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Abstract
The existing view-based 3D object classification and recognition methods ignore the inherent hierarchical correlation and

distinguishability of views, making it difficult to further improve the classification accuracy. In order to solve this problem,

this paper proposes an end-to-end multi-view dual attention network framework for high-precision recognition of 3D

objects. On one hand, we obtain three feature layers of query, key, and value through the convolution layer. The spatial

attention matrix is generated by the key-value pairs of query and key, and each feature in the value of the original feature

space branch is assigned different importance, which clearly captures the prominent detail features in the view, generates

the view space shape descriptor, and focuses on the detail part of the view with the feature of category discrimination. On

the other hand, a channel attention vector is obtained by compressing the channel information in different views, and the

attention weight of each view feature is scaled to find the correlation between the target views and focus on the view with

important features in all views. Integrating the two feature descriptors together to generate global shape descriptors of the

3D model, which has a stronger response to the distinguishing features of the object model and can be used for high-

precision 3D object recognition. The proposed method achieves an overall accuracy of 96.6% and an average accuracy of

95.5% on the open-source ModelNet40 dataset, compiled by Princeton University when using Resnet50 as the basic CNN

model. Compared with the existing deep learning methods, the experimental results demonstrate that the proposed method

achieves state-of-the-art performance in the 3D object classification accuracy.
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1 Introduction

The rapid development of 3D sensing technology has led to

the development of depth cameras, laser scanners, depth

scanners, and other 3D cameras and scanning equipment.

3D data acquisition is becoming increasingly convenient

and accurate, promoting the continuous expansion of its

application fields and scenes. Compared with multi-cam-

eras, 3D sensor imaging devices such as depth cameras can

capture a large amount of detailed 3D object structure

information directly and conveniently [1]. Therefore, depth

sensors have been widely used in autonomous driving [2],

robots [3], augmented reality [4], reverse engineering [5],

and medicine [6]; however, they also face many problems.

3D object recognition is one of the most urgent problems in

the above application fields and has become the current

research hotspot. 3D object recognition research is divided

into two categories according to different methods: early

traditional methods and recent deep learning methods, and

traditional methods have given way to those based on deep

learning. Early methods depended on artificial 3D features

and machine learning, while recent deep learning methods

include voxel-based, pointset-based and view-based

approaches.

View-based methods have achieved the best perfor-

mance so far. Compared to other input methods, they are

relatively low-dimensional, independent of complex 3D

features, and robust to representation of 3D objects. They

easily capture input views and are not limited to 3D data.

They benefit from mature CNN models such as VGG [7].

GoogLeNet [8], ResNet [9], and DenseNet [10]. These

mature models enable the learning of view features and

enhanced view representation. How to aggregate the
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resultant multi-view features to form differentiated shape

descriptors is important to optimal 3D shape recognition.

MVCNN [11] uses view-pooling to aggregate features

from view descriptors, which provides direction for multi-

view 3D object recognition. However, MVCNN [11] treats

all views equally, and the use of max pooling to preserve

the largest elements in a view can result in a loss of

information, ignoring content relationships of views and

distinguishability between them, which greatly limits the

performance of view shape descriptors. On one hand, some

view contents are similar, and they contribute similarly to

shape descriptors without highlighting the key information

for distinguishability. On the other hand, different views

may not be effectively related, and the relative location

information between views is ignored.

Information related to different perspectives of objects is

especially important in human visual perception. Hence, it

is important to study intrinsic correlation and discover

distinct features.

2 Related work

2.1 Handcrafted descriptors

Early 3D shape recognition was mainly based on artifi-

cially designed 3D data description features and machine

learning methods. Ozbay et al. [12] used a fine Gaussian

support vector machine for 3D object recognition and a

Zernike moment (ZM) for 3D feature extraction. Li et al.

[13] extracted geometric, color, and intensity features of

3D shapes obtained by ground laser scanning (TLS) based

on super pixel neighborhoods and used random forest

classification. This method can only be used to distinguish

vegetation from curb stones, but its applicability is not

strong. Chen et al. [14] proposed a hybrid kernel support

vector machine 3D point cloud classification algorithm

based on the combined features of normalized elevation,

elevation standard deviation, and elevation difference of

3D point cloud data. The method needs improvement in

feature extraction optimization. Based on artificial design,

traditional methods tend to exhibit accuracy problems and

insufficient robustness.

2.2 Voxel-based approaches

Voxel-based approaches learn 3D features from voxels,

which represent 3D shapes through the distribution of

corresponding binary variables. Early deep learning

methods usually used a 3D convolutional neural network

(CNN) to build on voxel representation. Maturana et al.

[15] proposed VoxNet, a volume-occupying network, to

achieve robust 3D target recognition. VoxNet converts 3D

data to regular 3D voxel data and classifies it based on its

spatial local correlation. The voxel structure is limited by

its resolution due to sparse data. Wu et al. [16] proposed

ShapeNets. Based on VoxNet, it represents 3D shapes as

probability distributions of binary variables on a voxel grid,

which learns the distributions of points from a variety of

3D shapes. Riegler et al. [17] proposed OctNet, which

hierarchically divides point clouds using a structure that

represents several shallow octrees along a regular grid in a

scene. The structure is coded using bit string representa-

tion, and the eigenvectors of each voxel are indexed by a

simple algorithm. Le et al. [18] proposed a hybrid point

grid network that integrates point and grid representations.

Sampling a fixed number of points within each embedded

volume grid cell allows the network to extract geometric

details using 3D convolution. The computational and

memory footprint is not well extended to dense 3D data

due to the stereoscopic increase in resolution. The accuracy

of data in voxel-based methods depends on its resolution,

which limits its development due to the amount of

computation.

2.3 Pointset-based approaches

Point cloud is another type of 3D data structure that can be

understood as sampling points on the surface of 3D objects.

These points are unevenly distributed, and each consists of

3D position information in 3D space. Charles Qi et al.

proposed PointNet [19] and PointNet?? [20]. PointNet

[19] uses multiple MLP layers to learn point cloud features

and a max pooling layer to extract global shape features.

Multiple MLP layers are used to obtain the classification

score, and nonlinear transformation achieves permutation

invariance. They designed an infrastructure for various

applications, including shape classification and segmenta-

tion. Since the features of each point in PointNet [19] are

independently learned, it is impossible to capture the local

structure information between points. PointNet?? [20]

solves this problem through local information extraction so

as to realize better classification. PointNet?? [20] includes

sampling, grouping, and PointNet layers. It adds multiple

levels of abstraction to learn features from local geometry

and abstract local features, layer by layer. Many subse-

quent frameworks have exploited the simplicity and strong

expression ability of PointNet [19]. Achlioptas et al. [21]

introduced a deep automatic encoder network to learn point

cloud representation. It uses five 1D convolutional layers,

ReLU nonlinear activation, batch normalization, and max

pooling layers to learn independent learning point features.

Mo-Net [22] has a structure similar to that of PointNet [19],

but it needs a finite set of moments as input. Pointweb [23]

is based on PointNet??, and it uses the context of local

neighborhoods to use adaptive feature adjustment (AFA) to
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improve point features. Lin et al. [24] accelerated the

reasoning process by constructing a lookup table for the

input and function spaces of PointNet learning. This

method of directly using unordered point cloud as input has

always been the pursuit of 3D object recognition. Its

prominent problem is the lack of high-quality training

datasets. Although there are many related 3D datasets, they

are still not comparable to the size of 2D image datasets.

Another challenge of the original point cloud method is the

disorder and non-uniformity of point cloud data, which

hinders the direct application of spatial convolution.

2.4 View-based approaches

View-based approaches render from multiple angles of a

3D object. The multi-view method renders 3D objects into

multiple 2D views, extracts the corresponding view fea-

tures, and fuses them for accurate 3D object recognition.

The aggregation of multiple view features into a distinct

global representation is a key challenge. Su et al. [11]

proposed MVCNN, a standard CNN structure trained to

independently recognize shape rendering views. Recogni-

tion increases when multiple locations of views are pro-

vided. MVCNN aggregates information from multiple

views of a 3D model into a global descriptor. However,

maximum pooling retains only the largest elements in a

view, resulting in a loss of information. To solve this

problem, Yu et al. [25] proposed MHBN, which integrates

local convolution features by coordinating bilinear pools

on the basis of MVCNN, resulting in a compact global

descriptor to extract global information. Wang et al. [26]

introduced a view clustering and pooling layer based on

dominance sets. They looped together the features from

each set as input to the same layer. Recently, Xie [27]

proposed a new multi-view network graph embedding

method to aggregate view node representations by inte-

grating node information from multiple views with atten-

tion, and this attention method has attracted much research

attention. View-based 3D object recognition can use a large

number of datasets such as ImageNet [28] for pre-training,

and can directly use the rendered 2D perspective image on

the 2D CNN to achieve class-level recognition perfor-

mance of more than 93%. The accuracy of view-based 3D

object recognition and classification has great room for

improvement. The main methods are wavelet transform

[29] and attention mechanism [30–32]. Wavelet transform

is used to denoise in preprocessing of the collected view

images, which aims to improve the classification accuracy

by improving the quality of the view images. Attention

mechanism refers to the human visual attention thinking

mode. With a limited number of views, it can filter out the

target areas of important value information from a large

number of unrelated background areas. It can process

visual information efficiently and help to improve the

recognition and classification accuracy, which deserves

further study.

2.5 Attention modules

The attention models (AM) have performed well in dif-

ferent applications of neural networks. Attention mecha-

nisms can be explained in terms of the human visual

mechanism. Human vision quickly scans a global image to

obtain a focus on the target area, known as the focus of

attention, and concentrates on this area to obtain more

detailed information on the target, while suppressing use-

less information. Many studies have combined attention

modules in neural networks to perform various tasks. The

attention models can be roughly divided into spatial

domain attention, channel attention, and hybrid domain

models. Spatial area attention can be understood as the area

where a neural network is looking. Jaderberg et al. [30]

proposed spatial transformer networks (STN), which

adaptively and spatially transform and align input data

based on classification or other visual tasks to preserve key

information. Channel attention can be understood as what a

neural network is looking at. There are many convolution

cores in each layer of a CNN, each corresponding to a

characteristic channel. In contrast to spatial attention,

channel attention allocates resources between convolution

channels. Hu et al. [31] proposed the squeeze-and-ex-

change network (SENet) to improve the quality of repre-

sentation of network generation by explicitly modeling the

interdependence between channels with their convolution

characteristics. The hybrid domain model allows a neural

network to capture richer information by combining the

attention of both spatial and channel domains. Woo et al.

[32] proposed that convolutional block attention module

(CBAM) uses the channel and spatial attention modules in

turn to emphasize meaningful features in both spatial and

channel dimensions. The attention mechanism can invest

more attention resources in the target area of the focus and

gather more detailed information about the target, which is

exactly what we need for view-based approaches.

3 Contributions

Based on the above analysis, we propose a multi-view dual

attention network (MVDAN), as shown in Fig. 1, based on

a view space attention block (VSAB) and view channel

attention block (VCAB). VSAB explores relationships

between regions within a view to enhance its distinctive

characteristics. It generates a spatial attention weight

matrix that adaptively collects global context information

to enhance the responsiveness of the more discriminatory
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details within a view. VCAB studies the correlation

between views, generates channel attention weight vectors,

scales weights to focus on important perspectives, and

enhances the relative discrimination of views. It examines

view-to-view relationships to learn the relative importance

of each view.

An experiment on the ModelNet40 dataset demonstrates

the effectiveness of the proposed method, which uses

rendered multi-view input for advanced performance. Our

main contributions can be summarized as follows.

1. We propose MVDAN, which uses VSAB and VCAB

to generate a global shape descriptor for high-precision

3D object recognition.

2. VSAB obtains the spatial shape descriptor of views,

which emphasizes the importance of details with more

class discrimination features.

3. VCAB obtains the shape descriptor of a view channel

to find the correlation between target perspectives, so

as to focus on perspectives with key characteristics.

4. Network MVDAN based on Princeton University’s

open-source ModelNet40 dataset achieved state-of-the-

art performance compared with existing deep learning-

based methods.

The rest of this paper is organized as follows. We

introduce the MVDAN architecture in Sect. 4, discuss

experiments and their results in Sect. 5, and summarize this

work in Sect. 6.

4 Methods

We design a multi-view 3D object recognition network,

MVDAN, whose architecture is shown in Fig. 1. It has

three parts.

1. The first, a basic CNN model, is for feature extraction

of views. The original 3D object model M will be

projected from multiple angles to a two-dimensional

plane and rendered into n views as input, and feature

extraction is performed through the basic CNN model.

Each image is fed into the basic CNN model with

shared weights. Since the methods of 3D object

Full connection layer

Feature extraction

airplane
car

guitar
cup

Prediction recognition 
results

View Channel Attention Block

View Space Attention Block

C2×H2×W2

Conv

C2×H2×W2

GAP

x1

x2

xn

Vc
fc

Transpose
Query

Key

Value

C1×H1×
W1

Max

S
Vs

Matrix multiplication
Element-wise Sum

fs

Basic CNN model Convolution Layer

Spatial attention matrix

Channel attention vector 

Fig. 1 The architecture of multi-view dual attention network (MVBAN). A 3D shape is rendered in different directions, and the features of the

views are extracted from the rendered image via the basic CNN model. These views are then grouped together by two attention blocks to obtain a

compact shape descriptor passed into the full connection layer to complete the classification
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recognition based on multi-view [11, 25, 26] adopt

VGG-M [7] as the basic CNN model, in order to make

a fair comparison, we also introduce VGG-11, which is

configured as A in VGG-M [7]. Then, we remove the

last full connection layers of the model to access our

double attention block.

2. Next comes view feature pooling. As perspectives

involve different object directions and structure infor-

mation, VSAB and VCAB explore relationships within

and between views to generate global shape descrip-

tors, respectively.

3. The third part is composed of full connection layers,

which input the shape descriptors from pooled features

into the fully connected network to complete object

recognition. In the next section, we will introduce in

detail the multi-view representation and present our

proposed view space attention block and view channel

attention block.

4.1 Multi-view representations

There are three main data forms of 3D objects: voxels,

point clouds, and meshes. This paper deals with the mesh

form. 3D objects in the mesh form mainly comprise tri-

angular patches. These triangular patches cover the surface

of the object without gaps, forming a hollow 3D model. To

produce a multi-view rendering of a 3D shape, we used the

Phong [33] reflection model to render a 3D model under a

perspective projection, determining the pixel color by

interpolating the reflective intensity of the polygon ver-

tices. The projected two-dimensional images are grayscale

images, which can reflect the edge information of the

object. In order to create multi-view shape representations,

we need to set the viewpoints to render each mesh. As set

by MVCNN [11] in the first experimental camera, we

assume that the input 3D shape is placed vertically on a

constant axis (e.g., z axis), and that 12 virtual cameras are

placed at 30-degree intervals to render the 3D model with a

virtual camera pointing at the center of mass around the 3D

model. For comparison purposes, we set up perspectives at

every 120� and every 60�. Most models in modern online

repositories satisfy the requirement of aligning along a

consistent axis, such as 3D Warehouse, and some previous

view-based recognition methods follow the same assump-

tion [11, 25, 26]. The elevation of the cameras is 30� from
the ground plane and points toward the centroid of the

mesh. The centroid is calculated as the weighted average of

the centers of the mesh surface, where the weights are the

areas of the surface. Finally, each model generates a set of

12 view images. The difference with MVCNN [11] is that

we render the images with a black background and set the

camera’s field of view so that the object is bounded by the

image canvas and rendered as a grayscale image of size

224 9 224. We studied the influences of three views (ev-

ery 120�) and six views (every 60�) in Sect. 5.4.

Based on the above-mentioned multi-view representa-

tions, the features of the views are then extracted via the

basic CNN model, as shown in Fig. 1.

4.2 View space attention block

After 2D images rendered from different perspectives have

learned the view characteristics through the CNN, a dis-

tinctive global descriptor is required. Figure 2 shows an

example of three perspectives (Views I, II, and III) in the

mantel and piano categories of the original dataset rendered

by the 3D object. VSAB focuses on some detail for each

category (Fig. 3). For example, there are no key features of

the mantel category in View I, which makes it difficult to

distinguish from the piano. In View II and View III, the

keys of the mantel separator and piano become key features

to distinguish the categories of the two samples. VSAB

makes the more discriminatory details (mantel partition,

piano keys) in categories more responsive. Figure 3 shows

the structure of VSAB. The workflow can be divided into

three phases. First, we get the query, key, and value feature

layers by convolutional layer. The first phase generates a

spatial attention matrix from key-value pairs that captures

the discriminatory details within a view by exploring the

spatial relationship between any two pixels of its charac-

teristics. In the second stage, we assign importance to each

feature within the value of the spatial branch of the original

feature through the spatial attention matrix and add the

original input to generate the spatial attention descriptor. In

the third stage, we used the max pooling function to

aggregate view features to obtain a compact spatial shape

descriptor.

Each 3D modelM is rendered as n 2D images, which are

marked as X ! ðx1; x2; . . .; xi; . . .; xnÞ, where xi is the ith

image. The n 2D images are learned from the basic CNN to

mantel

piano

View I View II View III

Fig. 2 Comparison of details from different categories
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a different visual feature ðf1; f2; . . .; fi; . . .; fnÞ, where fi is

the visual feature of the ith image, fi 2 RC�H�W . The

overall visual features of n represent fS 2 RC1�H1�W1 , as

shown in Fig. 3. We first use two convolutional layers to

generate two new feature maps, Query and Key, which can

be expressed as

Query ¼ ZðfSÞ; ð1Þ
Key ¼ TðZðfSÞÞ; ð2Þ

where Z is the convolutional layer with a convolution

kernel size of 1 9 1, ðQuery;KeyÞ 2 RC1�H1�W1 , and we

reshape it as RC1�N , where N ¼ H1 �W1 is the space size

of the overall feature fS and T is the transpose operation.

We multiply the Query and Key matrices, and apply a

softmax layer to calculate the spatial attention matrix

S 2 RN�N , where

Sij ¼
expðQueryi � KeyjÞ

PN
i¼1 expðQueryi � KeyjÞ

: ð3Þ

Sij is the spatial attention weight matrix obtained from

VSAB, which measures the correlation between the ith and

jth positions within a view. The larger the weight, the more

similar it is. The softmax function ensures that the total

weight of view features is 1.

In the second stage, we feed the overall characteristics fS
into the original feature space branch, whose features have

the same resolution as the input and are used to preserve

the original feature information. After convolution, a new

feature mapping value 2 RC1�H1�W1 is generated. Similarly,

we set it to C1 � N and multiply it by the spatial attention

matrix S. This stage assigns an importance to each location

in the original feature space branch value, focusing on the

salient features in each view, which can be characterized as

PS ¼ fS þ h
XN

i¼1
ðValuei � SÞ: ð4Þ

We introduce a scale parameter h, h adaptive control to

obtain the spatial attention feature, which is initialized to

zero and gradually learns to assign more weight. The input

features fS are summed to ensure that the information

richness learned by the features after VSAB is no less than

that of the original input features. According to Eq. (4), the

spatial feature of each region in views can adaptively learn

the surrounding information context through VSAB, and

more accurately distinguish the region through the spatial

attention moment matrix S, thus avoiding some irrelevant

information.

The third stage uses the max pooling clustered view

feature,

Transpose

So�max

Query

Key

Value

Matrix multiplicationSpatial attention matrix Element-wise Sum

Visual characteristics 

Convolution Layer

C1×H1×W1

Max

S
n

f2f1 fnf3

fS
VS

Fig. 3 View space attention block (VSAB). The key-pair query and the key assign different importance to each feature within the value of the

spatial branch of the original feature, by exploring the spatial relationship between any two pixels of the view’s feature, to capture the

discriminatory details within the view
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VS ¼ MaxðPSÞ; ð5Þ

where Max is the max pooling operation. We gather VSAB

features into a global descriptor to obtain the spatial shape

descriptor VS view channel attention block.

4.3 View channel attention block

After capturing the location relationship within a view, we

want to obtain the relationship between views. These views

have different characteristics with different contributions

which will affect recognition accuracy. To learn the rela-

tive importance of views can better represent 3D shape

descriptors and improve classification performance [34].

Figure 4 shows an example of three perspectives (View I,

View II, View III) of the dataset category cup and category

piano after rendering the original 3D object. The purpose

of using the view channel attention module is to find the

relevance of multiple views, so as to focus on the important

views. Two examples in View I ignore the two key features

of cup handles and piano stools, but show them in the View

II and View III. By emphasizing important perspectives

and suppressing insignificant ones through VCAB, these

more discriminatory views (View II, View III) respond

more strongly (Fig. 5).

Therefore, we incorporate a channel attention mecha-

nism in the pooling of visual features from different per-

spectives and propose that VCAB studies the correlation

between different views. As shown in Fig. 5, the view

channel attention block (VCAB) is divided into two phases.

The first phase, extraction, obtains a channel attention

weight by compressing spatial information from different

perspectives, assigns each view an importance weight, and

scales feature attention weights. The second phase, fusion,

combines these view features in a global descriptor through

a convolutional layer to obtain a view channel descriptor.

For the visual characteristics of n perspectives

ðf1; f2; . . .; fi; . . .; fnÞ, we first express their visual charac-

teristics with the general feature fC 2 RC2�H2�W2 . To find

the dependencies between these perspectives, let us make

C2 ¼ n. We need a channel descriptor to represent these

overall characteristics, that is, to compress the spatial

information of the overall characteristics of n perspectives

into a single number. Thus, the visual feature fc with a

space size of H2 �W2 shrinks to a channel vector g 2 Rn,

Cup

Piano

View I View II View III 

Fig. 4 Comparison of details from different perspectives

GAP

Extraction Fusion

C2×H2×W2

Visual characteristics 

C2×H2×W2

n

f2f1 fnf3

Convfc

VcSc

Full connection layer Convolution Layer channel-wise multiplication
Element-wise Sum

g

Channel attention vector 

Fig. 5 View channel attention block. By compressing channel information from different perspectives, channel attention vectors are generated,

the characteristics of each view are scaled with attention weights, and the correlation between the target perspectives is found, so that the

distinguished perspectives in all perspectives are emphasized
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g ¼ 1

H �W

XH

i¼1

XW

j¼1

f ði; jÞ: ð6Þ

For the first step in the extraction phase, the overall

feature fc converts into an n� H2 �W2 size and com-

presses it to an n� 1� 1 channel vector with global spatial

information. The information for each channel is repre-

sented by its global average pooling (GAP).

After aggregating global spatial information for a

channel, we must fully capture the relationship between

view channels. A function to achieve this must meet two

criteria. First, it must be able to measure the importance of

each view and, specifically, to learn the interaction between

views. Second, it must be able to estimate the content

distinction of each perspective because we want to change

the consistency of contributions from multiple perspec-

tives, emphasize multiple beneficial view information,

suppress irrelevant view information, and enable all views

to contribute to different degrees to the characteristics of

3D objects based on their attention distribution weights. To

meet these criteria, we use a view selection mechanism

with two layers of full connection and one layer of ReLU,

and use sigmoid function activation to calculate the

attention vector Sc of the view channel,

Sc ¼ rðW2dðW1gÞÞ: ð7Þ

The two fully connected layers are a reduced-dimension

layer and an increased-dimension layer. The attenuation

ratio r of the reduced-dimension layer is assigned to n,

which normalizes the number of view channels. W1 and W2

are parameters of dimension-reducing and dimension-in-

creasing layers, W1 2 R
n
r�n and W2 2 Rn�n

r , d is a ReLU

activation function, and r is a sigmoid function that maps

its output to (0, 1) to obtain the channel attention weight

vector Sc. The overall feature fc of n perspectives is scaled,

the size of which is n� 1� 1. Attention weight vector Sc
and the overall feature fc of n perspectives are multiplied

by an element-wise to obtain P, which can be expressed as

P ¼ Sc � fc; ð8Þ

where ’�’ represents channel-wise multiplication.

To ensure that the information richness of the learning

view feature with the channel attention block is not less

than the original input feature, the overall features fc of the

view are added to the final result,

PC ¼ Pþ fc: ð9Þ

After feature extraction from the first phase of extrac-

tion, the second phase is the fusion of view features, which

are combined into a global descriptor by the Conv opera-

tion to obtain the channel shape descriptor Vc:

Vc ¼ ConvðPcÞ; ð10Þ

where Conv is a convolutional layer with core size 1� n.

Using a 1� n convolution kernel equivalent to an n-view

window, the view channel shape descriptor Vc is obtained

by sliding the view window and fusing the n-view angle

features.

4.4 Prediction recognition results

In the first part of the MVDAN framework, we use ResNet

[9] as our basic CNN model, and we also use mature net-

works such as VGG-M [7], DenseNet [10], and ResNeXt

[35] to experiment. We remove the last full connection

layer from the original ResNet [9], and join the proposed

dual attention block of VSAB and VCAB. The modules

work in parallel to obtain the corresponding view space and

view channel descriptors, which are combined to form the

final 3D shape descriptor, which eventually obtains the

predictive recognition and classification results of 3D

objects through a fully connected layer.

5 Experimental results and discussion

5.1 Dataset

The most widely recognized dataset for 3D shape classi-

fication is the Princeton ModelNet [36] series. We evalu-

ated our approach on the ModelNet40 dataset, which

includes 12,311 3D CAD models from 40 categories, with

9843 training models and 2468 test models. Because the

numbers of samples vary by category, the experimental

accuracy index is overall accuracy (OA) for each sample

and (AA) for each category, OA is the percentage of cor-

rect predictions in all samples, and AA is the average

accuracy for each category.

5.2 Implementation details

In all our experiments, there are two stages of training. The

first stage only classifies a single view for fine-tuning the

model, in which the dual attention block is removed. The

second stage of training adds dual attention blocks to train

all the views of each 3D model and performs joint classi-

fication for the views, and this is used to train the entire

classification framework. When testing, only the second

stage is used to make predictions. We use VGG-11 [7] pre-

trained on the ImageNet [28] dataset as the first part of the

basic CNN model in our network. We run our experiments

on a computing node running Windows 10 system with an

Intel core i7-8700K CPU at 3.70 GHz, 60-GB RAM, and

an NVIDIA GTX 1080Ti graphics processing unit (GPU).

We use the blender software for windows to generate
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multi-view rendering, and use pytorch1.2 and cuda10.0 for

deep learning. We initialize the learning rate to 0.0001,

using the Adam [37] optimizer for both phases. Learning

rate decay and L2 regularized weight decay are used to

reduce model overfitting. The weight decay parameter is

set to 0.001. For single-GPU training, the epoch of the two

stages will be 30. If dual-GPU training is used, the con-

vergence speed of the model will be faster when the batch

size is twice that of single-GPU training. Therefore, the

number of training epochs in the first stage is adjusted to

10, and the number of training sets in the second stage is

adjusted to 20. Single-GPU training time can be seen in

Table 1, and time is expressed as the time spent in the first

and second phases.

5.3 Influence of basic CNN model

View-based 3D object recognition methods [11, 25, 26] use

VGG-M [7] as the basic CNN model, so we used VGG-M

[7] as a comparison. Good neural networks can signifi-

cantly improve performance in many applications. A

variety of architectures have been proposed for large-scale

CNNs, such as ResNet-50 [9], DenseNet [10], and

ResNeXt [35]. We designed different running settings on

ModelNet40 to connect the dual attention module to dif-

ferent basic CNN models to study the suitability of

MVDAN to different network models. In particular, recent

work has shown that [31, 32, 38] can easily be embedded in

various networks to improve performance using attention

mechanisms. We used single-GPU training with a learning

rate of 0.0001.

As Table 1 shows, with the same number of perspec-

tives, VGG-11 maintained 95.17% instance accuracy with

the minimum training time (103 ? 199 min). DenseNet

[10] is deep, training time was longer, and accuracy

improvement was not obvious. ResNet-50 [9] performed

best in all CNN models, achieving 96.63% and 95.51%

accuracy on OA and AA, respectively, without much

training time. The performance of ResNeXt-50-32x4d [34]

was close to that of ResNet-50 [9], but training took the

most time. Therefore, ResNet-50 [9] was chosen as the

basic CNN model. We experimented with attention-based

methods SENet [31], CBAM [32], and SCNet [38]

embedded in the ResNet-50 [9] network framework, with

less-than-ideal results. When attention is introduced in the

underlying CNN model in conjunction with our proposed

dual attention module, too much attention can degrade

performance. ResNet [9] is seen as the best choice for the

basic CNN model in the MVDAN framework.

5.4 Influence of number of views

To investigate the impact of the number of perspectives on

classification performance, we changed the number of

views for training and testing. We compared with MVCNN

[11], MHBN [25], RCPCNN [26] and GVCNN [34], using

3, 6, and 12 views. The accuracy of the comparison method

was obtained from Yu et al. [25], Wang et al. [26], and

Yang et al. [39]. Table 2 shows OA from different per-

spectives on the ModelNet40 dataset.

Table 2 shows that MVDAN performed the best from all

views. Overall accuracy reached 96.1%, 96.3%, and 96.6%

in 3, 6, and 12 perspectives, respectively, for increases of

2.6%, 2.2%, and 2.3% over the relation network [39]. It is

worth noting that when the number of views is further

increased from 6 to 12, the performance of most methods

[11, 25, 26] decreases. Our approach achieves the best

performance at 12 views thanks to the relative importance

of VCAB learning views, which enables the network to

robustly represent the relationships between views as their

number increases.

Table 1 Influence of the basic CNN model

Number Network OA AA Time (min)

12 view VGG-11 [7] 95.17 92.72 103 1 199

12 views DenseNet [10] 95.66 93.02 166 ? 477

12 views ResNet-50 [9] 96.63 95.51 155 ? 283

12 views ResNeXt-50 [35] 96.68 95.05 234 ? 475

12 views ResNet-50? SE [31] 95.74 94.77 162 ? 339

12 views ResNet-50?

CBAM [32]

96.11 94.48 229 ? 460

12 views ResNet-50? SC [38] 96.43 94.63 175 ? 358

Bold values represent the best performance

Time is expressed as time spent in the first and second phases

Table 2 Influence of the number of views

Methods Number of views

3 views 6 views 12 views

MVCNN [11] 91.3 92.0 91.5

RCPCNN [26] 92.1 92.2 92.2

GVCNN [34] – – 92.6

MHBN [25] 93.8 94.1 93.4

Relation network [39] 93.5 94.1 94.3

MVDAN (Ours) 96.1 96.3 96.6

Bold values represent the best performance

Overall accuracy is expressed as a percentage
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5.5 Comparison with other pooling methods

We investigate the effect of our dual attention module on

classification performance. For fairness, we chose the same

VGG-M [7] as Yu et al. [25] as a benchmark CNN model.

We removed the dual attention module and compared it

to sum pooling, max pooling, bilinear pooling [40],

improved bilinear pooling [41], log-covariance pooling

[42], and harmonized bilinear pooling [25]. Table 3 shows

the overall and category accuracy of 12-view different

pooling methods on the ModelNet40 dataset. Table 3

shows that our dual attention module performs best, with

95.17% and 92.72% accuracy on OA and AA, respectively.

Performance increased further with ResNet-50 [9] as the

benchmark CNN model, as seen in Table 4.

5.6 3D object classification

We compare our methods to SPH [43] and LFD [44],

which use manual descriptors, and then to voxel-based

methods ShapeNets [16], VoxNet [15], and Pointgrid [18];

point-based methods PointNet [19], PointNet?? [20], Mo-

Net [22], and 3D Capsule [45]; and view-based methods

MVCNN [11], MVCNN-MultiRes [46], Relation Network

[39], RCPCNN [26], GVCNN [34], and MHBN [25].

As Table 4 shows, view-based methods in all methods

performed best. Using VGG-M [7] as the base model, our

method had a higher classification accuracy than other

view-based methods and performed best using ResNet-50

[9], with 96.6% and 95.5% correct classification accuracy

on OA and AA, respectively. The excellent performance of

our approach is due to the following reasons. MVDAN

contains the dual attention modules VSAB and VCAB.

VSAB explores the spatial relationships between any two

pixels of a view’s characteristics to capture the discrimi-

natory details within the view, and VCAB looks for cor-

relation between target views, assigns weights to views,

and facilitates a focus on discriminatory views. Compared

to MVCNN [11], MVDAN combines these two modules,

emphasizing the key features within and between views to

form a distinguishing global descriptor, which is better than

treating all views equally.

6 Conclusions

In this paper, we proposed an MVDAN for 3D object

recognition. Compared with the traditional methods, our

proposed MVDAN framework no longer treats each view

equally, but uses dual attention blocks to consider the

Table 3 Comparison with other

pooling methods
Methods Overall accuracy (OA) Average accuracy (AA)

Sum pooling 88.04 85.20

Max pooling 87.35 85.65

Bilinear pooling [40] 87.03 84.81

Improved BP [41] 93.23 91.21

Log-covariance pooing [42] 93.03 90.57

Harmonized bilinear pooling [25] 94.12 92.23

MVDAN (VGG-M [7]) 95.17 92.72

Bold values represent the best performance

Accuracy is expressed as a percentage

Table 4 Comparisons of performance with state-of-the-art methods

Methods Input modality ModelNet40

OA AA

SPH [43] Handcraft – 68.2

LFD [44] Handcraft – 75.5

3D ShapeNets [16] Volume – 77.3

VoxNet [15] Volume – 83.0

Pointgrid [18] Volume 92.0 88.9

PointNet [19] Points 89.2 76.2

PointNet?? [20] Points 91.9 –

3DCapsule [45] Points 92.7

Mo-Net [22] Points 92.4 90.3

MVCNN [11] 12 views 92.1 89.9

MVCNN-MultiRes [46] Multi-resolution Views 93.8 91.4

Relation network [39] 6 views 94.1 –

12 views 94.3 92.3

RCPCNN [26] 12 views 93.8 –

GVCNN [34] 8 views 93.1 –

12 views 92.6 –

MHBN [25] 6 views 94.1 92.2

12 views 93.4 –

MVDAN (VGG-M [1]) 12 views 95.2 92.7

MVDAN (ResNet-50 [3]) 12 Views 96.6 95.5

Bold values represent the best performance

Numbers are reported in percentage terms. Our MVDAN achieves the

best performance consistently
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correlation between the views within and between shapes.

In order to better evaluate our framework, we conducted a

series of experiments to study the influence of different

components in our method. The experimental results and

the comparison with the latest methods prove the excel-

lence of the method, which achieved state-of-the-art per-

formance on the ModelNet40 [29]. This method can be

widely used in automatic driving, augmented reality, and

reverse engineering, as well as automatic sorting, handling,

assembly, and the detection of robots.

In future work, we will conduct more experiments with

datasets collected from real environments, focusing on the

robustness of our method and the suppression of noise

components, and use possible image preprocessing meth-

ods such as wavelet transform to improve our classification

results.
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