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Abstract
Automatic segmentation of optic disc (OD) and optic cup (OC) is an essential task for analysing colour fundus images. In

clinical practice, accurate OD and OC segmentation assist ophthalmologists in diagnosing glaucoma. In this paper, we

propose a unified convolutional neural network, named ResFPN-Net, which learns the boundary feature and the inner

relation between OD and OC for automatic segmentation. The proposed ResFPN-Net is mainly composed of multi-scale

feature extractor, multi-scale segmentation transition and attention pyramid architecture. The multi-scale feature extractor

achieved the feature encoding of fundus images and captured the boundary representations. The multi-scale segmentation

transition is employed to retain the features of different scales. Moreover, an attention pyramid architecture is proposed to

learn rich representations and the mutual connection in the OD and OC. To verify the effectiveness of the proposed

method, we conducted extensive experiments on two public datasets. On the Drishti-GS database, we achieved a Dice

coefficient of 97.59%, 89.87%, the accuracy of 99.21%, 98.77%, and the Averaged Hausdorff distance of 0.099, 0.882 on

the OD and OC segmentation, respectively. We achieved a Dice coefficient of 96.41%, 83.91%, the accuracy of 99.30%,

99.24%, and the Averaged Hausdorff distance of 0.166, 1.210 on the RIM-ONE database for OD and OC segmentation,

respectively. Comprehensive results show that the proposed method outperforms other competitive OD and OC seg-

mentation methods and appears more adaptable in cross-dataset scenarios. The introduced multi-scale loss function

achieved significantly lower training loss and higher accuracy compared with other loss functions. Furthermore, the

proposed method is further validated in OC to OD ratio calculation task and achieved the best MAE of 0.0499 and 0.0630

on the Drishti-GS and RIM-ONE datasets, respectively. Finally, we evaluated the effectiveness of the glaucoma screening

on Drishti-GS and RIM-ONE datasets, achieving the AUC of 0.8947 and 0.7964. These results proved that the proposed

ResFPN-Net is effective in analysing fundus images for glaucoma screening and can be applied in other relative

biomedical image segmentation applications.
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1 Introduction

Glaucoma is the second leading cause of blindness in the

world (after cataracts) and the first irreversible cause of

blindness [26]. It is estimated that glaucoma will affect

over 111.8 million people by 2040 [40]. As a chronic

disease, glaucoma affects the physiological structure of

patients’ eyes, causing the thinning of ganglion cells with

internal plexiform layer (GCIPL), the increase of cup-disc

ratio, and the narrowing of optic disc rim [15]. Normally,

no evident symptoms appear in the early stage of glau-

coma, which causes numerous patients diagnosed with

glaucoma in the late stage when the damage to visual
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function is irreversible. Therefore, early screening is

essential for the treatment of glaucoma and prevents the

loss of vision.

Currently, colour fundus images and optical coherence

tomography (OCT) are the most broadly implemented

imaging techniques in the early screening of glaucoma.

Compared with OCT, colour fundus image is less expen-

sive and more frequently used for detecting glaucoma. The

optic cup (OC) to optic disc (OD) ratio (CDR) of fundus

images is an important indicator in the screening and

diagnosis of glaucoma [9]. As shown in Fig. 1, the CDR of

healthy eyes is generally between 0.3 to 0.4. When the

value of CDR reaches 0.65, it is clinically considered to be

glaucoma. Manually checking OD and OC is a time-con-

suming task, and it normally takes a professional oph-

thalmologist about 8 minutes on average to completely

segment the OD and OC in a fundus image [21]. Hence,

developing automatic algorithms to segment OD and OC

from fundus images is significant for lightening the burden

of ophthalmologists and promoting large-scale screenings

of glaucoma.

Most of the early segmentation methods of OD and OC

are based on hand-crafted features (e.g. colour, gradient

and texture features), which include adaptive threshold-

based method [2, 27], regional growth method [28] and

segmentation method based on Wavelet transform [6].

However, these hand-crafted features are easily affected by

the physiological structure of the fundus images.

In recent years, deep learning has achieved excellent

performance in tasks such as image classification [16],

object detection [30], and image segmentation [24]. A large

number of OD and OC segmentation methods based on

deep learning have been proposed [12, 34, 36]. Due to the

uncertainty of the boundary of the OD and OC in the

fundus image, the accurate segmentation of OD and OC is

still a challenging task. Most of the existing methods divide

the segmentation of OD and OC into two stages or only

conduct OD segmentation, which overlooks the inner

connection between OD and OC. Moreover, most methods

only use a single scale to process the image, which cannot

fully capture the detailed features of the OD and OC,

especially edge information.

In this paper, we propose a convolutional neural net-

work, named ResFPN-Net, for joint OD and OC segmen-

tation. The main contribution of our work can be

summarized as follows:

(1) A segmentation network for joint OD and OC seg-

mentation: Through multi-scale loss supervision, the

network can accurately segment the OD and OC

from fundus images by fully taking advantage of the

internal relationship between OD and OC.

(2) A multi-scale feature extractor: It takes images of

different scales as input and merges information

from various feature maps, which can adequately

express the feature information of the fundus image

and preserve the edge features.

(3) An attention pyramid structure: This structure com-

bines attention mechanism with feature pyramid

architecture to enhance the representation of OD and

OC in the fundus image, which improves the

segmentation performance of the network.

Fig. 1 Structure of the optic disc and optic cup in a fundus image. The

region denoted with a blue circle is the optic disc (OD); the region

denoted with a yellow circle is the optic cup (OC). The vertical cup-

to-disc ratio (CDR) is calculated by the ratio of vertical cup diameter

(VCD) to vertical disc diameter (VDD) (color figure online)
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2 Related works

In the early stage, most research on OD and OC segmen-

tation is based on hand-craft features. These features

mainly include colour, texture, contrast, and gradient

information. Abdel-Ghafar et al. [1] proposed a threshold-

based segmentation method to segment the OD. This

method utilizes the Sobel operator to enhance the fundus

image; subsequently, the image is processed by the local

threshold and applies Hough transform to get the OD

region. Osareh et al. [29] proposed an OD location method

based on colour channels. Juneja et al. [39] applied fuzzy

C-means clustering method to segment the OD and OC,

and the Canny operator is employed for post-processing. In

the segmentation method of OD and OC, edge detection

algorithms such as the Sobel operator and the Canny

operator can improve the accuracy of segmentation. Dif-

ferent from the edge detection operators, the pixel classi-

fication-based method transforms the edge detection

problem into the pixel segmentation problem and achieves

satisfactory results. Jun Cheng et al. [8] proposed a

superpixel classification to segment OD and OC and

applied histograms and centre-surround statistics to divide

each superpixel into disc region and non-disc region. In

[42], a method based on deformation is proposed to locate

the OD and OC. In addition, template-based methods [20]

and reconstruction-based learning method [41] are also

widely used in OD and OC segmentation. However, these

methods heavily rely on hand-crafted features, which lar-

gely affects their performance.

Recently, deep learning has made great achievements in

natural image segmentation and medical image segmenta-

tion, such as Mask-RCNN [13], U-Net [31]. Many OD and

OC segmentation methods based on deep learning have

also emerged. In [34], a modified U-Net architecture is

proposed to segment the OD and OC, which achieves the

lowest possible prediction time compared with traditional

convolutional networks. In [18], an end-to-end convolu-

tional neural network, named JointRCNN, is proposed to

segment OD and OC, which applied the atrous convolution

to boost the performance of segmentation results. However,

these methods separate OD and OC segmentation sepa-

rately. Gu et al. [12] proposed a CE-Net to capture more

advanced information and retain spatial information for

segmenting OD. Motivated by conventional U-Net archi-

tecture, Baid et al. [5] proposed a ResUnet Architecture to

segment OD. Al-Bander et al. [33] used VGG as the

backbone and transfer learning to solve the problem of OD

segmentation. However, based on these methods, only the

optic disc region is segmented. Therefore, they ignored the

intimate relationship between the OD and OC. Subse-

quently, the Stack-U-Net [35] was further proposed, which

takes U-Net as the backbone and assists the thought

training network of iterative refinement. In [43], using

ResNet-34 as an encoding layer, a modified U-Net archi-

tecture was proposed for the segmentation of OD and OC.

Al-Bander et al. [3] proposed a new segmentation network

that utilized DenseNet incorporated with a fully convolu-

tional network. Fu et al. [10] used polar transformation to

flat the image based on OD centre and applied interpolation

to enlarge the cup region. However, the transformation of

polar coordinates causes the edges of the OD to be not

smooth.

3 Methodology

Inspired by RetinaNet [23], we proposed the ResFPN-Net,

as shown in Fig. 2. The framework has four components:

multi-scale feature extractor, multi-scale segmentation

transition, attention pyramid architecture, and multi-scale

loss supervision. The multi-scale feature extractor receives

various scale fundus images as input. The multi-scale

segmentation transition is used to achieve multi-level fea-

ture maps fusion and preserve feature maps of different

scales. And then, the feature maps are transmitted into an

attention pyramid structure to capture the inner connection

within OD and OC. Finally, the segmentation result of the

OD and OC is achieved. The entire network is trained by

multi-scale loss supervision. The following sub-sections

will introduce the details of this architecture.

3.1 Multi-scale extractor

The extraction of OD and OC edge information in fundus

images can improve segmentation accuracy. However, in

the fundus image, the boundary information of OD and OC

is usually not clear, so it is difficult to retain the details

based on a single scale. In general, the convolution with a

large receptive field is suitable for large objects, while the

convolution with a small receptive field can capture

detailed information. Therefore, we take the multi-scale

fundus image as input to construct various receptive fields

and completely learn the edge features. As shown in Fig. 2,

we modify the ResNet [14] as our feature extractor. ResNet

is an efficient residual network for image classification.

Specifically, all fundus images are resized into 512� 512,

256� 256, 128� 128, and 64� 64 pixels. We initially

applied convolution with a kernel size of 7� 7 on the

fundus images with a size of 512� 512 pixels. Batch

normalization (BN) and ReLU activation function are

applied to derive the feature map, denoted as s2. Then we

construct different convolution layers to receive multi-

scale fundus images, whose kernel size is 3� 3, the

channel number is 64, 128, and 256, respectively. And,
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each convolution is followed by a rectified linear unit

(ReLU). Finally, the feature map derived from the fundus

images of the other three scales is denoted as s3, s4, s5.

3.2 Multi-scale segmentation transition

The encoder–decoder structure is generally employed in

many frameworks for image segmentation. In this paper,

our segmentation architecture is also based on this struc-

ture. In an encoder–decoder structure, the encoder is used

to compress and encode the feature information of the

image; the decoder is deployed to restore the encoded

information. However, some segmentation methods [4, 45]

based on encoder-decoder structure do not fully preserve

multi-scale feature information. In our segmentation task,

the multi-scale input is integrated into the decoder layer to

broaden the network width of the decoder path.

To transfer the detailed feature and the multi-scale

information to the decoder. We generate a set of feature

maps produced by different multi-scale feature maps as

information transitions between encoder and decoder.

Specifically, the feature map s2 is fed to a residual block,

which consists of a set of convolution and downsamples

operations. The feature map derived from the residual

block is denoted as c2. However, there are significant

feature gaps between the features extracted from multi-size

fundus images. Directly merging these features can weaken

the representation of the multi-scale image. In this paper,

we proposed a fusion attention module to alleviate gaps

among these feature maps, as shown in Fig. 3. Firstly, we

merge two feature maps by channel-wise concatenation

followed by convolution layer and BN. This procedure can

be formulated as follows.

V ¼ Convðconcatðci�1; siÞÞ; ð2\i 6 5Þ : ð1Þ

Then, we collect global contextual information by global

average pooling. We apply 1� 1 convolution operation

and Softmax activate function to derive the attention matrix

based on global context information. And the attention

matrix is multiplied with V to get the fusion feature map.

Finally, the fusion feature map is forwarded to the corre-

sponding residual block. Following the above illustration,

multi-level features used to build by fusion attention

module and residual blocks are denoted as {c2, c3, c4, c5},

which correspond channels are {256, 512, 1024, 2028}, as

shown in Fig. 2.

Fig. 2 Overview of our proposed ResFPN-Net. The input to the

network consists of multi-scale fundus images. Firstly, the multi-scale

fundus images generate the intermediate feature: c2, c3, c4, c5. Then,

the intermediate features are input into the attention pyramid structure

for the fusion of different features. Finally, the OD and OC

segmentation result is obtained through training of the network
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3.3 Attention pyramid architecture

We collect four feature maps of different scales through the

multi-scale segmentation transition: {c2, c3, c4, c5}. Then,

we utilize Feature Pyramid Network (FPN) [22] to explore

features at different scales. The FPN was originally

employed in the object detection task to solve the problem

of multi-scale object detection. It adds different feature

maps through Top-down pathway and lateral connections

to aggregate multi-scale features. However, there are sig-

nificant differences in these four feature maps. Specifically,

the feature maps in the deeper layer are spatially coarser

but have more semantic information. In contrast, the fea-

ture maps in the lower layer contain rich location infor-

mation but fewer semantic features. We believe that this

simple addition method will weaken the expression of

some features and cannot fully learn the close relation

between OD and OC. More importantly, fundus vessels in

the OD and OC region make it difficult to segment the OD

and the OC accurately.

In this paper, we propose an attention pyramid mecha-

nism that concatenates multi-scale features to solve the

above problems. In this architecture, an attention module

integrates the high-level feature map and the low-level

feature map, which bridges the gaps between the deeper

feature map and the lower feature map. On the other hand,

each region of the input image is given different weights to

extract more critical information and help the model dis-

tinguish between the target region and the background.

Specifically, feature maps obtained by the multi-scale

transition: {c2, c3, c4, c5} are fed to the corresponding

convolution layer of the pyramid network. Subsequently,

the attention module concatenates high-level features with

low-level features to achieve feature fusion, as shown in

Fig. 4.

Our attention module is based on CBAM [32] and is

shown in Fig. 5, where pi, pj represents the feature maps

from diverse convolution layer. We first feed the pj with

bilinear interpolation and add it to pi to produce the

intermediate feature map f. Then, an Adaptive Average

Pooling, Adaptive Max Pooling and 3� 3 kernel convo-

lution layer followed by ReLu and Sigmoid activate

function to generate two new feature maps S 2 RC�H�W

and L 2 RC�H�W , where C indicates the number of chan-

nels, and H and W is the height and width of the feature

map. Finally, these two new feature maps are added

together to receive the final feature map O 2 RC�H�W .

3.4 Loss function

The OD and OC segmentation is formulated as a multi-

label problem in our task. In the original fundus image, the

proportion of the background region is more significant

than that of OD and OC. The performance of the network is

affected by the imbalance of categories in the training

process. Therefore, we use focal loss [23] as the loss

function for multi-class segmentation, which balances the

proportion of the target region and background region by

adding weights to the corresponding loss of the sample.

To adequately train the network, we introduced the sub-

output layers to construct multi-scale loss. The advantage

of the multi-scale loss is that it prevents the gradient from

Fig. 3 Illustration of the fusion attention module
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disappearing during training. In sub-output, the segmenta-

tion loss between the mask and the fundus image is for-

mulated by Eq. (2).

LsubðPtÞ ¼ �að1� PtÞc logðPtÞ; ð2Þ

where Pt is the probability of truth class in the network,

and a is an equilibrium variable to balance the number of

positive and negative samples. c is a hyperparameter used

to focus the model on samples that are difficult to classify

during training.

Besides, we integrate sub-outputs to calculate the fusion

loss (Lfusion). There are four sub-outputs in our task,

denoted as O1, O2, O3, O4, and the fusion of four sub-

outputs O can be formulated as:

O ¼ O1 þ O2 þ O3 þ O4 : ð3Þ

Lfusion is defined as follows:

LfusionðOÞ ¼ �bð1� OÞc logðOÞ : ð4Þ

Finally, the multi-scale loss function of the segmentation

network is formulated as:

L ¼
XN

i¼1

L
ðiÞ
subðOiÞ þ LfusionðOÞ ; ð5Þ

where N represents the number of sub-outputs.

Fig. 4 Structure of the attention

pyramid architecture. The

structure consists of a feature

pyramid and an attention

module. The feature pyramid

retains multi-scale feature

information. The attention

module fuses different feature

maps and highlights the feature

representations

Fig. 5 Illustration of the attention module. The attention module first

applies the bilinear interpolation on feature map pj and adds with the

feature map pi to generate the intermediate feature f. Then,

convolution, average pooling, and max pooling followed by nonlinear

operation are applied to produce the final feature map O
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4 Experiments and results

4.1 Datasets and evaluation method

Experiments are conducted on two public datasets. The first

dataset is the Drishti-GS dataset [37], collected by Aravind

Eye Hospital, Madurai, India. It contains 101 colour fundus

images, which are divided into a training set and a testing

set. The training set contains 50 images with ground truth

for OD and OC segmentation. The remaining 51 images are

used for the testing.

The second database is RIM-ONE [11]. It contains 159

fundus images, including 85 images from healthy eyes as

well as 74 images from eyes with glaucoma at different

stages. RIM-ONE database provides pixel-level segmen-

tation of OD and OC labelled by two ophthalmologists as

the ground truth.

Three evaluation metrics are adopted to evaluate our

proposed algorithm: Dice coefficient (DC), accuracy (acc)

and Hausdorff distance (HD).

DC ¼ 2� TP

2� TPþ FPþ FN
ð6Þ

acc ¼ TPþ TN

TPþ FN þ TN þ FP
ð7Þ

HDðA;BÞ ¼ maxðhðA;BÞ; hðB;AÞÞ ð8Þ

hðA;BÞ ¼ max
a2A

min
b2B

jja� bjj ð9Þ

where TP, FP, TN and FN represent the number of true

positives, false positives, true negatives and false nega-

tives, respectively. And, A, B denote the prediction result

and the Ground Truth, a, b represent the pixel belonging to

the A and B, respectively.

4.2 Implementation details

The network was implemented by PyTorch1, and Adam

optimization algorithm [19] was used to train the network.

The network was trained on a GPU of NVIDIA GeForce

3090 Super with 24 GBs graphic memory. Our multi-scale

extractor employs pre-trained parameters based on Ima-

geNet as initialization. During the training, we set the

initial learning rate to 0.0001 and used Cosine Decay to

adjust the learning rate. In our implementation, we set a
and b to 0.25 and c to 3. We set the mini-batch size to 8 for

all training and performed 300 iterations on the network.

To improve the performance of the model, all images

were cropped to 800� 800 pixels centred on the OD. We

used various transformations to augment the training set,

including rotation by an angle of 90, 180, and 270 degrees.

4.3 Comparison of loss functions

Different loss functions are compared using the Drishti-GS

dataset. Cross-Entropy loss, Lovasz Softmax loss, and

Dice loss were applied to train our network, respectively.

The model was trained with an initial learning rate of

0.0001. As displayed in Fig. 6, when using multi-scale loss

to train the network, the model converges at the loss of

0.008 around 300 epochs. When using Dice loss to train the

network, the loss can converge to about 0.06. However, the

convergence effect of Lovasz Softmax loss and cross-en-

tropy loss is not satisfactory, and it only converges to about

0.21 after 300 iterations. Therefore, the proposed multi-

scale loss is proved to be more suitable for the training of

the OD and OC segmentation network.

4.4 Segmentation results

Extensive experiments were conducted on two public

databases. As shown in Table 1, our proposed method

achieved scores of 97.59%, 99.21% and 0.099 in Dice, acc

and HD for OD segmentation. Moreover, it achieves

89.87%, 98.77% and 0.882 for OC segmentation on the

Drishti-GS database. On the RIM-ONE database, our pro-

posed method achieved scores of 96.41%, 99.30% and

0.166 in terms of DiceOD, accOD and Avg: HDOD, respec-

tively. For OC segmentation, it achieves 83.91%, 99.24%

and 1.210 in Dice, acc and Avg: HD.

Based on the OD and OC segmentation results, the

corresponding CDR values can be further calculated, which

can be used to assist ophthalmologists in the diagnosis of

glaucoma. We use the mean absolute error (MAE) to

evaluate the accuracy of CDR estimation, which calculates

the average error rate of all samples:

MAE ¼
XN

i¼1

jCDRS
i � CDRG

i j ; ð10Þ

where N represents the number of test samples, CDRG and

CDRS represent the ground truth of CDR provided by

trained clinicians, and the CDR calculated by segmentation

results of OD and OC, respectively. Our proposed method

achieves MAE of 0.0499 and 0.0630 on the Drishti-GS and

RIM-ONE datasets, respectively.

4.5 Accuracy analysis results

The performance comparison with the state-of-the-art

approaches on two public databases is shown in Table 1.

The results show that our method achieved higher seg-

mentation performance than the state-of-the-art methods.

On the Drishti-GS dataset, compared with the CCNet [17],

our approach has an improvement of 0.48% and 0.13% in
1 https://github.com/pytorch/pytorch.
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Dice and acc for OD segmentation, respectively. Further-

more, it has an improvement of 1.73% and 0.18% in terms

of Dice and acc for OC segmentation. On the RIM-ONE

database, compared with CCNet, the Dice increases from

93.88% to 96.41% by 2.53% and the acc increases from

99.03% to 99.30% for OD segmentation. For OC seg-

mentation, the Dice increases by 2.82%, and the acc

increases by 0.18%, respectively. In terms of HD metric, a

considerable improvement has also been achieved for OD

and OC segmentation on Drishti-GS and RIM-ONE data-

sets. Compared with the state-of-the-art approaches, the

proposed method showed superiority in three metrics, as

shown in Table 1.

To compare the adaptability of the model on different

databases, we provide a comprehensive cross-dataset per-

formance analysis. Firstly, we used the Drishti-GS training

dataset to train the model and directly evaluated it on the

RIM-ONE testing datasets. Moreover, we also used the

RIM-ONE training datasets to train the model and tested it

on the Drishti-GS datasets. Since the first two methods in

Table 2 do not compare the cross-dataset performance of

the model and do not disclose the specific implementation,

we cannot obtain its cross-dataset performance. From

Table 2, the proposed method remarkably outperforms the

U-Net, M-Net [10], AGNet [44], and CCNet models,

indicating a solid generalization ability. On the RIM-ONE

database, compared to AGNet, the proposed method

achieved 7.27% and 1.95% improvements in Dice and acc

for OD segmentation. And, it achieved 22.23% and 2.86%

improvements in Dice and acc for OC segmentation. On

the Drishti-GS database, compared with CCNet, the Dice

increases by 6.82% and the acc increases by 3.04% for OD

segmentation. For OC segmentation, the Dice increases by

0.99% and the acc increases by 2.83%. This improvement

can also be witnessed for the HD metric, which

Table 1 Optic disc and cup segmentation performance on Drishti-GS and RIM-ONE datasets compared with other methods

Method DiceODð%Þ " DiceOCð%Þ " accODð%Þ " accOCð%Þ " Avg: HDOD # Avg: HDOC #

Drishti-GS RACE-net [7] 97.00 87.00 - - - -

Son et al. [38] 96.74 - - - - -

FCN-8s [25] 92.23 69.49 97.50 96.05 3.167 7.323

U-Net 95.31 82.50 98.60 97.98 0.547 2.397

M-Net 96.71 80.18 98.94 97.58 0.194 2.849

AGNet 96.28 84.35 98.72 97.96 0.334 2.092

CCNet 97.11 88.14 99.08 98.59 0.167 1.185

ResFPN (resnet50) 97.34 89.80 99.14 98.70 0.117 0.900

ResFPN (resnet101) 97.56 89.87 99.20 98.77 0.099 0.882

ResFPN (resnet152) 97.59 89.61 99.21 98.73 0.102 1.001

RIM-ONE RACE-net [7] - - - - - -

Song et al. [38] 95.46 - - - - -

FCN-8s [25] 86.01 60.58 97.29 98.17 7.092 11.151

U-Net 93.99 79.22 98.83 98.94 1.727 2.605

M-Net 91.17 70.10 98.34 98.77 1.362 4.897

AGNet 94.35 80.84 98.89 99.02 1.749 2.627

CCNet 93.88 81.09 99.03 99.06 0.548 1.845

ResFPN (resnet50) 96.33 83.53 99.28 99.17 0.180 1.437

ResFPN (resnet101) 96.41 83.91 99.30 99.24 0.183 1.210

ResFPN (resnet152) 96.35 83.69 99.28 99.14 0.166 1.390

Fig. 6 Compare the variations of different loss in the process of

training
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demonstrates the advantages of the proposed method over

other approaches on adaptability.

The confusion matrix of segmentation results achieved

by other competitive methods and our proposed method is

shown in Fig. 7. Compared with other methods, our

method can better distinguish the target region from the

background and not divide the OC region into the back-

ground. Moreover, the number of misclassified pixels in

OD and OC regions is lower than that of other methods.

4.6 Visual analysis results

We showed some typical results of the OD and OC seg-

mentation in Fig. 8 to visually compare the proposed

method with the competitive methods, including M-Net,

AGNet and CCNet. From the comparison, it can be found

that our method generates accurate segmentation results

and exceeds other approaches. We constructed a multi-

scale feature extractor to capture the edge information of

the OD and OC. Compared with the previous methods

(such as MNet, CCNet), our method is more accurate in

depicting the edge information of the OD and OC. Mean-

while, our method used attention pyramid architecture to

correlate the task of OD and OC segmentation, which can

implicitly learn the relationship between them. It can be

seen from Fig. 8, compared with other approaches, the

proposed method is more accurate in locating the OD and

OC.

We also conducted experiments on CDR calculation.

The scatterplot of corresponding CDR values calculated

based on OC and OD segmentation results derived by our

proposed method and other competitive methods are

visualized in Fig. 9. It can be observed that the CDR cal-

culated by the proposed method has the highest correlation

with the ground truth. On the Drishti-GS database, the

M-Net achieved an MAE of 0.1003, and the AGNet

achieved an MAE of 0.0816. In comparison, the proposed

method achieved an MAE of 0.0499, which is a relative

reduction of 0.0111 from 0.0610 by CCNet. While on the

RIM-ONE dataset, the M-Net implemented an MAE of

0.0995, and the AGNet implemented an MAE of 0.0813.

The proposed method implemented an MAE of 0.0630,

which is a relative reduction of 0.0133 from 0.0763 by

CCNet. Compared with other methods, the proposed

method achieved the highest accuracy on CDR calculation.

4.7 Glaucoma screening

In this section, we evaluated the proposed method on

glaucoma screening by using the calculated CDR value on

Drishti-GS and RIM-ONE datasets. Moreover, we descri-

bed the receiver operating characteristic (ROC) curve and

area under the ROC curve (AUC) as the metric of the

diagnostic accuracy shown in Fig. 10. From the ROC

curves and AUC scores, it can be seen that the proposed

method achieved the best performances on two public

datasets. Comparing with the CCNet, the AUC scores

increased from 0.8725 to 0.8947 on the Drishti-GS dataset.

In the other database, comparing with the second-best

method achieved by M-Net, the AUC scores increased by

Table 2 Cross-dataset performance on Drishti-GS and RIM-ONE datasets compared with other methods

Method DiceODð%Þ " DiceOCð%Þ " accODð%Þ " accOCð%Þ " Avg: HDOD # Avg: HDOC #

RIM-ONE RACE-net [7] - - - - - -

Song et al. [38] - - - - - -

FCN-8s [25] 71.58 50.21 93.14 95.26 26.461 32.622

U-Net 69.12 50.42 94.20 95.99 11.724 19.360

M-Net 76.29 50.43 94.74 96.81 10.623 19.815

AGNet 80.04 53.68 95.00 95.89 11.770 21.187

CCNet 66.81 56.16 93.48 97.72 8.778 8.743

ResFPN (resnet50) 87.31 75.91 96.95 98.75 3.670 5.180

Drishti-GS RACE-net t [7] - - - - - -

Song et al. [38] - - - - - -

FCN-8s [25] 81.03 51.29 94.53 94.87 4.254 8.442

U-Net 80.40 66.11 89.75 89.04 14.341 28.045

M-Net 85.50 63.72 95.86 95.87 3.920 10.8

AGNet 82.91 51.40 95.11 95.16 3.452 12.005

CCNet 84.83 72.39 94.37 94.30 6.726 14.943

ResFPN (resnet50) 91.65 73.38 97.41 97.13 0.936 4.338

Neural Computing and Applications (2023) 35:16129–16142 16137

123



1.7%. Compared with other methods, our method has

higher accuracy in the diagnosis of glaucoma, which could

be used to calculate clinical measurements and support

ophthalmologists in clinical diagnosis.

4.8 Ablation experiments

Ablation experiments were conducted on the Drishti-GS

dataset. For the sake of description, we used ME, MT, AP

and MF to represent the multi-scale extractor, multi-scale

segmentation transition, attention pyramid architecture and

multi-loss function, respectively. The result achieved by

different components of the model is shown in Table 3. We

used the ResNet50?FPN network as the baseline model

and adopted focal loss to train the model.

When ME, MT, AP and MF were gradually added into

the segmentation model, all the evaluation indexes con-

tinuedly increased. Hence, the contribution of each

improvement of the proposed model is verified. The ME

module captures multi-scale features to preserve the

boundary and other detailed information, which brings

significant benefits to the OD and OC segmentation.

Compared with baseline, the Dice increased by 1.30%, acc

increased by 0.44% and the Avg: HD decreased by 0.105

for OD segmentation. For OC segmentation, the Dice

increased by 4.96%, the acc increased by 0.70% and the

Avg: HD decreased by 0.725. The MT module is integrated

into the network to retain the multi-scale feature maps and

reduces the burden of the decoder. From Table 3, it can be

seen that the MT module has a great contribution to the

improvement of segmentation accuracy. The AP module

not only eliminates different levels of semantic gaps but

also implicitly learns the internal relationship between the

OD and OC. When the AP module replaces the corre-

sponding module in the baseline model, the segmentation

accuracy is also improved in varying degrees. Finally, we

showed that MF supervision could improve the accuracy of

the OD and OC. Experiments showed that combined

learning these components and used the MF to trained, the

network can achieve excellent segmentation results.

Therefore, the MF is useful for our segmentation task.

5 Conclusion

In this work, we proposed a novel deep learning architec-

ture that can achieve OD and OC segmentation simulta-

neously. The proposed ResFPN-Net is trained under multi-

loss supervision and converges quickly in a limited time.

We have evaluated our method on two public datasets, i.e.

Drishti-GS and RIM-ONE. Comprehensive experiments

demonstrated the superiority of each improvement and

proved that our method could accurately segment OD/OC

and outperformed other methods. The proposed multi-scale

loss functions converge much quicker, and reached sig-

nificant lower training loss than the compared loss

Fig. 7 Confusion matrix on the Drishti-GS database and RIM-ONE, respectively. (A1, B1) The M-Net results. (A2, B2) The AGNet results. (A3,

B3) The CCNet results. (A4, B4) The proposed method result
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Fig. 8 Examples of visual

segmentation results, where the

yellow region denotes OD

segmentation and the red region

denotes OC segmentation result.

(A1, A2, A3) Fundus images.

(B1, B2, B3) Ground truth. (C1,

C2, C3) The M-Net results. (D1,

D2, D3) The AGNet results; (E1,

E2, E3) The CCNet results. (F1,

F2, F3) the proposed method

results (The different coloured

boxes represent the diverse

region in fundus images)

Neural Computing and Applications (2023) 35:16129–16142 16139

123



Fig. 9 Scatter plot of the CDR measurement on Drishti-GS and RIM-ONE datasets, respectively. (A1, B1) The M-Net results. (A2, B2) The

AGNet results. (A3, B3) The CCNet results. (A4, B4) The proposed method result

Fig. 10 ROC curves with AUC scores for glaucoma screening based on CDR on Drishti-GS and RIM-ONE datasets

Table 3 Effect of different components of our method on the Drishti-GS dataset

Model ME MT AP MF DiceODð%Þ " DiceOCð%Þ " accODð%Þ " accOCð%Þ " Avg: HDOD # Avg: HDOC #

Baseline � � � � 95.05 80.39 98.37 97.59 0.340 2.550

U � � � 96.35 85.35 98.81 98.29 0.235 1.825

U U � � 96.96 87.40 99.01 98.52 0.247 1.517

U U U � 97.20 88.63 99.10 98.64 0.135 1.106

U U U U 97.34 89.80 99.14 98.70 0.117 0.900
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functions. By sharing the features from OD and OC for

segmentation tasks, the proposed one-stage OD and OC

segmentation network achieved both high accuracy and

high efficiency. Cross-dataset experiments demonstrated

the generalization performance of the network. Ablation

experiments proved the contribution of each improvement

of the proposed method. Based on the OD and OC seg-

mentation results derived by the proposed ResFPN-Net,

more accurate CDR can be calculated, which can provide

key support for glaucoma diagnose. The proposed frame-

work also has strong potential for other relative biomedical

image segmentation tasks.
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