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Abstract
This paper presents a novel method for improving the invariance of convolutional neural networks (CNNs) to selected

geometric transformations in order to obtain more efficient image classifiers. A common strategy employed to achieve this

aim is to train the network using data augmentation. Such a method alone, however, increases the complexity of the neural

network model, as any change in the rotation or size of the input image results in the activation of different CNN feature

maps. This problem can be resolved by the proposed novel convolutional neural network models with geometric trans-

formations embedded into the network architecture. The evaluation of the proposed CNN model is performed on the image

classification task with the use of diverse representative data sets. The CNN models with embedded geometric transfor-

mations are compared to those without the transformations, using different data augmentation setups. As the compared

approaches use the same amount of memory to store the parameters, the improved classification score means that the

proposed architecture is more optimal.

Keywords Deep learning � Convolutional neural networks � Invariance to rotation and scale � Efficient deep learning

applications � Optimization of deep learning architectures

1 Introduction

In recent years, convolutional neural networks (CNNs),

which represent a very popular class of deep learning

techniques, have become pivotal to many computer vision

applications. Since the successful design of GPU-based

CNNs that exceed human performance [4] and the

remarkable victory in 2012 ImageNet image classification

challenge [16], this type of deep neural networks has been

among the most widespread methods for image classifica-

tion [14, 28, 30], capable of achieving computation times

and error rates described as ‘‘superhuman’’ [13]. CNNs

have also proven successful in tasks such as image seg-

mentation [2], object detection [23], predicting the scene

depth and surface normals [8] and colorization of grayscale

images [37]. As it was projected in the original works on

CNNs [17], their application is not limited to analyzing

visual imagery, as they can also handle audio [25] and text

input [6]. Apart from the popular image processing chal-

lenges, CNN-based solutions are working their way into a

variety of other practical applications, particularly in the

areas of astronomy [7] and medical imaging [33, 9, 31].

Since the introduction of CNNs [17], their key property

has been related to the processing of grid-aligned data with

the matrix convolution operator. Optionally, the dimension

of the resulting maps can be reduced with the maximum-

pooling operation. In both of these components, different

grid-aligned regions of the input data are processed exactly

in the same way. As the design is inspired by the

Neocognitron [10], the intermediate layers generate outputs

that are based on the local features of the input data. The

results of such multilayer local filtering are further sum-

marized by the fully-connected layers that provide the

global image classification. Since the crucial part is solely

based on the local image features, the CNN as a whole is

roughly invariant to the translation of image contents.

Apart from the slight impact of the placement of pooling
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region boundaries in relation to the image features, trans-

lated image is expected to yield accordingly translated

feature maps, with a similar subset of strongly activated

filters. Extensive subsampling used in some of the modern

models is known to affect the invariance to small transla-

tions [1], but this problem can be significantly reduced with

the appropriate anti-aliasing [36].

In this paper, we propose a novel approach to the rota-

tion- and scale-invariant CNN architectures. Our goal is to

make the CNN process multiple variants (rotation angles or

scaling factors) of data input with similar operations. This

approach is intended to imitate the original behavior with

respect to image translation, which involves using the same

filter at different positions as the convolution operation is

performed. The proposed method acts in a similar way, but

with multiple angles/scales in addition to the offsets.

Additionally, we expect to gain the possibility to recognize

multiple local features of presented objects in the same

image even in the case when they are subjected to different

transformations. As the method does not involve any filter

transformations, the learning process remains simple and

efficient. The geometric transformations are applied to the

intermediate layer outputs. The processing results gained

for multiple transformations are summarized by further

convolutional layers, which makes the desired invariance

fully based on the local image features. This behavior is

achieved by utilizing the approximate ‘‘reverse geometric

transformations’’. For increased performance, sequences of

geometric transformations are reduced to a single operation

and prepared before the data propagation or samples

learning—this approach is described as ‘‘fast geometric

transformations’’. The method is verified experimentally

and compared to the CNNs without the proposed additions,

with various approaches to the manual augmentation of the

training set.

2 Related works

For a living observer, objects can usually be recognized not

only regardless of their position in the field of view but also

regardless of their rotation and size, provided they remain

visible and fit in the sight range. It is known that image

recognition solutions based on CNNs do not provide

invariance to image transformations. Thus, other mecha-

nisms are necessary for handling changes in the rotation

[12, 7, 19, 32] or scale of an image [23, 34]. The well-

known approach to recognition of multiple rotations or

scales is to perform extensive data augmentation

[7, 22, 27]. This is equivalent to learning multiple rotations

or sizes of the object as if they were independent, and then

grouped arbitrarily. Alternatively, the transformation can

be applied to the convolutional filters [19, 32], which

requires significantly more computations per each pro-

cessed image, especially in the learning process. Neither of

these approaches makes the rotation- or size-invariance in

CNNs as efficient and versatile as the translation-

invariance.

In this paper, we use data augmentation [27] of the

selected data sets both as an alternative and as a supple-

mentary utility for the presented method. The experimental

setup that relies exclusively on data augmentation to pro-

vide transformation invariance bears a close resemblance

to the ones proposed in some of the known works [7, 22].

The comparison with these reference setups is crucial to the

experimental verification of the novel models.

There are multiple alternative approaches to the rota-

tion- [12, 7, 19, 32] or scale-invariant CNNs [23, 34].

When only scale is considered, the multi-column approach

can be used [34]. However, the processing results com-

puted for different scaling factors are not processed by the

further convolutional layers but flattened and concatenated

as the fully-connected layer input instead. A very practical

yet complex solution is to use the YOLOv3 model [23]. It

utilizes the convolutional layers where possible, but does

not provide an easy way to extend it for an arbitrary

number of scaling factors. CNNs with nothing more but

data augmentation can be effectively described as rotation-

invariant [7], which is a reasonable decision in the most

basic cases. On the other hand, it is possible to use a

method designed specifically for a selected data set, as

presented in [19], where a remarkably large number of

rotations were considered for each processed patch.

Notable results were achieved with the rotation of filters

[32], but such an approach requires significant adjustments

to the CNN learning process. A remarkably different yet

successful approach was presented in [19], where the

rotation-invariant CNNs were achieved through the specific

application of regularization functions. In the present

paper, however, both the cost function and the learning

method remain similar to the other known CNNs, which

guarantees compatibility with any general optimization

method such as Adam [15] and adjustments such as

Dropout [29].

The approach presented here may be considered as

similar to the Siamese Networks [3], which can be based on

the Convolutional Neural Networks as well. Both in the

presented solutions and in the Siamese Networks, pieces of

data that share some properties are processed in the parallel

CNN branches. The branches can be experimented with in

order to either store independent convolutional filters or

share some of the filter matrices. The proposed solution,

however, has a remarkably different application. Siamese

Networks usually work on the pairs of patches, yielding the

binary answer that determines the similarity of inputs in

terms of the desired relation. In the proposed solution,
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however, the inputs of the branches are generated from the

same patch, and the network output represents the answer

to the image classification task. The knowledge is fully

stored in the model, so no reference patch needs to be

provided. What is more, the CNNs with geometric trans-

formations embedded into the network architectures oper-

ate on images that are different in terms of geometric

structure. As a result, the task of summarizing the outputs

of the branches is additionally challenging—and the pro-

posed solution is to use ‘‘the unification blocks’’. For Sia-

mese Networks, the geometric unification of multiple

branches for further CNN-like processing would be—de-

pending on the application—either inapplicable or impos-

sible to determine.

3 The novel method

Convolutional neural networks are widely used in the state-

of-the-art solutions to many image classification problems,

such as ImageNet Large Scale Visual Recognition Chal-

lenge [24]. The standard approach guarantees invariance to

object translations in all the dimensions where the convo-

lution operator is applied. Since the same filters are used at

every position of the image, the positions of activated

elements in the feature masks can be translated accord-

ingly. However, as the activation remains present, the

patterns can be easily recognized regardless of translation.

Recognition of the objects in the image irrespective of their

translation is a desired feature of intelligent data process-

ing, as any human observer would achieve that with

obvious ease.

The human ability to recognize translated objects

extends to the geometric transformations such as rotation

and scale. This property, however, is not shared by the

convolutional neural networks. If the CNN model is trained

with patches that are normalized in terms of rotation and

scale, a patch with a rescaled or rotated object—either

taken from the training set or previously unknown—will

remain unrecognized and possibly randomly misclassified.

In many practical applications, this issue is resolved by

training the CNN model with an augmented data set, where

both the original and transformed (rotated or scaled) pat-

ches are present. Such an approach is, by default, barely

different to the one in which multiple independent image

classes are arbitrarily joined into one. This task can be

performed with a CNN, not unlike training a model that

recognizes a greater number of object classes—but the

training time, number of required iterations with repeated

patches and number of convolutional filters required to

achieve the optimal solution are likely to increase. The last

aspect directly affects the memory usage and propagation

time for a pretrained network as well. Both in the case of

large-scale visual recognition and when large numbers of

images are processed in batches, the memory usage is an

important aspect even in applications with the most modern

hardware setups.

3.1 Problem statement

The goal of the presented research is to compare the novel

CNN models that are expected to provide the improved

invariance to rotation and scale with the standard models

that include no such transformations. Both approaches

should be tested on networks that have the same number of

layers and number of parameters. As we are interested in

the comparison of multiple experimental setups, the model

should not be overly complex, as then the learning process

would take too much time. The simplest popular CNN

model is LeNet [17], but it is remarkably outdated con-

sidering the capabilities of easily accessible hardware, and

it does not provide long enough layer sequences to

demonstrate the entirety of our idea. Instead, we use

models similar to AlexNet [16]. As this model is designed

for the image classification task and features a sequence of

five convolutional layers, we can rebuild it for the sake of

the proposed method and retrain it for the desired experi-

mental tasks.

The evaluation setup involves the image classification

task with augmented test data sets that involve random

rotations or scales from selected ranges. The testing is

performed on multiple data sets. In principle, the proposed

extension to the CNN models may be applied also to tasks

other than image classification. The final layers used to

generate the neural network output could be replaced in

order to solve various image processing problems, which

opens up a potential for the further research.

The reference solution is based on the known, AlexNet-

based [16] CNN model, both with and without data aug-

mentation applied to the training set. In comparison, the

proposed method, which reorganizes the neural network

model in a significant way, is tested for both original and

augmented training sets.

The proposed approach involves structurally similar

neural network models for different data sets. What is

more, the neural network model used for AlexNet-based

solutions and the novel solutions are kept as similar as

possible, which involves the same depth of a network and

equal number of adjustable weights. This set of assump-

tions makes it difficult to make a direct comparison with

the related works, but it makes the presented research as

clear as possible. The only factor that makes the novel

solution different from the reference CNN in the experi-

mental process is related to the additional branches with

embedded geometric transformations. Such an experi-

mental setup makes it possible to measure the difference
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that is made by the proposed method, free from any other

differences between the experiments. The proposed fixed

conditions are necessary to present the impact of the novel

approach objectively.

3.2 Proposed solution

The proposed neural network model is designed to handle

rotated and scaled patches without the need to use an

excessive number of independent convolutional filters. The

innovative solution with geometric transformations

embedded in the network architecture offers the possibility

to improve on the classification accuracy results achieved

by previous CNN models.

In this study, both the existing approach and the pro-

posed solution are analyzed using similar memory

restraints and training time. Considering these common

constraints, the classification accuracies of the individual

setup can be used to measure their effectiveness. These

parameters are set in such a way as to achieve the optimal

result with the unmodified CNNs. The experiments are

intended to verify the hypothesis that the convolutional

neural networks with geometric transformations make it

possible to perform the classification of rotated or scaled

images more accurately.

The proposed solution involves:

• A neural network based on the existing CNN network

models. The crucial adjustable parameters are two-

dimensional convolutional layers that consist of multi-

ple matrix convolution filters. The presence of said

layers and the gradient-based approach to network

learning makes the process similar to that applied in

previous CNN models. Thus, it is possible to use the

Adam optimizer [15] for supervised learning of the

whole network.

• Neural network models designed specifically for the

image classification task. This involves a sequence of

fully connected layers used to generate the classifier

output.

• Novel, multi-branch organization of the neural network

model, which can be adjusted to a specific range of

geometric transformations. This is demonstrated on the

selected ranges of rotations and scales, as described in

Sect. 3.4.

• Embedded geometric transformations used for different

branches of data processing. Each branch involves fast

geometric transformations (Sect. 3.3) in order to

address two different tasks. At the beginning of the

branch, the input data are transformed in such a way as

to enable recognition of objects presented at different

angles or scales. Secondly, the branch-specific result is

geometrically transformed for further processing,

performed on data collected from all the branches.

The second operation involves both sequences of

geometric transformations and approximate reverse

transformations.

The proposed ideas can be implemented as follows. Fast

geometric transformations can be used to operate on digital

images or convolutional layer outputs. This makes them

useful for convolutional neural network models, where

additional layers based on the fast geometric transforma-

tions can be embedded. The models can be image pro-

cessing task where CNNs are typically applied. In the

present study, the method’s performance is evaluated on

the basis of its results in image classification. Such an

approach can be applied to all types of image processing

tasks that typically employ CNN-based solutions. Here, the

performance evaluation is based on the task of image

classification.

3.3 Fast geometric transformations

Digital image can be considered as a matrix of elements

that belong to the linear space S. The proposed operations

require proper approximation of intermediate colors, which

can be achieved with color spaces such as linear grayscale,

linear RGB, CIEXYZ, CIELAB or hyperspectral data [35].

Let the input image A, be n� m matrix over S which is

supposed to be transformed into p� q output. Any trans-

formation where output pixels are linear combinations of

an input pixel can be denoted as suchf : Sn�m ! Sp�q that:

fTðAÞ ¼
Xn

t¼1

Xm

u¼1

Trstu � Atu

 !

r¼1...p; s¼1...q

; ð1Þ

where T 2 ½0; 1�p�q�n�m
.

This formula can be used to modify the color intensity

either for the whole image or locally. If the application is

limited to geometric transformations only, an additional

constraint can be introduced:

8r¼1...p; s¼1...q

Xn

t¼1

Xm

u¼1

Trstu ¼ 1: ð2Þ

The weights stored in T operator can be designed in such a

way as to implement any pixels permutation, image cut-

ting, translation, scaling, rotation, perspective, polar-loga-

rithmic transformation—and for each of these operations

any method of interpolation or anti-aliasing can be applied.

The most basic examples are presented in Fig. 1.

Precalculating the coefficients in the form of T con-

sumes both time and memory. However, once the T is

provided, applying the same geometric transformation to

multiple images results in the computational efficiency that

is significantly superior to the standard methods of
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transforming images separately. This approach is crucial in

the development of efficient neural network model.

The only disadvantage is potential memory consumption

of T dependent on input and output image sizes. This

problem can be easily addressed considering that many of

the values in T are very close to 0—omitting such values

and using associative map for each Trs with the greatest

weights instead yields good approximation that takes much

less memory. The weights can be additionally normalized

in order to satisfy condition (2). Setting the constant limit

for the number of nonzero elements to be stored for each

Trs changes memory complexity from Oðn � m � p � qÞ to

Oðp � qÞ. What is more, for some of the transformations,

which include rotation with anti-aliasing and interpolated

scaling, the number of nonzero elements is limited by

default. In such cases, the approach with associative maps

reduces the memory consumption without affecting the

precision.

Geometric transformations described by coefficient

maps T have some useful properties, which can be listed as

follows:

• Identity is a valid geometric transformation—it is

implemented by such T that each Trsrs ¼ 1 and all the

other elements are 0.

• A sequence of multiple geometric transformations can

be denoted as one transformation with specified T val-

ues. The ‘‘geometric transformation’’ operator is asso-

ciative, not unlike the matrix multiplication.

• In practical applications, computations with coefficient

maps T ca be easily parallelized, which makes them

especially efficient when the SIMD-like architecture

such as a modern GPU is present.

The structure of geometric transformations is a monoid, but

not a group. Consider the ‘‘crop’’ operation that reduces the

image by omitting the side pixels. No inverse operator that

restores the removed pixels is possible. If any pixel that is

absent from probing is restored by interpolation of the

surrounding pixels and any linearly-dependent pixels are

approximated as similar, we can introduce an approximate

inverse operator T�1 for any operator T. This is directly

precise for scaling with interpolation and remarkably use-

ful for rotations (as it fills the corners by interpolation).

As a result, any sequence of transformations can be

stored as an approximate, associative map-based T for

efficient computations, alongside with approximate the

inverse operator T�1.

3.4 Embedding geometric transformations
into convolutional neural networks

The reference approach to applying additional invariance

to the convolutional neural networks—which includes

rotation and scale—is data set augmentation. This causes

different sections of the network to be activated by dif-

ferent variants (ranges of scaling factor or rotation angle)

of the key patterns that are required for object detection.

An improved model which would recognize the similarities

between rotated or rescaled patches by design can be

achieved by making sure that the same filters yield feature

mask activations, regardless of the geometric properties of

the object in the input image. This problem can be resolved

with geometric transformations embedded in the convolu-

tional neural network model.

The steps of the data processing performed in the pro-

posed neural network (also presented in Fig. 2), common

for the training and test stage, can be described as follows:

1. The denoising layer. The initial processing that can

denoise the image and partially perform some of the

tasks that are common to all the geometric transfor-

mations of the object. This step is optional, so for some

of the experiments it can be formally replaced with an

identity function. However, the initial layers of the

convolutional neural networks are known to perform

the mentioned task. As a result, practical applications

suggest that using one or two convolutional layers for

this step simplifies the general computations. This step

is described in the diagram as the CNN0 block.

2. Multiple parallel branches. Based on the index at the

CNN1 i block of each branch, the branches visible in

the diagram can be considered as ‘‘branch a,’’ ‘‘branch

b’’ and ‘‘branch c’’.

In all branches (with a possible exception of branch

a), an additional geometric transformation is per-

formed by the respective GEOM i block. This is

Fig. 1 Fast geometric transformations used to rotate an example

image from SVHN data set [20]. From the left: �30� rotation, �15�

rotation, original image, 15� rotation and 30� rotation. The precal-

culated transformations involve filling the image edges based on the

nearest pixels, anti-aliasing used for smooth image probing and

unsharp filtering that reduces the blur effect caused by said anti-

aliasing. All these features are directly described by coefficients of the

transformations
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implemented as a fast geometric transformation, which

is embedded in the convolutional neural network

model.

The transformed feature masks are further processed

by the CNN1 i blocks. The architecture of these blocks

is mostly similar (with a possible exception for matrix

shape changes performed by the GEOM i blocks), and

the convolutional filters are shared. In the AlexNet-like

experiments [16], each CNN1 i block represents a

sequence of three convolutional layers.

The final step for each branch is to ‘‘unify the

geometrical structure’’, in order to guarantee that all

the branches yield feature maps of the same size and

possibly similar visual fields (subsets of associated

points) in the input image (UGEOM i!a blocks). This

requires a reasonably extensive application of the fast

geometric transformations. The function of UGEOM i!a

blocks is additionally explained in Fig. 3.

The outputs of multiple branches with the men-

tioned properties can be further used as separate

channels of the further processing with CNNs (‘‘chan-

nels concatenation’’).

3. Summarizing convolutional layers. The tuple of matri-

ces collected from multiple branches are processed

together by the following convolutional layers. This

approach opens up the possibility of merging abstract

patterns, such as final objects that are supposed to be

detected, from the subpatterns recognized in different

rotations or scaled. The invariance is remarkably easy

to achieve, as the matrices can be simply summed up.

However, depending on the filters used in this step,

such a property is not mandatory. Not unlike the

summarizing steps that operate on translated patterns in

the standard CNNs, this part of processing provides an

arbitrary ability to group, merge, subtract or ignore the

detected features, depending on the channel consid-

ered. The exact behavior depends on the convolutional

filters learned in the CNN2 block.

4. The neural network output is based on the feature

masks provided by CNN2. In the case of image

classification tasks, this can be achieved by fully

connected layers, where the last layer should have a

number of outputs set to the number of considered

classes. When such a numeric vector is computed, the

classification result can be obtained by the softmax

function.

The proposed layers have an important advantage:

both softmax and fully connected layers can be updated

using the gradient methods, with errors and changes

calculated with the backpropagation approach. The

same applies to the convolutional and pulling layers

present in CNN2, CNN1 i and CNN0 blocks.

When the existence of inverse geometric transfor-

mation is considered, it is possible to process the

backpropagation-based errors through the geometric

transformations as well—both GEOM i and UGEOM i!a.

As a result, all the adjustable parameters of the

neural network model back to CNN0 can be updated in

a common backpropagation sequence, which makes it

remarkably easy to apply the supervised learning with

standard gradient descent or Adam optimizer [15].

This means that all the convolutional filters present

in the model are trained with a specific purpose of

being useful in the image classification task on a

defined data set.

It is worth mentioning that the CNN0, CNN1 i and CNN2

blocks can be implemented as sequences of multiple con-

volutional layers and maximum-pooling layers, as it is

Fig. 2 Diagram of the

convolutional neural network

with embedded transformations

a

Fig. 3 ‘‘Unified geometric structure’’ block explanation. The dashed

arrows track the geometric effects to be inverted (when going left) or

reconstructed (when going right)
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typical for the convolutional neural network models. The

sequence of applied filter groups and pooling sizes should

be similar in each of the CNN1 i block, regardless of the

branch considered.

Let us now explain the formal contents of each UGEOM

i!a block present in the diagram. In the proposed approach,

‘‘branch a’’ is a reference for all the other branches, as no

GEOM a block was used in the beginning of the branch,

which simplifies the computations. Each UGEOM i!a block

reorganizes the structure of CNN1 i output in order to make

it resemble the output of CNN1a. Thus, the hypothetical

UGEOM a!a transformation is identity, so it was not

included in the diagram. The UGEOM i!a performs an

operation equivalent to the following sequence:

• inverse operation to the ‘‘geometric effect’’ of CNN1 i,

• approximate inverse of GEOM i,

• the ‘‘geometric effect’’ of CNN1a.

The ‘‘geometric effect’’ of a convolutional block (or

inverse of such, referred to as ‘‘inverted geometric effect’’)

can be provided for any sequence of convolutional, maxi-

mum-pooling and activation layers. The activation func-

tions and same-size convolutions can be considered as

identity, as instead of applying any changes to the geo-

metric structure, it detects patterns based on the central

index of the filter matrix. Convolutions with either ‘‘full’’

or ‘‘true’’ sizes, when used, can be considered as sides

extension or cropping (removal of the side rows and col-

umns). The pooling layers, on the other hand, can be

considered as geometrically equivalent to scaling. By this

approach, the superposition of CNN1 i layers can be

denoted as equivalent to a single geometric transforma-

tion—which is additionally inverted in the first step of

UGEOM i!a and used directly in the final step.

As UGEOM i!a performs a sequence of geometric

transformations, it can be reduced to a single fast geometric

transformation. The coefficients of this transformations are

computed once, before the learning process, based strictly

on the input size and the model definition. This makes the

repeated applications of UGEOM i!a multiple times faster to

compute than it would be in the case of a step-by-step

application of the definition. The results from Table 1

indicate that fast geometric transformations make the cal-

culations related to the UGEOM i!a layers roughly 20�
faster. However, there is one more crucial advantage of fast

geometric transformations that was not covered by the

benchmarks—fast transformations are computed on GPU,

which makes them readily usable in GPU-based neural

network training without the need to transfer data between

different computing devices. In terms of the complexity

study, it can be summarized that the proposed approach

makes each transformation proportional to the number of

pixels, with fixed constant. As such, the improvement is

purely technical, and we believe that the time measurement

from Table 1 is the key illustration of the results.

The complete architectures of the AlexNet-like neural

network models without and with the embedded transfor-

mations are presented in Figs. 4 and 5, respectively.

The proposed CNN shares the typical properties of

AlexNet-like networks with dropout mechanism [29]. As it

was explained in the beginning of Sect. 3.4, parts of the

model can be considered as ‘‘denoising’’ layers, which

directly address the typical kinds of image noise—either

related to the image compression or to the white noise

component.

4 Evaluation

4.1 Evaluation setup

As the experimental method is the key approach to test the

proposed solutions, careful attention was paid to the

comparison procedure. In order to evaluate the difference

between the proposed models of neural networks as clearly

as possible, separate series of experiments were performed

for the rotated and rescaled input images.

The experimental setups involved in the presented

method apply to the image classification task. Supervised

learning of the digital image classifier can be performed

with LeNet-like convolutional neural networks, with

varying accuracy coefficients reached by the fully trained

model. The hyperparemeters of model description, such as

the number of layers, number of filters in each layer and the

Table 1 Python Imaging Library against fast geometric transformations implemented for the purpose of this paper

Operation PIL This paper Speed boost

Image rotation 0:508 ms 0:158 ms 3:2 times

Log-polar transformation (with loops in the case of PIL) 28:690 ms 0:160 ms 179.3 times

Sequence of 11 simple operations similar to the one from experiments 3:222 ms 0:158 ms 20:4 times

The presented numbers (speed boost) describe how much shorter processing time was achieved, average from 1000 images of 100 � 100 pixels.

The sequence consisted of: edges extension, scale, edges extension, scale, edges extension, rotation, crop, scale, crop, scale and crop
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specific optimization method, usually need to be adjusted

separately for each data set.

The objective of the experimental evaluation process

presented in this paper is to identify the effect of geometric

transformations embedded in the model description on the

accuracy coefficient. In order to focus on this specific

aspect of the neural network model, the roughly optimized

model description without embedded geometric transfor-

mations is presented for each original data set. Such a basic

model is equivalent to the novel network with a single

branch, without any blocks parallel to the CNN1a and

without any explicit GEOM blocks. This model description

can be compared with the practical implementation of the

novel approach, where additional branches with linearly

independent GEOM blocks are involved.

The difference inducted by the additional branches is

tested on the augmented data set, where the additional

rotation or scale is applied. Rotations angles and the

changes to the magnitude of scale will be selected from the

uniform random zero-centered ranges. The typical setup

can involve rotations by �30� to 30� angle or scaling down

by the factor from ½50%; 100%� range. The data set aug-

mentation can apply solely to the test set—to check the

automatic aptitude to preserve the correct classifications.

More practically, however, the same augmentation method

can be applied both to the test set and the training set. Since

the data set augmentation is a standard approach to training

convolutional neural networks with transformed patches,

the basic model description is likely to yield useful results.

However, the novel approach is likely to additionally

benefit from such a setup, which is expected to result in the

best model for the transformed patches.

Each data set and range of geometric transformations is

involved in the following setups:

1. Training the reference model (basic CNN) on the

original training set.

2. Training the reference model on the augmented

training set.

3. Training the novel model (multiple branches with

embedded geometric transformations) on the original

training set.

4. Training the novel model on the augmented training

set.

If the original data set already contains geometric trans-

formations, the points (2.) and (4.) can be considered

redundant. Alternatively, if augmented patches were cre-

ated manually for the purpose of experiment, the models

from points (1.) and (3.) can be tested both on the original

test set and the augmented test set.

Additional step of the data augmentation can involve

transformations different from the rotation/scale, such as

adding the white noise. This could prolong the learning

process without significant effect on the final accuracy

[16], especially when the Dropout mechanism [29] is pre-

sent in the neural network model.

Fig. 4 Convolutional neural network used in the reference experi-

ments (without the novel method). The diagram includes convolu-

tional, maximum-pooling, dropout and fully-connected layers. The

structure of this model is practically the same as AlexNet [16], the

only difference being the naming convention, which is compatible

with that used in Fig. 2

Fig. 5 The novel CNN model. It

is similar to the model shown in

Fig. 4, but includes GEOM i,

UGEOM i!a as well as the

concatenation layers. The

groups of convolutional layers

inside the dotted rectangles use

shared filters
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4.2 Data sets and transformation ranges

In order to confirm the versatility of the presented method,

the experimental evaluation is performed on the following

data sets:

• The Street View House Numbers (SVHN) Dataset

[20]—over 600 000 digit images extracted from the

outside photos; data augmentation is performed man-

ually. The test set without augmentation consists of

26 032 patches.

• Outex Texture Database [21]—with 68 grayscale

textures, 20 patches each. Some geometric transforma-

tions are already present in the data set, but the

selection of the experimental patches involves addi-

tional steps, such as cutting fragments of the original

large-surface textures.

• International Skin Imaging Collaboration: Melanoma

Project archive [5]—44 100 digital images of skin

lesions that can be categorized into 7 classes related to

the recognized diseases. Classification task on this data

set would naturally benefit from the rotation invariance,

but data augmentation related to scale needs to be

performed manually.

The selected data sets are intended to test the versability of

the proposed method with regard to different applications.

Fragments of outdoor photography (SVHN), scans of dif-

ferent textures (Outex) and medical imaging (Melanoma

Project) are significantly different. The proposed data sets

involve both color (SVHN, Melanoma) and grayscale

images (Outex). What is more, SVHN is a well known

problem for the CNN-based image classification [26, 29],

and Outex is widely tested in the case of rotation-invariant

image processing solutions [18, 19].

The choice of the data set provides variety to the

amounts of noise present in the digital images. The SVHN

patches—even if some of them are unsharp or upscaled—

are reasonably clean, as they come from the digital camera.

Noise is known to be an important concern in the case of

the Outex data set, as it was shown in [19]. Amounts of

noise that provide a reasonable verification for the pre-

sented method are also represented in the Melanoma data

set, because of the complex structure of human skin and

noise related to the scanning equipment.

In order to address the effect of noise to the method

directly, additional experiment was performed for the

SVHN data set and rotation invariance (Fig. 8, Table 4).

The most important result to emerge from the classifi-

cation tasks is the total accuracy achieved on the test set.

The accuracy is defined as the ratio of correctly classified

test patches to the total number of test patches.

It must be emphasized that the task for each data set is

defined as multi-class classification, where all classes are

considered equal. This directly reflects the data set prop-

erties in the case of SVHN, where recognition of all 10

digits is equally important, and Outex, where all the pre-

sented textures are specific materials, with no designated

‘‘default background’’ present in the data set. The same

approach is used for Melanoma data set, despite the fact

that set of ‘‘healthy patients’’ can be expected to be

remarkably the most common in real life. However, con-

sidering that multiple diseases are similarly represented in

the experiments on ISIC-Melanoma, this remains our key

approach. In the usual case, this means that no global

precision-and-recall considerations or curve-based analysis

can be performed. Precision on each class is directly

related to the recall on all the others, and vice versa. In

order to review the general shape of the receiver operating

characteristic curves describing some of the classifiers,

specific consideration of the ‘‘malignant neoplasms’’ class

was performed for the ISIC-Melanoma data set—the

results are presented in Fig. 9.

The novel CNN models used in the experiments were

designed for both rotations and scales. In the case of

rotations from ½�30�; 30�� range, the following branches

are used:

• CNN1a: No rotation.

• CNN1b: 20� rotation clockwise.

• CNN1c: 20� rotation counterclockwise.

This approach guarantees that each sample from the

½�30�; 30�� is rotated by at most 10� in relation to the basic

use of the nearest branch. The selection is illustrated in

Fig. 6.

The proposed size transformations involve downscaling

only, with ½50%; 100%� factor range. Equally distributed

branches would require using a non-identity transformation

Fig. 6 Sample rotations of a sample image (based on SVHN [20]) from �30� to 30�. Reference representatives of the three neural network

branches are marked with dotted lines
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for each branch. Instead, the following factors were

suggested:

• CNN1a: No scaling.

• CNN1b: 76% scaling (� 0:50:4).

• CNN1c: 57% scaling (� 0:50:8).

This is an optimal approach with fixed 100% branch, where

each sample has a size factor no lower than 93% and no

greater than 108% with relation to the closest branch. The

selection is illustrated in Fig. 7.

Note that the specific setups of three branches were

chosen both for the ½�30�; 30�� angle ranges and

½50%; 100%� scaling ranges. Different ranges of possible

transformations would yield different results and possibly

require a different number of processing branches. A fixed

setup has been applied to show the effect of using addi-

tional branches on the classifier accuracy. The arbitrarily

selected ranges are used for all the data sets. The unlimited

range of transformations would be especially easy to define

in the case of image rotation. However, such a task would

be likely to require more than three processing branches.

5 Results

5.1 SVHN data set

The full experimental setup was run on the SVHN [20] data

set. AlexNet-like models (Fig. 4) and novel model (Fig. 5)

were trained in two experiments each, starting from the

randomly initialized parameters obtained with the Xavier

method [11]. Due to the parameter sharing explained in

Fig. 5, all the models used exactly the same number of

adjustable parameters. The number of iterations was fixed

for all the experiments in order to provide relevant com-

parison. The results are displayed in Tables 2 and 3.

5.1.1 Manual addition of the noise

Additional question to be researched is related to the pos-

sible effect of noise in the input data on the method. The

Gaussian noise was added in two phases: as value-based

noise with average of 15%, and then as independent RGB-

noise of the same magnitude—as it is shown in Fig. 8. The

results for the rotation invariance achieved for the addi-

tionally noisy data are presented in Table 4. The results are

significantly poorer than in the same experiment without

noise, which is summarized in Table 2. However, all the

conclusions based on the comparisons between achieved

values remain valid.

5.2 Outex Texture Database

The experiments on Outex Texture Database [21] were

used with an additional step of cutting each image into

3 � 3 grid, which resulted in nine times more patches. As a

result, each of 68 textures was represented by 180 images.

The images were grouped in 25%:75% proportions, which

yielded 3 060 test samples and 9 180 training samples. The

high number of classes (68) and low number of training

samples per class (135 without augmentation, 405 in the

augmented setups) makes this task especially difficult. The

presented accuracies are always related to the top-1 clas-

sification matches. The results are displayed in Tables 5

and 6.

5.3 International Skin Imaging Collaboration:
Melanoma Project archive

The experiments on International Skin Imaging Collabo-

ration: Melanoma Project archive [5] were conducted in a

similar way, with the standard subsets of 33 100 training

images and 11 000 test images. The results are displayed in

Tables 7 and 8.

5.3.1 Receiver operating characteristic curves
for the selected class

When the objective of the ISIC-Melanoma data set is

considered, one of the seven classes is especially important

with regard to the health of the patient—namely, ‘‘malig-

nant neoplasms’’. Among the data sets considered in this

Fig. 7 Sample scales of a sample image (based on SVHN [20]) from

100% to 50%. Reference representatives of the three neural network

branches are marked with dotted lines

Table 2 Classification

accuracies achieved for the

SVHN experiments with and

without rotations used in the

data set variants and rotation

invariance present in the models

Model Training set Original test set Test set with rotations

AlexNet-like Original 92:4% 65:6%

Rotation-invariant Original 92:6% 78:3%

AlexNet-like ?Rotations 91:1% 81:7%

Rotation-invariant ?Rotations 94:5% 92:5%
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paper, it is the best example to demonstrate the precision

and recall of the compared classifiers with regards to one

specific class. This comparison was performed in detail for

the task with additional rotations, and the result is pre-

sented in Fig. 9.

5.4 Summary of the results

In all of the presented experiments (Tables 2, 3, 4, 5, 6,

7, 8), superior accuracy for the tasks involving extended

test sets was achieved when data set augmentation and the

novel improvements to the model were applied simulta-

neously. The difference between this setup and the other

compared cases was significant.

The novel models without data set augmentation (sec-

ond row, second column of each table) performed signifi-

cantly better than the basic CNN models (first rows, second

columns) but not nearly as good as the basic CNN with

training set augmentation (third row, second column). Such

a result suggests that data set augmentation is an important

practice and should not be omitted when training the

transformation invariant neural network models. However,

for both approaches to the training set preparation, using

Table 3 Classification

accuracies achieved for the

SVHN experiments with and

without scaling used in the data

set variants and scale invariance

present in the models

Model Training set Original test set Test set with scaling

AlexNet-like Original 92:4% 72:1%

Scale-invariant Original 91:5% 81:2%

AlexNet-like ?Scaling 92:6% 84:9%

Scale-invariant ?Scaling 93:9% 93:0%

Fig. 8 Sample image from the SVHN data set—before and after the

manual addition of the noise

Table 4 Classification accuracies achieved for the SVHN experiments with and without rotations used in the data set variants and rotation

invariance present in the models after the noise was manually added to the original data set, as in Fig. 8

Model Training set Noisy test set Noisy test set with rotations

AlexNet-like Noisy 89:3% 62:8%

Rotation-invariant Noisy 87:4% 75:5%

AlexNet-like Noisy?Rotations 84:4% 78:2%

Rotation-invariant Noisy?Rotations 89:2% 87:1%

Table 5 Classification

accuracies achieved for the

Outex experiments with and

without rotations used in the

data set variants and rotation

invariance present in the models

Model Training set Original test set Test set with rotations

AlexNet-like Original 75:7% 58:8%

Rotation-invariant Original 75:4% 66:2%

AlexNet-like ?Rotations 74:5% 68:7%

Rotation-invariant ?Rotations 76:7% 75:0%

Table 6 Classification

accuracies achieved for the

Outex experiments with and

without scaling used in the data

set variants and scale invariance

present in the models

Model Training set Original test set Test set with scaling

AlexNet-like Original 75:7% 60:7%

Scale-invariant Original 74:4% 65:8%

AlexNet-like ?Scaling 74:6% 68:8%

Scale-invariant ?Scaling 76:6% 75:5%
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the novel model yielded significant improvements (the

most significant difference is presented in Table 6).

The results obtained on the original test set, where all

the digits samples were oriented in an approximately

similar angle, do not show such dramatic differences. For

example, in the most basic version of the SVHN task, the

novel model achieved an accuracy level similar to the basic

CNN (92:6% against 92:4%). Using data augmentation

with the basic CNN resulted in a slightly lower result—

91:1%, which is of no great consequence, but might indi-

cate that the introduction of additional training patches

made the problem unnecessarily complex. A greater dif-

ference in the global accuracy was noted in the case of

novel model with augmented data set. This setup (last row,

first column) yielded the best accuracy for the original test

set, with a varying margin of difference (see Tables 2 and

7).

The results presented above indicate that the approach

involving both the novel model and data augmentation

provides significantly smaller differences in accuracy

between the original test set and the test set with additional

rotations or scales (last row of each table). Therefore, our

method demonstrates a substantial improvement in terms

of transformation invariance.

6 Conclusions and future work

We have presented a novel approach to the processing of

digital images with CNN-like models invariant to the

selected geometric transformations. The proposed multi-

branch model with embedded fast geometric transforma-

tions has been proven to work better in the image classi-

fication task in the cases of additional rotations and scales

in three different data sets. It has been shown that the novel

neural network models improve the classification accuracy,

but the best results are achieved when the new models are

used in conjunction with data augmentation.

To evaluate the efficiency of the presented method for

rotated and rescaled images, both variants have been tested

carefully in separate series of experiments. For both

transformations, the improvement related to the novel

neural network architectures was demonstrated.

The only objective way to test the effect of the proposed

method on CNN classification involved a set of common

assumptions that were met for all the experiments. Multiple

setups were developed using the same technology and

designed to consume a similar amount of memory and run

at the same computation time. The reference CNN-based

models and the novel solutions were similar in terms of

neural network depth and number of adjustable parameters.

This approach, while yielding meaningful results, required

all the computations to be made from scratch, particularly

for the comparisons presented.

A number of extensions to the work discussed here

present themselves. It has been demonstrated that the

method is able to work on diverse image data sets. The

current study has only focused on the task of image clas-

sification, but the method presented might also be applied

to other tasks. Further research is needed to investigate the

applicability of multi-branch CNNs with embedded geo-

metric transformations to semantic image segmentation or

object detection.

A notable advantage of the method presented is the

elastic approach to summarizing the results achieved for

different embedded geometric transformations. The paral-

lel branches are unified with special UGEOM transforma-

tions to guarantee relatable visual fields among the

Table 7 Classification

accuracies achieved for the

ISIC-Melanoma experiments

with and without rotations used

in the data set variants and

rotation invariance present in

the models

Model Training set Original test set Test set with rotations

AlexNet-like Original 90:8% 70:2%

Rotation-invariant Original 90:5% 78:9%

AlexNet-like ?Rotations 90:5% 82:6%

Rotation-invariant ?Rotations 91:0% 90:7%

Table 8 Classification

accuracies achieved for the

ISIC-Melanoma experiments

with and without scaling used in

the data set variants and scale

invariance present in the models

Model Training set Original test set Test set with scaling

AlexNet-like Original 90:8% 68:8%

Scale-invariant Original 91:3% 77:7%

AlexNet-like ?Scaling 91:7% 82:2%

Scale-invariant ?Scaling 91:6% 91:2%
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matrices. In its basic use, the method enables summarizing

the subpatterns of different rotations or scales as if they

were similar. However, depending on the filter values, it is

also possible to achieve more complex results. Instead of

‘‘recognizing everything regardless of rotation’’, the

specific set of filters can limit the further activation to the

specific subset of branches, e.g., the range of angles. On the

basis of the rotations of the hands of the clock presented in

the input image (and possibly shadows—in order to rec-

ognize the time of day), the model could be easily trained

to recognize a class such as ‘‘evening’’.

The presented method is capable of making the learning

process of the CNN-based classifiers more optimal, as

better results were achieved at the same computation time.

What is more, the improved classifier yields better results

while it utilizes the same amount of memory to store the

parameters, which means that the presented solution is

more optimal.
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21. Ojala T, Mäenpää T, Pietikäinen M, Viertola J, Kyllönen J,

Huovinen S (2002) Outex- new framework for empirical evalu-

ation of texture analysis algorithms. In: International conference

on pattern recognition (1), pp 701–706. IEEE Computer Society

22. Quiroga F, Ronchetti F, Lanzarini L, Bariviera AF (2020)

Revisiting data augmentation for rotational invariance in convo-

lutional neural networks, pp 127–141

23. Redmon J, Farhadi A (2018) Yolov3: An incremental improve-

ment. Computing research repository, abs/1804.0276

24. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S,Huang

Z, Karpathy A, Khosla A, Bernstein MS, Berg AC, Li F-F (2015)

Imagenet large scale visual recognition challenge. Int J Comput

Vision 115(3):211–252

25. Salamon J, Bello JP (2017) Deep convolutional neural networks

and data augmentation for environmental sound classification.

IEEE Signal Process Lett 24(3):279–283

26. Sermanet P, Chintala S, LeCun Y (2012) Convolutional neural

networks applied to house numbers digit classification. In:

International conference on pattern recognition, pp 3288–3291.

IEEE Computer Society

27. Simard PY, Steinkraus D, Platt JC (2003) Best practices for

convolutional neural networks applied to visual document anal-

ysis. In: International conference on document analysis and

recognition (ICDAR), pp 958–962. IEEE Computer Society

28. Simonyan K, Zisserman A (2015) Very deep convolutional net-

works for large-scale image recognition. In: Bengio Y, LeCun Y,

(eds) International conference on learning representations (ICLR)

29. Srivastava N, Hinton GE, Krizhevsky A, Sutskever I, Salakhut-

dinov R (2014) Dropout: a simple way to prevent neural networks

from overfitting. J Mach Learn Res 15(1):1929–1958

30. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D,

Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with

convolutions. In: 2015 IEEE conference on computer vision and

pattern recognition (CVPR), pp 1–9

31. Tomczyk A, Stasiak B, Tarasiuk P, Gorzkiewicz A, Walczewska

A, Szczepaniak PS (2018) Localization of neuron nucleuses in

microscopy images with convolutional neural networks. In:

Wiebe S, Gamboa H, Fred ALN, Badia SB (eds), BIOIMAGING,

pp 188–196. SciTePress

32. Weiler M, Hamprecht F A, Storath M (2018) Learning steerable

filters for rotation equivariant CNNs. In: IEEE conference on

computer vision and pattern recognition (CVPR), pp 849–858.

IEEE Computer Society

33. Xu J, Luo X, Wang G, Gilmore H, Madabhushi A (2016) A deep

convolutional neural network for segmenting and classifying

epithelial and stromal regions in histopathological images. Neu-

rocomputing 191:214–223

34. Xu Y, Xiao T, Zhang J, Yang K, Zhang Z (2014). Scale-invariant

convolutional neural networks. Comput Res Repos, abs/

1411.6369, 2014

35. Yu S, Jia S, Xu C (2017) Convolutional neural networks for

hyperspectral image classification. Neurocomputing 219:88–98

36. Zhang R (2019) Making convolutional networks shift-invariant

again. In: Chaudhuri K, Salakhutdinov R (eds) International

conference on machine learning (ICML), volume 97 of Pro-

ceedings of machine learning research, pp 7324–7334. PMLR

37. Zhang R, Isola P, Efros AA (2016) Colorful image colorization.
In: Leibe B, Matas J, Sebe N, Welling M (eds) European con-

ference on computer vision (3), volume 9907 of Lecture notes in

computer science, pp 649–666. Springer

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

10532 Neural Computing and Applications (2022) 34:10519–10532

123


	Novel convolutional neural networks for efficient classification of rotated and scaled images
	Abstract
	Introduction
	Related works
	The novel method
	Problem statement
	Proposed solution
	Fast geometric transformations
	Embedding geometric transformations into convolutional neural networks

	Evaluation
	Evaluation setup
	Data sets and transformation ranges

	Results
	SVHN data set
	Manual addition of the noise

	Outex Texture Database
	International Skin Imaging Collaboration: Melanoma Project archive
	Receiver operating characteristic curves for the selected class

	Summary of the results

	Conclusions and future work
	Open Access
	References




