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Abstract
This paper presents a novel probabilistic distributed framework based on movement primitives for flexible robot assembly.

Since the modern advanced industrial cell usually deals with various scenarios that are not fixed via-point trajectories but

highly reconfigurable tasks, the industrial robots used in these applications must be capable of adapting and learning new

in-demand skills without programming experts. Therefore, we propose a probabilistic framework that could accommodate

various learning abilities trained with different movement-primitive datasets, separately. Derived from the Bayesian

Committee Machine, this framework could infer new adapting trajectories with weighted contributions of each training

dataset. To verify the feasibility of our proposed imitation learning framework, the simulation comparison with the state-

of-the-art movement learning framework task-parametrised GMM is conducted. Several key aspects, such as generalisation

capability, learning accuracy and computation expense, are discussed and compared. Moreover, two real-world experi-

ments, i.e. riveting picking and nutplate picking, are further tested with the YuMi collaborative robot to verify the

application feasibility in industrial assembly manufacturing.

Keywords Learning from demonstration � Task-parametrised � Probabilistic distributed framework � Bayesian committee

machine � Assembly

1 Introduction

In modern advanced manufacturing, the industrial robots

are widely used in assembly tasks, such as peg-in-hole

[7, 27], slide-in-the-groove [18], bolt screwing [11, 12] and

pick-and-place [10, 24]. Owing to high-precision sensors,

leading driven techniques and excellent mechanical struc-

ture, industrial robots can successfully deal with known

objects within the well-structured assembly environment.

However, current industrial robots can hardly handle

complex assembly processes or adapt to unexpected

changes. To maintain a robust control performance,

industrial robots are usually programmed to follow fixed

trajectories, especially for large workpiece assembly. For

flexible manufacturing applications, industrial robots are

required to perform several tasks with various end-effectors

regarding different assembly environments. Therefore,

assistant measurement devices, i.e. machine vision system

and metrology [15], could provide a reference target for the

robots. Nevertheless, they can only be applied in a certain

region of interest, which more or less limits the generali-

sation of retrieving novel trajectories.

Generally, the core idea of assembly is to generate

ordered operations consisting of a set of movement prim-

itives, which could bring individual components together to

produce a novel product. Similarly, an excellent operator

does have the prime skills in terms of performing assembly

tasks, which promotes a feasible scenario for robots to

learn from human demonstration.

In the context of learning from demonstration, several

algorithms, i.e. probabilistic movement primitives (ProMP)

[17] and dynamic movement primitives (DMP) [20], have

been proposed to generate desired trajectories regarding
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different modulations. Both ProMP and DMP introduce

various weight coefficients to describe basis functions and

govern explicit dynamic equations, separately. As a time-

driven algorithm, the weight parameters of the basis

function are learned towards an optimal function value

without addressing high-dimensional inputs.

In order to address high-dimensional issues and alleviate

specified trajectory equations, Gaussian Mixture Model

(GMM) [3] is applied to model several Gaussian distribu-

tions of demonstrations probabilistically using the EM

algorithm. Combining with Gaussian Mixture Regression

(GMR) [4], the novel predicted trajectories are derived

from a weighted conditional Gaussian distribution. How-

ever, the capability of generating trajectories is limited by

the similarity (Euclidean distance in the covariance func-

tion) [26] of the demonstration and the desired input. A

similar kernel-based framework, such as movement prim-

itives with multi-output Gaussian Process [6] and Ker-

nelised Movement Primitives [5], could be seen as the

variations of GMM/GMR, which take advantage of the

kernel function to retrieve more flexible trajectories.

Reinforcement learning is considered as an alternative to

adapt new tasks according to the optimisation reward. In

[22], Policy Improvement with Path Integrals (PI2) is used

to refine the movement primitives of DMP. A modified

version of PI2 based on Monte Carlo Sampling is intro-

duced in [21] to enhance the learning performance. Addi-

tionally, Q learning algorithm, such as nature actor-critic

[19], is applied for automatically selecting the centres of

GMM clusters. Nevertheless, the learning procedure based

on sampling optimisation might be time-consuming.

Although robots are usually supposed to generate fea-

sible trajectories in a wide range of various circumstances,

human demonstrations could only provide limited sets of

learning instances. Therefore, in addition to the above-

mentioned imitation learning algorithms, several modified

versions have been proposed to add more advanced prop-

erties in order to enhance the capability of generating

adapting trajectories. In [14], based on ProMP, a proba-

bilistic human–robot interaction methodology is proposed

in collaboration with an operator. Moreover, the spring-

damper dynamic behaviour regarding impedance control is

discussed in [9]. A task-parametrised formulation extended

from GMM is presented in [2], which essentially models

movement behaviours with a set of task parameters, and

therefore improving generalisation capability.

The remainder of the paper is organised as follows: after

the introduction, an overview of the distributed proba-

bilistic framework is presented in Sect. 2; Additionally,

Sect. 3 outlines the individual movement primitive learning

of GMM clustering and GMR regression with the EM

algorithm; in Sect. 4, the multiple movement primitives

learning under the distributed regression framework is

addressed; Sect. 5 presents the comparison between the

task-parametrised GMM and our proposed learning

framework, along with several assembly tasks using ABB

YuMi robot in order to verify the application feasibility;

finally, the conclusion is reported in Sect. 6.

2 Distributed probabilistic framework—an
overview

Nearly all the movement-primitive imitation learning

methods focus on the adaptation and modulation of a single

human demonstration template. As usual, these human

demonstrations are captured under specific conditions such

as obstacle constraints, limited sensor devices or with a

redundant manipulator. All these facts would place barriers

in the way of reconfiguring or retrieving novel trajectories

regarding a different task setting.

Therefore, in this paper, we propose a novel distributed

probabilistic framework for enhancing the learning capa-

bilities among different movement primitives. More

specifically, as illustrated in Fig. 1, this framework aims to

accommodate different movement primitives by storing the

task parameters, along with primitives parameters obtained

by GMM and GMR. Both parameters are further utilised to

establish a nonlinear mapping based on the Gaussian

process.

Furthermore, the Bayesian Committee Machine is

employed as a probabilistic fusion machine to automati-

cally choose a training movement primitive of retrieving a

new movement primitive given the combination of several

training movement primitives (adaptation). The core idea

of our proposed framework is that it preserves the indi-

vidual functions and features of each movement primitive,

and meanwhile flexibly outputs novel motions that meet

the demand of the task environment.

To improve the readability of this paper, we highlight

our contributions as follows:

1. We propose a novel distributed probabilistic frame-

work, which could accommodate various movement-

primitive datasets into an overall regression structure.

2. Based on the Evidence Maximisation, the hyper-

parameters of the Gaussian process regression model

of the task-parametrised and the GMM parameters are

automatically optimised.

3. Derived from the Bayesian Committee Machine, the

prediction of the new task trajectories is derived from

the weight contributions of all the trained Gaussian

process regression models from corresponding move-

ment-primitive datasets.
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4. In order to demonstrate the application feasibility of

our proposed distributed probabilistic framework, the

task-parametrised GMM methodology is compared

with our proposed distributed framework. Moreover,

the application feasibility of this framework is further

verified through real-world experiments.

3 Individual movement primitive learning

We start Sect. 3.1 by briefly introducing the learning pro-

cess of encoding human demonstrations with GMM clus-

tering and retrieving trajectories using GMR regression [3].

Moreover, the model learning of the movement primitives

with the EM algorithm is given in Sect. 3.2.

3.1 Human demonstration encoding

Basically, the i-th human demonstration can be defined as a

dataset fnI ; nOgi, where nI 2 RI is considered as an time

input variable. Hence, nO 2 RO is hence in either task

space or joint space. Encoded by a GMM with K Gaussian

processes, a datapoint n ¼ ½nI ; nO� of D dimensions

described by the GMM can be probabilistically defined as

pðnÞ ¼
XK

k¼1

pkNðn; lk;RkÞ;

with the Gaussian distribution

Nðn; lk;RkÞ ¼
1

ð2pÞDjRkj
exp�

1
2ðn�lkÞ

TR�1
k ðn�lkÞ;

where lk and Rk are the mean and covariance of the

Gaussian distribution Nðn; lk;RkÞ and pk (
P

k pk ¼ 1) is

the prior. Considering the input and output components

separately

lk ¼
lIk

lOk

� �
;Rk ¼

RI
k RIO

k

ROI
k RO

k

" #
;

the predicted distribution pðnOjnI ; kÞ�N ðn̂k; R̂kÞ is

defined as

n̂k ¼ lOk þ ROI
k ðRI

kÞ
�1ðnI � lIkÞ;

R̂k ¼ RO
k � ROI

k ðROI
k ðRI

kÞ
�1RIO

k Þ:

If we take the complete GMM into consideration, the

predicted distribution can be rewritten as

pðnOjnIÞ�
XK

k¼1

hkNðn̂k; R̂kÞ; ð1Þ

where hk is the posterior that decides the responsibility of

the k-th Gaussian distribution

hk ¼
pðkÞpðnI jkÞ

Pk
j¼1 pðkÞpðn

I jkÞ
¼ pkNðnI ; lIk;RI

kÞ
RK
j¼1pjNðnI ; lIj ;RI

j Þ
: ð2Þ

According to the linear combination properties of the

Gaussian distributions, the conditional distribution is thus
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Fig. 1 The overview of the proposed distributed probabilistic

framework. This framework aims to accommodate various movement

primitives in an overall framework and generate a novel movement

primitive by probabilistically combining several primitives together

with Bayesian Committee Machine

Neural Computing and Applications (2023) 35:23453–23464 23455

123



estimated as a single Gaussian distribution. Given nI , the

expectation and covariance of nO are approximated as

n̂ ¼
XK

k¼1

hkn̂k; R̂ ¼
XK

k¼1

h2kR̂k: ð3Þ

3.2 Model learning with the EM algorithm

We utilise the EM (Expectation Maximisation) algorithm

[16] for GMM training, which is an iterative algorithm to

maximise the posterior estimation of parameters in the

statistic model. According to Jensen’s inequality and KL

(Kullback–Leibler) divergence, the EM algorithm consists

of two steps, i.e. expectation step and maximisation step.

If we define the maximisation parameters of the GMM

model as H ¼ fpk; lk;RkgKk¼1, the expectation step is try-

ing to find the value of the following object function at g

step

QðHðgÞÞ ¼
XK

k¼1

XN

i¼1

lnðpkÞpðkjxi;HðgÞÞ

þ
XK

k¼1

XN

i¼1

ln½N ðxijlk;RkÞ�pðkjxi;HðgÞÞ;

ð4Þ

with xi the training data. In the maximisation step, the

parameter Hðgþ1Þ is thus obtained by maximising QðHðgÞÞ

pðgþ1Þ
k ¼ 1

N

XN

i¼1

pðkjxi;HðgÞÞ; ð5Þ

l
ðgþ1Þ
k ¼

PN
i¼1 xipðkjxi;HðgÞÞ

PN
i¼1 pðkjxi;HðgÞÞ

; ð6Þ

Rðgþ1Þ
k ¼

PN
i¼1½xi � l

gþ1
k �½xi � l

gþ1
k �Tpðkjxi;HðgÞÞ

PN
i¼1 pðkjxi;HðgÞÞ

: ð7Þ

For initialisation, the K-means algorithm [8] is utilised to

choose the original parameters of the Gaussian distribu-

tions and hence the EM algorithm proceeds until con-

verging and deriving a closed-form solution. Also, the

graphic explanation of encoding the human demonstrations

is given in Fig. 2.

4 Probabilistic distributed framework

According to the analysis of individual movement primi-

tive in Sect. 3, a learned individual primitive model based

on several human demonstrations can be represented by

GMM parameters H ¼ fpk; lk;RkgKk¼1. Inspired by [2], if a

connection between the GMM parameters and the task-

specific feature is established, an individual primitive

model could generate more extension. Therefore, we

introduce a Gaussian process regression model that maps

the Cartesian task parameters to GMM parameters in Sect.

4.1. Also, the probabilistic distributed learning framework

for multiple movement primitives is detailed in Sect. 4.2.

4.1 Task-parametrised model

In order to encode the relationship between the task

parameter Q and the GMM parameters H, we consider a

regression model based on Gaussian process

H ¼ f ðQÞ þ x;x�Nð0;RxÞ; ð8Þ

with the Gaussian white noise x and the variance Rx.

The regression model can be fully specified by the mean

function mf ð�Þ and semi-positive covariance function

kf ð�; �Þ. Moreover, the kernel covariance is defined as

kðQi;QjÞ ¼ r2f exp � 1

2
ðQi � QjÞK�1ðQi � QjÞT

� �
dij þ r2x;

ð9Þ

with the length-scales K ¼ diag ðl21; :::; l2nÞ, the signal

variance r2f , and the noise variance r2x, which are defined

as the GP hyper-parameters h ¼ fli; rf ; rxg.
Given desired task parameters Qd, the new GMM

parameters derived from conditional probability of the

Gaussian distribution are defined as

Fig. 2 The graphic explanation of encoding human demonstrations.

In the initialisation step, seven Gaussian distribution models are

initialised with K-means. After 48 steps training with EM algorithm,

the expectation of GMM converges to predefined interval. Therefore,

the trajectory is hence retrieved using GMR as shown above
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mf ðQdÞ ¼ kT� ðK þ r2xIÞ
�1y; ð10Þ

kf ðQd;QdÞ ¼ k�� � kT� ðK þ r2xIÞ
�1k�; ð11Þ

where k� ¼ kðQ;QdÞ and k�� ¼ kðQd;QdÞ.
In [2], the covariance kf ðQd;QdÞ of conditional proba-

bility is neglected and only the mean mf ðQdÞ is used to

retrieve novel trajectories. As the hyper-parameters are not

optimised, the covariance may have a negative value. In

the proposed framework, the covariance kf ðQd;QdÞ is seen
as the crucial information that is utilised to indicate the

confidence interval in the data fusion. The hyper-parame-

ters of the Gaussian process model should be optimised,

and therefore, the covariance could have a meaningful

value which indicates a positive connection among differ-

ent GMM parameters.

After choosing a flat pðhÞ, the posterior distribution is

only proportional to the marginal likelihood

pðHjQÞ ¼
Z Z

pðHjQ; f ; hÞpðf jhÞpðf jhÞpðhÞdfdh;

¼
Z

pðHjQ; hÞpðhÞdh:

To optimise the vector of hyper-parameters h, we follow

the recommendation from [13]. Particularly, the log-mar-

ginal likelihood can be given as

log pðHjQ; f ; hÞ ¼ log

Z
pðHjQ; f ; hÞpðf jhÞdf

¼ � 1

2
HTðK þ r2xIÞ

�1H� 1

2
log jK þ r2xIj �

D

2
logð2pÞ

ð12Þ

Therefore, the hyper-parameters are set by maximising the

marginal likelihood. We define the partial derivatives of

the marginal likelihood w.r.t. the hyper-parameters hi [26]

o

ohi
log pðHjQ; hÞ ¼ 1

2
HTK�1

r
oK

ohi
K�1

r H� 1

2
tr K�1

r
oKr

hi

� �
:

ð13Þ

where Kr ¼ K þ r2xI. In the above equation, the two terms

usually refer to the data-fit term and the model complexity.

The gradient technique aims to seek the trade-off between

the data-fit and model complexity.

4.2 Distributed learning

The obtained covariance kf ðQd;QdÞ of Gaussian distribu-

tion shows the confidence interval of the predictions, which

could be seen as the robustness of Gaussian process

regression. In this paper, the covariance of prediction is

used as a data fusion indicator.

Owing to independence assumption, the marginal like-

lihood could be factorised into several individual terms

pðHjQ; hÞ ¼
YM

k¼1

pkðHðkÞjAðkÞ; hÞ; ð14Þ

where each factor term pk depends on the k-th individual

GP regression model as discussed in sect. 4.1.

The following information details how to combine

M individual primitive models to form an overall predic-

tion with the Bayesian Committee Machine (BCM) [23].

As we can see, the BCM explicitly combines the GP prior

p(f) when making prediction.

Given M individual primitive models, the predictive

distribution can be generally defined by

pðf�jDð1Þ; :::;DðMÞÞ / pðDð1Þ; :::;DðMÞjf�Þpðf�Þ; ð15Þ

with pðf�Þ the prior over functions and DðkÞ; k ¼ 1; :::;M

the k-th dataset. Under BCM conditional independence

assumption, the predictive is rewritten as

pðf�jDð1Þ; :::;DðMÞÞ / pðf�Þ
Y

k

pðDðkÞjf�Þ; ð16Þ

¼
QM

k¼1 pðDðkÞ; f�Þ
pM�1ðf�Þ

ð17Þ

/
QM

k¼1 pkðf�jDðkÞÞ
pM�1ðf�Þ

: ð18Þ

Therefore, given an input x�, the posterior predictive dis-

tribution is defined as

pðf�jx�;DÞ ¼
QM

k¼1 pkðf�jx�;DðkÞÞ
pM�1ðf�Þjx�

; ð19Þ

Then the mean and the precision are

l� ¼ ðr�Þ2
XM

k¼1

r�2
k ðx�Þlkðx�Þ ð20Þ

ðr�Þ�2 ¼
XM

k¼1

r�2
k ðx�Þ þ ð1�MÞr�2

�� ð21Þ

separately, with r�2
�� the prior covariance of pðf�Þ.

5 Experiments

In order to verify the feasibility of the proposed proba-

bilistic framework, several experiments are implemented in

this section. In Sect. 5.1, the task-parametrised GMM is

compared in terms of several aspects, such as generalisa-

tion capability, accuracy and computation expense. Fur-

thermore, two assembly tasks, rivets and nutplate pick-up
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are given in Sect. 5.2 to demonstrate real-world application

feasibility.

5.1 Comparison with task-parametrised GMM

The task-parametrised GMM is a powerful tool to retrieve

trajectories in a variety of tasks, such as movement prim-

itive reproduction, viapoint adaptation and modulation.

The proposed probabilistic distributed framework aims to

mutually combine and simultaneously accommodate vari-

ous movement primitives in an overall scenario, and

therefore augments the generalisation capability and makes

great use of every single movement primitive. In this

subsection, we would like to explore more functions both

from task-parametrised GMM and our proposed framework

in terms of generalisation capability, accuracy and

robustness, and computation expense.

Generalisation capability for exploring the generalisa-

tion capability, twelve movement primitive datasets are

generated randomly as shown in Fig. 3. Each dataset

accommodates four movement primitives with three GMM

components. Moreover, the origin frame and task frame are

recorded in pink and green separately for further analysis.

It is worth pointing out that basically every dataset could be

seen as a task-parametrised GMM model.

Four different task frames are presented for testing the

generalisation capability, as shown in Fig. 4. Particularly,

for a desired task frame in green, every dataset retrieves its

own predicted trajectory as given in Fig. 4a–d. Moreover,

three GMM components are displayed with the mean in

black dot and the covariance in blue, yellow and purple

ellipses.

As shown in Fig. 4, although all the movement datasets

give their predictions, some of these predictions do not

match the desired task frame in terms of position and ori-

entation. This is because a single movement dataset has a

limited generalisation capability. If the desired task frame

is too far from the task frames of the data sample, the task-

parametrised will have a poor retrieving performance.

Our proposed distributed framework takes all the pre-

dictions from the datasets into consideration and fuses the

trajectories on a GMM-parameter level. In addition, this

probabilistic framework could bear poor prediction derived

from several datasets, and meanwhile, output satisfying

results as presented in Fig. 5.

Accuracy and robustness in order to provide a more

comprehensive analysis, the weights and prediction inter-

vals of every dataset are presented in Fig. 6 derived from

Eqs. 20 and 21, separately. Moreover, the prediction

accuracies of each primitive dataset and our proposed

distributed framework are compared in Fig. 7.

As shown in Fig. 6, the confidential interval in the red

bar shows the prediction range of each movement dataset.

If the confidential interval is large, then the corresponding

movement dataset will lose its confidence in predicting

novel trajectories. On the contrary, if the confidential

interval is narrow, then the movement dataset has more

faith in its own prediction. Consequently, in our proposed

distributed framework, large confidential interval matches

with low weight as presented in Fig. 6 in blue and vice

versa.

As shown in Fig. 7a, the prediction error of each

primitive dataset is nearly proportional to the confidential

intervals in Fig. 6a. The similar situations can also be

observed in the other three group simulations, i.e. Figs. 7b

and 6b, Figs. 7c and 6c, and Figs. 7d and 6d. This is why

we use the information of the confidential intervals of each

primitive dataset are used to quantitatively explain the

weights applied in Equ. 20. In addition, the proposed dis-

tributed framework shown in green gives a better predic-

tion accuracy compared with the accuracy from each

primitive datasets shown in yellow according to the four

prediction errors given in Fig. 7a–d.

We would like to point out that it is not always the case

that a very small confidential interval leads to better

a b c d e f
g h i j k l

Fig. 3 Twelve movement-primitive datasets. Each dataset generated randomly has four movement primitives. The task frame and origin frame

contain the information of position and orientation shown in green and pink, respectively (color figure online)
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a b c d e f
g h i j k l

(a) Task frame (green) and the retrieved of the first group primitive datasets.

a b c d e f
g h i j k l

(b) Task frame (green) and the retrieved of the second group primitive datasets.

a b c d e f
g h i j k l

(c) Task frame (green) and the retrieved of the third group primitive datasets.

a b c d e f
g h i j k l

(d) Task frame (green) and the retrieved of the forth group primitive datasets.
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prediction results. Sometimes, a narrow confidential inter-

val indicates that the algorithm is very aggressive. Addi-

tionally, a large confidential interval may result in

conservative predictions. So it is crucial to keep a balance

between uncertainty and over-fitting and maintain

robustness.

Computation expense another crucial property we add to

the distributed framework is the optimisation of the hyper-

parameters of the Gaussian process with Evidence Max-

imisation. However, the training of hyper-parameter

requires additional computation expense Oðn3Þ and Oðn2Þ
for prediction if the trained parameters are cached, with n

the volume of the training dataset. Therefore, for our pro-

posed framework, the whole computation expense is

Oðm � n3 þ m � n2Þ, with m primitive datasets. For more

information on the computation expense of the distributed

framework, we refer to our previous work [25].

5.2 Assembly tasks

After addressing all the key issues of our proposed dis-

tributed framework in Sect. 5.1, in this subsection, the

feasibility with real-world experiments is verified, such as

rivet picking and nutplate picking. As presented in Fig. 9,

we test our proposed framework with the ABB YuMi

robot. The YuMi is a two-arm collaborative robot with an

industrial camera mounted on the wrist of the right arm,

and the payload is 0.5 kg for each arm. To amplify the

function of the YuMi, two grippers are equipped with two

arms, respectively.Rivet picking the first experiment

implemented in this subsection is picking rivet from the

rivet block as shown in Fig. 10. We collect twelve groups

of human demonstrations as given in Fig. 8, along with the

trajectories in Fig. 11a. As shown in Fig. 11a, the collected

demonstrations have some inaccuracies. Particularly, the

demonstrations are not smooth enough and some of them

bFig. 4 The retrieved trajectories of movement-primitive datasets. The

generalisation capability is tested with four different task frames

given in green. The initial frame is shown in pink, and three GMM

components corresponding to each movement primitive are presented

in blue, yellow and purple. In addition, each retrieved trajectory could

be seen as the prediction of the task-parametrised GMM (color

figure online)

Fig. 5 The retrieved trajectories of our proposed distributed frame-

work. For a group of twelve movement primitive datasets given in

Fig. 4a–d, our proposed framework could accommodate all the

primitive datasets together and predict novel trajectories regarding the

desired task frame
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Fig. 6 The confidential interval and weights corresponding to each

movement primitive dataset in Fig. 4
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(d)

Fig. 7 The comparison of the prediction accuracies. The prediction

accuracies corresponding to four groups primitive datasets are shown

in yellow, along with the prediction accuracy of the proposed

framework given in green (color figure online)
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may not be successfully inserted into the holes of the rivet

block.

Each primitive-dataset group is trained with three GMM

using EM algorithm as presented in Fig. 11b. Moreover, as

shown in Fig. 11b if the training dataset is decentralised,

the GMM ellipsoid is large and the Gaussian process model

has a wide distribution and verse versa.

Besides, we construct a Gaussian process regression

between the task frames of twelve primitive datasets and

corresponding GMM model parameters. Under our pro-

posed distributed framework, the twelve novel trajectories

are inferred in Fig. 11c, along with the desired task frames

in square black and green makers and the origin frames in

square black and yellow makers.

To reveal further details, each three consecutive pre-

dicted trajectories are separated in four figures as

represented in Fig.11d–g. Additionally, the confidential

intervals derived from GMR are plotted in green.

The prediction errors are given in Fig. 13. As we can see

in the figure, all the prediction errors are below 0.35 mm.

Most of the prediction errors are lower than 0.2 mm, which

is the reference assembly precision of aerospace manu-

facturing. However, we still notice that the prediction error

of the ninth hole is larger than 0.2 mm and the second is

even higher than 0.3 mm. This is mainly caused by the

accuracy of the human demonstrations. If all the human

demonstrations are far from the desired target, the predic-

tion will have poor retrieving performance. We would like

to point out that the above precision or prediction errors are

enough accurate for picking applications, such as rivet

Nutplate-

pickingarea

Machinevision

assistance

Rivet-

pickingarea

Fig. 9 The experimental platform. We test our proposed distributed

framework with the ABB collaborative robot, YuMi. The rivet block

is on the left side of the YuMi, while the picking board is located on

the right side

Fig. 10 The top view of the rivet block. The rivet block is designed to

locate the rivets. In addition, the diameter of each hole is 3 mm

Fig. 8 Human demonstrations of rivet picking. During the human demonstrations, the YuMi robot is in lead-through model and the trajectories

are captured using socket communication to an external PC

(a) (b) (c)
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(d) (e) (f) (g)

Fig. 11 The learning process of our proposed probabilistic distributed

framework. The training trajectories are collected in (a). Then, the
trained GMM components of each dataset using the EM algorithm are

given in (b). The retrieved trajectories inferred by twelve movement

primitive datasets are shown in (c) and the desired frames are given in

green markers. Finally, the confidential interval of each three

consecutive trajectories according to GMR is given in (d), (e),
(f) and (g)
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picking. Theoretically, the proposed distributed framework

can manage to keep the prediction errors below 0.2 mm

with more accurate demonstrations.

Nutplate picking the second experiment is nutplate

picking, which is implemented with machine vision tech-

niques using Cognex in-Sight smart camera. The initial

experiment setting includes the checkerboard calibration to

the YuMi robot and features extractions, which is achieved

with the function PatMax Patterns [1]. Besides, we set an

adapted exposure time which depends on the ambient

lighting condition.

Similarly, we obtain several human demonstrations as

presented in Fig. 12a. Then, these demonstrations are

trained with GMM models and retrieve novel trajectories

under the proposed distributed probabilistic framework.

For the picking guidance, the position and orientation of

the nutplates are located using the machine vision tech-

niques, as given in Table 1. As given in the left subfigure in

Fig. 14, the positions of each nutplate are showing in the

green cross, and the orientations are presented with arrows.

The picking positions and orientations of the gripper are

presented in the right six subfigures in Fig. 14. The addi-

tional information of the learned trajectories is given in

Fig. 15. Besides, the picking process of the human

demonstration and the nutplate in the middle is recorded in

Fig. 12a and b, respectively. We would like to point out

that only the target positions are learned by the proposed

distributed framework and the orientations are directly sent

to the picking program. The orientation learning will be

addressed in our future work. In order to further analyse the

picking accuracy, several experiments are implemented

with the same experimental setting.

Combining these nutplate picking experiments, the

average prediction errors with error bars are presented in

Fig. 16. The average errors are below 0.3 mm, which

include implementation error, machine vision error, and the

error of our proposed framework. The machine vision error

is derived from the lens distortion and ambient lighting

condition. With the compensation of the gripper, the YuMi

can successfully perform nutplate picking tasks.
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Fig. 13 The prediction errors of the rivet picking experiments

Table 1 Extracted coordinates using machine vision

Coordinate u v a

Point 1 - 34.465 12.137 - 4.035

Point 2 - 71.713 - 1.833 6.909

Point 3 9.729 - 1.043 - 19.725

Point 4 - 26.218 - 27.360 10.943

Point 5 - 68.619 40.482 - 13.712

Point 6 - 16.294 52.771 - 11.322

Fig. 12 Human demonstrations of the nutplate picking and the record

of the nutplate picking process. a Human demonstrations of nutplate

picking. b Robot motion record of the nutplate picking. In this

experiment, the setting is the same as rivet picking. However, the

location of the nutplate picking is obtained with machine vision
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6 Conclusion

In this paper, we propose a novel distributed probabilistic

framework, which can accommodate various movement

primitives together and retrieve novel trajectories in a

weight-based scenario. Specifically, the core idea of this

framework is to not only provide functionalities of

generating new movement primitive given task parameters

but also aim to explore a feasible solution to save various

primitives and select or modulate them regarding different

demands.

The human demonstration for establishing the primitive

dataset is captured with GMM and GMR. Moreover, the

regression model between the task parameters and primi-

tives parameters is obtained by the Gaussian process and

could be automatically optimised with Evidence Maximi-

sation. Also, given the desired task frame, the retrieved

trajectories are predicted using Bayesian Committee

Machine. The assembly task experiments, such as rivet and

nutplate picking, show the application feasibility of our

proposed framework. Our future work will focus on the

(b)

(d)
(c)

(f)

(g)
(e)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 14 The desired task frames and gripper picking records. The desired task frame is derived from machine vision corresponding to the

information of Table 1. The gripper picking actions are recorded at the right side of the figure

Fig. 15 The human demonstration and learned trajectories with the

proposed probabilistic framework. This figure provides further

information for Fig. 14. The human demonstration is presented in

grey colour. Additionally, the learned trajectories are given in colour

solid lines

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

P
re
di
ct
io
n
er
ro
rs

(m
m
)

Errors

Fig. 16 The prediction errors of the nutplates picking
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movement primitives library as well as the enhancement of

precision.
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