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Abstract
Nowadays, sensors play a major role in several fields, such as science, industry and everyday technology. Therefore, the

information received from the sensors must be reliable. If the sensors present any anomalies, serious problems can arise,

such as publishing wrong theories in scientific papers, or causing production delays in industry. One of the most common

anomalies are uncalibrations. An uncalibration occurs when the sensor is not adjusted or standardized by calibration

according to a ground truth value. In this work, an online machine-learning based uncalibration detector for temperature,

humidity and pressure sensors is presented. This development integrates an artificial neural network as the main component

which learns from the behavior of the sensors under calibrated conditions. Then, after being trained and deployed, it detects

uncalibrations once they take place. The obtained results show that the proposed system is able to detect the 100% of the

presented uncalibration events, although the time response in the detection depends on the resolution of the model for the

specific location, i.e., the minimum statistically significant variation in the sensor behavior that the system is able to detect.

This architecture can be adapted to different contexts by applying transfer learning, such as adding new sensors or having

different environments by re-training the model with minimum amount of data.
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1 Introduction

Nowadays, sensors play a major role in the connected

world [1–4]. Science, industry and even day-to-day devi-

ces, integrate sensors to collect the information coming

from the surrounding environment. Ensuring the reliability

and consistency of the information collected is essential in

order to guarantee the proper use of the information. The

reliability of the acquired information depends not only on

the features of the sensor, but also on its calibration status.

An uncalibration is said to take place when the sensor is not

adjusted or standardized by calibration according to a

ground truth value. In general, anomalies can appear in

several shapes [5], however the uncalibration event usually

appears in the form of long-term drifts with different kind

of responses such as linear, exponential, logarithmic or,

simply, an irregular drift. Furthermore, there are cases

where the magnitude to control is not directly controlled,

that is, the set point is unknown. Thus, in the latter case, the

detection of potential uncalibrations can be really chal-

lenging. As happens with some other kind of anomalies in

sensor behaviour [6], the detection of uncalibrations is a

key issue in order to ensure fundamental aspects such as

reliability, safety or cost-effectiveness in crucial assets in

different contexts. These include pharma, energy, aero-

nautics and any other industrial fields. In this paper, an

architecture to track uncalibrations is proposed. Thus, it is
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an ideal candidate to be deployed in a wide variety of

contexts, including scientific, industrial and, specifically, in

the context of Industry 4.0 [7–10].

In this work, an online uncalibration detector for tem-

perature, humidity and pressure sensors under unknown

conditions (set points unknown) has been developed. The

major novelty of the paper is the use of an Artificial Neural

Network (ANN) as an expert on the sensors behaviour, so

that the estimated behaviour by the ANN can be compared

to the one measured, and thus, potential uncalibrations can

be detected. Different statistical techniques, such as

goodness of fit and confidence intervals, are used in order

to check that the estimation of the neural network can be

considered as equal, or different to the obtained measures.

The developed architecture detects 100% of the uncal-

ibrations events, and it permits flexibility and scalability.

Indeed, the obtained results suggest that the system can be

trained with a generic set of sensors and then be capable of

working in more specific contexts with a much lower

amount of data. Thus, for instance, the system could be

trained with a standard set of sensors and then be used

within a more specific set, devoted to a more concrete task.

Furthermore, new sensors can be easily included in the

system requiring significantly low amount of data. Even-

tually, re-training the system requires data coming from

approximately one week of measurements (10,080 samples

per sensor at a sampling rate of one sample per minute and

per sensor).

The proposed detector has been tested in a real context

in the facilities of a company of the pharmaceutical sector.

Thus, it is important to note that the presented work has

been developed under actual production conditions.

The rest of the paper is structured as follows: Sect. 3

introduces the materials used in this work, including the

dataset (Sect. 3.2). The implemented methods are descri-

bed in Sect. 4, together with the Neural Network (NN)

model. Then, the results obtained are presented in Sect. 5,

which are divided in two different experiments: first, the

performance of a proposed NN model is evaluated

(Sect. 5.1), and then its scalability and flexibility are

evaluated on (Sect. 5.2). Section 6 presents the discussion

and also the conclusions of this work.

2 Related works and literature review

The uncalibration detection issue can be tracked using

different approaches. The available information is a key

factor in order to determine which methods should be used.

On the one hand, the approaches based on the use of

classical techniques can be considered. This is the case of

similarity-based modeling and multivariate analysis [11],

or the time series analysis [12]. A survey of some other

classical approaches for anomaly detection can be found in

[13]. It is important to note that the techniques mentioned

in the previous works were used for the detection of

specific kinds of anomalies, not uncalibrations.

On the other hand, due to the huge development of

Machine Learning (ML) and Artificial Intelligence (AI)

during recent years, the use of techniques and approaches

based on them has increased [13, 14]. An example of this

fact is the case of [15], where anomalies, defined as unu-

sual behaviour at a specific time, were detected by using

Hierarchical Temporal Memory. Another interesting

example can be seen in [16], where a Convolutional Neural

Network (CNN) was developed in order to detect sensor

failures. An example of the application of NNs for anomaly

detection in power plants can be found in [17]. Finally, an

overview of NN applications of fault diagnosis and

detection in engineering-related systems can be found in

[18]. As in the classical approaches, it is important to note

that all these developments were developed to detect

specific anomalies, not uncalibrations in the sensor system.

Table 1 shows a comparative study among the afore-

mentioned works and their approaches. In this table, the

method used and the capability for detecting both general

faults and uncalibrations are shown.

3 Materials

This section describes the sensors used, and the dataset

obtained from them.

3.1 Sensors

Three different variables were measured, namely, temper-

ature, humidity and pressure. Temperature and humidity

sensors are integrated within a single device, the Novasina

nSens-HT-ENS. The humidity measurement range of this

device goes from 0% RH to 100% RH, with a measurement

accuracy of 0:5% RH. Regarding the temperature mea-

surement range, it goes from �20 �C to ?80 �C, with a

measurement accuracy of 0.1 �C. The sensor used to

measure the pressure is the Novasina Pascal-ST-ZB. It is a

differential pressure sensor based on static pressure mea-

surement. Regarding its measurement range, it goes from

�50 Pa to 50 Pa, with a measurement accuracy of

\0:5% fs (full scale).

3.2 Dataset

The dataset used to obtain the results presented in this work

consists of temperature, humidity and pressure values

coming from the sensors installed across different clean

rooms devoted to drug production. Rooms are located on
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two different floors of a building: the second floor and the

basement. More precisely, the data coming from the second

floor is described in Table 2. This dataset contains data

collected during a whole year in different rooms of the

second floor. Each room includes only one sensor per

category (one temperature/humidity sensor and one pres-

sure sensor). Thus, sensor redundancy is not available. The

sensors used are described in Sect. 3.1. The data were

collected at a sample per minute rate during the afore-

mentioned period of time.

A smaller dataset containing data from rooms located in

the basement was also collected. This data are shown in

Table 2. As opposed to the second floor, the basement

dataset is smaller due to the difficulties accessing the data

generated within this floor. This dataset contains, approx-

imately, one hundred samples per sensor, coming from a

total of eleven sensors per category. Furthermore, samples

are not equally distributed. These samples were collected

during different periods of the year.

Since the dataset obtained from the second floor is more

complete, it was used as the main dataset. Thus, experi-

ments in Sects. 5.1 and 5.2 were conducted taking this

dataset for training purposes. However, in Sect. 5.2, the

dataset coming from the basement was used for testing the

adaptation of the system proposed to a different

environment.

Regarding the dataset slicing, two approaches were

defined depending on the kind of experiments that were

performed. On the one hand, in Sect. 5.1, 60% of the

samples of the data coming from the second floor were

used as the training set for each type of sensor, 10% were

used as the validation set, and the remaining 30% were

used as the testing set. On the other hand, in Sect. 5.2, 70%

of the samples were used for training the main NN, 10% as

the testing set and 20% for the application of the Transfer

Learning. In this last case, not only data coming from the

second floor was used, but also data coming from the

basement was also included, in order to test the transfer

learning application from one floor to another.

The use of the different slices is more detailed in Sect. 4.

4 Methodology

In this section, the architecture of the system implemented,

which is capable of detecting sensor uncalibration, is pre-

sented. The whole system has been developed using

Python. Different libraries such as numpy, scipy and pan-

das have been used for the implementation of the filtering

processes. For the implementation and training of the

model, TensorFlow 2 [19] together with the Keras [20]

functional API have been used.

The approach is based on ML techniques, and it follows

the block diagram shown in Fig. 1. The architecture is

based on an ANN which, during the training phase, learns

how the sensors behave. Then, in the inference stage, the

ANN is able to predict if sensors are becoming uncali-

brated. The way data is processed is summarized in the

following steps:

• The data are collected by the sensors. It is important to

note that it comes from only one type of sensor, either

temperature, humidity or pressure. This means that the

network that processes this data is sensor-dependant.

• The data are filtered. Here, different outlier detection

and pre-processing techniques are applied.

• The mean of all measured values in a specific time is

computed.

• The computed mean value is fed to the ANN.

• The ANN infers the set of measurements that produced

the input mean value.

• The inferred set of measures is compared with the real

set of measurements. If the discrepancy exceeds the

confidence interval, then it is considered a rejection.

Table 1 Comparative study

between different state-of-the-

art works related to fault

detection and uncalibrations

detection

Reference Method Fault Detection Uncalibration

[11] Similarity analysis and SVM Yes No

[12] Time series analysis Yes No

[15] Hierarchical temporal memory Yes No

[16] Convolutional neural networks Yes No

[17] MLP RNN and probabilistic Yes No

Our proposal MLP decoder Yes Yes

Table 2 Dataset summary. Note that -1 floor refers to the basement

Floor Sensor type Number of sensors Number of samples

2 Temperature 17 8,935,200

2 Humidity 17 8,935,200

2 Pressure 24 12,614,400

-1 Temperature 11 1,100,000

-1 Humidity 11 1,100,000

-1 Pressure 11 1,100,000
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• The rejection density is computed for a fixed time

window. When rejection density achieves values that

exceed a specific threshold, an uncalibration takes

place.

4.1 Preprocessing

The data used to both train and test the network have to be

pre-processed. This preprocessing, using filtering tech-

niques, is a standard procedure to detect anomalous values.

These values could yield undesired effects on the perfor-

mance of the algorithm if they are not properly detected

and treated. Thus, this preprocessing phase can be divided

into three stages: a threshold-based filtering, the Maha-

lanobis distance [21] and the Savitzky-Golay filter [22].

The threshold-based filtering is based on the thresholds

defined for the warning and alarm systems in the rooms.

This alarm system is designed to detect extreme values in

the incoming measurements. Thus, potential sudden fail-

ures in the sensor systems can be detected. It has been

observed that these extreme values add noise to the input

signal and, therefore, worsen the NN learning. These

thresholds were used during this research as a way to

discard all of those extreme values that were already

detected by the system and which could have a deep impact

in the NN learning process. Thus, a measured value is

dropped whenever one of the aforementioned thresholds is

exceeded. In this way, only calibrated and non-extreme

uncalibrated values remain in the signal.

Next, a filter based on the Mahalanobis distance [23, 24]

is applied. Mahalanobis distance is an outlier detection

method specifically designed for dealing with multidi-

mensional distributions. More precisely, this stage focuses

on determining whether an observation including infor-

mation from the whole set of sensors (i.e., a vector with as

many entries as sensors) can be considered as an outlier.

Thus, in this stage, non-extreme values whose relative

occurrence is low would be classified as outliers.

Finally, the third stage is focused on reducing the noise

in the incoming signal. Different kinds of filters such as

Butterworth or wavelet filters could have been applied in

this stage. However, the incoming signal presents a wide

variety of different behaviors along the data collection

period. Thus, a more flexible noise filtering process is

required. The Savitzky-Golay’s filter [22], which computes

local polynomial regressions providing new values for each

sample, is used. This filtering process preserves essential

properties of the signal, such as maximum and minimum

values or trends, while noise is efficiently dropped out.

After the data obtained from the sensors is preprocessed,

the mean value of the measurements, at a time, of all the

sensors involved is used as the input to an ANN.

4.2 Neural network

The proposed ANN model is a Multi Layer Perceptron

(MLP) that consists of an input layer with one neuron, five

hidden layers with three hundred neurons each and an

output layer with as many output neurons as sensors. The
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Fig. 1 Block diagram of the approach presented. Five main stages can

be observed: the measurement stage, the estimation of the set point,

the evaluation of the estimated set point by the NN and the generation

of the prediction and, finally, the computation of the error with respect

to the real value
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ReLu function was used as activation function in the hid-

den layers. In the case of the output layer, the Linear

function was chosen. The model was trained during

30 epochs using the Adamax optimizer. In order to deter-

mine the optimal number of layers and neurons per layer,

Scikit-Learn’s Grid Search algorithm (GridSearchCV) [25]

algorithm was used. During the training stage, validation

sets were used in order to control over-fitting. These same

hyperparameters were also used for the rest of experiments

performed within this work, as in the case of Transfer

Learning. As it will be seen later, Mean Squared Error and

Mean Absolute Error has been used as loss functions. As it

will be seen later in this document, the chosen loss function

has a deep impact on the statistical behaviour of the pre-

diction errors. After training the network with the mean

value of the pre-processed data from the sensors, the net-

work is able to decompose the input stimulus into the

predicted value for each sensor. This is the expected

behavior that each sensor should have, based on that input

stimuli.

4.3 Error computation

This is the final step of the proposed approach. In this

stage, the difference between the real measured value

obtained from the sensors and the ones predicted is com-

puted, evaluated and classified as normal or anomalous.

This evaluation is based on the work of [15] where Hier-

archical Temporal Memory [26] was used to predict the

next measurement. That prediction was then compared to

the real measurement and residuals were computed.

In our approach, goodness of fit tests were applied on

the errors obtained during the training stage. Thus, the

underlying distribution of the error could be used to com-

pute specific confidence intervals with the desired signifi-

cation for each sensor. On the one hand, the absolute mean

error of the sensors measurements properly fits a normal

distribution. On the other hand, the mean squared error fits

an exponential distribution.

Then, confidence intervals were generated by using the

normal distribution associated to the error of each sensor.

This choice was based on the fact that the absolute mean

error was approximately equal to the uncalibration that was

taking place. These confidence intervals are associated to

each sensor, and they represent the behavior of each sensor

from the point of view of the system. They are known as

the resolution of the system per sensor.

Finally, a rejection takes place whenever the value

exceeds the bounds of the confidence interval. The density

of rejections is computed as the rolling ratio between the

number of rejections within a window of a fixed time

length (with 1,440 minutes as default value, which

corresponds to the number of minutes in a day) and the

length of the window.

The rejection density is the variable that triggers the

uncalibration warning. An uncalibration is said to take

place whenever a threshold is reached during a specified

amount of time.

The proposed architecture is not able to determine if a

sensor is calibrated or not. The expected behaviour is that

the NN detects small differences between the current

measurement and the one from which it learnt. Thus, in the

eventuality of a maintenance task in any sensor, the

architecture proposed might detect this new event as a

potential uncalibration. This uncalibration event will

remain active until this new condition of the sensor is re-

learnt as ’calibrated’ by the model.

The standard procedure to overcome this issue is to re-

train the model under these new conditions. Thus, this

process would require a very high temporal cost, since

collecting data during almost a whole year would be nec-

essary. For this reason, the use of transfer learning repre-

sents a feasible solution. A small amount of data is needed

to teach the new condition to the NN by using transfer

learning.

4.4 Transfer learning

Transfer learning [27, 28] is a ML technique aimed at

specializing ML models with a minimum amount of data.

This technique consists of two main steps. The first step is

training a model for a more general task conceptually

related with the target or specialized task. For instance, the

target task could be to identify a specific face in a picture

and, in that case, the general task would be training a

model for general face identification. The second step

would be to re-train a subset of layers of the model with a

training dataset made out of elements corresponding to the

specialized task (a specific face in the example presented).

In the case of this work, multiple scenarios can benefit

from transfer learning. These scenarios can be summarized

as follows: changing the ground truth value for all sensors

or for a subset of them, including new sensors and adapting

to some other environments with, possibly, insufficient

information available.

As it was presented in Sect. 3.2, a different slicing of the

dataset was used for transfer learning. Transfer learning is

applied by dividing the original dataset into three smaller

subsets, namely, a training subset for the original model,

which will be called model A, a re-training subset for the

application of transfer learning (model A will be renamed

to model B after this process) and, finally, a testing subset

for both models. Regarding the training subset, it contains

70% of the datapoints. This stage corresponds to the

training for the general task. Regarding the subset devoted
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to be used for re-training the model and, thus, for the

application of transfer learning, it contains the 20% of the

datapoints. The amount of required datapoints can be

reduced to up to 2.5% of the total (10,000 datapoints per

sensor) in the case of temperature and humidity. Finally,

the testing subset includes 10% of the datapoints. This

subset was used to test the performance of the neural net-

work, both before and after the application of the transfer

learning. A constant offset was added in the last part of the

test set in order to simulate the recalibration due to a

maintenance task. It is important to note that this offset is

not applied to the whole test set in order to properly see the

change of conditions and the associated evaluation by both,

model A and model B.

As mentioned, one of the main purposes of the appli-

cation of transfer learning is the reduced amount of nec-

essary samples for training a model. This amount is

directly associated to the number of parameters to retrain,

which, at the same time, is closely related to the number of

layers to retrain. The nature of the target task, i.e., how

abstract it is, and where (in which layers) the concepts

learnt are located within the NN, are crucial factors which

will determine the amount of required data. During the

current research, transfer learning has been applied on the

very last hidden layer of the NN, i.e., only the weights

connecting the last hidden layer with the output layer has

been retrained. The obtained results suggest that training

this subset of weights was enough for the existing

requirements.

5 Results

This section shows the results obtained using the methods

presented in Sect. 4. Two different experiments were

conducted: (1) to evaluate the capability for the detection

of uncalibrations of the current approach, through perfor-

mance evaluation experiments; (2) to test the flexibility and

scalability of the system proposed, through transfer learn-

ing experiments.

5.1 Performance evaluation experiments

These experiments were conducted to test the detection of

uncalibrated sensors using the architecture presented. The

dataset used is the one shown in Sect. 3.2. Uncalibrations

were introduced in the testing set as drifts of different

nature (e.g linear, exponential or logarithmic) across time

and in different temporal frames (for instance, at the

beginning, in the middle and at the end of the year).

An uncalibration is considered to be detected once the

rejection density value has reached a predefined threshold,

which depends on the sensor, and whose mean value is 0.8.

Futhermore, this threshold has to be reached during a

predefined period of time, which also depends on the

sensor, and can be defined as two weeks, since it is enough

time for all sensors, and it is a reasonably low period of

time for uncalibration detection. An example of the

application of this technique can be seen in Fig. 2 where

rejection density for both the upper and lower bound of the

confidence interval are shown.

The second and third plots show the rejection density

values. It can be seen that these values stay low whenever a

uncalibration is not taking place. Conversely, when a

uncalibration takes place, the rejection density reaches

values close to one.

Regarding the performance of the approach, uncalibra-

tions were detected for all different types of sensors.

However, two different scenarios can be distinguished,

namely, a first optimistic scenario, where the uncalibration

is detected within the tolerance ranges defined by the

quality requirements of the pharma industry (i.e., �0:5 �C,
�3% and �0:5P in temperature, humidity and pressure,

respectively), and a non-optimistic scenario, where the

uncalibration is detected over the tolerance range. For all

those sensors that are in the optimistic scenario, an esti-

mation of the remaining time until the tolerance range gets

exceeded can be provided.

Thus, for the case of the temperature sensors, the pro-

posed approach was tested on the available data coming

from temperature sensors over 17 rooms. All uncalibrations

were detected for all sensors. In the best scenario, the

architecture detected uncalibrations associated to devia-

tions of 0.25 �C (tolerance 0.5 �C). This accuracy was

reached for 16 rooms out of 17 of the second floor. In the

worst scenario, the uncalibration was detected for devia-

tions of, approximately, 0.5 �C.
For the humidity sensors case, the proposed method was

tested on the available data coming from humidity sensors

over 17 clean rooms. All uncalibrations were detected for

all sensors. In the best scenario, the algorithm detects

uncalibrations associated to deviations of 2% (tolerance

3%). This accuracy was reached for 14 rooms out of 17 of

the second floor. In the worst scenario, the uncalibration

was detected for deviations close to 3%.

Finally, for the pressure sensors case, the proposed

method was tested on the available data coming from over

24 pressure sensors. All uncalibrations were detected for all

sensors. In the best scenario, the algorithm detected

uncalibrations associated to deviations under 0.5 Pascals

(tolerance 0.5 Pascals). This accuracy was reached for 6

out of 20 rooms of the second floor. In the worst scenario,

the uncalibration was detected for deviations close to 1.5

Pascals.

Some other ANN architectures were tested during the

development of this research. The same experiments were
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conducted using a Wide & Deep Neural Network for

temperature and humidity sensors and Recursive Neural

Networks (RNN) for the pressure sensors. The architecture

of the Wide & Deep Neural Network was based on the

MLP used on the implemented approach, but also includes

an input layer per sensor, so that the precise information

Fig. 2 Uncalibration detection through rejection density. In the upper

subplot, the blue trace shows the error corresponding to a linear

uncalibration, and the red dashed line stands for the error zero value.

In the middle subplot, the value of the rejection density for error

values exceeding the lower bounds of the confidence interval is

shown. As it can be seen, the maximum value for this rejection is,

approximately, 0.3. In the lower subplot, the value of the rejection

density for error values exceeding the upper bounds of the confidence

interval is shown. As it can be seen, this density reaches the maximum

possible value from a critical point and during the whole uncalibration

phenomenon
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coming separately from each sensor can be included. This

can be seen in Fig. 3.

Wide and Deep architecture yielded better results for

most of the rooms. However, for two of them, the uncali-

brations were not detected. It has been observed that, for

these two rooms, how the sensor is supposed to behave

under a specific condition is not learnt by the neural net-

work, and the identity function is approximated instead.

Thus, when an anomaly of any kind was introduced on the

input signal, this same value was retrieved by the NN and,

therefore, the uncalibration was not detected. It has been

observed that the worst results were obtained from these

two rooms independently of the architecture. This fact

suggests that the local conditions inside these rooms had a

deep impact on the learning capabilities of the different

models.

Regarding the RNN, one single Long-Short Term

Memory (LSTM) layer was used, containing 164 units and

the ReLu activation function. As output layer, a Dense

layer with as many units as sensors was used. In this case,

the Linear function was used as activation function. The

model was trained by using the Adamax optimizer. In this

case, uncalibrations were not detected either. This was

probably caused due to the long-term nature of uncalibra-

tions. Uncalibrations are long term phenomenons, thus, the

deviation associated to an uncalibration will be observed

during long periods of time. Hence, the deviation will be

included as relevant by LSTM neurons during the

information inclusion stage, that is, when the input gate

evaluates what information is relevant and what informa-

tion is not. In this case, the learning of this long-term

phenomenons by the NN provoke the worst results.

5.2 Transfer learning experiments

These experiments were conducted to test the capability of

the architecture for learning a new condition with the less

temporal cost. Thus, these experiments were split in three

categories: change in global or specific conditions, adding

new sensors and adapting to some other environments with

insufficient information available. To evaluate the transfer

learning technique, the error obtained for the main model

(model A) and the retrained model (model B) under the

specific new condition were compared.

5.2.1 Change of conditions

These experiments were conducted to test the capability of

the architecture proposed for learning a new condition as

the current calibration status for one or more sensors. In the

case of the individual offset, in Fig. 4 two different phases

of the error obtained from model A are shown. The first one

corresponds to the model evaluation under normal condi-

tions. The second one corresponds to the model evaluation

under the generation of a specific offset. It can be seen how

the error is displaced, approximately, three units which is

the same amount of the generated offset.

However, in model B, it can be seen how the error

returns to the same range of values as previously. This

behaviour suggests that the expected results are achieved.

This experiment was reproduced for different rooms and

the different types of sensors, obtaining similar results. It

can be observed in Fig. 5.

It should be noted that the minimum number of data-

points to properly use transfer learning is around ten

thousand samples. This number of samples corresponds,

approximately, to one week of data collection.

Regarding the generation of an offset for the whole set

of sensors, the model did not detect any change in its

behavior. It suggests that, if the behaviour of the whole set

of sensors is equally changed, then, no effect on the joint

behaviour can be detected. Thus, no uncalibration is taking

place from the point of view of the model. This fact pro-

poses an interesting question regarding how the joint

behaviour could be learnt.

5.2.2 Adding new sensors to the model

These experiments were conducted to determine the time

that the architecture takes to learn and include the

Set Point Input Layer (1,1) Sensor Input Layer nx(1,1)

Concatena�on

Output Layer (1,n)

Fig. 3 Wide and Deep model diagram. In this figure, the tested

architecture of the wide and deep model is shown. It can be seen

nþ 1 different input layers; an input layer with one single neuron,

which is connected to a hidden block of five hidden layers with three

hundred neurons each. This input layer takes the estimated global set

point as input. Next, n input layers with one single neuron each. Each

input layer takes the measurements coming from the different

associated sensors as input. Finally, these input layers are concate-

nated to the output of the hidden block and connected to the output

layer, which has a neuron per sensor
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behaviour of new sensors in the loop. These tests were

made using the humidity and temperature sensors.

A first dataset with data coming from 13 sensors out of

17 was taken as main set. For this set of sensors, o1 ¼
322; 677 datapoints were available. In this case, model A

was trained with this dataset. Then, model B was re-trained

with data coming from both the initial set of 13 sensors and

a set of 4 new sensors. The obtained results show that

uncalibrations on the new set of sensors can be properly

detected by model B. Figure 6 shows how uncalibrations

are detected in the new sensors that were included for the

temperature case.

5.2.3 Adapting to some other environment
with insufficient information available

These experiments were conducted to test if the architec-

ture could be trained with data coming from one specific

location and then be implemented on a different location

after a transfer learning process.

In this case, model A was trained with data coming from

the second floor with 17 sensors of both types, temperature

and humidity. Then, model B was re-trained with a small

amount of data coming from the basement. Approximately,

80,000 datapoints were used. The obtained results show

that uncalibrations are detected by model B in this new

environment. Furthermore, the problem of the lack of

information was solved by applying this method. Figure 7

shows an example of how uncalibrations were detected by

model B in this specific context.

The obtained results shows that transfer learning is a

valid technique for the adaptation of the system to some

other locations.

Regarding the performance of the architecture proposed,

uncalibrations can be detected even for values smaller than

the defined tolerance ranges for most cases in temperature

and humidity sensors. A summary of the obtained resolu-

tions and the corresponding tolerances per sensor type are

shown in Table 3.

The application of transfer learning shows the flexibility

and scalability of the architecture, enabling the use of the

model in a wide variety of contexts such as sensor addition,

integration within new environments and partially solving

problems associated with the lack of information available.

Fig. 4 In this figure, the error associated to a scheduled recalibration

can be seen. The blue trace shows the error, and the red dashed line

stands for the error zero value. The recalibration takes place at the

mid point of the figure. Since transfer learning is not applied, once the

recalibration takes place, the error immediately increases

Fig. 5 In this figure, the blue trace shows the error associated to a

scheduled recalibration, and the red dashed line stands for the error

zero value. In this case, transfer learning is applied, thus, once the

recalibration takes place, the error immediately decreases. It is

important to note that this model is not applied in the previous

moments to the recalibration task
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Fig. 6 Uncalibration detection for new included sensors. This

figure shows the results of the application of transfer learning in

order to include new sensors within the architecture. The detection of

an uncalibration for one of those sensors is shown. In the upper

subplot,the error corresponding to a linear uncalibration can be seen.

The red dashed line stands for the error zero value. In the middle

subplot, the value of the rejection density for error values exceeding

the lower bounds of the confidence interval is presented. In this case,

the maximum value for this rejection is approximately zero. In the

lower subplot, the value of the rejection density for error values

exceeding the upper bounds of the confidence interval is presented.

As it can be seen, this density reaches the maximum possible value

from a critical point and during the whole uncalibration phenomenon
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Fig. 7 Uncalibration detection in the basement. In this figure, the

detection of an uncalibration taking place in the basement is shown.

In this case, transfer learning has been applied in order to re-train a

model with a small quantity of data coming from the basement. The

model was previously trained with data coming from the second floor.

In the upper subplot, the error corresponding to a linear uncalibration

is shown in blue. The red dashed line stands for the error zero value.

In the middle subplot, the value of the rejection density for error

values exceeding the lower bounds of the confidence interval is

shown. In this case, the maximum value for this rejection is 0.3. In the

lower subplot, the value of the rejection density for error values

exceeding the upper bounds of the confidence interval is shown. As it

can be seen, this density reaches the maximum value starting from a

critical point and remains during the whole uncalibration

phenomenon
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6 Discussion

It is proven that transfer learning retrieved good results for

very low amounts of data. The minimum amount of

required data is about 10,000 samples, which is the data

obtained from one week of observations at a sampling rate

of one sample per minute. The fact that only the last weight

matrix was needed to re-train means that the information

associated to all these modifications were learned on a very

abstract level in the NN [29]. This suggest, on the one

hand, that offsets have a low impact on the joint dynamics

of sensors. Thus, the joint behavior of the whole set of

sensors is ruled by much deeper relationships than the

addition of specific values. On the other hand, the results

obtained for pressure sensors, despite they are not under a

common constant condition, may be explained by this fact.

The sudden changes in pressure values could be understood

as an offset, what implies that the model has a deep

knowledge of the sensor behavior, although these offsets

reduce the accuracy of the detection of uncalibrations.

The architecture presented has been trained and tested in

a real context, with data coming directly from a production

pharma factory. Besides, due to the flexible capabilities

associated to sensor additions and re-training, the system

can be seen as a resilient system as defined in [30]. Fur-

thermore, the architecture presented in this work is cur-

rently deployed in Azure [31], where the system performs

the uncalibration detection directly from the information of

the sensors from a digital twin of the building. This digital

twin contains the current status of the physical sensors.

7 Conclusions and future works

In this work, a system with the capability for detecting

uncalibrations in real time has been presented. This system

was able to detect all the presented uncalibration events

(100% accuracy). In most cases, these uncalibration events

could be detected before the specified tolerances were

exceeded. Furthermore, this solution can be easily retrained

to be adapted to a variety of different scenarios, such as

new environmental conditions, the integration of new

devices in the sensor network and the deployment in new

places never seen before by the system. This adaptability is

achieved by means of Transfer Learning.

To the best of our knowledge, this is the first time that

potential uncalibrations of a set of sensors are online

detected whenever the set point is unknown. Furthermore,

the proposed architecture can be extended by means of

transfer learning to a wide range of different fields.

Regarding the future work, different objectives are

considered: (1) extending the results obtained after the

application of transfer learning. Training the architecture

with a generic set of sensors of one type (such as tem-

perature sensors) and then, testing the performance on

sensor systems of a different kind, for instance, engine,

smart-city and power plants sensors systems, among oth-

ers; (2) obtaining information about the learning of the

solution through the application of Explainable Artificial

Intelligence (XAI) [32]. This could provide useful infor-

mation about the potential scalability and flexibility of the

solution and the different models to which it could be

applied.
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Automatika: časopis za automatiku, mjerenje, elektroniku, raču-
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