-furnace slag [28]. The GEP

technique was also applied to generate predictive models to

investigate the soil properties [45, 51, 52]. Abdi [53]

developed a GEP-based model for predicting enhanced

interaction coefficient based on large-scale direct shear

tests conducted on soil–anchored geogrid samples. Johari

[54] applied the GEP technique to investigate the col-

lapsible soils treatment using nano-silica in the Sivand

Dam region, Iran. Oulapour [55] generated a GEP model

for predicting the cracking zones in earthfill dams.

Table 3 Statistical analysis of

input and output data
Parameter Input variables

PI (%) Clay (%) Silt (%) Sand (%) Total water (%) Age (Days)

(a)

Maximum 78 71.9 74.7 75 265 360

Minimum 5 4.3 8 0.4 14 2.49

Range 73 67.6 66.7 74.6 252.36 357.51

Mean 38.17 30.92 38.68 30.40 93.79 35.84

SD 24.87 16.62 19.27 22.37 67.53 55.26

CoV 618.34 276.35 371.22 500.45 4560.87 3053.18

Parameter Input variables Output

Lime (%) Cement (%) FA F (%) FA C (%) Slag (%) UCS (kPa)

(b)

Maximum 20 100 34.5 30 42.5 5840

Minimum 0 0 0 0 0 7.0

Range 20 100 34.5 30 42.5 5833

Mean 1.89 8.27 3.68 0.94 2.87 613.12

SD 3.52 11.78 8.00 3.16 9.15 740.4

CoV 12.41 138.70 63.94 10.00 77.8 548,503

SD: standard deviation and CoV: coefficient of variation
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Furthermore, the GEP model was used to solve many

geotechnical engineering problems with high accuracy

[26, 56–63]. Due to such advantages, the GEP technique

was applied to generate a reliable predictive model for the

UCS of clay stabilization.

3.2 GEP modeling procedure

Prior to GEP modeling, the data were divided into training,

testing, and verifying subsets. The training data were used

to train and select the optimal predicted programs. The

selected models then measured their performance by using

the testing dataset. Finally, the proposed GEP model was

verified by an independent subset (unseen data). In this

study, K-fold cross-validation (CV) was applied to split the

data. Then, the model for UCS prediction, including the

eleven independent variables, was developed based on

approximately 1,183 data points. The datasets containing

789 (67.7%) and 197 (16.6%) data points were used for

training and testing, respectively, while the remaining 197

(16.6%) unseen data points were used for verifying

purposes.

GeneXpro Tools 5.0 software [64] was applied to sim-

ulate the GEP model for predicting the UCS of chemical-

clay stabilization. It is a powerful and flexible modeling

tool designed for regression. It also can process with a large

number of variables with high accuracy and

generalizability.

In GeneXpro Tools, the user needs to define the number

of chromosomes, the number of genes (sub-ETs), the head

length of the gene, the fitness function, and the genetic

operators. The optimal parameters were determined

according to the suggested values in Uysal [29], through

several trial runs and an error approach to ensure sufficient

robustness and generalization of the model. In each trial,

the value of one parameter was changed, while others were

set constant to monitor the results. The fitness function was

used to evaluate training and testing subsets at the end of

each trial. When the errors of these subsets were small and

as close as possible, the value of the parameter was chosen.

The most important parameters which impact the com-

plexity and accuracy of the GEP model are the number of

genes (sub-ETs) and chromosomes. The head size of the

gene is another essential parameter. It decides the number

of branches of each sub-ET. The linking function was

chosen based on trials to obtain the desired accuracy. Four

basic functions (addition, subtraction, multiplication, and

division) were tried to monitor the results. The optimal

models were chosen when the training and testing pro-

cesses provide approximately same and high accuracies.

Finally, the GEP-based model was developed with seven

sub-ETs and a maximum of 200 chromosomes for each

gene. They were linked by the addition function. The

maximum head length of 10 was chosen, and the root mean

square error (RMSE) was set as the fitness function.

Fourteen different mathematical operators, including

addition ( ?), subtraction ( -), multiplication (*), division

(/), square root (H), natural logarithm (ln), power (x2),

inverse (1/x), exponential (exp), addition with three inputs

(x1 ? x2 ? x3), subtraction with three inputs (x1 - x2-
- x3), multiplication with three inputs (x1 * x2 * x3), and

cube root (3H), were used for GEP modeling. The maxi-

mum number of generations was 30,000. In the model, d0,

d1, d2, d3, d4, d5, d6, d7, d8, d9, and d10 represent the plastic

index, the percentage of clay, the percentage of silt, the

percentage of sand, the total water content, the curing time,

Fig. 1 The GEP solution with

two sub-ETs
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the percentage of lime, the percentage of cement, the

percentage of fly ash Type F, the percentage of fly ash

Type C, and the percentage of slag, respectively.

3.3 GEP-based model result

Figure 2 presents the tree-like structure of the selected

optimal GEP model with seven sub-ETs linked by the

addition linking function. The mathematical formula

evolved from the GEP model is presented as Eq. (2). It is

obvious that the GEP technique yields practical and

straightforward predictive formula.

UCS ¼ d0 � ðd10 � 2Þ þ d3 þ 3 � ðd5 � d4 � d10Þ
� 2 � ðd1 þ d2 � d7Þ þ d6 � ðd2 þ d6 þ 2Þ

þ d5 � d9 þ 2c59 �
ec51�c55�c56

c59

� ec51 þ d7 � c21 � lnðd5Þ þ d8 � ðd4 � d3Þ1=3 þ c50 þ c64

þ c40 � ln
dd105

d4
þ d24 þ ed9

 !�1=2
2

4

3

5

þ d7 �
d3

c72 þ d4 þ c78

� �

� 2 � d2 þ
d4
c78

� �

þ c10

ð2Þ

where UCS: unconfined compressive strength (kPa);

c10 = - 9.204; c21 = 9.910; c40 = - 15.170; c59 =

- 9.800; c51 = 5.616; c50 = - 9.6502; c55 = 8.759;

c56 = - 5.498; c64 = - 9.812; c72 = - 7.635; c78 =

- 3.177; d0: PI (%); d1: Clay (%); d2: Silt (%); d3: Sand

(%); d4: Water (%); d5: Age (days); d6: Lime (%); d7:

Cement (%); d8: FA F (%); d9: FA C (%); d10: Slag (%).

The accuracy of the GEP model was evaluated through

the coefficient of correlation (R), root mean square error

(RMSE), and mean absolute error (MAE), which are

measured as Eqs. (3)–(5). Figure 3 illustrates the perfor-

mance at the training, testing, and verifying phases and

entire datasets. Table 4 shows that the correlation coeffi-

cients of all phases are close and fluctuated around 0.95.

The root mean square errors of the proposed model are less

than 240 kPa, and the mean absolute errors are from 150 to

170 kPa. Besides, it needs to be mentioned that the selected

optimal GEP model was developed based on a thousand

data points. Even though the data were chosen carefully

with the similar making and testing standard, uncertain

factors that could affect the final model are unavoidable.

Therefore, it could be said that the proposed GEP model is

accurate and reliable.

R ¼
PN

i¼1 Oi � O
� �

Pi � P
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1 Oi � O
� �2PN

i¼1 Pi � P
� �2

q ð3Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1 Oi � Pið Þ2

N

s

ð4Þ

MAE ¼ 1

N

X

N

i¼1

Oi � Pij j ð5Þ

where N: the number of data points presented to the model;

Oi and Pi: the observed and predicted outputs, respectively;

and O and P: the mean of observed and predicted outputs,

respectively [65].

3.4 Performance analysis

3.4.1 External criteria

Golbraikh [66] provided some criteria as the external val-

idation models for checking the testing dataset. It is sug-

gested that one of the slopes of regression lines (k or k’)

through the origin should be approximate 1.0. Besides, the

m and n indexes (performance indexes) should be lower

than 0.1. Moreover, the squared correlation coefficients

through the origin between predicted and experimental

values (Ro
2 or Ro’

2) are recommended to be close to 1.0

[47, 67]. Table 5 presents the results of these criteria. It is

clear that the proposed model satisfies the required condi-

tions and shows great performance with a high accurate

predictive capability.

3.4.2 Comparative study

Table 6 illustrates the comparison among several numerical

predictive models for UCS of soil stabilization and the

proposed GEP-based model in this research. It is obvious

that the predictive model in this study was generated based

on a large volume of data (1183 data points), which were

collected from plenty of studies in different nations. In

contrast, other published models were developed based on

small group of testing data from specific area. Therefore,

that advantage brings distinguished results in comparison

with other models for predicting the UCS of stabilized soil.

Furthermore, eleven input variables in the suggested

model are the main parameters that affect the UCS result.

Especially, the model not only considers the soil properties

but also investigates the effect of four chemical binders

(cement, lime, fly ash, and slag). As a result, the novel

model is unique and different from other previous models.

In addition, the proposed GEP-based model could be

applied for a wide range of input parameters. For example,

the maximum cement content in the model is 100%, while

the normal amount of cement used is around 10–30%.

Hence, the applicability of this model is wider than others.
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Fig. 2 Tree expression of the

proposed GEP model
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In terms of the model performance, the proposed model

achieves a high correlation coefficient (R = 0.951) and low

errors. According to a logical hypothesis [68], if the model

provides a high correlation coefficient (R[ 0.8) and low

error values (e.g., MAE and RMSE), the prediction rela-

tionship among input and output variables is accurate and

reliable. Thus, it demonstrates an outstanding performance

with strong predictive capability of the proposed GEP

model.

It is the fact that the ANN-based models could slightly

outperform the GEP-based models. However, that tech-

nique is considered as a ‘‘black-box’’ programming; hence,

the applicability of the ANN-based formulas is limited in

practice.

In conclusion, the evolutionary predictive model in this

study could be confidently applied in determining the UCS

of chemical-stabilized clayey soil considering the effects of

the soil characteristics and the types and the contents of

chemical binders. Therefore, the GEP-based formula is a

reliable option for a designer and researcher in estimating

the UCS value of stabilized clayey soil.

4 Parametric study

4.1 Effect of each variable on the UCS
of stabilized clay

The selected optimal GEP-based model (Eq. 2) was used to

examine the effect of each input variable on the UCS of

stabilized clay. The examined variable was assumed to be

varied within the range of its input, while the average

values were kept constant for other parameters. The effects
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Fig. 3 The performance of the proposed GEP model

Table 4 Performance of the proposed GEP model

Parameter Training Testing Verifying All data

R 0.952 0.946 0.952 0.951

RMSE (kPa) 234.7 212.3 219.9 228.0

MAE (kPa) 170.2 151.5 167.9 166.3

R: correlation coefficient, RMSE: root mean square error, MAE:

mean absolute error
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of input parameters on the UCS of stabilized soil based on

the parametric study are illustrated in Fig. 4.

4.1.1 Effect of Atterberg limits

Figure 4a shows the effect of the Atterberg limits of the

soil on the UCS of stabilized soil. It is obvious that the

UCS is reduced when the plastic index is high. The plastic

index is an important parameter that correlates with soil

behavior [5]. The stiffness and strength of the soil are

decreased when the plastic index is increased [47, 70]. At

the high level of the plastic index, the soil is more ductile

[1]. As a result, the plastic index has a negative effect on

the UCS of stabilized soil.

Table 5 Statistical parameters

for the external validation of the

GEP-based model

Statistical parameter Criteria GEP-based model

k ¼
P

n

i¼1

Oi � Pið Þ=
P

n

i¼1

O2
i

0.85\ k\ 1.15 0.969

k0 ¼
P

n

i¼1

Oi � Pið Þ=
P

n

i¼1

P2
i

0.85\ k\ 1.15 0.974

R2
0 ¼ 1�

P

n

i¼1

Pi � O0
i

� �2
=
P

n

i¼1

Pi � Pi

� �2

where O0
i ¼ k

0 � Oi

Close to 1 0.900

R02
0 ¼ 1�

P

n

i¼1

Oi � P0
i

� �2
=
P

n

i¼1

Oi � Oi

� �2

where P0
i ¼ k � Pi

Close to 1 0.905

m ¼ ðR2 � R2
0Þ=R2 m\ 0.1 0.0047

n ¼ ðR2 � R
02
0 Þ=R2 n\ 0.1 0.0005

Table 6 Comparative study

Study Objective Dataset Variables Method R-value

Yao [1] Strength of marine clay stabilized 40 3 Linear regression 0.990

Das [15] Dry density and unconfined compressive strength of cement

stabilized soil

55 7 ANN 0.910

Sunitsakul [17] Unconfined compressive strength of cement stabilized bases 520 3 Nonlinear multi-

variable regression

0.867

Abbey [18] Pulverized fuel ash and ground granulated blast slag in cement

deep soil mixing

300 2 Multiple regression

analyses

0.959

Ghorbani [19] UCS and CBR of micro silica-lime stabilized sulfate silty sand 90 5 ANN 0.996

Saadat [20] Unconfined compressive strength of stabilized soil 75 3 Nonlinear regression 0.888

Tsuchida [22] Compressive strength of cement-treated marine clays 160 4 Linear regression 0.800–0.990

Tinoco [23] Uniaxial compressive strength of jet grouting columns 175 11 ANN 0.970

Shahmansouri

[28]

Compressive strength of GPC based on ground granulated

blast-furnace slag

351 5 GEP 0.958

Mohammadzadeh

[43]

Compression index of fine-grained soils 108 3 GEP 0.912

Leong [44] Compressive strength of fly ash-based geopolymers 144 7 GEP 0.959

Leong [50] Optimum compressive strength soil–fly ash geopolymer 64 7 GEP 0.959

Johari [54] Collapsible soils treatment using Nano-silica 24 2 GEP 0.927

Onyelowe [69] Unconfined compressive strength of unsaturated lateritic soil

treated with a hybridized binder material

121 6 GP 0.972

This study Unconfined compressive strength of chemical stabilized

clayey soil

1183 11 GEP 0.951

ANN: Artificial neural network, GP: genetic programming, GEP: gene-expression programming
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parameters on the UCS of

stabilized soil

Neural Computing and Applications (2022) 34:9103–9121 9113

123



4.1.2 Effect of the particle size

The effect of the particle size of the soil on the UCS of

stabilized soil is presented in Fig. 4b–d. The high per-

centage of clay may lead to a negative effect on the UCS of

stabilized soil. In contrast, the UCS of stabilized soil

increases linearly with the percentage of silt and sand.

Increasing the percentage of sand could improve the UCS

of stabilized soil. Szymkiewicz [71] concluded that the

strength of stabilized soil reaches a higher value if the soil

contains a well-graded grain size. Within the scope of this

study, the effect of sand particle size and shape and the

types of silt were not considered. It could be examined in

another research.

4.1.3 Effect of the total water content

Figure 4e illustrates the effect of the total water content in

the stabilized soil. Total water includes the natural water

content in the soil and the added water used to mix with the

binder in the slurry (the wet mixing method). The added

water is zero for the dry mixing method. It should be noted

that total water content has a negative correlation with the

UCS of stabilized soil. The strength of the material

markedly reduces when the amount of total water content is

high. Besides, it requires more binder content to achieve

the designed strength. The correlation relationship between

the UCS and the total water content is expressed as:

UCS ¼ A �W�B
c ð3Þ

where A and B: constant values, and Wc: the total water

content.

The finding is well in agreement with the reports in the

researches of Horpibulsk [2], Kitazume [10], Naveena [6],

and Yao [1]. Their studies showed that water content plays

a dominant role in the characterization of stabilized soils,

especially on compressibility [2]. It reflects the microfabric

of the material. The high amount of water content increases

the distance between the soil particles and creates a more

porous structure in the stabilized soil. Horpibulsuk [72]

showed that the pore size increases remarkably when the

water content is increased. As a result, it leads to the

growth of capillary pore size and a low level of crystalline

structure [6]. Therefore, the strength of stabilized soil is

reduced with the increase in total water content [1].

4.1.4 Effect of the curing period

The effect of the curing period on the UCS of stabilized

soil is demonstrated in Fig. 4f. It indicates the UCS of

stabilized soil could achieve higher values by increasing

the curing period. The correlation relationship between the

UCS and the curing time is:

UCS ¼ a � ln t þ b ð4Þ

where a and b: constant values, and t: the curing time (day).

That result is similar to the reports of Horpibulsk [2],

Kitazume [10], and Yao [1]. Based on the microstructure

analysis, Horpibulsuk [73] found that in a short curing

period, the volume of large pores in the soil–cement

material increases, and the volume of small pores decrea-

ses, leading to low strength. In contrast, in the long-term

period, the volume of large pores decreases significantly,

while the volume of small pores increases. In addition,

during that period, cementitious products are growing.

Thus, the strength of stabilized soil increases over time

[73].

However, the strength gain rate depends on the types of

binder. For cement stabilized soil, the strength increases

significantly in the first 1 to 3 months; then, the strength

gain is low [74]. For lime and slag, the strength develop-

ment is continuously for a long period if the water in the

soil and the binder are sufficiently for pozzolanic reactions.

When lime or slag is mixed with soil, the calcium reacts

with the silicates and aluminates to create calcium silicate

hydrates and calcium aluminate hydrates [6]. These reac-

tions could occur for a long period if an adequate binder is

provided [6].

4.1.5 Effect of the binder type and binder content

The effects of the binder types (lime, cement, fly ash, and

slag) and the binder content are illustrated in Fig. 4g–k.

Generally, the amount of binder is the essential parameter

that has a positive effect on the UCS of stabilized soil.

Depending on the types of binders, the strength gain rate is

different.

When the substantial binder is provided, the hydration

compounds are formed fully and create a hardened skeleton

matrix [6]. The hydration products enclose the soil parti-

cles. In the long curing period, the alkaline conditions in

the soil–binder are increased; the silicate and alumina from

clay minerals and amorphous materials on the surface of

clay particles are dissolved. They react with calcium ions

to form insoluble compounds [6]. Besides, more amount of

cementitious products are generated, and they enhance the

inter-cluster bonding strength and fill the pore space [73].

Thus, the strength of stabilized soil increases when the

binder content is high.

These findings are expected and well agreement with

previous studies. Thus, it demonstrates that the proposed

GEP-based model is reliable and applicable.
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4.2 Effect of the combination of variables

4.2.1 Effect of the particle size of the soil

In order to evaluate the effect of the soil particle size on the

UCS of stabilized soil, the percentages of sand, silt, and

clay in the soil were changed in different ways. In this

section, the amount of cement used was 20%, and other

binders were 0%. Firstly, the proportion of sand was kept

constant at 10%, 30%, and 50%; the percentage of silt was

increased, and the percentage of clay was decreased at the

same time (it was assumed that the total amount of sand,

silt, and clay in the soil is 100%). Figure 5 shows that

increasing the amount of silt (and decreasing the clay

content) leads to an increase in the UCS. The level of

strength gain is depended on the percentage of sand (10%,

30%, and 50%). If the amount of sand in the soil is high,

the UCS significantly improves with the increase in the silt

content.

Figure 6 illustrates the effect of sand content in the soil

on the UCS of stabilized soil. The percentage of silt is kept

constant at different levels (10%, 30%, and 50%), the

amount of sand is increased, and the clay content is

decreased. It is obvious that with a low percentage of silt,

the UCS of stabilized soil remains constant even the

amount of sand is changed. However, if the silt content is

high, the UCS of stabilized soil increases significantly by

increasing the amount of sand.

The effect of the percentage of silt and sand in the soil

on the UCS of stabilized soil is demonstrated in Fig. 7. In

this case, the UCS is observed by remaining the amount of

clay, increasing the percentage of silt, and decreasing the

amount of sand at the same time. The UCS of stabilized

soil shows two different trends. In the first part, the UCS

grows up following the increase in the silt content. How-

ever, if the silt content is still increased (the sand content is

decreased), the UCS is then decreased. The peak of the

UCS curve could be the suitable ratio of particle size dis-

tribution to achieve the reasonable UCS value of the sta-

bilized soil. For example, when the soil contains 10% of

clay, the UCS of stabilized soil achieves the highest value

if the percentages of silt and sand contents are 50% and

40%, respectively. It is noted that some parameters, such as

the type of silt, the size and shape of sand, the water

content, and the type and the amount of binder, could cause

different strength gain trends. Hence, these findings should

be verified by laboratory experiment results with similar

input conditions.

The effect of particle size of soil on the UCS of stabi-

lized soil could be explained through the shape and size of

the soil particle and microstructure of soil–cement mate-

rial. The size of soil particles affects the shear strength and

characteristics of the soil. Sand and silt particles have

irregular in size and shape. The silt particle is smaller than

sand. According to the classification in ASTM D3282 [75],

the diameter of the sand particle is from 0.075 to 2 mm, the

silt particle is from 0.002 to 0.075 mm, and the clay

diameter is smaller than 0.002 mm.

The typical shape of clay particles could be flaky, needle

shape, or elongated particles [76]. Hence, the clay particles

and clay clusters in the soil easily slide over each other

when sheared, leading to low strength and stiffness [73].

Thus, a high amount of clay content could lead to low

strength.

The soil microfabric includes domain (a group of clay

particles), cluster (a group of domains), ped (a group of
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clusters), silt or sand grain, micropore, and macropore

[77, 78]. If the soil contains sand grain only, the large soil–

cement clusters are created, and large pore spaces are

developed. It causes a loose structure in the material, which

makes the strength of clay stabilization is low [78].

For the soil contains sand, silt, and clay particles,

increasing the particle size and the sand content could

increase the internal friction angle and shear strength of the

soil [79]. Well-graded soil provides the highest shear

strength [80]. In this case, the fine particles create the

skeleton for the structure, and the clay–cement clusters fill

the pore between silt and sand particles. The cementitious

products will enclose the particles, connect them together,

and fill the micropores to create a rigid structure [73].

4.2.2 Effect of cement in combination with other chemical
binders

In the situation that the amount of cement was fixed at

20%, the performance of stabilized soil was examined by

adding with other kinds of binder. Figure 8 shows that the

strength gain rate is different and depends on the type of

added binder (lime, fly ash Types C and F, and slag). Soil

stabilization with cement (20%) and fly ash provides lower

strength than other binders. Fly ash contributes little to the

strength gain from pozzolanic reactions [74]. Furthermore,

fly ash Type C shows better performance than fly ash Type

F. According to ASTM C618 [81], the CaO content in fly

ash Type C is 24%, much higher than the amount of CaO in
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fly ash Type F (8%). Hence, more hydration productions

are created by fly ash Type C than fly ash Type F.

Figure 8 demonstrates that stabilized soil with cement in

combination with slag could achieve high strength. The

blast-furnace slag, a type of steel slag, contains the main

components of Portland cement, such as CaO, SiO2, and

Al2O3. Especially, the amount of SiO2 and Al2O3 in the

slag is much higher than in Portland cement. Therefore, it

could create more hydration productions in the long-term

period through hydration reactions [31, 74].

Lime could be used to combine with cement to enhance

the strength of stabilized soil. By combining 20% cement

with lime (in this study, the lime content is up to 20%), the

UCS of stabilized soil is improved significantly. The high

percentage of CaO content in lime (93%) provides an

essential mineral for the pozzolanic reactions and generates

long-term strength for the stabilized soil [6].
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4.2.3 Effect of the total water content and cement content

Figure 9 shows the effect of total water content and the

binder content on the UCS of stabilized soil. The total

water content was kept constant at different levels, such as

20%, 40%, 80%, and 160%, while the cement content was

increased linearly. As mentioned above, the cement content

has a positive effect on the UCS. However, the strength

gain rate depends on the amount of total water content.

Besides, it requires more cement content to achieve the

desired strength if the water content is high. For example, if

the total water content is 20%, the strength of stabilized

soil could be 2000 kPa by mixing with 7% cement content.

On the other hand, if the total water content is 40% or 80%,

the cement content needs to be increased to 19% and 35%

to each the same strength value. Thus, this finding could

help the consultancy decide the suitable binders for soil

stabilization depending on the water content. Finally, these

results support engineers in choosing reasonable methods

to enhance the UCS of stabilized clay.

5 Conclusions

The study gathered over thousand comprehensive data

points on the UCS of clay stabilization with common

cementitious binders, such as lime, cement, fly ash, and

slag. The GEP technique was applied to generate the pre-

dictive model. Eleven independent variables including the

plastic index (PI), the percentage of clay (Clay), the per-

centage of silt (Silt), the percentage of sand (Sand), the

total water content (Total water), the curing period (Age),

the lime content (Lime), the cement content (Cement), the

fly ash Type F content (FA F), the fly ash Type C content

(FA C), and the slag content (Slag) were considered in the

model. The results show that the proposed predictive model

performs well with a high correlation coefficient

(R = 0.951) and low errors (e.g., RMSE and MAE). Fur-

thermore, the selected optimal model satisfied well with all

external criteria. The comparative study demonstrates that

the GEP-based model in this study was generated based on

a large volume of data (1183 data points), while other

studies just used a small dataset. As a result, the selected

optimal GEP model could be confidently applied for dif-

ferent clay conditions in mixing with common chemical

binders. The research results show distinguished accuracy

and reliability in comparison with previous models.

Besides, the GEP model generates transparent and practical

mathematical equations which could be ready to use in

practice. As such advantages, the proposed GEP-based

model could help engineers in estimating the UCS of clay

stabilization with different binders. However, the model

was developed based on the laboratory test results; thus, it

needs to be modified when applying in the in situ test as

there are plenty of uncertain variables on the site.

The parametric study was conducted to examine the

effects of the essential parameters on the UCS of stabilized

soil. Most findings from the parametric analysis are

expected and well in agreement with other experimental

results. It confirms that the proposed model is reliable and

accurate. Thus, it helps consultants to understand the ways

to optimize the ultimate strength and choose suit-

able binders for clay stabilization. The parametric study

results indicate that:

• The plastic index, the percentage of clay, and the total

water content have a negative effect on the UCS of

stabilized soil. The correlation relationship between the

UCS and total water content is expressed as

UCS = A�WC

-B.

• The percentage of silt and sand in the soil, the binder

type, the binder content, and the curing time show a

positive effect on the UCS of stabilized soil. Increasing

these parameters could enhance the strength of stabi-

lized clay. The correlation relationship between the

UCS and the curing time is UCS = a�lnt ? b.

• Increasing the sand and silt content in the soil could

improve the strength of stabilized clay. Well-graded

soil provides the highest strength when the clay is

mixed with binders. However, the effect of the type of

silt, the amount of silt content, and the size and shape of

sand particles should be deeply studied by laboratory

tests.

• The stabilized clay with cement in combination with

slag could achieve excessive strength than other adding

binders. Lime and fly ash could also be used to enhance

the UCS of stabilized soil. Moreover, fly ash Type C

shows better performance than fly ash Type F in

stabilizing clay.

• The stabilized soil could reach higher strength by

reducing the natural water content in the soil and the

water to binder ratio. Moreover, it requires more

cement content to achieve the desired strength if the

water content is high.
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