
ORIGINAL ARTICLE

Identification of time series models using sparse Takagi–Sugeno fuzzy
systems with reduced structure

Krzysztof Wiktorowicz1 • Tomasz Krzeszowski1

Received: 6 August 2021 / Accepted: 12 December 2021 / Published online: 5 January 2022
� The Author(s) 2022

Abstract
Simplifying fuzzy models, including those for predicting time series, is an important issue in terms of their interpretation

and implementation. This simplification can involve both the number of inference rules (i.e., structure) and the number of

parameters. This paper proposes novel hybrid methods for time series prediction that utilize Takagi–Sugeno fuzzy systems

with reduced structure. The fuzzy sets are obtained using a global optimization algorithm (particle swarm optimization,

simulated annealing, genetic algorithm, or pattern search). The polynomials are determined by elastic net regression, which

is a sparse regression. The simplification is based on reducing the number of polynomial parameters in the then-part by

using sparse regression and removing unnecessary rules by using labels. A new quality criterion is proposed to express a

compromise between the model accuracy and its simplification. The experimental results show that the proposed methods

can improve a fuzzy model while simplifying its structure.

Keywords Time series prediction � Takagi–Sugeno fuzzy system � Elastic net regression � Global optimization

1 Introduction

In machine learning, model building is often based on the

black-box principle, where the input and output observa-

tions are registered during the identification experiment.

Based on these observations, the model is fitted to the data

without paying particular attention to its mathematical

structure. One possible solution in this area is the appli-

cation of fuzzy models that use fuzzy rule-based inference.

Various algorithms have been proposed for the automatic

identification of fuzzy systems from observed data. We

propose in this paper the use of sparse Takagi–Sugeno

fuzzy systems with reduced structure and global opti-

mization methods for model identification. Model simpli-

fication involves reducing the number of its parameters and

reducing its structure by eliminating unnecessary rules. To

reduce the number of parameters, we use a sparse regres-

sion that yields sparse solutions, in which some of the

model coefficients are exactly equal to zero. Such models

are more compact, easier to interpret [27], and thanks to

this, easier to implement. Moreover, sparse regressions

provide regularization, and therefore, they can be used in

ill-conditioned problems (e.g., in the case when the number

of variables exceeds the number of observations). To

reduce the structure, we use the labels of rules that can

change during the optimization process [34]. Global opti-

mization is a branch of mathematics that provides methods

for global solutions to problems that contain multiple

maxima or minima. Some of these methods are modern

metaheuristic algorithms widely used to solve global

optimization problems [8]. Metaheuristic means that there

is a ’master strategy’ at a higher level of an algorithm that

guides the heuristics applied in local search. In meta-

heuristic optimization algorithms, there is no guarantee that

optimal solutions will be achieved. Usually, algorithms

obtain near-optimal solutions, and this is the purpose of

these. Moreover, many metaheuristics use some form of

stochastic optimization, so that the found solution depends

on the set of generated random variables.

& Krzysztof Wiktorowicz

kwiktor@prz.edu.pl

Tomasz Krzeszowski

tkrzeszo@prz.edu.pl

1 Faculty of Electrical and Computer Engineering, Rzeszow

University of Technology, al. Powstancow Warszawy 12,

35-959 Rzeszow, Poland

123

Neural Computing and Applications (2022) 34:7473–7488
https://doi.org/10.1007/s00521-021-06843-5(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0001-8711-1659
http://orcid.org/0000-0001-7359-4637
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-021-06843-5&domain=pdf
https://doi.org/10.1007/s00521-021-06843-5

From the literature review presented in the next section,

it is seen that there is no use of sparse fuzzy systems with

reduced structure for the identification of time series

models. From the point of view of interpretation and

implementation, simplifying fuzzy models, including

models for predicting time series, is an important issue.

Hence, the proposition of novel hybrid methods for time

series prediction that utilize simplified Takagi–Sugeno

fuzzy systems is the main motivation of our work. Our

proposition concerns both simplifying the structure of the

models (the number of fuzzy rules) and the number of

parameters (in our case, the number of polynomial coeffi-

cients in the consequents of the fuzzy rules). Such a sim-

plification, as proposed in this article, has not been

considered elsewhere. Therefore, the main contributions

can be formulated as follows:

• the proposition of hybrid methods that combine a sparse

regression, rule labels, and a global optimization

method to identify high-order Takagi–Sugeno fuzzy

models with a reduced structure,

• the proposition of a new quality index that expresses a

compromise between the accuracy of a model and its

simplification,

• the use, for the first time, of sparse regression and rule

labels for the time series prediction,

• the use of the proposed methods for the identification of

time series models.

In the proposed methods, the if-part parameters are

obtained by one of the global optimization methods, such

as particle swarm optimization (PSO), simulated annealing

(SA), genetic algorithm (GA), and pattern search (PS). The

then-part parameters are determined by the ridge regression

(RIDGE) and the sparse regression (SR) represented by the

elastic net (ENET). The well-known adaptive neuro-fuzzy

inference system (ANFIS) is used as a reference model.

The rest of this article is structured as follows. Section 2

surveys the related work. Section 3 describes a Takagi–

Sugeno fuzzy system with high-order polynomials. Sec-

tion 4 provides the training methods of the then-part

parameters. Section 5 presents the training methods of the

if-part parameters. The performance criterion and design

procedure are described in Sect. 6. Section 7 presents

issues related to the implementation of the discussed

models. In Sect. 8, the experimental results are presented.

At the end of the paper, the conclusions are presented in

Sect. 9.

2 Related work

To identify time series models, global optimization meth-

ods, like particle swarm optimization

[3, 4, 7, 16, 19, 20, 26, 28, 33, 34], genetic algorithms

[3, 7, 9, 13, 16, 26, 28, 34], and simulated annealing [1, 2],

are often used. The paper [19] presents a neuro-fuzzy

system (NFS) with auto-regressive integrated moving

average models and a novel hybrid learning method for

resolving the problem of time series forecasting. The PSO

algorithm and the recursive least squares estimator (RLSE)

are combined in a hybrid manner to update the free

parameters of the model. The PSO is used to update the

antecedent parameters of the proposed predictor, and the

RLSE is used to adjust the consequent parameters. Aza-

d et al. [3] proposed an application of metaheuristic algo-

rithms for training an artificial neural network (ANN) and

ANFIS in order to predict the air temperature. To improve

the performance of ANN and ANFIS, the PSO and GA

were used. The best model turned out to be ANFIS-GA,

which selected the most appropriate model inputs for

forecasting the minimum, mean, and maximum air tem-

peratures in different intervals. A new weighted fuzzy

interpolative reasoning method was proposed in [4] for

sparse fuzzy rule-based systems based on the slopes of

fuzzy sets. To automatically learn the optimal weights of

the antecedent variables of fuzzy rules, a PSO-based

weights learning algorithm was utilized. The authors in

[28] described an application of ensembles of interval type-

2 fuzzy neural network (IT2FNN) models by utilizing

hybrid learning algorithm techniques from NN models and

fuzzy logic systems. For optimizing the parameter values in

the membership functions of the fuzzy integrator, the PSO

and GA were used. Lin et al. [20] proposed an IT2FNN

based on a dynamic group cooperative PSO. The proposed

model was tested in terms of the prediction accuracy and

wall-following control of a mobile robot. In study [7], the

optimization of type-2 fuzzy inference systems using GA

and PSO was performed. The optimized fuzzy inference

systems were used to estimate the type-2 fuzzy weights of

backpropagation NNs. Khosravi et al. [16] developed a

multilayer feed-forward NN, support vector regression,

fuzzy inference system, ANFIS, group method of data

handling (GMDH)-type NN, ANFIS optimized with PSO,

and ANFIS optimized with GA to predict the time series

wind speed data. The best results were obtained by the

GMDH algorithm. A fuzzy NN model of the Takagi–

Sugeno–Kang type was proposed in [13]. In this approach,

the consequent part of fuzzy rules was a linear combination

of input regressors and dominant wavelet neurons as a sub-

jump wavelet NN. In order to obtain the wavelets for each

sub-jump wavelet NN, the orthogonal least squares method

7474 Neural Computing and Applications (2022) 34:7473–7488

123

and GA were used. The authors in [26] presented an

application of the most popular evolutionary algorithms

(i.e., PSO, GA, artificial bee colony optimization, firefly

algorithm, and whale optimization algorithm) to optimize

the rule base of a fuzzy logic system. The authors in [1]

presented a novel method for designing interval type-2

fuzzy logic systems in which the design parameters were

tuned through the SA algorithm. In comparison with the

conventional approach, this method has fewer parameters

to be tuned, as only a single extra parameter is used to

define the interval type-2 membership functions.

3 High-order Takagi–Sugeno fuzzy system

In our paper, we use a high-order Takagi–Sugeno (T–S)

fuzzy system [32] with the inputs x1, x2 and output y, for

which there are defined K fuzzy rules:

Rule k : If x1 is Gkðx1Þ
and x2 is Hkðx2Þ
then y ¼ Wkðx1; x2Þ

ð1Þ

where Gkðx1Þ, Hkðx2Þ are the fuzzy sets for the inputs x1,

x2, Wkðx1; x2Þ is a two-variable polynomial of degree D,

and k ¼ 1; 2; . . .;K. The polynomial Wkðx1; x2Þ is of the

form

Wkðx1; x2Þ ¼ vDkx
D
1 þ � � � þ v1kx1 þ wDkx

D
2 þ � � �

þ w1kx2 þ ck
ð2Þ

where vdk;wdk 2 R, D� 1, and d ¼ 1; 2; . . .;D.
The Gaussian membership functions for the inputs are

defined as (Fig. 1)

Azðx1Þ ¼ gðx1; pz; rzÞ ¼ exp � 1

2

x1 � pz
rz

� �2
 !

ð3Þ

Bzðx2Þ ¼ gðx2; qz; dzÞ ¼ exp � 1

2

x2 � qz
dz

� �2
 !

ð4Þ

where x1 2 ½p1; pZ �, x2 2 ½q1; qZ �, pz, qz are the peaks of the
membership functions, rz; dz [0 are their widths,

z ¼ 1; 2; . . .; Z, and Z is the number of fuzzy sets defined

for the inputs. The fuzzy rules (1) are written as shown in

Table 1, where K ¼ Z2. The rule labels lk take the value 0

or 1 and are used to disable or enable the corresponding

rule in fuzzy reasoning.

The output of the considered T–S system is calculated as

[32]

y ¼
PK

k¼1 Gkðx1ÞHkðx2ÞWkðx1; x2ÞPK
k¼1 Gkðx1ÞHkðx2Þ

ð5Þ

¼
XK
k¼1

lkðx1; x2ÞWkðx1; x2Þ ð6Þ

where

lkðx1; x2Þ ¼
Gkðx1ÞHkðx2ÞPK
k¼1 Gkðx1ÞHkðx2Þ

ð7Þ

is the fuzzy basis function (FBF) [30]. In our application,

the output of the T–S system is calculated as follows: the

membership degrees Gkðx1Þ and Hkðx2Þ are multiplied,

which gives the firing degree of a rule. These degrees are

multiplied by the value of the polynomialWkðx1; x2Þ (this is
a product implication). All partial results from the rules are

aggregated with a weighted sum. To change the way of

inference, we can change the product operation to, for

example, the minimum operation (or, in general, to another

t-norm).

Applying the FBF defined in (7), the system output can

be written as

y ¼
XK
k¼1

lkx
D
1 vDk þ � � � þ lkx1v1k þ lkx

D
2 wDk þ � � �

þ lkx2w1k þ lkck

ð8Þ

The FBFs in (8) are multiplied by xd1 and xd2, so we intro-

duce a modified fuzzy basis function (MFBF).

Definition 1 The MFBF [32] is the function bdkðx1; x2Þ ¼
lkðx1; x2Þxd1 or cdkðx1; x2Þ ¼ lkðx1; x2Þxd2 defined for the kth

rule.

Substituting bdk and cdk for (8), we obtain

Fig. 1 Gaussian membership functions for inputs x1 and x2

Neural Computing and Applications (2022) 34:7473–7488 7475

123

y ¼
XK
k¼1

bDkvDk þ � � � þ b1kv1k þ cDkwDk þ � � � þ c1kw1k

þ lkck

ð9Þ

Introducing the vector

nkðx1; x2Þ ¼ ½bDk; . . .; b1k; cDk; . . .; c1k; lk�; ð10Þ

and

bk ¼ ½vDk; . . .; v1k;wDk; . . .;w1k; ck�T ; ð11Þ

where dimðnkÞ ¼ dimðbTk Þ ¼ 2Dþ 1, we can write the

output of the T–S system as

y ¼ ½n1; . . .; nK �
b1

..

.

bK

2
664

3
775 ¼ nbT ð12Þ

where n ¼ ½n1; . . .; nK � and b ¼ ½bT1 ; . . .; bTK �. When calcu-

lating the output of the described fuzzy system, only rules

with labels equal to 1 are taken into account.

4 Training the then-part of fuzzy rules

4.1 Regression matrix

Training the then-part of fuzzy rules involves calculating

the coefficients of the polynomial (2) based on the

regression matrix X defined in a similar way as in paper

[32]. We consider data in the form of n observations

ð½ðx1Þi; ðx2Þi�
T ; yiÞ, where i ¼ 1; . . .; n. We define the

regression matrix

X
n�Kð2Dþ1Þ

¼

n1ððx1Þ1; ðx2Þ1Þ; . . .; nKððx1Þ1; ðx2Þ1Þ
n1ððx1Þ2; ðx2Þ2Þ; . . .; nKððx1Þ2; ðx2Þ2Þ

..

.

n1ððx1Þn; ðx2ÞnÞ; . . .; nKððx1Þn; ðx2ÞnÞ

2
66664

3
77775;

ð13Þ

where nkððx1Þi; ðx2ÞiÞ is given by (10). The size of the

regression matrix is n� Kð2Dþ 1Þ, where n is the number

of training observations, K is the number of rules, and D is

the polynomial degree.

4.2 Ridge regression

In the ridge regression, the loss function [10] is calculated

from the equation

JRIDGE ¼
Xn
i¼1

�
yi � ŷi

�2 þ kbTb ð14Þ

where ŷi is the estimated output of the system for the ith

observation and k[0 is a regularization parameter. The

vector of weights b of a fuzzy model is calculated as

b ¼
�
XTXþ kI

��1
XTy ð15Þ

where y ¼ ½y1; . . .; yn�T and I is the identity matrix. The

vector b contains Kð2Dþ 1Þ then-part parameters of the

T–S fuzzy model to be determined. It should be empha-

sized that in the ordinary least squares, the predictions and

residuals are orthogonal. In the ridge regression, for k[0,

this orthogonality is not guaranteed. But if we use this

regression, we can deal with ill-defined problems (i.e.,

when the matrix XTX is close to singular), for example, in

the presence of multicollinearity or when the number of

predictors is greater than the number of observations.

4.3 Elastic net regression

The elastic net regression [35] is one of the sparse

regressions that allow the coefficients of a model to be

exactly zero [27]. Thus, it leads to simplified models that

are easier to interpret. The elastic net integrates the ridge

regression and LASSO [27, 29]. The lost function for this

regression includes the penalty term relating to norms L1
and L2:

JENETðb; d; kÞ ¼ ky� Xbk22 þ dkbk22 þ kkbk1 ð16Þ

where the parameters of regularization d and k are non-

negative. The vector of solutions b is obtained by the

LARS-EN method, which utilizes the LARS algorithm [6].

One use of elastic net regression is variable selection, but

in our application, this regression is not used to select

Table 1 Fuzzy rules table

Rule Label Gkðx1Þ Hkðx2Þ Wkðx1; x2Þ

Rule 1 l1 A1ðx1Þ B1ðx2Þ W1ðx1; x2Þ

..

. ..
.

A1ðx1Þ BZðx2Þ
A2ðx1Þ B1ðx2Þ

..

. ..
. ..

. ..
. ..

.

A2ðx1Þ BZðx2Þ

..

. ..
.

AZðx1Þ B1ðx2Þ

..

. ..
.

Rule K lK AZðx1Þ BZðx2Þ WKðx1; x2Þ

7476 Neural Computing and Applications (2022) 34:7473–7488

123

variables, but to determine coefficients, some of which may

be equal to zero, thus obtaining a sparse model.

5 Training the if-part of fuzzy rules

One of the following global optimization techniques is

used to obtain the parameters of if-part of fuzzy rules:

particle swarm optimization [5, 15, 24], simulated

annealing [17, 24], genetic algorithm [11, 24, 31], and

pattern search [12, 18].

5.1 Particle swarm optimization

Particle swarm optimization is a metaheuristic method

introduced by Kennedy and Eberhart [5, 15] for stochastic

search in a multidimensional space. The concept of the

method was taken from the social behavior of animals that

live in groups, like bird flocks, bee swarms, or fish schools.

In the PSO, each individual in the population is called a

particle and represents a potential solution. The way the

particles move is modeled by the velocity vk and position

xk [5, 24]:

viþ1
k ¼ xvik þ c1r1 pbik � xik

� �
þ c2r2 gbi � xik

� �
ð17Þ

xiþ1
k ¼ xik þ viþ1

k ð18Þ

where i is the current iteration number, k is the particle

index, r1, r2 are vectors of uniformly distributed random

numbers within [0,1], c1, c2 are, respectively, the cognitive

and social coefficients, x is the inertia weight, pb and gb

are, respectively, the best local position of the kth particle

and the best position in the swarm, which are selected

using an objective function. After updating the particle

position (18), the value of the objective function is calcu-

lated. Then, the determined value is compared with that of

the objective function for pb and gb. If the new solution is

better, then pb and gb are updated.

5.2 Simulated annealing

Simulated annealing [17, 24] is an algorithm used for

solving optimization problems that are bound-constrained

or unconstrained. The SA is inspired by the annealing

process taking place in metallurgy. As the method runs, a

new proposition of the state is obtained randomly and

adopted with a certain probability according to the function

probðDE; TÞ ¼ 1

1þ expðDE=TÞ ð19Þ

where T is the current temperature, and DE ¼ Ekþ1 � Ek is

the difference in the energies between the present and

previous solutions. The energy describes how good is the

proposed solution and corresponds to the value of the

objective function. In the optimization process, the SA

systematically decreases the temperature from an initial

positive value to zero and remembers the best state found

so far.

5.3 Genetic algorithm

Genetic algorithm [11, 24, 31] is a well-known optimiza-

tion method inspired by the process of evolution. In the

GA, a population is repeatedly modified to obtain new and

better solutions. In each generation of the algorithm, the

individuals in the population are randomly chosen to be

’parents’ and used to generate ’children’ for the next stage.

In the process of optimization, the population ’evolves’ in

order to find the optimal solution. To create the next gen-

eration from the current population, the GA uses three

main types of rules: selection, crossover (recombination),

and mutation. During the selection, individuals called

’parents’ are chosen using a fitness-based process. The

crossover integrates two ’parents’ to generate ’children’ for

the next generation. In the mutation phase, an individual

mutates, which means that in the genotype random changes

are introduced.

5.4 Pattern search

Pattern search (also known as direct search) [12, 18] is a

method that can be applied to both constrained and

unconstrained optimization problems. The method does not

require a gradient, which means that it is a derivative-free

algorithm. The PS searches for a function minimum based

on an adaptive pattern. At each iteration, the algorithm

tests multiple points that are placed near the current point,

and moves the pattern to the point that best minimizes its

objective function. The direction of this move is chosen

according to a specified poll algorithm. The pattern shrinks

in size if none of the proposed points is better than the

current point. The method can run until the desired accu-

racy has been achieved or the algorithm reaches a maxi-

mum number of iterations.

6 Performance criterion and design
procedure

6.1 Performance criterion

In this paper, the accuracy of a fuzzy model is described by

two indices: the training error RMSEt, obtained for the

training data, and the validation error RMSEv, obtained for

the validation data of the form

Neural Computing and Applications (2022) 34:7473–7488 7477

123

RMSEt ¼

ffi
1

T

XT
k¼1

yk � ŷkð Þ2
vuut ð20Þ

RMSEv ¼

ffi
1

V

XV
k¼1

yk � ŷkð Þ2
vuut ð21Þ

where T is the number of observations in the training set, V

is the number of observations in the validation set, yk is the

output data, and ŷk is the predicted output.

The T–S fuzzy model is simplified in two ways: by

reducing its structure and by reducing the number of

parameters. The first way is to reduce the number of

inference rules by applying rule labels. To describe the

structure reduction, we propose the following definition.

Definition 2 The structure reduction (Sr) of the T–S

model is defined as

Sr ¼
zl
K

ð22Þ

where Sr 2 ½0; 1�, zl is the number of zero-valued labels of

the rules, and K[0 is the number of rules.

Structure reduction Sr is an index that expresses the ratio

of the number of zero-labeled rules (i.e., inactive rules) to

the number of all rules. The greater its value, the greater

the reduction in the structure (i.e., the simplification of the

system). It is a discrete index because it is the ratio of two

integers. Theoretically, it can take values from 0 (all rules

are active) to 1 (no rules are active). Practically, however,

at least one rule should be active in the system. Hence, the

highest value that this index can take is ðK � 1Þ=K.
The second way to simplify the system is to reduce the

number of parameters in the then-part using elastic net

regression. This regression gives sparse models, which

means that some coefficients might have values equal to

zero. We propose the following definition to describe the

sparsity.

Definition 3 The sparsity (S) of the T–S system is calcu-

lated as

S ¼ zc
Kð2Dþ 1Þ ð23Þ

where S 2 ½0; 1�, zc is the number of polynomial coeffi-

cients equal to zero in the then-part of rules, D is the

polynomial degree, and K is the number of rules.

The index S expresses the ratio of the number of zero

polynomial coefficients to the number of all coefficients.

The greater its value, the greater the system sparsity. It is a

discrete index because it is the ratio of two integers. It can

take values from 0 (all coefficients are non-zero) to 1 (all

coefficients are zero).

Using the above definitions, the best T–S model is

selected by minimizing an objective function in which the

aim is to obtain the training error (20) and validation error

(21) as small as possible and the structure reduction (22)

and sparsity (23) as large as possible:

Q ¼ aðRMSEt þ RMSEvÞ þ ð1� aÞð2� Sr � SÞ ð24Þ

where a 2 ½0; 1�. The quality index (24) expresses a com-

promise between the model accuracy and its simplification.

For a ¼ 0, the first term of the sum (24) is equal to zero,

and then, Q ¼ 2� Sr � S; that is, only simplifying the

system is preferred. In this case, the value of the index Q is

in the range ½1� ðK � 1Þ=K; 2�, because Sr is in the range

½0; ðK � 1Þ=K�, while S in [0, 1]. For a ¼ 1, the second

term of the sum is zeroed, and then,

Q ¼ RMSEt þ RMSEv; that is, system accuracy is pre-

ferred. In this case, the value of the index Q is greater than

or equal to zero. An upper limit cannot be specified as it

depends on the specific application. For a 2 ð0; 1Þ, there is
a trade-off between simplification and system accuracy.

The choice of the a value depends on the application and is

left to the system designer.

6.2 Design procedure

In this paper, we use one non-sparse method represented by

the ANFIS model and four sparse methods utilizing the

PSO, SA, GA, and PS algorithms. These methods are

referred to as PSO-SR, SA-SR, GA-SR, and PS-SR,

respectively. Identification of fuzzy time series models

takes place in two main phases: in the first phase, fuzzy sets

and rule labels are proposed by optimization algorithms,

and the coarse values of the polynomial coefficients are

calculated by the ridge regression. The ridge regression is

used here because it is called within the objective function

of the optimization algorithms and, therefore, the calcula-

tion of polynomial coefficients is expected to be fast. The

main task of this regression is to avoid a situation in which

the matrix XTX becomes singular. The regularization

parameter k is selected in our application through the trial-

and-error method, but it can also be placed in the agent

vector to be determined using one of the considered opti-

mization algorithms PSO, SA, GA, or PS. Of course, the

use of these algorithms does not guarantee to find the

optimal values, but at most satisfactory ones. In the second

phase, exact training takes place where, for the proposed

sets, the final values of the coefficients are determined

using elastic net regression. Using this regression makes

some polynomial coefficients equal to zero, thus obtaining

a sparse model (the measure of this is index Sr).

The detailed description of the design procedure pre-

sented in Fig. 2 is as follows. First, the Gaussian fuzzy sets

7478 Neural Computing and Applications (2022) 34:7473–7488

123

are proposed in Block 1. In the PSO-SR, SA-SR, GA-SR,

and PS-SR methods, 10 propositions are created by the

PSO, SA, GA, or PS algorithms. At this stage, the

regression matrix X for the proposed fuzzy sets is gener-

ated and the polynomial coefficients are calculated using

ridge regression. The outputs of Block 1 are composed of

the vectors of peaks p ¼ ½pz�, q ¼ ½qz�, and the vectors of

widths r ¼ ½rz�, d ¼ ½dz�. In Block 2, the matrix X is cal-

culated, which is generated for all propositions of mem-

bership functions obtained in the previous step. This matrix

is calculated using a part of the observations, called a

training set. In Block 3, the coefficient path for elastic net

regression is generated. In this step, we obtain many

solutions, which form a set of vectors b. In Block 4, all

solutions obtained in the previous step are validated using a

validation set of data. The validation is carried out for all

coefficients in the coefficient path. Taking all solutions, the

error RMSEt, error RMSEv, structure reduction Sr, sparsity

S, and proposed objective function Q are calculated. After

that, the smallest value of Q is determined, and, in this way,

we obtain the best vector of coefficients bbest.

7 Implementation

All proposed models are implemented in MATLAB with

additional toolboxes. The ridge regression (15) is imple-

mented as a custom function. The ANFIS models are

implemented using the following functions from the Fuzzy

Logic Toolbox [23]: genfisOptions, anfisOptions,

and anfis. The function genfisOptions is used to create

options for the initial model, such as the grid partitioning

generation method, the number and type of input mem-

bership functions, and the output membership function

type. The number of epochs and the validation data are

assigned using the function anfisOptions. The ANFIS

models are trained using the function anfis with the

training data and the specified options as arguments.

The sparse regressions are implemented using the

function elasticnet from the toolbox SpaSM [27].

This function takes as arguments the regression matrix X

and vector y. Additionally, the function elasticnet has

d and k, which are the regularization parameters. As a

result, this function returns the coefficient path as a set of

propositions of b from which the best solution is chosen.

The optimization algorithms are implemented using the

methods from the Global Optimization Toolbox [24]. From

this toolbox, the following functions are utilized: par-

ticleswarm for PSO, simulannealbnd for SA, ga

for GA, and patternsearch for PS. These functions

allow the solution to be determined using the user-defined

bounds. They use the objective function (24) as one of the

arguments and operate on a vector that contains the if-part

parameters and the labels of the rules, as presented in

Fig. 3, where pz, qz are the peaks, rz, dz are the widths,

z ¼ 1; . . .; Z, Z is the number of fuzzy sets for the inputs,

l1; . . .; lK are the labels of the rules, and K is the number of

rules. It should be added that, in this paper, the regular-

ization parameters k for ridge regression and d, k for elastic
net regression are searched by trial-and-error method.

Another solution is also possible, consisting in placing

them in the agent and searching for their values using one

of the considered optimization algorithms PSO, SA, GA, or

PS.

Fig. 2 Design procedure for training sparse fuzzy models

Fig. 3 Structure of the agent for global optimization methods; pz, qz
are the peaks, rz, dz are the widths, where z ¼ 1; . . .; Z, Z is the

number of fuzzy sets for the inputs, l1; . . .; lK are the labels of the

rules, and K is the number of rules

Neural Computing and Applications (2022) 34:7473–7488 7479

123

8 Experimental results

This section describes the results of experiments in which

the proposed methods are used for identifying time series

models. These methods are compared with the well-known

ANFIS model [14]. In all experiments, the following

parameters are used. For the inputs of fuzzy systems, three

Gaussian fuzzy sets are defined, which yields nine fuzzy

inference rules. In Experiments 1–3, the fuzzy systems are

of the first order; that is, the then-part functions are linear.

It results from the fact that in the ANFIS model, the then-

part of rules can contain constant or first-order functions. In

Experiment 4, we consider the T–S fuzzy system of orders

1–5. The number of evaluations of the objective function

for the PSO, SA, GA, and PS methods is set to 3000, and

other parameters of these methods have default values.

8.1 Experiment 1

The Box–Jenkins gas furnace dataset [13, 21, 34] consists

of 296 pairs [u(t), y(t)] of input–output observations

recorded from a laboratory furnace with the sampling

interval of nine seconds. The input u(t) is the methane flow

rate, and the output is the percentage of carbon dioxide

(CO2) concentration in the off-gas. The goal is to build a

fuzzy model to predict y(t) using these data. The signals

uðt � 3Þ and yðt � 1Þ are chosen as the model inputs, and

therefore, the structure of the model is expressed as

yðtÞ ¼ f ðuðt � 3Þ; yðt � 1ÞÞ ð25Þ

The first 150 data pairs are used as the training set, and the

other pairs are used as the validation set.

In training the fuzzy models, the input uðt � 3Þ is

bounded in the interval ½p1; pZ � ¼ ½�2:716; 2:834�, while
the input yðt � 1Þ is bounded in the interval

½q1; qZ � ¼ ½45:60; 60:50�. The widths of fuzzy sets are

bounded in the intervals ½rmin; rmax� ¼ ½0:2357; 5:892� and
½dmin; dmax� ¼ ½0:6327; 15:82�. The regularization parame-

ters are k ¼ 1e�01 for ridge regression (15) and d ¼
1e�06 for ENET regression (16). The parameter in the

quality criterion (24) is a ¼ 0:67.

8.1.1 ANFIS model

In training the ANFIS model, the number of epochs can be

specified. Figure 4 shows the dependence of the validation

error on the number of training epochs. The minimum of

this error occurs at epoch 54. Choosing the number of

epochs after this point indicates the overfitting of the model

parameters to the training data. Therefore, epoch 54 is

chosen to obtain the best generalization performance.

The results for the obtained ANFIS model are presented

in Table 2. The model has training error RMSEt ¼ 0:2142

and validation error RMSEv ¼ 0:5391. The fuzzy rules

presented in Table 3 can be written as

0 100 200 300 400 500 600
iteration

0.5

0.6

0.7

0.8

0.9

1

1.1

va
lid

at
io

n
er

ro
r

Fig. 4 Experiment 1: Validation

error for the ANFIS model

Table 2 Performance comparison of T–S systems for Experiment 1;

RMSEt is the training error, RMSEv is the validation error, Sr is the
structure reduction, S is the sparsity, and Q is the value of objective

function

Alg. RMSEt RMSEv Sr S Q

ANFIS 0.2142 0.5391 0 0 1.190

PSO-SR 0.2524 0.5187 0.2222 0.7037 0.8711

SA-SR 0.2661 0.5444 0.2222 0.7037 0.8975

GA-SR 0.2455 0.5197 0.1111 0.7037 0.9038

PS-SR 0.2406 0.5110 0 0.4815 1.005

The best result is marked in bold font

7480 Neural Computing and Applications (2022) 34:7473–7488

123

Rule 1 : If x1 is gðx1;�2:382; 1:086Þ

and x2 is gðx2; 45:65; 3:240Þ

then y ¼ �1:092x1 � 2:519x2 þ 172:3

. . .

Rule 9 : If x1 is gðx1; 2:723; 1:075Þ

and x2 is gðx2; 60:56; 2:814Þ

then y ¼ 238:4x1 � 4:260x2 � 8:838

ð26Þ

where x1 ¼ uðt � 3Þ and x2 ¼ yðt � 1Þ. No rule is removed

from the inference system, and there are no coefficients

equal to zero in the then-part of fuzzy rules. Therefore, the

structure reduction (22) and sparsity (23) are equal to zero.

The quality index (24) for the ANFIS model is 1.190.

8.1.2 Sparse fuzzy models

The results for sparse models are presented in Table 2. The

smallest value of the objective function Q is equal to

0.8711, which is obtained by the PSO-SR method. For this

method, the training error is RMSEt ¼ 0:2524, and the

validation error is RMSEv ¼ 0:5187. RMSEv is smaller

than that for the ANFIS model. The structure reduction Sr
is 0.2222, which means that the PSO-SR method removes

22% of the nine rules. The sparsity S is 0.7037, which

means that this method zeroes out 70% of the 27 polyno-

mial coefficients. Figure 5 shows the output surface, and

Table 3 lists the parameters of the T–S system calculated

by the PSO-SR method. Based on this parameters, the

fuzzy inference rules for the PSO-SR model can be written

as

Table 3 Parameters of T–S

systems in Experiment 1; p, q,
r, d are the parameters of

membership functions in the if-

part of fuzzy rules, and v1, w1, c
are the polynomial coefficients

in the then-part

Rule Label p r q d v1 w1 c

ANFIS

Rule 1 1 - 2.382 1.086 45.65 3.240 - 1.092 - 2.519 172.3

Rule 2 1 - 2.382 1.086 52.92 3.048 - 0.7758 0.3276 37.14

Rule 3 1 - 2.382 1.086 60.56 2.814 - 0.8038 0.5630 24.96

Rule 4 1 0.5643 0.7287 45.65 3.240 - 0.4673 0.3954 29.34

Rule 5 1 0.5643 0.7287 52.92 3.048 - 1.085 0.3869 32.84

Rule 6 1 0.5643 0.7287 60.56 2.814 8.556 0.9031 24.32

Rule 7 1 2.723 1.075 45.65 3.240 - 1.182 0.6467 18.72

Rule 8 1 2.723 1.075 52.92 3.048 - 0.5927 0.4416 27.64

Rule 9 1 2.723 1.075 60.56 2.814 238.4 - 4.260 - 8.838

PSO-SR

Rule 1 0 - 2.701 0.2357 45.68 3.783 0 0 0

Rule 2 1 - 2.701 0.2357 48.04 4.076 0 1.070 0

Rule 3 1 - 2.701 0.2357 60.50 3.844 0 1.051 0

Rule 4 0 - 2.716 0.7576 45.68 3.783 0 0 0

Rule 5 1 - 2.716 0.7576 48.04 4.076 0 1.354 0

Rule 6 1 - 2.716 0.7576 60.50 3.844 0 1.014 0

Rule 7 1 - 1.572 5.892 45.68 3.783 0 1.096 0

Rule 8 1 - 1.572 5.892 48.04 4.076 - 1.713 0.9763 0

Rule 9 1 - 1.572 5.892 60.50 3.844 0 0.9883 0

30
60

40

4

50

55 2

60

050
-2

-4

Fig. 5 Experiment 1: Fuzzy inference system’s output surface for the

model obtained by the PSO-SR method

Neural Computing and Applications (2022) 34:7473–7488 7481

123

Rule 2 : If x1 is gðx1;�2:701; 0:2357Þ

and x2 is gðx2; 48:04; 4:076Þ

then y ¼ 1:070x2

Rule 3 : If x1 is gðx1;�2:701; 0:2357Þ

and x2 is gðx2; 60:50; 3:844Þ

then y ¼ 1:051x2

Rule 5 : If x1 is gðx1;�2:716; 0:7576Þ

and x2 is gðx2; 48:04; 4:076Þ

then y ¼ 1:354x2

. . .

Rule 9 : If x1 is gðx1;�1:572; 5:892Þ

and x2 is gðx2; 60:50; 3:844Þ

then y ¼ 0:9883x2

ð27Þ

Figure 9 shows the real value y, the predicted value ŷ, and

the error y� ŷ for the model obtained using the PSO-SR

method.

8.2 Experiment 2

This experiment uses the hair dryer data collected from a

process described in [23, 25]. In this process, the air is

heated at the tube inlet using a resistor wire, similar to a

hair dryer. The input is the voltage applied to the heater,

and the output is the air temperature at the tube outlet. The

input–output data points were collected from the process,

with the input changing between 3.41 and 6.41 V. The data

points are collected at a sampling time of 0.08 s. To

identify the fuzzy models, the dataset is divided into a

training set containing the first 300 points and a validation

set containing the remaining 300 points. The structure of

the model is

yðtÞ ¼ f ðyðt � 1Þ; uðt � 1ÞÞ ð28Þ

where yðt � 1Þ, uðt � 1Þ are the inputs, and y(t) is the

output.

While training, the inputs are bounded in the intervals

½p1; pZ � ¼ ½3:201; 6:192� and ½q1; qZ � ¼ ½3:410; 6:410�. The
widths of the fuzzy sets are bounded in the intervals

½rmin; rmax� ¼ ½0:1270; 3:176� and ½dmin; dmax� ¼ ½0:1274;
3:185�. The regularization parameters are k ¼ 5 for ridge

regression (15) and d ¼ 1e�06 for ENET regression (16).

The parameter in the quality criterion (24) is a ¼ 0:9.

8.2.1 ANFIS model

Figure 7 shows that the minimum validation error for the

ANFIS model occurs at epoch 97. Choosing this number of

epochs, we obtain the results presented in Table 4. The

0 50 100 150 200 250 300
45

50

55

60

training validation

0 50 100 150 200 250 300
-2

-1

0

1

2

training validation

Fig. 6 Experiment 1:

Comparison of the real y(t) and
predicted ŷðtÞ values for the
model obtained by the PSO-SR

method

7482 Neural Computing and Applications (2022) 34:7473–7488

123

training error is equal to RMSEt ¼ 4:123e�07, and the

validation error is equal to RMSEv ¼ 0:1907. The fuzzy

rules are presented in Table 5. All rules are included in the

inference system, and there are no zero coefficients in the

then-part of fuzzy rules.

8.2.2 Sparse fuzzy models

The results presented in Table 4 show that the smallest

value of Q, equal to 0.2250, is obtained for the SA-SR

algorithm. For this algorithm, the training error RMSEt is

0.0018, the validation error RMSEv is 0.1906, the structure

reduction Sr is 0.6667, and the sparsity S is 0.8148. The

SA-SR method removes 67% of the nine rules and zeroes

out 82% of the 27 polynomial coefficients. Figure 8 shows

the output surface, and Table 5 lists the parameters of the

T–S system obtained by the SA-SR algorithm. The

removed rules (1, 2, 4, 5, 7, and 8) have the zero polyno-

mial in the then-part. The three rules (3, 6, and 9) left in the

system can be written as

Rule 3 : If x1 is gðx1; 3:383; 3:056Þ

and x2 is gðx2; 3:720; 3:159Þ

then y ¼ 0:7771x1 � 0:2938x2

Rule 6 : If x1 is gðx1; 6:091; 3:106Þ

and x2 is gðx2; 3:720; 3:159Þ

then y ¼ 1:505x1 þ 0:9747x2

Rule 9 : If x1 is gðx1; 6:047; 2:789Þ

and x2 is gðx2; 3:720; 3:159Þ

then y ¼ 0:2138x1

ð29Þ

Figure 9 shows the real value y, the predicted value ŷ, and

the error y� ŷ for the model obtained by the SA-SR

method.

8.3 Experiment 3

The goal of this experiment is to predict the time series

generated by the Mackey–Glass chaotic system. This

benchmark problem is frequently used in testing neural

Table 4 Performance comparison of T–S systems for Experiment 2;

RMSEt is the training error, RMSEv is the validation error, Sr is the
structure reduction, S is the sparsity, and Q is the value of objective

function

Alg. RMSEt RMSEv Sr S Q

ANFIS 4.123e-07 0.1907 0 0 0.3717

PSO-SR 0.0013 0.1906 0.4444 0.8148 0.2468

SA-SR 0.0018 0.1906 0.6667 0.8148 0.2250

GA-SR 0.0054 0.1910 0.3333 0.8148 0.2620

PS-SR 0.0026 0.1906 0.4444 0.7778 0.2516

The best result is marked in bold font

Table 5 Parameters of T–S

systems in Experiment 2; p, q,
r, d are the parameters of

membership functions in the if-

part of fuzzy rules, and v1, w1, c
are the polynomial coefficients

in the then-part

Rule Label p r q d v1 w1 c

ANFIS

Rule 1 1 3.201 0.6291 3.410 0.6370 1 8.309e-06 2.437e-06

Rule 2 1 3.201 0.6291 4.909 0.3345 8.600e-05 5.433e-10 1.344e-10

Rule 3 1 3.201 0.6291 6.410 0.6370 1 4.275e-06 6.670e-07

Rule 4 1 4.682 0.6291 3.410 0.6370 1 1.051e-05 3.082e-06

Rule 5 1 4.682 0.6291 4.909 0.3345 8.600e-05 6.496e-10 1.641e-10

Rule 6 1 4.682 0.6291 6.410 0.6370 1 4.527e-06 7.066e-07

Rule 7 1 6.163 0.6291 3.410 0.6370 1 1.853e-05 5.435e-06

Rule 8 1 6.163 0.6291 4.909 0.3345 8.600e-05 1.086e-09 2.803e-10

Rule 9 1 6.163 0.6291 6.410 0.6370 1 6.572e-06 1.025e-06

SA-SR

Rule 1 0 3.383 3.056 5.570 0.3915 0 0 0

Rule 2 0 3.383 3.056 4.218 0.1374 0 0 0

Rule 3 1 3.383 3.056 3.720 3.159 0.7771 - 0.2938 0

Rule 4 0 6.091 3.106 5.570 0.3915 0 0 0

Rule 5 0 6.091 3.106 4.218 0.1374 0 0 0

Rule 6 1 6.091 3.106 3.720 3.159 1.505 0.9747 0

Rule 7 0 6.047 2.789 5.570 0.3915 0 0 0

Rule 8 0 6.047 2.789 4.218 0.1374 0 0 0

Rule 9 1 6.047 2.789 3.720 3.159 0.2138 0 0

Neural Computing and Applications (2022) 34:7473–7488 7483

123

networks and fuzzy logic models [9, 13, 26, 28, 33]. The

system is described by the following differential equation

[22]:

_yðtÞ ¼ 0:2xðt � sÞ
1þ x10ðt � sÞ � 0:1xðtÞ ð30Þ

The fourth-order Runge–Kutta method with xð0Þ ¼ 1:2 and

s ¼ 17 was used to obtain the time series [23]. The signals

yðt � 18Þ and yðt � 12Þ are chosen as the model inputs, and

yðt þ 6Þ is chosen as the model output:

yðt þ 6Þ ¼ f ðyðt � 18Þ; yðt � 12ÞÞ ð31Þ

There are 1000 input/output samples for each t ranging

from 118 to 1117. The first 500 observations are used as

training data and the remaining 500 observations as vali-

dation data.

While training, the inputs are bounded in the interval

½p1; pZ � ¼ ½q1; qZ � ¼ ½0:4256; 1:314�. The widths of the

fuzzy sets are bounded in the interval

½rmin; rmax� ¼ ½dmin; dmax� ¼ ½0:0377; 0:9428�. The parame-

ters are k ¼ 1e�04 for ridge regression (15) and d ¼
1e�06 for ENET regression (16). The quality criterion (24)

is calculated with a ¼ 0:9.

8.3.1 ANFIS model

Based on Fig. 10, 1600 epochs are chosen. As shown in

Table 6, the training error RMSEt is equal to 0.0308, and

the validation error RMSEv is equal to 0.0304. The struc-

ture reduction in the ANFIS model is zero, the sparsity is

zero, and the quality index Q is 0.2163.

8.3.2 Sparse fuzzy models

The performance comparison for various fuzzy models is

presented in Table 6. The smallest value of Q, equal to

0.1675, is obtained using the SA-SR method. For this

method, the training error RMSEt is 0.0399, the validation

error RMSEv is 0.0392, the structure reduction Sr is 0.3333,

and the sparsity S is 0.7037. The SA-SR method removes

33% of the nine rules and zeroes out 70% of the 27

polynomial coefficients. Figure 11 shows the output sur-

face, and Table 7 presents the fuzzy system parameters

obtained by the SA-SR method. The fuzzy rules can be

written as

Rule 1 : If x1 is gðx1; 1:094; 0:8363Þ

and x2 is gðx2; 0:4462; 0:1942Þ

then y ¼ �0:4938

Rule 2 : If x1 is gðx1; 1:094; 0:8363Þ

and x2 is gðx2; 1:209; 0:6497Þ

then y ¼ �1:865x2

Rule 4 : If x1 is gðx1; 1:185; 0:2265Þ

and x2 is gðx2; 0:4462; 0:1942Þ

then y ¼ �0:5587

Rule 5 : If x1 is gðx1; 1:185; 0:2265Þ

and x2 is gðx2; 1:209; 0:6497Þ

then y ¼ �9:160x1 þ 6:293x2

Rule 6 : If x1 is gðx1; 1:185; 0:2265Þ

and x2 is gðx2; 0:7474; 0:7001Þ

then y ¼ 3:100

Rule 9 : If x1 is gðx1; 1:009; 0:7578Þ

and x2 is gðx2; 0:7474; 0:7001Þ

then y ¼ 2:588x1 þ 4:663

ð32Þ

Figure 12 shows the real value y, predicted value ŷ, and

error y� ŷ for the chosen model.

8.4 Experiment 4

This experiment provides an example of using high-order

T–S models for predicting the time series. The dataset and

0 100 200 300 400 500 600
iteration

0.1907435

0.190744

0.1907445

0.190745

va
lid

at
io

n
er

ro
r

Fig. 7 Experiment 2: Validation

error for the ANFIS model

7484 Neural Computing and Applications (2022) 34:7473–7488

123

parameters are the same as in Experiment 3. We consider

the ANFIS model of first order and the PSO-SR model with

order changing from one to five. The experimental results

2

3

6

4

6

5

5 5

6

44
3

Fig. 8 Experiment 2: Fuzzy inference system’s output surface for the

model obtained by the SA-SR method

0 100 200 300 400 500 600
3

4

5

6

7

training validation

0 100 200 300 400 500 600
-0.5

0

0.5

validationtraining

Fig. 9 Experiment 2:

Comparison of the real y(t) and
predicted ŷðtÞ values for the
model obtained by the SA-SR

method

0 200 400 600 800 1000 1200 1400 1600

iteration

0.03

0.031

0.032

0.033

0.034

va
lid

at
io

n
er

ro
r

Fig. 10 Experiment 3:

Validation error for the ANFIS

model

Table 6 Performance comparison of T–S systems for Experiment 3;

RMSEt is the training error, RMSEv is the validation error, Sr is the
structure reduction, S is the sparsity, and Q is the value of objective

function

Alg. RMSEt RMSEv Sr S Q

ANFIS 0.0308 0.0304 0 0 0.2163

PSO-SR 0.0401 0.0340 0.1111 0.7037 0.1906

SA-SR 0.0399 0.0392 0.3333 0.7037 0.1675

GA-SR 0.0418 0.0415 0.2222 0.6296 0.1898

PS-SR 0.0335 0.0331 0.2222 0.2593 0.2118

The best result is marked in bold font

Neural Computing and Applications (2022) 34:7473–7488 7485

123

are presented in Table 8. For all cases, the quality index Q

for the PSO-SR model is better than that for the ANFIS

model, and that for the fifth-order system has the lowest

value equal to 0.1321. This example shows that using a

higher-order system can improve the model performance.

9 Conclusions

A proposition of hybrid methods that combines a sparse

regression, rule labels, and a global optimization method to

identify Takagi–Sugeno fuzzy models for time series pre-

dictions is described. The if-part parameters of fuzzy rules

are determined by one of the following optimization

methods: particle swarm optimization, simulated anneal-

ing, genetic algorithm, or pattern search. The then-part

parameters are determined by ridge regression and elastic

net regression. A new quality criterion that presents a

compromise between the accuracy of a model and its

simplification is proposed. The simplification is based on

reducing the number of polynomial parameters in the then-

part and removing unnecessary rules by using labels. The

well-known adaptive neuro-fuzzy inference system is used

to compare the results. The experimental results show that

the applied methods can improve the fuzzy models by

zeroing some of their coefficients and removing the

unnecessary rules. Moreover, in all conducted experiments,

the proposed methods improve the result obtained using the

reference method.

However, the proposed methods have some limitations

in terms of the size data size. We consider datasets that are

commonly used to test time series prediction algorithms.

The size of these sets is appropriate for using ridge and

elastic net regressions, which are batch methods. This

means that all data are used to compute the regression

0.5

1.5

1

1.21
1

1.5

0.8
0.60.5 0.4

Fig. 11 Experiment 3: Fuzzy inference system’s output surface the

model obtained by the SA-SR method

Table 7 Parameters of T–S

systems in Experiment 3; p, q,
r, d are the parameters of

membership functions in the if-

part of fuzzy rules, and v1, w1, c
are the polynomial coefficients

in the then-part

Rule Label p r q d v1 w1 c

ANFIS

Rule 1 1 0.3829 0.2935 0.7244 0.1965 0.1369 2.464 0.2068

Rule 2 1 0.3829 0.2935 0.7120 0.2543 1.860 - 1.661 0.4616

Rule 3 1 0.3829 0.2935 1.347 0.0792 23.48 6.009 - 16.17

Rule 4 1 0.9719 0.0449 0.7244 0.1965 - 14.89 5.645 11.59

Rule 5 1 0.9719 0.0449 0.7120 0.2543 9.946 - 2.534 - 6.980

Rule 6 1 0.9719 0.0449 1.347 0.0792 - 33.50 36.29 - 8.941

Rule 7 1 1.149 0.2828 0.7244 0.1965 0.4291 - 2.256 3.875

Rule 8 1 1.149 0.2828 0.7120 0.2543 - 2.010 3.209 - 1.218

Rule 9 1 1.149 0.2828 1.347 0.0792 0.9441 0.6491 - 1.856

SA-SR

Rule 1 1 1.094 0.8363 0.4462 0.1942 0 0 - 0.4938

Rule 2 1 1.094 0.8363 1.209 0.6497 0 - 1.865 0

Rule 3 0 1.094 0.8363 0.7474 0.7001 0 0 0

Rule 4 1 1.185 0.2265 0.4462 0.1942 0 0 - 0.5587

Rule 5 1 1.185 0.2265 1.209 0.6497 - 9.160 6.293 0

Rule 6 1 1.185 0.2265 0.7474 0.7001 0 0 3.100

Rule 7 0 1.009 0.7578 0.4462 0.1942 0 0 0

Rule 8 0 1.009 0.7578 1.209 0.6497 0 0 0

Rule 9 1 1.009 0.7578 0.7474 0.7001 2.588 0 4.663

7486 Neural Computing and Applications (2022) 34:7473–7488

123

matrix. As a result, the ridge regression applied in a

objective function of the optimization algorithms is very

fast. Unfortunately, for large datasets, there is a limitation

related to the size of the regression matrix in MATLAB.

This size is the product of the number of observations

(number of rows) and the number of predictors (number of

columns), and its upper limit depends on the computer and

the system used. In this case, recursive regressions should

be applied. We plan to consider such a solution in the

future.

Funding No funding was received for conducting this study.

Data availability All experiments were carried out on publicly

available datasets.

Code availability The research used generally available functions and

toolboxes of the MATLAB program.

Declarations

Conflict of interest The authors declare that they have no conflict of

interest.

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication All authors consented to the publication of

the research.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

0 100 200 300 400 500 600 700 800 900 1000

0.5

1

1.5

training validation

0 100 200 300 400 500 600 700 800 900 1000
-0.1

-0.05

0

0.05

0.1

training validation

Fig. 12 Experiment 3:

Comparison of the real y(t) and
predicted ŷðtÞ values for the
model obtained by the SA-SR

method

Table 8 Performance comparison of T–S systems for Experiment 4;

RMSEt is the training error, RMSEv is the validation error, Sr is the
structure reduction, S is the sparsity, and Q is the value of objective

function

Alg. Order RMSEt RMSEv Sr S Q

ANFIS 1 0.0308 0.0304 0 0 0.2163

PSO-SR 1 0.0401 0.0340 0.1111 0.7037 0.1906

PSO-SR 2 0.0444 0.0435 0.4444 0.7778 0.1568

PSO-SR 3 0.0395 0.0390 0.3333 0.7619 0.1611

PSO-SR 4 0.0344 0.0340 0.3333 0.8148 0.1467

PSO-SR 5 0.0414 0.0403 0.5556 0.8586 0.1321

The best result is marked in bold font

Neural Computing and Applications (2022) 34:7473–7488 7487

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

References

1. Aladi JH, Wagner C, Garibaldi JM (2016) A simplified method of

FOU design utlising simulated annealing. In: Proceedings—2015

IEEE international conference on systems, man, and cybernetics,

SMC 2015. pp 2255–2261. https://doi.org/10.1109/SMC.2015.

394 (2016)

2. Almaraashi M, John R, Coupland S, Hopgood A (2010) Time

series forecasting using a TSK fuzzy system tuned with simulated

annealing. In: 2010 IEEE world congress on computational

intelligence, WCCI 2010. https://doi.org/10.1109/FUZZY.2010.

5584523

3. Azad A, Pirayesh J, Farzin S, Malekani L, Moradinasab S, Kisi O

(2019) Application of heuristic algorithms in improving perfor-

mance of soft computing models for prediction of min, mean and

max air temperatures. Eng J 23(6):83–98. https://doi.org/10.4186/

ej.2019.23.6.83

4. Chen SM, Hsin WC (2015) Weighted fuzzy interpolative rea-

soning based on the slopes of fuzzy sets and particle swarm

optimization techniques. IEEE Trans Cybern 45(7):1250–1261.

https://doi.org/10.1109/TCYB.2014.2347956

5. Eberhart RC, Shi Y (2000) Comparing inertia weights and con-

striction factors in particle swarm optimization. In: Proceedings

of the 2000 congress on evolutionary computation 2000, vol 1,

pp 84–88. https://doi.org/10.1109/CEC.2000.870279

6. Efron B, Hastie T, Johnstone I, Tibshirani R (2004) Least angle

regression. Ann Stat 32(2):407–499. https://doi.org/10.1214/

009053604000000067

7. Gaxiola F, Melin P, Valdez F, Castro JR, Castillo O (2016)

Optimization of type-2 fuzzy weights in backpropagation learn-

ing for neural networks using GAs and PSO. Appl Soft Comput J

38:860–871. https://doi.org/10.1016/j.asoc.2015.10.027

8. Glover FW, Kochenberger GA (2003) Handbook of metaheuris-

tics. Springer, Berlin. https://doi.org/10.1007/978-1-4419-1665-5

9. Ho DT, Garibaldi JM (2014) Context-dependent fuzzy systems

with application to time-series prediction. IEEE Trans Fuzzy Syst

22(4):778–790. https://doi.org/10.1109/TFUZZ.2013.2272645

10. Hoerl AE, Kennard RW (1970) Ridge regression: biased esti-

mation for nonorthogonal problems. Technometrics 12(1):55–67.

https://doi.org/10.1080/00401706.1970.10488634

11. Holland JH (1992) Adaptation in natural and artificial systems: an

introductory analysis with applications to biology, control, and

artificial intelligence. MIT Press, Cambridge

12. Hooke R, Jeeves TA (1961) ‘‘Direct search’’ solution of

numerical and statistical problems. J ACM 8(2):212–229. https://

doi.org/10.1145/321062.321069

13. Isfahani MK, Zekri M, Marateb HR, Mañanas MA (2019) Fuzzy

jump wavelet neural network based on rule induction for dynamic

nonlinear system identification with real data applications. PLOS

ONE 14(12):1–26. https://doi.org/10.1371/journal.pone.0224075

14. Jang JR (1993) ANFIS: adaptive-network-based fuzzy inference

system. IEEE Trans Syst Man Cybern 23(3):665–685. https://doi.

org/10.1109/21.256541

15. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In:

Proceedings of IEEE International Conference on Neural Net-

works, vol 4, pp 1942–1948. IEEE Press, Piscataway, NJ. https://

doi.org/10.1109/ICNN.1995.488968

16. Khosravi A, Machado L, Nunes RO (2018) Time-series predic-

tion of wind speed using machine learning algorithms: a case

study Osorio wind farm. Braz Appl Energy 224(May):550–566.

https://doi.org/10.1016/j.apenergy.2018.05.043

17. Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by

simulated annealing. Science 220(4598):671–680. https://doi.org/

10.1126/science.220.4598.671

18. Kolda TG, Lewis RM, Torczon V (2003) Optimization by direct

search: new perspectives on some classical and modern methods.

SIAM Rev 45:385–482. https://doi.org/10.1137/

S003614450242889

19. Li C, Hu JW (2012) A new ARIMA-based neuro-fuzzy approach

and swarm intelligence for time series forecasting. Eng Appl

Artif Intell 25(2):295–308. https://doi.org/10.1016/j.engappai.

2011.10.005

20. Lin CJ, Jeng SY, Lin HY, Yu CY (2020) Design and verification

of an interval type-2 fuzzy neural network based on improved

particle swarm optimization. Appl Sci (Switzerland) 10(9):3041.

https://doi.org/10.3390/app10093041

21. Lin L, Guo F, Xie X, Luo B (2015) Novel adaptive hybrid rule

network based on TS fuzzy rules using an improved quantum-

behaved particle swarm optimization. Neurocomputing

149(PB):1003–1013. https://doi.org/10.1016/j.neucom.2014.07.

033

22. Mackey MC, Glass L (1977) Oscillation and chaos in physio-

logical control systems. Science 197(4300):287–289. https://doi.

org/10.1126/science.267326

23. MathWorks (2019) Fuzzy logic toolbox: user’s guide

24. MathWorks (2019) Global optimization toolbox: user’s guide

25. MathWorks (2019) System identification toolbox: user’s guide

26. Singh S, Singh S, Banga VK (2020) Design of fuzzy logic system

framework using evolutionary techniques. Soft Comput

24(6):4455–4468. https://doi.org/10.1007/s00500-019-04207-9

27. Sjöstrand K, Clemmensen L, Larsen R, Einarsson G, Ersbøll B

(2018) SpaSM: a MATLAB toolbox for sparse statistical mod-

eling. J Stat Softw 84(10):1–37. https://doi.org/10.18637/jss.

v084.i10

28. Soto J, Melin P, Castillo O (2018) A new approach for time series

prediction using ensembles of IT2FNN models with optimization

of fuzzy integrators. Int J Fuzzy Syst 20(3):701–728. https://doi.

org/10.1007/s40815-017-0443-6

29. Tibshirani R (1996) Regression shrinkage and selection via the

lasso. J R Stat Soc Ser B (Methodol) 58:267–288

30. Wang L, Mendel JM (1992) Fuzzy basis functions, universal

approximation, and orthogonal least-squares learning. IEEE

Trans Neural Netw 3(5):807–814. https://doi.org/10.1109/72.

159070

31. Whitley D (1994) A genetic algorithm tutorial by Darrell Whit-

ley. Stat Comput 4:65–85. https://doi.org/10.1007/BF00175354

32. Wiktorowicz K, Krzeszowski T (2020) Approximation of two-

variable functions using high-order Takagi–Sugeno fuzzy sys-

tems, sparse regressions, and metaheuristic optimization. Soft

Comput 24:1–15. https://doi.org/10.1007/s00500-020-05238-3

33. Yang YK, Sun TY, Huo CL, Yu YH, Liu CC, Tsai CH (2013) A

novel self-constructing radial basis function neural-fuzzy system.

Appl Soft Comput J 13(5):2390–2404. https://doi.org/10.1016/j.

asoc.2013.01.023

34. Zhao L, Qian F, Yang Y, Zeng Y, Su H (2010) Automatically

extracting T–S fuzzy models using cooperative random learning

particle swarm optimization. Appl Soft Comput 10(3):938–944.

https://doi.org/10.1016/j.asoc.2009.10.012

35. Zou H, Hastie T (2005) Regularization and variable selection via

the elastic net. J R Stat Soc Ser B Stat Methodol 67(2):301–320

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

7488 Neural Computing and Applications (2022) 34:7473–7488

123

https://doi.org/10.1109/SMC.2015.394
https://doi.org/10.1109/SMC.2015.394
https://doi.org/10.1109/FUZZY.2010.5584523
https://doi.org/10.1109/FUZZY.2010.5584523
https://doi.org/10.4186/ej.2019.23.6.83
https://doi.org/10.4186/ej.2019.23.6.83
https://doi.org/10.1109/TCYB.2014.2347956
https://doi.org/10.1109/CEC.2000.870279
https://doi.org/10.1214/009053604000000067
https://doi.org/10.1214/009053604000000067
https://doi.org/10.1016/j.asoc.2015.10.027
https://doi.org/10.1007/978-1-4419-1665-5
https://doi.org/10.1109/TFUZZ.2013.2272645
https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.1145/321062.321069
https://doi.org/10.1145/321062.321069
https://doi.org/10.1371/journal.pone.0224075
https://doi.org/10.1109/21.256541
https://doi.org/10.1109/21.256541
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1016/j.apenergy.2018.05.043
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1137/S003614450242889
https://doi.org/10.1137/S003614450242889
https://doi.org/10.1016/j.engappai.2011.10.005
https://doi.org/10.1016/j.engappai.2011.10.005
https://doi.org/10.3390/app10093041
https://doi.org/10.1016/j.neucom.2014.07.033
https://doi.org/10.1016/j.neucom.2014.07.033
https://doi.org/10.1126/science.267326
https://doi.org/10.1126/science.267326
https://doi.org/10.1007/s00500-019-04207-9
https://doi.org/10.18637/jss.v084.i10
https://doi.org/10.18637/jss.v084.i10
https://doi.org/10.1007/s40815-017-0443-6
https://doi.org/10.1007/s40815-017-0443-6
https://doi.org/10.1109/72.159070
https://doi.org/10.1109/72.159070
https://doi.org/10.1007/BF00175354
https://doi.org/10.1007/s00500-020-05238-3
https://doi.org/10.1016/j.asoc.2013.01.023
https://doi.org/10.1016/j.asoc.2013.01.023
https://doi.org/10.1016/j.asoc.2009.10.012

	Identification of time series models using sparse Takagi--Sugeno fuzzy systems with reduced structure
	Abstract
	Introduction
	Related work
	High-order Takagi--Sugeno fuzzy system
	Training the then-part of fuzzy rules
	Regression matrix
	Ridge regression
	Elastic net regression

	Training the if-part of fuzzy rules
	Particle swarm optimization
	Simulated annealing
	Genetic algorithm
	Pattern search

	Performance criterion and design procedure
	Performance criterion
	Design procedure

	Implementation
	Experimental results
	Experiment 1
	ANFIS model
	Sparse fuzzy models

	Experiment 2
	ANFIS model
	Sparse fuzzy models

	Experiment 3
	ANFIS model
	Sparse fuzzy models

	Experiment 4

	Conclusions
	Open Access
	References

