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Abstract
Hydropower is among the most efficient technologies to produce renewable electrical energy. Hydropower systems present

multiple advantages since they provide sustainable and controllable energy. However, hydropower plants’ effectiveness is

affected by multiple factors such as river/reservoir inflows, temperature, electricity price, among others. The mentioned

factors make the prediction and recommendation of a station’s operational output a difficult challenge. Therefore, reliable

and accurate energy production forecasts are vital and of great importance for capacity planning, scheduling, and power

systems operation. This research aims to develop and apply artificial neural network (ANN) models to predict hydroelectric

production in Ecuador’s short and medium term, considering historical data such as hydropower production and precip-

itations. For this purpose, two scenarios based on the prediction horizon have been considered, i.e., one-step and multi-step

forecasted problems. Sixteen ANN structures based on multilayer perceptron (MLP), long short-term memory (LSTM),

and sequence-to-sequence (seq2seq) LSTM were designed. More than 3000 models were configured, trained, and validated

using a grid search algorithm based on hyperparameters. The results show that the MLP univariate and differentiated model

of one-step scenario outperforms the other architectures analyzed in both scenarios. The obtained model can be an

important tool for energy planning and decision-making for sustainable hydropower production.

Keywords Artificial neural network � Hydropower production forecasting � LSTM � MLP � Monthly electricity production �
Sequence to sequence

1 Introduction

Hydropower is a renewable energy source where electrical

energy is derived from water’s potential energy moving

from higher to lower elevations. Hydropower is a mature

technology and widely used; in 2019, a total of 170

countries/territories in the world reported to have installed

capacity and generated hydropower. Hydropower is among

the most efficient technologies for producing renewable

electrical energy, with a typical efficiency of 90%.

Hydropower systems are cost-competitive: Today, it is the

only renewable technology that produces electricity at an

equal or lower cost, compared to thermal energy sources

like coal, oil, or gas, typically in the range of USD 2–5c per

kWh [1, 2].

Ecuador is an emerging hydropower actor in Latin

America. The country is currently implementing the

National Master Plan for Electrification 2016–2025 to

cover more than 90% of the national electrical demand

with hydroelectric sources [3]. According to the last official

report of Ecuador’s electric sector statistics in 2018,

Ecuador’s hydroelectric capacity (5036.43 MW) repre-

sented 62.58% of the total capacity (8048.11 MW). Gen-

eration from hydroelectric systems in 2018 amounted to

70.71% of the total production [4].

& Julio Barzola-Monteses

jbarzola@correo.ugr.es

1 Department of Computer Science and Artificial Intelligence,
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Sustainability, controllable energy, and the capability of

quickly responding to surges of demand in the grid are

among the main advantages of hydroelectric plants. Reli-

ability offered for hydroelectric plants is a pivotal char-

acteristic that cannot be obtained by solar or wind sources

due to intermittence. Notwithstanding the multiple advan-

tages, hydropower plants’ effectiveness is affected by

factors such as river/reservoir inflows, temperature, sea-

sonal demand, abrupt demands, gross domestic product,

electricity price, and particularly their complicated corre-

lations with meteorological and human phenomena. All

these aspects make the prediction/recommendation of sta-

tion operational output a difficult challenge [5]. At the

same time, reliable and accurate energy production fore-

casts are vital to electric energy operators to improve the

capacity planning, scheduling, and operation of power

systems. Finally, depending on the needs of the electric

operator, these forecasts can be accumulated on different

time scales: short (hours or days ahead), medium (from a

week to months ahead), or long term (years ahead) [6].

This research aims to explore and evaluate the capa-

bilities of ANN models for predicting hydroelectric pro-

duction in the short and medium terms. We focus our

experiments on historical data from Ecuador, but the

approach can be extended to any other country. Since

hydropower strongly depends on meteorological condi-

tions, rainfall data play a crucial role in our study. Previous

works identified some limitations of statistical time anal-

ysis techniques [7, 8]: the difficulties in incorporating

multiple exogenous variables and the lack of accuracy for

long-term predictions. Following the success of neural

networks in many areas [9, 10], the departing hypothesis of

this paper is that ANN models can better capture the

dynamics of hydroelectric production and, therefore, pro-

vide better results in our use case—even though the num-

ber of observations is not very large. In the literature, there

are a few contributions studying hydroelectric production

in countries such as China, Serbia, and Brazil [5, 11, 12].

Still, there are no similar studies in the literature applying

recurrent neural networks and focused on a medium-size

region during a large period in which the installed capacity

has evolved, as is the case in Ecuador. The model obtained

represents an interesting tool for energy planning and

decision-making for sustainable hydropower production in

Ecuador. Furthermore, the paper provides a methodology

and tools for model training and configuration that can be

extended to other contexts.

The rest of the paper is organized as follows: Sect. 2

summarizes the ANN techniques used and presents related

works on the topic. The experimental design applied in the

current study is detailed in Sect. 3. Experimental evalua-

tions and discussion of the results based on the models are

shown in Sect. 4. Finally, Sect. 5 includes concluding

remarks and directions for future work.

2 Background

2.1 Neural networks for time series prediction

A time series is a set of data samples collected at regular

time intervals. Time series analysis comprises a vast col-

lection of techniques for analyzing historical temporal data

to extract meaningful features or information. Time series

forecasting using deep learning (a family of machine

learning techniques based on artificial neural networks) has

shown higher accuracy than other traditional techniques

[13].

ANN is a nonlinear computational model loosely

inspired by the human brain. In general, an ANN is made

up of several layers of neurons connected through weighted

links. The term ‘‘deep learning’’ means that there are many

of these layers and neurons. The output of the network is

calculated as the composition of the calculations performed

by each neuron. Training an ANN means adjusting the

weights to approximate the (unknown) function that relates

the (known) inputs and outputs. There are commonly three

aspects that characterize an ANN: (i) the interconnection

pattern between the neurons of the different layers; (ii) the

optimization algorithm to learn the weights of the inter-

connections, and (iii) the activation function that converts a

neuron’s weighted input to its output activation [14].

We consider a feed-forward neural network (FFNN) and

two recurrent neural networks (RNN) in this work.

Specifically, we use multilayer perceptron (MLP), Long

Short-Term Memory (LSTM) and sequence-to-sequence

LSTM (seq2seq LSTM) models, which are briefly pre-

sented below.

2.1.1 Multilayer perceptron model (MLP)

Feed-forward neural networks (FFNNs) are a type of ANN

in which the computations proceed only in the forward

direction. The most common FFNN is the multilayer per-

ceptron (MLP), in which each neuron in a layer is con-

nected to every neuron in the next layer. MLP networks are

typically trained with the stochastic gradient descent

method, which iteratively updates the network’s weights

according to the error between the obtained and the

expected outputs. This error flows backward through the

network to calculate the gradient at each neuron, a process

called backpropagation [15]. Despite its simplicity, MLP

has achieved updated performance in various supervised

and unsupervised machine learning applications. Its suc-

cess highly depends on the independence assumption
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among the training and test data [16]. In this work, we use

MLPs to process subsequences of fixed length, i.e., the size

of the input layer of the MLP determines the length of the

sample of the sequence.

2.1.2 Long short-term memory model (LSTM)

Recurrent Neural Networks (RNNs) are ANN types that

allow cycles in the network, i.e., computations can proceed

from one layer to a previous one. In this way, RNNs use the

current inputs and previous calculations to compute the

network output, thus keeping track of an internal state.

RNNs are trained with the backpropagation through time

(BPTT) method [15], which applies backpropagation to an

‘‘unrolled’’ version of the network—unrolling means

obtaining an equivalent acyclic version of the network by

replicating the components involved in the recurrence and

sharing their weights.

Long short-term models (LSTMs) are a particular type

of RNNs purposely designed to learn both short- and long-

term temporal dependencies in time series data. Hochreiter

and Schmidhuber designed this new architecture based on

the concept of ‘‘emory blocks or gate units’’ in each hidden

layer. They had as the primary motivation to solve the

vanishing and exploding gradients problem [17–19]. Fig-

ure 1a shows a schematic diagram of an LSTM unit.

Given an input time series x = {x1, x2, …, xT}, the

LSTM maps the input time series to two output time

sequences h = {h1, h2, …, hT} and y = {y1, y2, …, yT}

iteratively by updating the states of memory cells with the

following procedure [16, 20]:

Each gate is a sigmoid unit that changes every element

in [0, 1], i.e., they use a logistic function defined in Eq. (1):

r xð Þ ¼ 1

1þ e�x
: ð1Þ

Input gate it controls the input of new information that is

going to be stored in the new cell state, which derives the

following:

it ¼ r wxixt þ whiht�1 þ bið Þ: ð2Þ

Forgetting gate ft decides what information must be

discarded from cell state, where:

ft ¼ r wxf xt þ whf ht�1 þ bf
� �

: ð3Þ

Output gate ot controls and filters the output information

flowing out of the cell, where:

ot ¼ r wxoxt þ whoht�1 þ boð Þ: ð4Þ

At each time t, the input features are computed by input

xt and the previous hidden state ht-1 by using the tanh

function, as follows:

gt ¼ tanh wxcxt þ whcht�1 þ bcð Þ: ð5Þ

The memory cell is updated by moderated input features

and the partial forgetting of the previous memory cell,

which yields:

ct ¼ ft � ct�1 þ it � gt: ð6Þ

Then, the hidden output state ht is calculated by the

output gate ot and the memory cell ct, as follows:

ht ¼ ot � tanh ctð Þ: ð7Þ

Finally, the output of LSTM yt is computed by using the

following expression:

yt ¼ r whyht þ by
� �

: ð8Þ

In Eqs. (2)–(8), the matrices wxi, wxf, wxo, and wxc are the

appropriate input weighting matrices, while whi, whf, who,

and whc are the recurrent weighting matrices; and why

represents the hidden output weight matrix. The vectors bi,

bf, bo, bc, and by are the corresponding bias vectors.

LSTMs are trained with BPTT, considering that whi, whf,

who, and whc are the recurrent weighting matrices. They

support the backpropagation of the gradient many time

steps into the past, thus preventing the vanishing and

exploding gradient problems. For a comprehensive

description of the gradient computation of each component

of the LSTM gate, we refer the reader to [21].

Fig. 1 Schematic diagrams:

a LSTM unit and b encoder and

decoder in the seq2seq model

with L stacked layers
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2.1.3 Sequence-to-sequence model (seq2seq)

The sequence-to-sequence model (seq2seq) is a neural

architecture that translates one data sequence into another.

It has a structure made up of two sub-modules: the encoder

to read and encode the input sequence, and the decoder in

charge of reading the encoded input sequence and gener-

ating the output sequence prediction. Seq2seq models are

related to autoencoders, an unsupervised learning archi-

tecture aimed at regenerating the input from the output.

While autoencoders use the same sequence as input and

output, seq2seq allows supervised learning by accepting

different sequences at both ends.

Seq2seq model was first introduced by Sutskever et al.

in 2014 [22]. Each sub-model can be composed of recur-

rent neural networks such as gated recurrent unit (GRU) or

LSTM [23] and trained accordingly. These models can

address challenging sequence-to-sequence prediction

problems. In this work, seq2seq LSTM to perform med-

ium-term hydropower production forecasting is considered.

Figure 1b shows a schematic diagram of seq2seq

LSTM. The encoded input sequence representation is

repeated multiple times, once each step in the output

sequence. This sequence of vectors is presented to the

LSTM decoder. Simultaneously, the decoder output

sequence is wrapped through the time distributed layer,

which allows the wrapped layers to be used for each time

step from the decoder [24].

Given an input time series v1:Tenc ¼ v1; v2; . . .; vTenc , the
encoder maps the input sequence time series to the fixed-

length representation he1:L;Tenc [25]:

he1:L;Tenc ¼ fenc v1:Tenc
� �

ð9Þ

where he1:L;Tenc is the encoder’s hidden and/or cell states for

all stacked layers at time Tenc. Then, the decoder output

ŷ1:Tdec is defined as follows:

ŷ1:Tdec ¼ fdec he1:L;Tenc

� �
ð10Þ

which is a sequence of Tdec predictions. A simplified way

to denote the composition of the encoder and decoder is

using the following expression:

ŷ1:Tdec ¼ fenc!dec v1:Tenc
� �

: ð11Þ

2.2 Related works

Before mentioning some related works, it is necessary to

know the classification of hydroelectric power systems.

Hydroelectric projects are mainly classified as run of river

(RoR) hydropower plant, storage (reservoir) hydropower

plant (SHP), pumped-storage hydropower (PSH), and in-

stream technologies (Hydrokinetic). An RoR hydropower

is a plant where little or no water storage is provided; it

generates electricity from the river’s available flow. An

SHP includes a dam and a reservoir to impound water,

store and release later when needed. In a PSH plant, water

is pumped from a lower reservoir into an upper reservoir

when electricity generation exceeds demand and is released

back from the upper reservoir through turbines to generate

electricity when demand exceeds the supply. Finally, a

hydrokinetic plant can be derived from water’s movement

(kinetic energy) in rivers, streams, canals, tidal flow, and

ocean currents [2].

Table 1 shows the main works related to hydroelectric

production’s prediction in the last five years. There is more

than one approach to develop forecasts, such as (i) statis-

tical techniques to derive mathematical relationships

between dependent variables and independent variables,

(ii) hydrological modeling for the characterization of real

hydrological systems using physical models and compu-

tational simulation, (iii) satellite mapping techniques in

which high-resolution satellite images are considered in

studies such as orography and hydrographic basins, (iv)

optimization algorithms which are procedures that are

executed iteratively comparing several solutions until an

optimal solution is found, and (v) machine learning tech-

niques which use computational methods to learn infor-

mation directly from data without relying on a

predetermined equation as a model.

The most related works to ours are [5, 11, 12], which

also use ANNs for hydrologic (power) time series predic-

tion. In [5], the authors present DeepHydro, a deep learning

framework for multivariate time series prediction based on

latent recurrent neural networks. The experimentation

focused on a 2-year dataset of the stations located across

the Dadu River (China) and hourly forecasts. The main

influencing variables considered were temperature and

water flow, while we use precipitations—easier to obtain—

as a proxy for the latter. In contrast, we consider larger

periods and several watersheds, and more importantly, a

dynamic context—Ecuador’s installed capacity varies

during the study period. A more comprehensive compar-

ison of DeepHydro and fine-tuned LSTMs remains as

future work.

In [11], the hydrological flow in Southwest Serbia was

estimated instead of the production. Precipitations were

identified as a critical predictor of flow, which is a fun-

damental assumption of our work—afterward validated in

the experimentation. Our methodology for hyperparameter

optimization is inspired by their approach, although we

apply a more comprehensive set of techniques (i.e., MLPs

with different numbers of input nodes, LSTM, seq2seq)

beyond the MLPs used in their paper.
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Similarly, the research work in [12] focused on MLPs

and the group method of data handling (GMDH)—a vari-

ation in MLP that allows zeroing selected nodes of the

network—to predict hydrological production in the Ama-

zon (Brazil). They also used data from several years and

rainfall data (aggregated from several basins) as the

exogenous variable. Another study developed in South

Korea performs a similar analysis considering climate

change scenarios and using MLPs [26]. Again, our paper

considers more recent techniques aimed explicitly at time

series processing, and the comparison with GMDH can be

a prospective direction for future work.

Table 1 Selected related works of hydropower production forecasting

References Geographic location Hydropower

projects

Regressive variable Prediction variable Approach to developing forecasts

Zhou et al.

[5]

Hydropower stations on the

Dadu River (China)

Storage

(reservoir)

based

Water flow

External factors

(meteorology, time,

and sale price)

Power production DeepHydro—recurrent neural

networks

Kostić

et al.

[11]

southwestern Serbia Storage

(reservoir)

based

Air temperature

Precipitation

Hydrological flow

rate

Power production

Multilayer feed-forward

perceptron (MLP)

Lopes

et al.

[12]

Amazon region (Brazil) run-of-river Precipitation Monthly potential

hydropower

generation

Group method of data handling

MLP

Jung et al.

[26]

Han River basin (South

Korea)

Storage

(reservoir)

based

Precipitation

Humidity

Temperature

Wind speed

Runoff prediction Multilayer feed-forward

perceptron (MLP)

Razi et al.

[27]

Peninsular Malaysia run-of-river Net head

Water flow rate

Power production Statistical analysis is applied

Oyerinde

et al.

[28]

Niger Basin (West Africa) Storage

(reservoir)

based

Precipitation

Evapotranspiration

Power production A hydrological model is applied

Dehghani

et al.

[29]

Dez dam (Iran) Storage

(reservoir)

based

Precipitation

Water flow rate

Power Production

Power production Grey wolf optimization Adaptive

neuro-fuzzy inference system

(ANFIS)

Tamm

et al.

[30]

North Estonia Run-of-river Digital elevation map

Land use map

Soil map

Weather data

Hydropower

potential

Soil and Water Assessment Tool

(SWAT) model

Chen and

Zhong

[31]

Tankeng hydropower

station (China)

Storage

(reservoir)

based

Reservoir inflow

Electricity price

Hydropower

consumption rate

Power production Multi-time-scale coupling

operation

Model dynamic Bayesian network

Model probability-based

prediction model

Contreras

et al.

[32]

Poqueira River basin

(South of Spain)

run-of-river Climate service

Historical local data

Seasonal forecast of

water inflow

Power

PRODUCTION

Quantile mapping method

Hidalgo

et al.

[33]

São Francisco river basin

(Brazil)

Storage

(reservoir)

based

Air temperature

Precipitation

Power production Hydrological-hydropower model

Farfán

et al.

[34]

Machángara sub-basin of

the Paute river basin

(Ecuador)

Storage

(reservoir)

based

Meteorological data Water flow WEAP and GR2M physical

models

ANN models

ANN hybrid model
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3 Experimental setup

3.1 Data

Data for the current study, corresponding to the

2000–2015 year period, have been obtained from official

and governmental institutions of Ecuador, namely the

Electricity Regulation and Control Agency (ARCONEL)

[35] and the National Institute of Meteorology and

Hydrology (INAMHI) [36]. The dataset is built considering

the data collected from the annual statistical reports of both

institutions. The resolution of the collected dataset is

1 month.

Figure 2 depicts the monthly gross production (MGP) of

hydroelectric systems (GWh) and the total average

monthly precipitation (mm) of the three main hydrographic

basins of Ecuador [8]. The entire dataset is divided into a

train and test set with zero overlaps. The first 75% of all

data were assigned as the training set and the last 25% as

the test set.

A time series can be considered stationary if the mean

and variance are constant and there are no significant trends

and seasonal variations. The MGP series does not present

stationary characteristics due to a significant trend. Then,

the first difference is applied to decrease the trend, i.e., the

series is detrended [37]. Both series were used in the pro-

posed models: original MGP series, i.e., without differen-

tiation, and MGP series with differentiation (D).

3.2 Model features and targets

The experimental design considers a univariate and

bivariate time series problem. For the univariate case, only

one variable or feature is considered as input (regressor

variable) and output (predictor variable) of the model

(black box). In this univariate case, the hydroelectric pro-

duction variable is considered. On the other hand, for the

bivariate case, two variables are considered, i.e., two

regressor variables at the black box’s input and one at the

output as a prediction variable. In this bivariate case,

hydroelectric production and precipitation are regressive

variables, and hydroelectric production is kept as a pre-

dictor variable.

The training addressed in the models is of the supervised

type. The generated samples to be passed to the model at

the input and output have the following structure:

Let one input sample be represented as a matrix,

X 2 RT�f , where T is the number of time steps and f is the

number of features. As mentioned, the number of features

was f = 1 (univariate case) and f = 2 (bivariate case),

where each row of the matrix X is defined as follows:

Univariate case : x t½ � ¼ MGP t½ �
� �

ð12Þ

Bivariate case : x t½ � ¼ MGP t½ � Prec t½ �
� �

ð13Þ

where t 2 1; . . .; T . For each input sample, one target

sample is generated, represented by a vector y 2 RN�1,

where N represents the number of predicted time steps

from T. The target vector represents the actual MGP vec-

tor, which is given by

y ¼ MGP 1½ �; . . .; MGP n½ �; . . .;MGP N½ �
� �

ð14Þ

where y n½ � is the actual MGP value at time step n, and

n 2 1; . . .;N. This targeting vector is used to compare with

the predicted MGP vector, ŷ 2 RN�1.

Fig. 2 Monthly hydroelectric

production (up) and total

precipitation (down) of the three

considered watersheds during

2000–2015
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3.2.1 Problem framing

A forecast problem that requires a prediction of the next

time step is named one-step forecast model. On the other

hand, a forecast problem involving a prediction of more

than a one-time step is the multi-step forecast model. The

current work considers both forecast problems as scenarios.

The one-step forecast model implies a month of prediction,

while the multi-step forecast model implies twelve months,

i.e., one year. The two mentioned scenarios are presented

as follows:

One-step scenario:

• Univariate case: Given a recent hydroelectric produc-

tion, what is the expected hydroelectric production for

one step ahead?

• Bivariate case: Given recent hydroelectric production

and precipitations, what is the expected hydroelectric

production for one step ahead?

Multi-step scenario:

• Univariate case: Given a recent hydroelectric produc-

tion, what is the expected hydroelectric production for

twelve steps ahead?

• Bivariate case: Given a recent hydroelectric production

and precipitations, what is the expected hydroelectric

production for twelve steps ahead?

3.2.2 Data transformation

Normalization is applied to each variable’s data set and

transformed into values between - 1 and ? 1. Input and

output are rescaled from one range of values (original

values) to a new range of values. The rescaling is often

accomplished by using a linear interpretation formula such

as

x0 ¼ xi � xminð Þ
xmax � xminð Þ xnew max � xnew minð Þ þ xnew min

ð15Þ

where x0 is the normalized value, xi is the real value, xmax

and xmin are the maximum and minimum values of the

variable, respectively. In this work, xnew_max and xnew_min

are ? 1 and - 1, respectively. Equation (15) is named

Min–Max normalization, which can preserve all data

relationships [38].

3.3 Hyperparameters

Hyperparameters are configuration parameters external to

the model itself, whose values generally cannot be esti-

mated from the training data set and are specified by the

designer to adjust the learning algorithms. There are

mainly three types of hyperparameters: (i) structure and

topologies, such as number of layers, number of neurons,

their activation functions, and others; (ii) optimization,

such as epochs, batch size, learning rate, momentum, and

similar; and (iii) Regularization, such as dropout proba-

bility, L2 regularization coefficient, and others [25, 39].

In the current work, more than 3000 models were

trained. Considering a grid search algorithm, a tuning

process was applied to the implemented models by varying

hyperparameters to find the configurations that yield the

best generalization on the validation data set. The grid

search procedure exhaustively considered all the hyperpa-

rameter combinations and selected the best subset among

them. This has a high computational cost that can be too

expensive for models and datasets larger than ours.

Hyperparameter optimization algorithms such as Hyper-

Band [40] and Bayesian Optimization [41] can be applied

in these cases.

Accordingly, MLP, LSTM, and seq2seq LSTM archi-

tectures for the two scenarios specified above have been

configured. For the case of the MLP and LSTM models,

configurations with one hidden layer are considered.

Table 2 shows the variation in hyperparameters used in

each of the implemented models.

In Table 2, n_input is the number of prior inputs to use

as input for the model, n_nodes is the number of nodes/

units to use in the hidden layer, n_epochs is the number of

training epochs, n_batch is the number of samples to

include in each mini-batch, act_hid is the activation func-

tion to use in the hidden layer, and act_out is the activation

function to use in the output layer. For the case of seq2seq

LSTM, nodes_enc and nodes_dec are the number of LSTM

units to use in the encoder and decoder, respectively;

nodes_dense is the number of nodes to use in the fully

connected layer; act_enc and act_dec are the activation

functions used in the encoder and decoder, respectively.

Table 3 shows all structures used in different configu-

rations with hyperparameters during the execution of the

experiments. For simplification reasons, each model is

represented through its corresponding acronyms.

On the other hand, due to neural networks’ stochastic

nature, each structure configuration is trained and validated

ten times during the hyperparameter tuning process. The

mean of the RMSE errors is determined and registered.

3.4 Performance evaluation

3.4.1 Model evaluation

As known, k-fold cross-validation does not work for time

series data because they ignore its temporal relation.

Therefore, a rolling-forecast method will be used, also
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called walk-forward model (WFM) validation. WFM par-

titions data before and after a selected time point and uses

each partition for training and validation, respectively.

Since we are interested in predicting for the following

years, this method better reflects the expected accuracy of

the model in real use. Following [42], each time step of the

test dataset is executed one at a time.

3.4.2 Performance evaluation

In literature reviews, in which model adjustments with

energy observations are handled, the RMSE metric is the

most used evaluation parameter [42]. Therefore, the RMSE

is considered the main metric to select the best

configuration model with the lowest forecast error. Others

supporting metrics are the MAE and MAPE [20, 43–45].

4 Experimental results and discussion

In this section, the experimental results achieved with

MLP, LSTM, and seq2seq LSTM models are presented and

discussed. All experiments executed in this research were

run on a machine with Intel Core i7-6500U CPU

@2.50 GHz 9 4, equipped with 16 GB physical memory

with running operating system Ubuntu 20.04 v. All con-

figuration models were implemented in Python 3.8, using

the TensorFlow library.

Table 2 hyperparameters considered for experiment models MLP, LSTM and seq2seq LSTM

MLP and LSTM models seq2seq LSTM model

Hyperparameter Values Hyperparameter Values

n_input Range: 1 to 24, incrementing by powers of 2 n_input Range: 1 to 24, incrementing by powers of 2

n_nodes Range: 2 to 64, incrementing by powers of 2 nodes_enc Range: 2 to 64, incrementing by powers of 2

n_epochs Range: 25 to 150, incrementing by powers of 25 nodes_dec Range: 2 to 64, incrementing by powers of 2

n_batch Range: 2 to 16, incrementing by powers of 2 nodes_dense Range: 2 to 64, incrementing by powers of 2

act_hid ‘Sigmoid’, ‘tanh’, ‘relu’, ‘linear’ n_epochs Range: 25 to 150, incrementing by powers of 25

act_out ‘Sigmoid’, ‘tanh’, ‘relu’, ‘linear’ n_batch Range: 2 to 16, incrementing by powers of 2

act_enc ‘Sigmoid’, ‘tanh’, ‘relu’, ‘linear’

act_dec ‘Sigmoid’, ‘tanh’, ‘relu’, ‘linear’

Table 3 Acronyms of the ANN models considered during the execution of the experiments

Scenario Time series problem Model Acronyms

One-step Univariate Multilayer perceptron without differentiation—univariate MLP-uni

Univariate Multilayer PERCEPTRON with differentiation—univariate MLP-D-uni

Univariate Long short-term memory without differentiation—univariate LSTM-uni

Univariate Long short-term memory with differentiation—univariate LSTM-D-uni

Bivariate Long short-term memory without differentiation—bivariate LSTM-bi

Bivariate Long short-term memory with differentiation—bivariate LSTM-D-bi

Multi-step Univariate Multilayer perceptron without differentiation—univariate MLP-uni

Univariate Multilayer perceptron with differentiation—univariate MLP-D-uni

Univariate Long short-term memory without differentiation—univariate LSTM-uni

Univariate Long short-term memory with differentiation—univariate LSTM-D-uni

Univariate Sequence-to-sequence LSTM without differentiation—univariate S2S-uni

Univariate Sequence-to-sequence LSTM with differentiation—univariate S2S-D-uni

Bivariate Long short-term memory without differentiation—bivariate LSTM-bi

Bivariate Long short-term memory with differentiation—bivariate LSTM-D-bi

Bivariate Sequence-to-sequence LSTM without differentiation—bivariate S2S-bi

Bivariate Sequence-to-sequence LSTM with differentiation—bivariate S2S-D-bi
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4.1 One-step scenario

After carried out the experiments and fine-tuning hyper-

parameters using the train dataset and WFM validation on

the test dataset, the best topology neural network achieved

is as follows: n_input = 1, n_nodes = 64 neuron,

n_epochs = 25, n_batch = 1, act_hid = sigmoid and

act_out = sigmoid. Table 4 shows the top 10 models based

on the RMSE metric.

For this scenario, six structures shown in Table 3 were

tested; however, only one appears in the top 10. In this

case, MLP structures outperform both LSTM univariate

and bivariate models. The best results were obtained using

MLP with differentiation–univariate, i.e., applying differ-

entiation to the data of the hydroelectric production vari-

able resulted in better accurate predictions.

From Table 4, it can be noted that in the scenario of

predicting a month from past months, the best-obtained

models require a look back of one month. In addition, the

following characteristics are observed: The number of

nodes varies between 16 and 64. The epochs’ values are 25

and 100. The act_hid can be sigmoid and linear functions,

whereas for act_out, the model has better accuracy with

sigmoid and tanh functions. Finally, the common hyper-

parameters are n_input = 1 and n_batch = 1.

Table 5 shows the accuracy results RMSE of the best

models of each structure. For the MLP case, a better fit of

the prediction data is achieved by transforming the series,

i.e., differentiation is applied. Also, LSTM univariate and

bivariate structures, the best metrics were obtained by

differentiation.

From Table 5, it can be noted that MLP outperforms

LSTM. For the case of LSTM structures, accuracy can

improve if there is more than one regressor variable. For

our case study, LSTM-D-bi forecasts improved about 38%

compared to the best LSTM univariate. In this work and

case study, MLP achieved better error metrics than RNN

techniques for one-step scenarios.

LSTM models require more computational time to run.

Figure 3 shows that the better average time is around

0.5 min per model and it is achieved with the univariate

and differentiated MLP. Moreover, its RMSE metric is the

lowest among all the one-step architectures. The univariate

LSTM model has the worst time, 2.48 min/model. On the

other hand, it is noted that when applying differentiation

for the bivariate LSTM case, time improves substantially

compared to LSTM-D-uni (about 15%). Based on the

results, MLP-D-uni is the model with the best RMSE

metric and time to run in this scenario.

4.2 Multi-step scenario

After carried out the experiments and fine-tuning hyper-

parameters using the train dataset and WFM validation in

test dataset, the best topology neural network achieved is as

follows: n_input = 5, n_nodes = 84 neurons, n_epochs =

100, n_batch = 16, act_hid = tanh and act_out = linear.

Table 6 shows the top 10 models based on the RMSE

metric. For this scenario, ten structures shown in Table 3

were tested; however, only one type appears in the top 10.

In this case, MLP outperforms both LSTM and Seq2seq

LSTM models. The best model was MLP with differenti-

ation—univariate. Moreover, to all the top ten models

showed in Table 6, differentiation to the MGP series was

applied, and better accurate predictions were achieved.

It is also noted that in this scenario of predicting twelve

months from past months, the best-obtained models require

a look back of 5 months, i.e., in this multi-step scenario, a

lower amount of historical data is required. The following

characteristics are also observed: The number of nodes

varies between 84 and 128 for MLP-D. The epochs’ values

vary between 50 and 150. Finally, the common hyperpa-

rameters are n_input = 5, n_batch = 16, act_hid = tanh

and act_out = linear.

The results achieved with LSTM are not so distant from

those achieved by MLP. The RMSE difference between the

best MLP-D and LSTM-D-uni is 12.2 GWh, i.e., about

Table 4 The top ten results

from our hyperparameter search

and WFM validation

Model n_input n_nodes n_epochs n_batch act_hid act_out RMSE (GWh)

MLP-D-uni 1 64 25 1 Sigmoid Sigmoid 4.09

MLP-D-uni 1 32 25 1 Sigmoid Sigmoid 4.23

MLP-D-uni 1 64 25 1 Linear tanh 4.60

MLP-D-uni 1 64 50 1 Linear tanh 4.69

MLP-D-uni 1 16 50 1 Sigmoid Sigmoid 4.78

MLP-D-uni 1 32 25 1 Linear tanh 4.95

MLP-D-uni 1 64 75 1 Linear tanh 5.04

MLP-D-uni 1 32 50 1 Linear tanh 5.23

MLP-D-uni 1 64 100 1 Linear tanh 5.28

MLP-D-uni 1 16 25 1 Sigmoid Sigmoid 5.29
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9.9%. The LSTM-D-uni configuration ranks second with

the best accuracy among the ten multi-step architectures

considered in Table 3. Despite the limited number of

observations, LSTM univariate architecture outperforms

LSTM and seq2seq bivariate models. This result should be

considered for future studies applied to the energy area.

Table 7 shows the accuracy results RMSE of the best

model of each architecture. In general, the best RMSE

values in each architecture considered in this multi-step

scenario have been achieved by applying differentiation to

the MGP series. Therefore, during data preprocessing, the

MGP series differentiation improves the 12-month

sequence of hydroelectric production prediction error.

Interestingly enough, there are no significant differences

in the errors for each one of the 12-step predictions, par-

ticularly for the MLP. Figure 4 shows the validation errors

of each month for the best MLP, LSTM, and seq2seq

model highlighted in Table 7. These are average errors

Table 5 Accuracy of RMSE

results for all models and all

cases of one-step scenarios

MLP LSTM

MLP-uni MLP-D-uni LSTM-UNI LSTM-D-UNI LSTM-bi LSTM-D-BI

195.1 4.09 177.68 15.49 170.41 11.23

The number is the average on runs. The models with the best RMSE metrics are in bold

Fig. 3 Execution times of

models contrasted with the

RMSE of the best

configurations. Results are

obtained from the six

architectures analyzed in this

scenario

Table 6 The top ten results

from the hyperparameter search

(average of 12 steps ahead)

Model n_input n_nodes n_epochs n_batch act_hid act_out RMSE (GWh)

MLP-D-uni 5 84 100 16 tanh Linear 123.84

MLP-D-uni 5 84 75 16 tanh Linear 123.84

MLP-D-uni 5 128 150 16 tanh Linear 123.93

MLP-D-uni 5 94 75 16 tanh Linear 124.00

MLP-D-uni 5 128 50 16 tanh Linear 124.09

MLP-D-uni 5 94 125 16 tanh Linear 124.12

MLP-D-uni 5 84 75 16 tanh Linear 124.16

MLP-D-uni 5 94 50 16 tanh Linear 124.18

MLP-D-uni 5 88 75 16 tanh Linear 124.18

MLP-D-uni 5 104 125 16 tanh Linear 124.19

Table 7 Accuracy of RMSE results for all models and all cases of multi-step scenarios

MLP LSTM Seq2Seq

MLP-uni MLP-D-uni LSTM-UNI LSTM-D-UNI LSTM-bi LSTM-D-BI S2S-uni S2S-D-uni S2S-bi S2S-D-bi

154.35 123.84 173.56 136.04 190.68 162.01 193.12 140.42 179 143.53

The number is the average of 12 steps ahead and multiple runs. The models with the best RMSE metrics are in bold
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since the validation data contain four years (2012–2015).

As expected, we can find a slight trend in all of them to

have larger errors in the farthest predictions, as indicated

by the polynomial regression lines (dashed, polynomial

degree = 3). MLP and LSTM are better in the shorter

(1–4 months) and the longer terms (11–12 months), while

seq2seq behaves well in the medium term (6–8 months).

This opens the possibility to build an ensemble method,

although, given the size of our dataset, it could lead to

overfitting.

Figure 5 shows that the best average times per model are

achieved with MLP architectures. Nevertheless, the best

error between both structures is the MLP-D, with an exe-

cution time of around 0.18 min. It is noted that the S2S-uni

model has the worst time, 2.95 min; it is also among the

worst RMSE errors in this scenario. On the other hand,

LSTM structures require a longer execution time than the

MLP structure. Although LSTM-D-uni occupies the second

place with the best metric among the ten structures ana-

lyzed, its runtime is higher than MPL-D by a factor of 4.

4.3 Scenario evaluation

As mentioned in the experiment setup section, the results’

randomness is manifested by the neural networks’

stochastic nature. Figures 6 and 7 show the box diagrams

of hydropower production predictions’ RMSE, MAE, and

MAPE errors. The mentioned errors are obtained from 30

repetitions of each best architecture of MLP, LSTM, and

sequence to sequence in each scenario analyzed.

Figure 6 depicts the error distribution of one-step sce-

narios; in this visual comparison of box plots, MLP-D-uni

outperforming the other two structures LSTM is ratified.

On the other hand, Fig. 7 shows the error distribution found

when the multi-step scenario is analyzed. In this case, it is

again confirmed that MLP-D-uni outperforms the other

structures LSTM and seq2seq LSTM.

In this work, a one-step forecast outperforms the multi-

step forecast scenario. Although MLP is the best ANN

model for predicting power production, RNN bivariate

one-step ranks second among all analyzed structures. In

contrast, MLP-uni one-step ranks last among the sixteen

structures analyzed. This result may be a consequence of

training the model without differentiation MGP series.

Finally, Fig. 7 shows that the detrended S2S-D-uni out-

performs LSTM and seq2seq LSTM, both bivariate.

Despite the limited number of dataset observations, this

sequence-to-sequence model ranks sixth among all the

structures analyzed.

ANN presents better forecast error results compared to

ARIMA and ARIMAX statistical techniques. Table 8 and

Fig. 8 show the comparative forecast errors for 2015

Fig. 4 Validation errors in the

multi-step scenario (validation

set)

Fig. 5 Execution times of

models contrasted with the

RMSE of the best

configurations. Results were

obtained from 10 architectures

analyzed in this scenario
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obtained with ARIMA and ARIMAX in previous studies

[7, 8] that have considered the same dataset and variables.

5 Conclusion and future work

In this study, multiple ANNs were applied to forecast the

hydroelectric production of Ecuador. Experiments using a

dataset of MGP of hydroelectric systems (GWh) and total

average monthly precipitation (mm) of the three main

hydrographic basins of Ecuador were carried out.

According to the forecast horizon, two scenarios were

considered: one-step (1 month) and multi-step

(12 months). More than 3000 MLP, LSTM, and seq2seq

LSTM models were configured, trained, and validated.

RMSE, MAE, and MAPE were used to select the best

model for each type of architecture. With limited obser-

vations, MLP with differentiation, univariate and bivariate

series obtained the best results. These results evidence that

ANN models surpass the traditional statistical models

applied in time series. Also, they suggest that RNN models,

such as LSTM and seq2seq, are not essentially superior in

this problem setup to MLPs when hyperparameters are

appropriately selected.

On the other hand, the average execution times of the

models in one-step and multi-step scenarios are 1.48 and

Fig. 6 Box plot errors of the experiments carried out with the best MLP and LSTM models in the one-step scenario. a RMSE, b MAE, and

c MAPE. The red line represents the median, while the green triangle corresponds to the mean

Fig. 7 Box plot errors of the experiments carried out with the best MLP, LSTM, and seq2seq LSTM models in the multi-step scenario. a RMSE,

b MAE, and c MAPE. The red line represents the median, while the green triangle corresponds to the mean

Table 8 Forecast errors of each technique—2015

Technique RMSE MAE MAPE

ARIMA [7] 193.04 161.65 14.32

ARIMAX [8] 111.54 86.52 8.44

ANN one-step scenario (MLP-D-uni) 4.11 3.39 0.32

ANN multi-step scenario (MLP-D-uni) 110.08 99.96 8.95

Fig. 8 Comparison between

actual and predicted values

2015 with ANN (MLP-D-uni)

and statistical techniques
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1.37 min per model, respectively. It is noted, structuring

data through sequences for the learning process of these

models are slightly less than one-step forecast problems in

computational cost.

In all ANN structures considered in one-step and multi-

step scenarios, pre-processing the MGP series through

differentiation resulted in better prediction errors. Simi-

larly, using another regressive variable such as precipita-

tions for the bivariate analysis in both scenarios positively

impacted the learning and generalization of the models.

This research helps to describe and predict hydropower

generation, particularly in Ecuador. Results obtained with

the proposed ANN model can help organize and plan the

electric sector, which is important for the energy policy-

maker sector. The methodology can also be extended to use

in other fields.

Promising results were seen with the seq2seq LSTM

architecture but slightly below MLPs. In further studies, we

plan to use datasets with a greater number of observations

and other recent time series techniques (e.g., latent recur-

rent neural networks and transformers). In this regard, we

will also study the impact of applying super-resolution

techniques to increase the granularity of the data set in the

performance of recent very deep ANN architectures.
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